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ABSTRACT
Video data is ubiquitous; capturing, transferring, and storing even
compressed video data is challenging because it requires substantial
resources. With the large amount of video traffic being transmitted
on the internet, any improvement in compressing such data, even
small, can drastically impact resource consumption. In this paper,
we present a hybrid video compression framework that unites
the advantages of both DCT-based and interpolation-based video
compression methods in a single framework. We show that our
work can deliver the same visual quality or, in some cases, improve
visual quality while reducing the bandwidth by 10-20%.

CCS CONCEPTS
• Computing methodologies → Image compression; • Com-
puting methodologies → Neural networks.

KEYWORDS
video compression, learning-based video frame interpolation
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1 INTRODUCTION
More video data than ever is being generated and transferred for ap-
plications such as online learning, video conferencing, social media,
video broadcasting, TV streaming networks, smartphone photo or
videography, (cloud) video games, telesurgery, and medical imaging
[1, 2, 6, 7, 10, 14, 15, 17]. While current video compression stan-
dards have greatly reduced the amount of data to represent video
streams, they still require significant resources. Cisco predicted
video data would consume about 82% of the internet bandwidth
[11]. Thus, even small continued improvements in video compres-
sion can have a significant impact on internet traffic. For example,
an improvement of 2% can reduce internet traffic by 11 Tbps.

The discrete cosine transform (DCT) has served as the basis of
nearly all video compression standards for the last three decades.
DCT-based video compression techniques explicitly encode data
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through predictive coding and differential residual coding. This
allows for great flexibility in the encoder to trade off video qual-
ity and bitrate for a particular application. Currently, H.264 is the
most widely deployed and used video codec and is now embed-
ded on many devices; H.264 has lower latency and consumes less
computational power than H.265 and VP9 [5, 9, 24].

With recent advances in GPU technology, the use of deep neural
networks to aid in a large number of applications is becoming
feasible. Video frame interpolation (VFI) is one such example where
trained VFI models can be used to interpolate one or more frames
between existing frames. If applied to video compression, one could
imagine using VFI in compression to entirely skip coding individual
(or multiple) frames and allowing the decoder side to interpolate
and synthesize the missing frames. We will call such a scenario
generative video compression (GC). The GC method can help us
reduce bandwidth consumption by not explicitly encoding all the
data as in traditional video compression algorithms.

In theory, while VFI can significantly reduce the amount of data
required to represent a video stream, there are some limitations that
impact their efficacy in general video compression. First, frame in-
terpolation is extremely difficult for frames that exhibit non-linear
motion (e.g., acceleration, object spinning). VFI would need to be
able to predict the form of motion as well as the trajectory to be
more accurate. Second, frame interpolation has typically been ap-
plied to increase the frame rate of an existing sequence, such as
going from 30 frames per second to 60 frames per second to make
the motion slightly smoother, and not to remove frames. Synthesiz-
ing high-quality intermediate frames using VFI in more temporally-
distant input frames becomes problematic due to increased motion
and occluded objects. One such solution to helping this is to find a
way to combine VFI with techniques that can explicitly represent
data.

In this paper, we present an efficient video compression frame-
work that combines the advantages of DCT-based compression and
video frame interpolation into a single framework. In particular, for
areas in the frame that VFI can easily interpolate, we skip encoding
these areas altogether, and for areas that VFI cannot easily inter-
polate, we explicitly use DCT-based encoding. Our results show
that by using our framework, we can reduce the bandwidth of the
video stream by 10-20% depending on the scene type and maintain
similar video quality.

2 BACKGROUND AND RELATEDWORK

DCT-based Video Compression. Traditional video compression
standards that use DCTs have existed for many years. DCT-based
video compression algorithms typically use 16x16 pixelmacroblocks.
The compression standards then use motion-compensation to find
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the closest match that can serve as a prediction for the macroblock
and residual coding to provide any corrections to the prediction.
To provide random access to frames, sets of video frames are typi-
cally grouped into a group of pictures (GOPs) and the size of each
GOP is called the Gop size. Each iteration of the various H.26x and
MPEG-x standards has typically added more options for motion-
compensation and improved entropy encoding but are similar at a
high level. Video codecs in use today include H.264 [27], H.265 [25],
and H.266 [4]. We assume readers are familiar with MPEG video
compression techniques and refer readers to overview papers for
more information [25, 27].

Video Frame Interpolation. Video frame interpolation (VFI) is a
computer-vision technique to improve the frame rate of existing
video streams. Traditional frame synthesis approaches estimate
dense motion between two consecutive input frames using opti-
cal flow or motion estimation algorithms and then leverage the
estimated dense correspondences to temporally synthesize one or
more frames between inputs [3, 29]. Inspired by the success of deep
neural networks for computer vision applications, deep learning-
based frame interpolation approaches [16, 19, 21–23, 28] have been
proposed to perform image synthesis tasks. Niklaus et al. devel-
oped a deep convolutional neural network for frame interpolation
that merges motion estimation and image synthesis into a single
convolution process and trains the deep network to learn to es-
timate spatially-varying convolution kernels for frame synthesis
[23]. Liu et al. developed a voxel flow method that employs a deep
neural network to estimate optical flows from the target frame to
the input ones to synthesize the target frame [16]. The PhaseNet
work investigates the use of deep neural networks to perform frame
interpolation in the frequency domain [19]. The task-oriented flow
(TOFlow) research showed that optical flows can be fine-tuned to
enable better video frame interpolation [28]. Jiang et al. developed
a method that allows interpolating multiple frames between two in-
puts [13]. Niklaus et al. developed a context-aware neural network
that explores the contextual information to guide frame synthesis
[21], and their recent work further explores feature pyramids to
help with frame synthesis [22].

For consistency of discussion, the VFI methods use two anchor
frames for which it then interpolates middle/intermediate frame(s).
We will assume a fixed distance (in frames) between the anchor
frames, which we refer to as the anchor frame distance (AFD).

Hybrid compression. The FID video compression framework [12]
introduces preliminary work of combining a DCT-based standard
and a VFI method. The FID video compression framework only
considers I-frames as anchor frames. Encoded B-frames contain
less data and consequently produce smaller bitstreams than having
only I-frames in the sequence. This paper explores the generalizing
of the encoded sequence framework as well as a more thorough
treatment of experimentation.

3 APPROACH
In this paper, we create an efficient hybrid video compression frame-
work that takes advantage of DCT-based video compression and
frame interpolation-based methods. DCT-based video compression
standards, when compared to video interpolation-based methods,

Figure 1: An overview of SFID. SFID encodes anchor frame
sequences using DCT-based compression (shown in blue) and
attempts to skip intermediate frames by recreating them by
generative compression. For areas (macroblocks) that are
not synthesized with high enough quality, SFID explicitly
encodes the macroblock into the stream.

can keep necessary details when there are challenging regions
in the presence of high-frequency data, large or non-linear mo-
tions, and fast changes in the scene. However, encoding all this
data consumes bandwidth while trying to keep the video qual-
ity high. Current interpolation-based methods can synthesize re-
gions with low-frequency data, linear, or small motions. Therefore,
interpolation-based video compression can help save bandwidth
and maintain high visual quality. However, interpolation methods
can perform poorly when the scene is hard to synthesize, such as
with non-linear motion.

In Figure 1, we present a general overview of our sequential
frame-interpolation andDCT-based (SFID) video compression frame-
work. The first five ground truth frames, gt𝑖 , where 1 ≤ 𝑖 ≤ 5 are
represented in (a). In (b), We use any DCT-based codec, aka MPEG,
to encode the ground truth frames, demonstrated by gtm𝑖 where
1 ≤ 𝑖 ≤ 5, in an open-GOP setting, with a GOP size of 4, and only
B intermediate frames.

We select the anchor frames from MPEG-encoded frames for
the generative compression (GC) frames based on GOP size and
anchor frame distance (AFD). In theory, any such encoding is fine;
in this paper, however, we encode frames such that GOP Size is
evenly divisible by the AFD size. In this paper, we choose 16 for our
GOP size since it is the largest even GOP size in our selected codec
(H.264) that we can have the GOP structure of I, B, ..., B, I without
enforcing P-frames in between. To get uniformly distributed AFDs,
we selected AFDs of 2, 4, and 8 for the GOP size of 16.

In Figure 1-(c), the anchor frames selected are gtm1 (encoded I-
frame), gtm3 (encoded B-frame), and gtm5 (encoded I-frame). These
anchor frames are then fed into the GC model to generate the
intermediate frames (gc2 and gc4).

To further improve the efficiency of the framework, in this pa-
per, SFID has different criteria for deciding if a macroblock is to
be explicitly encoded into the final bitstream compared with the
FID [12] framework. In SFID, for each intermediate frame 𝑖 of gc𝑖
generated by the GC model, we calculate the peak-to-signal-noise
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Figure 2:Motion progression from the start to the end of some
sequences used in this paper. From top to bottom from Cate-
goryA sequenceswe have FlowerKids, Jockey, andReadySetGo.
From Category B, we have Beauty and Bosphorus. From Cat-
egory C and D we show Twilight and Honeybee, respectively.

(PSNR) of each 16x16 macroblock (𝑀𝐵) compared to its correspond-
ing ground-truth MB. Higher PSNR values represent better visual
quality. For the intermediate frame 𝑖 , we decide whether to include
data in the bitstream or not by checking the following criteria. If the
PSNR value for an𝑀𝐵 in frame 𝑖 generated by GC is high enough
as shown in Equation (1), or it has better quality than its DCT-based
encoded𝑀𝐵 as shown in Equation (2), we do not explicitly encode
that𝑀𝐵 into the bitstream. Therefore, if

𝑃𝑆𝑁𝑅(𝑀𝐵(𝑔𝑐𝑖 ), 𝑀𝐵((𝑔𝑡𝑖 )) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (1)

or

𝑃𝑆𝑁𝑅(𝑀𝐵(𝑔𝑐𝑖 ), 𝑀𝐵(𝑔𝑡𝑖 )) ≥ 𝑃𝑆𝑁𝑅(𝑀𝐵(𝑔𝑡𝑚𝑖 ), 𝑀𝐵(𝑔𝑡𝑖 )) (2)

are true, we do not include the encoded𝑀𝐵(𝑔𝑡𝑖 ) to the bitstream. On
the receiver/decoder, MBs that were not included in the bitstream
will be generated by GC. In this paper, we select PSNR as the metric
to perform the visual quality comparison at a macroblock level;
however, this comparison can be made by any other visual quality
metric.

4 EXPERIMENTATION
4.1 Experimental Setup
Dataset. For evaluation, we apply our video compression frame-
work to sequences from the UVG dataset [18], and Netflix Research
dataset [20]. We resize the dimension of all video sequences down
to 1920x1072 using the convert function of ImageMagick [8] by the
𝑟𝑒𝑠𝑖𝑧𝑒 parameter, so the resolution of all frames is divisible by 16
(the size of an MB).

We use the full UVG dataset video sequences. These sequences
have a variety of contrast, texture types, and motion types. These
sequences contain 300 to 600 frames per sequence and have frame
rates of 50 or 120 frames per second (fps). From the Netflix dataset
sequences we use, Tango and Narrator, contain 294 and 300 frames,
respectively, and both have a frame rate of 60 fps.

As one would expect, some sequences are easier to interpolate,
such as Narrator and Honeybee. In Narrator, a narrator slowly walks
towards the camera with few people in the background walking and
contains a blurred less-detailed background. In Honeybee, the se-
quence has a very static background and a few bees flying between
flowers. In other sequences, such as Jockey and ReadySetGo, which
are horse racing videos, there is rapid foreground object motion
and the camera panning to the left, causing rapid changes in the
background. In Jockey, the focus of the object changes within the
sequence, from focusing on the horse racer to focusing on the legs
of the horse. Some representative examples are shown in Figure 2
with frame numbers 1, 100, 200, ..., and 600 displayed.

Implementation details. We use ffmpeg (version 4.3.1) as the
video compression framework for our experiments [26]. For the
video codec, we used libx264.

For the video codec’s parameter settings, we used most of the
default values except as noted below. For each coding run in the
experiments, we use variable-bitrate encoding (a fixed Quantiza-
tion Parameter, QP) instead of constant-bitrate encoding (a fixed
Constant Rate Factor, CRF). Using fixed QP allows better quality
comparisons and evaluation between different encodings. If many
macroblocks are skipped, using CRF causes the quantization param-
eter to decrease to "fill" the bitrate rather than keeping the quality
the same and letting the bitrate drop for easier-to-encode areas
(while maintaining the quality constant). Other parameters that
need to be specifically set include anchor frame quality, choice of
I, P, and B frames, open-GOP feature, fixed intervals of I-frames,
a fixed number of B-frames, etc. We have used the following line
when compressing the videos using our chosen DCT-based codec.

ffmpeg -y -r 1 -i input_frame%04d.png -qp 23 -c:v libx264
-x264-params b_adapt=0:open_gop=1:keyint=gopSize:
bframes=(gopSize-1):scenecut=0:b_pyramid=0
output_video.mp4

We use the above command to encode the anchor frame se-
quences (including both I and B frames) to pass to the selected
generative compression model. We have used the default QP value
of 23 to best balance quality and bitrate. We used 𝑔𝑜𝑝𝑆𝑖𝑧𝑒 = 16
to create a maximal consecutive sequence of B-frames without in-
troducing a P-frame and allowing us to have the AFD divisibility
requirement mentioned above. We can apply smaller GOP sizes;
however, the maximum bitrate reduction is achieved with larger
GOP sizes. In order to control the GOP size, we set𝑘𝑒𝑦𝑖𝑛𝑡 = 𝑔𝑜𝑝𝑆𝑖𝑧𝑒 .
To employ more compression and maintain consistency through-
out each sequence. We force all the inter-frames to be B-frames
and exclude P-frames by applying 𝑏𝑓 𝑟𝑎𝑚𝑒𝑠 = (𝑔𝑜𝑝𝑆𝑖𝑧𝑒 − 1) and
𝑏_𝑎𝑑𝑎𝑝𝑡 = 0. We have also selected 𝑠𝑐𝑒𝑛𝑒𝑐𝑢𝑡 = 0 to reduce the sen-
sitivity of the encoder and avoid aggressive enforcement of I-frames.
In this paper, we disabled the hierarchical B-frames coding mode
by setting 𝑏_𝑝𝑦𝑟𝑎𝑚𝑖𝑑 = 0. Therefore, for motion compensation, all
B-frames use the surrounding I-frames as their reference frames
and not other B-frames in the GOP.
Metrics. For comparisons, we use peak-to-signal-noise (PSNR)
and structural similarity (SSIM) index to perform a pixel-wise and
perceptual visual quality comparison of constructed frames using
our models with the ground truth images. We use the 𝑠𝑐𝑖𝑘𝑖𝑡 −𝑖𝑚𝑎𝑔𝑒

package in Python for calculating PSNR and SSIM.
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Figure 3: Categories of video complexity.

4.2 A Video Categorization
In order to better understand the advantages and limitations of our
proposed framework, we break the video streams into a number
of categories. We have found that the performance within each
category is reasonably consistent and that the performance between
categories can vary. We categorize the video streams into four
general complexity categories (A-D) in Figure 3 to analyze the
different videos based on their features and behaviors. The videos
are categorized based on the combination of criteria of whether
there is significant motion (in either the camera or subject) and
whether there is a large amount of small detail in the frames.

Category A (High motion, High detail): Sequences in this
category exhibit both high motion and fine details. Such sequences
are particularly challenging for video interpolation frameworks
because the interpolation needs to manage complex motion (e.g.,
non-linearmotion and occluded areas) while keeping details aligned.
Because DCT-based video compression algorithms explicitly encode
data, they can handle the motion slightly easier but also need to use
more data to encode the high-frequency data (details). This category
contains FlowerKids, Jockey, RaceNight, ReadySetGo, SunBath, and
Tango.

Category B (High motion, Low detail): Sequences in this
category exhibit high motion but generally have less detail to be
encoded or interpolated. Similar to Category A with respect to
motion, these streams can be challenging for video interpolation
frameworks. They are, however, slightly easier to interpolate since
areas of relatively few details can bemore easily created by the inter-
polation framework. Category B is also relatively easier to compress
since there are fewer details to compress. This category contains
Beauty, Bosphorus, Lips, RiverBank, ShakeNDry, and YachtRide.

Category C (Low motion, High detail): Sequences in this cat-
egory exhibit low motion while containing many fine details. These
sequences are generally easier for the video interpolation frame-
works since the small amount of motion means that the ability to
do the point correspondences is easier, and the motion will appear
more linear with fewer occlusions. The main issue for the video
interpolation frameworks for this category, however, is recreating
the fine details throughout the image. These sequences are also
relatively easy for DCT-based video compression because there is
relatively small motion, and motion compensation can more easily
match fine details. Thus, the overall gain from video interpolation
relative to DCT-based compression may be more limited. This cate-
gory contains the FlowerFocus, Narrator, and Twilight sequences.

Category D (Low motion, Low detail): Sequences in this cate-
gory have both little to no motion and very few fine details. This

Figure 4: Visual quality comparison for H.264, GC, map
of skipped macroblocks, and our framework, SFID, in the
ReadySetGo, Beauty, and Jockey sequences.

category is the least challenging for video interpolation as well as
DCT-based video compression. This category contains theCityAlley,
FlowerPan, and Honeybee sequences.

4.3 Experimental Results
In this section, we present the evaluation of our proposed video
compression framework. We first show several examples of purely
DCT-based, purely interpolation-based, and our hybrid compres-
sion framework. We then describe numerical, category-based re-
sults and describe their impact on rate-distortion curves.

4.3.1 Video Examples. We have several representative examples
shown in Figure 4. For these examples, the AFD for both SFID
and GC is set to 2. For SFID, we set the threshold for macroblock
inclusion to 34 dB, 𝑆𝐹𝐼𝐷34. Recall, in SFID, a macroblock is included
in a hybrid frame if (i) the encoded SFID macroblock has higher
PSNR than the interpolated MB at the same location, and (ii) the
interpolatedMB at the same location is less than the PSNR threshold
value.

In the top images of Figure 4, the ReadySetGo sequence is a
panning shot with multiple competing race horses with fast, non-
linear motion of horses (particularly the legs). Macroblocks were
included to fix the hooves in the lower left part of the images. Note
the detail in the right front hoof of the horse and the surrounding
bushes, as well as the detail in the left back hoof. The "Omitted MB"
column shows, in black, the areas that are not encoded and where
GC data is used. In the bottom detail, we see that the interpolation
framework had great difficulty predicting the location of the horse’s
front legs and is missing the two white dots in the upper left. These
were corrected in the SFID34 result by including the appropriate



Sequential Frame-Interpolation and DCT-based Video Compression Framework MMAsia ’22, December 13–16, 2022, Tokyo, Japan

macroblocks in the hybrid frame. By blending interpolation and
explicit macroblock encoding, the SFID34 sequence achieves a 21.2%
reduction in bitrate while also improving the average PSNR and
SSIM by 0.24 dB and 0.01, respectively, compared to just H.264.

In the middle set of images, Beauty is a motion video sequence
(Category B) with a mixture of details. The motion is mainly in the
hair of the person, which is being affected by a fan blowing. Here,
we see that there is hair that goes from the middle top towards
the middle right, and the really fine details of the hair are not high
enough quality in the GC sequence. These are corrected in the SFID
frames. Because of the very small motion in the eye area, the GC
frame, even with the detail, requires little correction. By blending in-
terpolation and explicit macroblock encoding, the SFID34 sequence
achieves a 13.08% reduction in bitrate while also improving the
average PSNR and SSIM by 0.416 dB and 0.010, respectively, when
compared with the H.264 standard.

In the bottom set of images, we see where video frame interpo-
lation has difficulty: significant non-linear motion. Here, the video
is zoomed in on the legs of the horse running. Since the motion is
more radial (i.e., swinging from the joint), the interpolation frame-
work has great difficulty. Here, the advantage of DCT-based video
compression becomes clear; with explicit coding of all data, the
video quality is expected to improve. Nevertheless, the simpler mo-
tion areas (e.g., the grass in the background) still benefit from using
the interpolation techniques. By blending interpolation and explicit
macroblock encoding, the SFID34 sequence achieves a 12.74% re-
duction in bitrate while also improving the average PSNR and SSIM
by 0.022 dB and 0.007 dB, respectively, when compared to H.264. It
is important to note that as video frame interpolation techniques
improve, they can easily be incorporated into our framework. This
means, in general, that less macroblocks will be encoded into the
hybrid stream.

4.3.2 Category by Category Results. We now describe specific ex-
perimental results. As previously mentioned, the benefits of SFID
vary depending on the type of encoded video sequence. Rather than
lumping the results into aggregate numbers across all videos, we do
so by category. For the discussion in this section, we have graphed
representative rate-quality curves for various macroblock inclusion
thresholds and AFDs for the videos in each category in Figure 5.
We have also listed the aggregate performance under AFD 2 for all
the videos within each category in Table 1.

CATEGORY A: Category A video sequences are the hardest for
interpolation frameworks to handle due to the significant motion,
particularly where there is non-linear motion. In Figure 5, the rate-
distortion curve is for varying the AFD between 2, 4, and 8.

For GC, the graph trails off to the left using AFDs 2, 4, and 8.
While using a larger AFD reduces what needs to be compressed in
the anchor frame sequence, this comes with a significant impact
on image quality. The reason for this is that with the motion in the
video, the ability to interpolate accurately gets significantly harder
with larger AFDs.

For SFID30, we see AFD 2 results in both the highest average
PSNR and lowest bitrate, while AFD 8 is both lower in quality
and larger in bitrate. The key to this phenomenon is that in hybrid
compression, we are trading off explicitly encoding information into
the anchor frame sequence and the performance of the interpolation

Category Methods PSNR SSIM Bpp
H.264 38.451 0.928 0.198

A GC 35.465 0.926 0.118
SFID34 38.463 0.938 0.163
H.264 36.164 0.866 0.253

B GC 35.764 0.868 0.156
SFID34 36.461 0.876 0.204
H.264 39.729 0.927 0.065

C GC 39.754 0.935 0.046
SFID34 40.069 0.937 0.049
H.264 37.734 0.921 0.082

D GC 38.202 0.932 0.073
SFID34 38.213 0.932 0.073
H.264 37.782 0.905 0.177

Overall GC 36.736 0.908 0.113
SFID34 38.021 0.914 0.144

Table 1: Visual quality and bitrate comparison for different
categories and methods within each category. For SFID and
GC, the AFD is 2. Overall on average, our SFID34 framework
reduces the bandwidth consumption by 18.6% while improv-
ing visual quality by 0.239 dB compared with H.264.
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Figure 5: Rate-Distortion Curve for representative sequences.
Using the categorization of Figure 3.

frameworks without having to provide corrections. For AFD 8, the
anchor frames are spaced too far apart, meaning the interpolation
results are ineffective, causing significant numbers of macroblocks
to be encoded to fix the interpolation results.

As the macroblock inclusion threshold increases, we see that
the curves move toward the H.264 baseline numbers. The reason
for this is that to meet the threshold, a significant percentage of
the macroblocks need to be encoded to ensure that it meets the
PSNR threshold. At SFID34, we see that using AFD 2 (far left point
for SFID34 line), we can achieve a 21.2% reduction in bitrate while
also improving the average PSNR and SSIM by 0.24 dB compared
with the H.264 baseline. Moreover, similar to the SFID30 case, using
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AFDs greater than two are more detrimental since the results of
interpolation become very ineffective.

Because of the significantmotion complexity, CategoryA streams
always have the best performance under AFD 2. Using our frame-
work for Category A sequences, we can, on average, achieve a
significant bandwidth reduction of 17.7% for SFID34 while improv-
ing the quality by 0.012 dB compared with the H.264 standard.

CATEGORY B: Category B video sequences are slightly easier
to compress and apply interpolation compared to Category A. This
is because while they still have extensive motion, more areas within
the video sequence have less detail. A general result of interpolation
frameworks is that fine details are harder to recreate properly.

For GC, the drop in PSNR from AFD 2 to AFD 8 (far left point)
is not as drastic in the Category A videos. With less fine detail, the
interpolation methods can easily create the interpolated frame data.

For SFID32, we see the balance in the trade-off of using more
data for anchor frame sequences (i.e., smaller AFDs) versus adding
macroblocks to the hybrid frames to fix areas. At AFD 2 (top middle
point), the interpolation framework can nearly achieve the same
PSNR as the original H.264 sequence. At AFD 4 (far left point of
the three), interpolation still works reasonably well with a further
reduction in PSNR. At AFD 8, however, a significant number of
macroblocks need to be added to the hybrid frame to correct interpo-
lation errors. At SFID34, we see that RiverBank can be compressed
with SFID using 22.4% less bits with slightly higher PSNR.

Across the entire data set, using our framework for Category
B sequences, we can, on average, achieve a significant bandwidth
reduction of 19.36% for SFID34 while improving the quality by 0.297
dB compared with the H.264 standard.

CATEGORY C: The Category C sequences have the character-
istics of containing slow motion with great blurred or smoothed
low complexity regions. Similar to Category B, the GC model drops
video quality as the AFD is increased due to the fine details not
being able to be synthesized with a greater distance between an-
chor frames. In addition, because of the relatively small amount of
motion, the basic H.264 compression works reasonably well; that is,
motion compensation works well, resulting in our baseline video
compression averaging a very low 0.065 bits per pixel (bpp). This
is lower than what we have observed in Category A (0.198 bpp)
and Category B (0.253 bpp) sequences, even at AFD 2. Overall for
Category C, the SFID34 framework lowers the bitrate from 0.065
bpp to 0.049 bbp, a savings of 24.61%.

CATEGORY D: The Category D sequences have the character-
istics of being relatively static and having medium to high amount
of details as video complexity. Due to the very little to almost no
motion in the sequence, the bitrate compression that H.264 per-
forms is very close to that of the GC model (from 0.0.82 down to
0.073 bpp). Given the low complexity, this category is much easier
for the interpolations methods to synthesize, even for larger AFDs.

For the SFID framework and GC model, we see that the interpo-
lation can improve the video quality slightly while using less data.
This is because the quantization parameters for B-frames in DCT
compression are usually higher (lower quality), which means that
for easier-to-interpret frames, a very marginal improvement can be
gained for the areas that require encoding in the B-frames in the
H.264 sequence. Overall for Category D, we can achieve a bitrate
reduction of 10.9% and improve the PSNR by 0.479 dB compared

with H.264. Although not as high a bitrate reduction, there is still
quite a reduction in bitrate with an improved PSNR.

5 DISCUSSION
In this section, we highlight some discussion points, limitations, and
future work of our proposed hybrid video compression framework.
Video frame interpolation models: The VFI models need to be
either transmitted or stored with the decoder. This implies that the
VFI models will most likely be general in nature (i.e., have to apply
to all video types) or will need to be relatively small to save the
cost of transmitting the model for decompression. Further, they
will require a bit more computation to generate the image.

In their current form, VFI models are relatively limited as the
distance between anchor frames grows. While VFI models may
eventually be better at capturing non-linear motion, one of the
fundamental limitations will be that in order to capture such mo-
tion better, multiple anchor frames may be required. One possible
remedy would be to analyze the video for the interpolated frames
and provide a hint as to the motion on the encoder side. This, of
course, would require additional data to be transmitted with the
stream.

Improvements in VFI models can be integrated into our frame-
work. These would presumably help reduce the number of mac-
roblocks included in the hybrid stream.
DCT-based coding:DCT-based video coding is block-based, which
can result in blocking artifacts. Such artifacts can have a negative
impact on video frame interpolation since they introduce features
that do not exist in ground truth images.

Our implementation currently uses fixed anchor frame sequences.
Tailoring the anchor frame distance to the underlying video itself
could improve both the bitrate while keeping the video quality the
same. For scenes similar to Class D, longer AFD sequences can be
used to save additional bandwidth. Then, for scenes with a lot of
motion or detail moving to shorter AFDs would be useful.

Some of the ways that we can improve our framework are as fol-
lows. We have chosen to use PSNR as the basic metric for whether
or not to include a macroblock into a stream. The effect of more
visual metrics like SSIM and their impact on SFID compression
is unknown. Another possibility is to provide a more dynamic,
content-tailored MPEG GOP Size and AFD. We can find a dynamic
way to find whether to apply our framework or not based on video
complexity. Furthermore, we can find an automated work or algo-
rithm to measure the complexity of sequences.

6 CONCLUSION
In this paper, we have presented our sequential hybrid DCT-based
and interpolation-based video compression framework. SFID can
effectively combine the best of DCT-based approaches and video
frame interpolation approaches. Our results show that for videos
with significant motion, we can save nearly 20% of the bandwidth
with no loss of visual quality. For videos with less motion that are
easier for DCT-compression algorithms to compress, savings of
10% in bandwidth with slightly improved video quality are still
possible.
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