
Wright State University Wright State University

CORE Scholar CORE Scholar

Computer Science and Engineering Faculty
Publications Computer Science & Engineering

10-7-2021

UFuzzer: Lightweight Detection of PHP-Based Unrestricted File UFuzzer: Lightweight Detection of PHP-Based Unrestricted File

Upload Vulnerabilities Via Static-Fuzzing Co-Analysis Upload Vulnerabilities Via Static-Fuzzing Co-Analysis

Jin Huang

Junjie Zhang
Wright State University - Main Campus, junjie.zhang@wright.edu

Jialun Liu

Chuang Li

Follow this and additional works at: https://corescholar.libraries.wright.edu/cse

 Part of the Computer Sciences Commons, and the Engineering Commons

Repository Citation Repository Citation
Huang, J., Zhang, J., Liu, J., & Li, C. (2021). UFuzzer: Lightweight Detection of PHP-Based Unrestricted File
Upload Vulnerabilities Via Static-Fuzzing Co-Analysis. RAID '21: Proceedings of the 24th International
Symposium on Research in Attacks, Intrusions and Defenses, 78-90.
https://corescholar.libraries.wright.edu/cse/608

This Article is brought to you for free and open access by Wright State University’s CORE Scholar. It has been
accepted for inclusion in Computer Science and Engineering Faculty Publications by an authorized administrator of
CORE Scholar. For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/cse
https://corescholar.libraries.wright.edu/cse
https://corescholar.libraries.wright.edu/cse_comm
https://corescholar.libraries.wright.edu/cse?utm_source=corescholar.libraries.wright.edu%2Fcse%2F608&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=corescholar.libraries.wright.edu%2Fcse%2F608&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=corescholar.libraries.wright.edu%2Fcse%2F608&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

UFuzzer: Lightweight Detection of PHP-Based Unrestricted File
Upload Vulnerabilities Via Static-Fuzzing Co-Analysis

Jin Huang

Wright State University

Dayton, Ohio, USA

huang.70@wright.edu

Junjie Zhang

Wright State University

Dayton, Ohio, USA

junjie.zhang@wright.edu

Jialun Liu

Wright State University

Dayton, Ohio, USA

liu.150@wright.edu

Chuang Li

Wright State University

Dayton, Ohio, USA

li.213@wright.edu

Rui Dai

University of Cincinnati

Cincinnati, Ohio, USA

rui.dai@uc.edu

ABSTRACT
Unrestricted �le upload vulnerabilities enable attackers to upload

malicious scripts to a web server for later execution. We have built

a system, namely UFuzzer, to e�ectively and automatically detect

such vulnerabilities in PHP-based server-side web programs. Di�er-

ent from existing detection methods that use either static program

analysis or fuzzing, UFuzzer integrates both (i.e., static-fuzzing

co-analysis). Speci�cally, it leverages static program analysis to

generate executable code templates that compactly and e�ectively

summarize the vulnerability-relevant semantics of a server-sideweb

application. UFuzzer then “fuzzes” these templates in a local, native

PHP runtime environment for vulnerability detection. Compared to

static-analysis-based methods, UFuzzer preserves the semantics of

an analyzed program more e�ectively, resulting in higher detection

performance. Di�erent from fuzzing-based methods, UFuzzer exer-
cises each generated code template locally, thereby reducing the

analysis overhead and meanwhile eliminating the need of operating

web services. Experiments using real-world data have demonstrated

that UFuzzer outperforms existing methods in either e�ciency, or

accuracy, or both. In addition, it has detected 31 unknown vulnera-

ble PHP scripts including 5 CVEs.

CCS CONCEPTS
• Security and privacy→Web application security.

KEYWORDS
web security, vulnerability, detection, fuzzing, program analysis

ACM Reference Format:
Jin Huang, Junjie Zhang, Jialun Liu, Chuang Li, and Rui Dai. 2021. UFuzzer :
Lightweight Detection of PHP-Based Unrestricted File Upload Vulnera-

bilities Via Static-Fuzzing Co-Analysis. In 24th International Symposium
on Research in Attacks, Intrusions and Defenses (RAID ’21), October 6–8,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

RAID ’21, October 6–8, 2021, San Sebastian, Spain
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9058-3/21/10. . . $15.00

https://doi.org/10.1145/3471621.3471859

2021, San Sebastian, Spain. ACM, New York, NY, USA, 13 pages. https:

//doi.org/10.1145/3471621.3471859

1 INTRODUCTION
Web applications with unrestricted �le upload vulnerabilities allow

attackers to upload a �le with malicious code, which can be later

executed on the server to enable various attacks such as information

ex�ltration, spamming, phishing, and spreading malware. Such

vulnerabilities represent a pervasive threat to all web servers [8],

particularly those written in scripting languages (e.g., PHP, ASP, and
JavaScript), which require no �le system permission to execute

an uploaded �le with compatible scripting extensions (e.g., “.php”,
“.asp”, and “.js”).

Detecting such vulnerabilities is of signi�cant importance. A

few systems [9, 11, 15, 17, 20] are designed to address this chal-

lenge using either static program analysis or fuzzing. Speci�cally,

RIPS [9, 11] andWAP [20] use static taint analysis to trace whether

a sensitive API is contaminated by untrustworthy inputs. These

two systems are applicable to detect unrestricted �le upload vulner-

abilities when a �le write API is considered as critical API and the

super-global variable for the uploaded �le is used as the untrust-

worthy input.WAP [20] also integrates machine learning into its

detection process. Unfortunately, it is challenging for static taint

analysis to model sanitization actions that are enforced along data

�ows, thereby limiting their accuracy in detecting unrestricted �le

uploading vulnerabilities.

Compared to RIPS and WAP, UChecker [15] advances the detec-
tion capability by semantically modeling applications’ �le upload-

ing behaviors. Speci�cally, through symbolically interpreting a PHP

application, UChecker generates constraints that model conditions

to successfully exploit an unrestricted �le uploading vulnerability.

These constraints, originally expressed in PHP, are next translated

into symbolic constraints written in the language for a satis�abil-

ity solver [12], which will be eventually evaluated by this solver.

Despite the fact UChecker has demonstrated promising detection

performance, its applicability heavily depends on the PHP-to-solver

constraint translation, which is guided by manually engineered

rules. On the one hand, the variety, complexity, and �exibility of

PHP APIs are overwhelmingly larger than those of solver APIs. On

the other hand, PHP is a dynamic typing language whereas solver

languages are usually static. One salient example is that the regex

78

https://doi.org/10.1145/3471621.3471859
https://doi.org/10.1145/3471621.3471859
https://doi.org/10.1145/3471621.3471859

RAID ’21, October 6–8, 2021, San Sebastian, Spain Huang and Zhang, et al.

solver is incomplete [19], which limits UChecker’s capabilities to
model and solve sophisticated PHP-based regex operations.

FUSE [17] leverages an orthogonal strategy, i.e., black-box

fuzzing, to detect such vulnerabilities. It attempts to upload vari-

ous executable �les to a fully operating web service and monitor

whether the uploading is successful. While FUSE can report con-

crete inputs for exploitation, it faces signi�cant practical challenges.

First, it mandates operating web services, which are labor-intensive

for deployment and maintenance. Second, web services commonly

o�er a large number of access points, whose expected external

inputs experience a high diversity in both structures and formats.

It is extremely challenging to address such input diversity without

a priori knowledge. In fact, FUSE needs a manually pre-speci�ed

con�guration template �le that manifests a variety of parameters.

Both challenges fundamentally limit FUSE’s applicability in large-

scale analysis. Finally, FUSE cannot locate statements that cause

the vulnerability, o�ering limited information for mitigation.

In this work, we propose a novel, fully-automated vulnerabil-

ity detection system, namely UFuzzer, with the following design

objectives:

• E�ective and E�cient: UFuzzer should achieve high detec-

tion accuracies with low overhead.

• Minimal Dependency: UFuzzer can be su�ciently supported

by a local, native PHP runtime environment.

• Operating-Free: UFuzzer does not need an operating web

service to perform detection.

• Traceable: UFuzzer can precisely identify the statements that

introduce such vulnerabilities at the source-code level.

UFuzzer with these design objectives, once built, can systemat-

ically address the challenges faced by existing detection systems.

Particularly, it avoids the semantic gaps between PHP and solver

languages that are inherent to UChecker. It also eliminates FUSE’s
dependency on operating web services.

We build UFuzzer by integrating static program analysis and

fuzzing. Speci�cally, UFuzzer leverages static program analysis to

identify those statements that are relevant to the unrestricted �le

upload vulnerability. Then it refactors these identi�ed statements

to make them independent of operating web services. UFuzzer next
generates executable code templates from these selected, refactored

statements. It �nally “fuzzes” each template to perform detection.

Our work makes the following contributions.

• We have designed a novel method to detect server-side

scripts with unrestricted �le upload vulnerabilities through

static-fuzzing co-analysis.

• We have built a system, namely UFuzzer, to implement this

method for PHP-based server-side web programs.

• We have evaluated UFuzzer using real-world, ground-truth-

available data. The evaluation results have demonstrated

UFuzzer outperforms existing methods in either detection

accuracies, or system performance, or both.

• We have employed UFuzzer to detect 31 new vulnerable

PHP applications by scanning a large corpus of real-world

server-side PHP applications, resulting in 5 CVEs.

The remaining of our paper is organized as follows.We introduce

the vulnerability background in Section 2. Section 3 presents the

system design. Section 4 illustrates evaluation results and Section 5

presents the detection of new vulnerable programs. The related

work is discussed in Section 6. Section 7 elaborates the limitation

and potential solutions of the current design. Section 8 concludes.

2 BACKGROUND
2.1 Unrestricted File Upload
Listing 1 shows a code snippet that introduces the unrestricted

�le upload vulnerability to a server-side PHP application. In this

snippet, the server receives a �le from a remote client through the

$_FILES superglobal variable, which is a two-dimension array (i.e.,

$_FILES[i][j]). The �rst index refers to the label of the uploaded

�le (i.e., $_FILES[‘newfile’]). Accessing $_FILES using the �rst

index returns a pre-de�ned one-dimensional array, which is indexed

by “name”, “type”, “tmp_name”, “error”, and “size”.

1 <?php

2 $dir = "../wp-content/plugins/upload/";

3 if(isset($_POST['action '])){

4 $localDir = $dir . time();

5 $fName = preg_replace("/\s/", "",

6 $_FILES['newfile ']['name']);

7 if(is_writable(localDir)){

8 $fName = $localDir . "_" . $fName;

9 $tmpFile = $_FILES['newfile ']['tmp_name '];

10 move_uploaded_file($tmpFile , $fName);

11

12 }

13 }

14 //...

15 ?>

Listing 1: A code snippet for unrestricted �le upload
vulnerability

Once the webserver receives a �le, it automatically saves the �le

and assigns it with a temporal �le name, where such �le name is in-

dexed by “tmp_name” (i.e., $_FILES[‘newfile’][‘tmp_name’]
in Listing 1). The actual name of the uploaded �le, which

is given by the user on the client-side, is indexed by “name”

(i.e., $_FILES[‘newfile’][‘name’] in Listing 1). The server-

side PHP application can therefore access the saved �le us-

ing the temporal �le name. One common operation is to re-

name the �le based on its actual name and the PHP built-

in API move_uploaded_file(esrc,edst) is frequently used

to accomplish this goal, where esrc and edst denote the

source and destination �le name, respectively. In Listing 1,

move_uploaded_file($tmpFile,$fName) is used to rename the

temporal �le using its �le name o�ered by the external user. Other

than move_uploaded_file(), another similar function, namely

file_put_content(), is also commonly used.

The vulnerability arises sice the code in Listing 1 does not disable

the upload of executable �les (i.e., those with executable extensions

such as “.php”). Hence, if an attacker submits an executable script

(e.g., “test.php”) this code will faithfully store this script in the target

server with an executable �le name (e.g., “test.php”).

2.2 Heap Graphs
We employ the intermediate representation (IR) of PHP programs,

namely heap graphs, which are �rst proposed in [15], to bootstrap

our analysis. Heap graphs can be generated using the interpreter

proposed in [15] by symbolically interpreting the abstract syntax

trees (AST) of a PHP-based server-side web application. Rather than

79

UFuzzer : Lightweight Detection of PHP-Based Unrestricted File Upload Vulnerabilities Via Static-Fuzzing Co-Analysis RAID ’21, October 6–8, 2021, San Sebastian, Spain

(array_access, 14) (array_access, 22)

("name", string, 13) ("tmp_name", string, 21)

(preg_replace(), string, 15)

("", string, 9)("/\s/", string, 8)

("../wp-content...", string, 1)

(time(), string, 6)

(concat, string, 7)

(concat, string, 20)

(move_upload_file(), null, 23)

src

dst

array idxarrayidx

replacement

pattern subject

right

right
left

(is_writeable(), Boolean, 16) (isset(), Boolean, 5)

(array_access, 12)

Env1 for Path1 Env2 for Path2

$dir

$localDir

$fName

$tmpFile

$dir

$localDir

Env3 for Path3

API cur

(!, Boolean, 24)

$dir

cur

(!, Boolean, 26)

Heap Graph

(concat, string, 19)

("_", string, 18)

left right

left

(AND, Boolean, 17)

(AND, Boolean, 25)

("newfile", string, 10)

idx

($_FILES, array, 11)

array

cur

(concate, string, 7)

("../wp-content...", string, 1)To the node of

To the node of

(array_access, 4)

("action", string, 2)

idx

($_POST, array, 3)

array

Figure 1: The heap graph for the sample code in Listing 1

symbolically interpreting AST for the entire web application, the
interpreter performs vulnerability-oriented locality analysis [15]
to identify a sub-AST for symbolic interpretation, aiming at miti-

gating the path explosion challenge. The sub-AST corresponds to

statements that are relevant to unrestricted �le upload vulnerabili-

ties; irrelevant statements will be ignored. In this work, we have

extended the symbolic interpreter [15] by interpreting essential

object-oriented grammars including i) class declaration, ii) object

initialization, and iii) the invocation of member functions. Speci�-

cally, our interpreter evaluates each class, recording its attributes,

method names, and methods’ bodies. We track each initialized ob-

ject and its corresponding class. If a method of an object is invoked,

the interpreter will identify its method body and evaluate it.

A heap graph is a graph-based IR that models symbolic execution

results of a program along all paths towards a given statement (or

the end of the program if the given statement is not observed in

this path). A heap graph has the following essential elements:

• Node: A node in a heap graph refers to the evaluation result

of an expression, which could represent a concrete value, a

symbolic value, an operator, or a built-in function (e.g., an

API). Since we interpret AST to generate nodes, each node

can be precisely mapped back to the program source code.

• Edge: An edge (u,v) represents the operator-operand re-

lationship when u denotes an operator; it represents the

function-parameter relationship when u refers to a function.

• Environment: An environment is maintained for each exe-

cution path. It records the reachability constraint (named

as cur) for its corresponding each execution path towards

that given statement; it also maps a variable to a node; if

a vulnerability-related API appears in this path, it uses a

special variable, namely API , to track the node of that API.

A heap graph is formally de�ned as

a directed acyclic graph G, where G =

{C, S, FUNC,OP ,L,T ,OC ,OS ,OFU NC ,OOP ,Edдe, E}:

• C is a set of concrete values.

• S is a set of symbolic values.

• FUNC is a set of PHP built-in functions (i.e., APIs).

• OP is a set of operators (e.g., “+”, “-”, and “.”).

• L is a set of labels, where every object inG has a unique label.
• T is a set of known data types (e.g., boolean and integer) and

an unknown type ⊥.

• OC ⊂ C ×T × L is a set of objects (i.e., nodes) for concrete

values.

• OS ⊂ S ×T × L is a set of objects (i.e., nodes) for symbolic

values.

• OFU NC ⊂ FUNC ×T × L is a set of objects (i.e., nodes) for

built-in functions.

• OOP ⊂ Op×T ×L is a set of objects (i.e., nodes) for operators.
• Edдe ⊂ {(l1, l2)|(x , t1, l1) ∈ OFU NC ∪ OOP and (y, t2, l2) ∈
OC ∪OS ∪OFU NC ∪OOP }.

• E = {Env1, . . . ,Envi , . . . ,Envn } is a set of environments of

all execution paths of a program.

– Envi = {Vari ,Mapi , curi ,APIi } is the environment for

the i-th execution path.

– Vari is a set of variable names.

80

RAID ’21, October 6–8, 2021, San Sebastian, Spain Huang and Zhang, et al.

– Mapi ⊂ Vari ×L establishes a mapping between a variable

name and an object.

– curi ∈ {l |(x , t , l) ∈ OC ∪ OS ∪ OFU NC ∪ OOP }. curi
represents the reachability constraint.

– APIi ∈ {l |(x , t , l) ∈ OFU NC }. APIi represents the node of
the API that is of security concerns.

Figure 1 presents the heap graph for the vulnerable code snippet

in Listing 1 towards the end of this program. Each node in this

graph is represented by a 3-tuple of (name, type, id). The “name”
in this 3-tuple is the name of an operator, the name of a built-

in function, a concrete value, or a symbolic value. The “type” in-
dicates the type of the result for an operator or a built-in func-

tion; it also indicates the type of a concrete value or a symbolic

value; it can be assigned with ⊥ if the type is unknown. The “id”
stores the node identi�er, which is unique for each node in a heap

graph. This example has three execution paths in total, resulting

in three environments (see Env1, Env2, and Env3 in the graph).

Each environment maps variables to their corresponding graph

nodes. For example, the evaluation result of $dir.time() (“.” in

PHP is for concatenation) points to the node of (concat , strinд, 7).
By traversing the graph from this node towards the bottom of the

graph, we can derive the s-expression-based value of $dir.time()
as (concat , “../wpcontent/pluдin/upload/’’, time). The statement

$localDir = $dir.time() results an association between the vari-
able $localDir and the evaluation result of $dir.time(), where
the variable $localDir is kept in the environment.

The cur in an environment points to the node from which the

reachability constraint can be derived. For example, by traversing

from the cur node in Env1, one can derive its reachability in the

form of s-expression as (AND (is_writeable) (isset)), where nodes
(is_writeable,Boolean, 16) and (isset(),Boolean, 5) can be further

resolved into s-expressions by traversing towards the bottom of

the heap graph.

Since the vulnerability-related built-in API

move_uploaded_file(esrc , edst) only appears in the �rst

execution path (i.e., Env1), Env1 has its API points to the node of

(move_upload_f ile,null , 23), whose “src” and “dst” edges point to

esrc and edst , respectively.

3 SYSTEM DESIGN
Figure 2 presents the architectural overview of UFuzzer.
UFuzzer �rst scans each program of a PHP server-side web ap-

plication and identi�es whether it contains any �le uploading

API (i.e., move_uploaded_file() and file_put_content()). If so,
UFuzzer will leverage the inter-procedural, context-aware symbolic

interpreter in [15] to generate a heap graph for this program to-

wards each identi�ed �le uploading API or the end of the program

(i.e., Step 1 in Figure 2). Next, for each environment in a heap graph,

we will preserve it if its API , null (i.e., an execution path that

contains a �le uploading API), which is illustrated as Step 2 in

Figure 2.

For each preserved environment, UFuzzer will �rst evaluate

whether the source �le of a �le uploading API is derived from

an untrustworthy source via taint analysis. It will next refactor

the graph with symbolic values, which are used to model super-

global variables, uninitialized variables, and certain built-in APIs.

UFuzzer will then traverse the heap graph to yield executable ex-

pressions that characterize the exploit conditions, including i) the

reachability constraint and ii) the name of the �le to be perma-

nently stored. These activities are illustrated as Step 3, 4, 5, and 6

in Figure 2. UFuzzer will next generate executable code templates

for fuzzing. Towards this end, UFuzzer will evaluate whether the
reachability constraint is tainted by the name of the uploaded �le

(i.e., $_FILES[*][‘name’]) to reduce the space of variables for

fuzzing. Finally, UFuzzer will execute each template in a local PHP

environment after binding its free variables with mutated values.

3.1 Taint Analysis
Each edge in a heap graph represents an immediate data depen-

dency between two objects in this graph. Therefore, all edges col-

lectively characterize global data �ows among all objects along an

execution path. Taint analysis can therefore be performed using

heap graphs: given two objects (say α and β) in a heap graph (say

G), α is tainted by β (i.e., there exists an explicit data �ow from β
to α) if and only if β is reachable from α in G.

The “src” edge originated from a move_uploaded_file() node

points to the source of the �le to be permanently saved. This �le

is untrustworthy if it is from external inputs. Currently, external

inputs are mainly modeled as global variables in UFuzzer. Therefore,
our objective is to verify if the move_uploaded_file() node is

tainted by a node of a global variable through its “src” edge. This
could be e�ectively ful�lled by UFuzzer. For example, the node

of the FILES global variable (i.e., the node ($_FILES,array, 11)) is
reachable from the move_uploaded_file() node (i.e., node 23) in

Figure 1 through its “src” edge, indicating that the source �le of the

move_uploaded_file() API is tainted by external inputs.

3.2 Graph Refactoring With Symbolic Values
We fuzz three data sources including i) uninitialized variables, ii)

superglobal variables, and iii) certain built-in APIs. UFuzzer will
refactor heap graphs by replacing their corresponding nodes with

nodes of symbolic values.

Uninitialized Variables: Our symbolic interpreter performs

vulnerability-oriented locality analysis [15] to identify a sub-AST

for symbolic interpretation, aiming at mitigating the path explosion

challenge. Therefore, it is possible to encounter uninitialized vari-

ables in the sub-AST. For an uninitialized variable, we �rst create a

node of a symbolic value and next establish an association between

this variable and this node.

Superglobal Variables: Superglobal variables are used by external
users to o�er information to a web service. Therefore, we create a

node of symbolic value when interpreting a superglobal variable,

whose type is considered as “string”.

It is worth noting that UFuzzer handles $_FILES as a special

case since its structure is known a priori. Speci�cally, $_FILES is

a pre-structured array that is indexed by 5 keys including “name”,

“type”, “tmp_name”, “error”, and “size”; these 5 keys represent the

original �le name, the type information, the temporal �lename, the

error information, and the size of the �le. Therefore, we traverse a

heap graph and identify all array_access nodes where each such

node satis�es two conditions: i) its “array” edge points to another

array_access whose “array” edge connects a node of the $_FILES

81

UFuzzer : Lightweight Detection of PHP-Based Unrestricted File Upload Vulnerabilities Via Static-Fuzzing Co-Analysis RAID ’21, October 6–8, 2021, San Sebastian, Spain

move_upload_file

src dstcur

API

Step 1

Step 2

Step 3 Step 4

⁃ Step 3: Taint analysis
⁃ Step 4: Refactor the graph with symbol values
⁃ Step 5: Derive the expression for the reachability constraint

(say, R) and its depending symbolic values (say, r1, r2, …, rN)
⁃ Step 6: Derive the expression for the name of the stored file

(say, D) and its depending symbolic values (say, d1, d2, ….dM)

Server-Side PHP
Applications

is_vulnerable(r1,.., rN, d1, …, dM){
 if(R && endsWith(D, “.php”))
 return true;
 return false;
}

Step 1: AST-based
Symbolic

Interpretation
Heap Graphs Step 2: Identify Paths/Envs with

File Uploading APIs

is R tainted by
$_FILES[*][‘name’]

is_vulnerable(d1,…dM){
 if(endsWith(D, “.php”))
 return true;
 return false;
}

Yes No

Figure 2: The architectural overview of UFuzzer

(array_access)

(array_access)

($_FILES) (“newfile”)

(“name”)

$_FILES[“newfile”][“name”]

refactoring

(array_access) (“name”)

($_FILES) (“newfile”)

sym_FILES_name.sym_FILES_ext

(sym_FILES_name)
(sym_FILES_ext)

(concat)

array idx

array idx array idx

Figure 3: An example of refactoring an array_access
node associated with the $_FILES superglobal variable.
The sub-tree rooted in the top array_access denotes
$_FILES[“new�le”][“name”]. This array_access node will be
replaced by a node that concatenates two symbolic values of
the �lename and the extension, respectively.

global variable; ii) its “index” edge points to one of the keys (with

the string type) including “name”, “type”, “tmp_name”, “error”, and

“size”. The �rst condition indicates this is the access to the 2nd

dimension of $_FILES superglobal variable and the second condition

illustrates the speci�c key used for accessing the second dimension

of $_FILES. We will replace this array_access using a symbolic-

value-based node in the heap graph. If this symbolic-value-based

node corresponds to the “size” or “error” index, its type will be “int”;

otherwise, it will be “string”.

Figure 3 presents an example, where the type and label for each

node is omitted for briefness. Speci�cally, the node (array_access)
satis�es both conditions, indicating that this node and its underlying

sub-tree together represent $_FILES[“new�le”][“name”]. Therefore,

UFuzzer replaces this node using the concatenation of two sym-

bolic nodes, namely sym_FILES_name and sym_FILES_ext . Here,
sym_FILES_name represents the �le name and sym_FILES_ext
refers to the extension.

refactoring

(“temp.txt”)

(fopen)

(“r”)

(fread)

(10)

(sym_fread)

(sym_fopen)
(10)

(“temp.txt”) (“r”)

handle len

name mode

Figure 4: An example of refactoring a fread node with a node
of symbolic value (i.e., sym_f r ead).

Operation and Validation APIs: Some APIs in the server-side

web program can only function in a properly con�gured run-time

environment, making automatic analysis extremely challenging.

These APIs are often used for operations of networking, databases,

and �le access, which can only function in a properly con�gured

run-time environment. We name such APIs as operation APIs.

UFuzzer will traverse a heap graph and identify every node if it

corresponds to any API that is used for networking, databases, and

�le operations. For an identi�ed node, UFuzzer replaces this node
using a node of the symbolic value, whose type will be simultane-

ously derived based on the API. Figure 4 shows an example, where

the node of fopen and that of fread have been replaced using two

symbolic nodes including sym_fopen and sym_fread, respectively.
We respectively assign the pointer type and the string type to

these two nodes based on the de�nition of these APIs.

We also symbolize PHP validation functions (e.g., those with

“is_” as pre�xes) to improve the e�ciency of the fuzzing. Ex-

amples of such functions include isset(), is_writable(), and
is_string(). For example, these functions are widely used by PHP

programs, which only outputs TRUE or FALSE but have in�nite in-
put spaces. Hence, we symbolize these functions regardless of their

arguments. For example, any node of isset() in the heap graph

82

RAID ’21, October 6–8, 2021, San Sebastian, Spain Huang and Zhang, et al.

(isset)

(array_access)

($_POST) (“action”)

$_POST[“action”]

refactoring

sym_isset_POST_action

(sym_isset_POST_action)

(array_access)

($_POST) (“action”)

array idx

Figure 5: An example of refactoring a isset node with a node
of symbolic value (i.e., sym_isset_POST _action).

(!, boolean, 2)

(sym_a, ?, 3)

type inference

(!, boolean, 2)

(sym_a, boolean, 3)

Figure 6: An example of type inference. Inferring the type of
the symbolic node using its immediate operator node.

will be replaced using a symbol node with boolean type. Figure 5

presents an example. The node of isset(), which is corresponding

to the expression of isset($_POST[‘action’]), will be replaced
by a symbol node of sym_isset_POST_action.
Lightweight Type Inference: The type information is assigned

when a symbolic node for either a superglobal variable or a selected

APIs is created. However, it is uncertain for those nodes created

for uninitialized variables. To address this challenge, we perform

lightweight type inference. Speci�cally, we identify the operator

node or an API node that immediately depends on this node (i.e., has

an edge to this node). We next use the expected operand/argument

types to infer the type of this node. Figure 6 presents an example,

where we assign “boolean” to a symbolic node of an uninitialized

variable since it serves as the operand for the “negate” operator.

3.3 Deriving Executable Expressions for The
Reachability Constraint and The File Name

For each preserved environment after heap graph refactoring,

UFuzzer will generate expressions of constraints for both the reach-

ability and the �lename, and next integrate them into a function

with fuzzing variables as function arguments.

The cur variable in an environment is bound to the node that

represents the reachability constraint and we name this node as

vr each . The API variable in an environment is bound to the node

of a �le uploading API. The “dst” edge from this API node points

to the node that represents the name of the �le to be permanently

saved and we name this node as vf ilename . For each preserved

environment, we can traverse the heap graph from vr each and

vf ilename to generate sub-trees of all relevant nodes. Figures 7

and 8 present sub-trees for vr each and vf ilename derived from

Figure 1, respectively.

(AND, Boolean, 17)

(sym_is_writable, Boolean, 30)

(sym_isset_POST_action, Boolean, 31)

Figure 7: The sub-tree for the reachability constraint derived
from Figure 1 after the node (is_writable, Boolean, 16) is
symbolized into (sym_is_writable, Boolean, 30)

(concat, string, 20)

(concat, string, 19) (preg_replace(), string, 15)

(concat, string, 7) ("_", string, 18)

("../wp-content...", string, 1)

(time, string, 6)

("/\s/", string, 8) ("", string, 9)

(concat, string, 29)

(sym_FILES_name, string, 27)

(sym_FILES_ext, string, 28)

Left Right

Left Right

Left

Right

pattern replacement subject

Left
Right

Figure 8: The sub-tree for the �lename derived from Figure 1

The core function is to generate executable expressions by

traversing these two sub-trees. As illustrated in Algorithm 1, we

have designed an algorithm to evaluate each sub-tree (starting from

its root node) and leverage an existing parser (i.e., PHP-Parser [22])

to build an AST, which will be �nally converted into PHP code

through the pretty printing function of this parser.

Algorithm 1 Generating AST from A Sub-Tree in Heap Graph

1: function eval (v)
2: switch v .дetType() do
3: case scalar
4: val ← v .дetV alue()
5: type ← v .дetType()
6: return new _Scalar _(val, type)
7: case symbol
8: val ← v .дetV alue()
9: type ← v .дetType()
10: return new _var _(val, type)
11: ...
12: case binaryOP
13: ele f t ← eval (v .дetLef t ())
14: er iдht ← eval (v .дetRiдht ())
15: op← v .дetOperator ()
16: return new _BinaryOp(op, ele f t , er iдht)

17: case f unc
18: name ← v .дetName()
19: < arд1, . . . , arдn >← v .дetArдs()
20: arд_l ist ← [] . [] : empty list
21: for i = 1...n do

arд_l ist .add (eval (arдs[i]))
22: end for
23: return new _FuncCall_(name, arд_l ist)
24: ...
25: end function

It is worth noting that our algorithm needs to recursively in-

terpret all types of nodes in a heap graph. But for briefness, Al-

gorithm 1 only presents the interpretation of nodes for constants,

83

UFuzzer : Lightweight Detection of PHP-Based Unrestricted File Upload Vulnerabilities Via Static-Fuzzing Co-Analysis RAID ’21, October 6–8, 2021, San Sebastian, Spain

symbolic values, binary operators, and function calls. The inter-

pretation will return an AST built through PHP-parser’s APIs (i.e.,

“new _Object_(...)”).
scalar : If eval() sees a scalar node it will return a scalar AST node,

i.e., “new _Scalar_(val , type)’’, where val and type represent its

value and type respectively.

symbol : When eval() sees a symbol node sym, it returns a vari-

able AST node, i.e., “(new _var_(val , type))”, where val and type
represent the value and the type of this symbolic node, respectively.

binaryOP : Upon visiting a node for a binary operator, eval()

will �rst recursively interpret its left and right child nodes

and derive two AST nodes, denoted as elef t and er iдht , re-
spectively. Each of these two AST nodes could be the root of

another AST tree. Finally,eval() will return an AST node, i.e.,

“new _BinaryOp(op, elef t , er iдht)”.
f unc: When processing a node for function all, eval() will �rst

derive the name of the function call and all nodes of its arguments.

This algorithm will then retrieve the AST node for each argument

through recursive evaluation (i.e., eval(arдs[i])). Finally, it will re-
turn a function call AST node, i.e.,new _FuncCall_(name, arд_list).

3.4 Generate Fuzzing Templates
By leveraging the expression generation algorithm in Algorithm 1,

we can generate executable code templates, namely fuzzing tem-
plates, as presented in Algorithm 2. Arguments r1, . . . , rN represent

all symbolic nodes in the sub-tree rooted in vr each (i.e., the sub-

tree for the reachability constraint); arguments d1, . . . ,dM refer

to all symbolic nodes in the sub-tree rooted in vf ilename . The

prettyprint() function outputs a decompiled version of the AST in

a format that is a legal PHP program for execution in a standard

PHP running environment.

Algorithm 2 Fuzzing Template With Reachability

1: function is_vulnerable(r1, . . . , rN , d1, . . . , dM)

2: expr each ← prettypr int (eval (vr each))
3: expf ilename ← prettypr int (eval (vf ilename))
4: if expr each then
5: ext ← дet_extension(expf ilename)

6: if ext == “php′′ then
7: return TRU E
8: end if
9: end if
10: return FALSE
11: end function

Algorithm 3 Fuzzing Template Without Reachability

1: function is_vulnerable(d1, . . . , dM)

2: expf ilename ← prettypr int (eval (vf ilename))

3: ext ← дet_extension(expf ilename)

4: if ext == “php′′ then
5: return TRU E
6: end if
7: return FALSE
8: end function

It will drastically increase fuzzing e�ciency if we can reduce the

number of variables to be mutated. Towards this end, we develop

the following rules:

We assess whether the reachability constraint is tainted by

$_FILES[*][‘name’], the name of the uploaded �le, where “*” here

refers to an arbitrary string. If not, it indicates that the reachability

constraint does not verify the name of the uploaded �le, implying

no sanitization checks are enforced for the name of the uploaded

�le. Therefore, we only use fuzzing to evaluate the name of the

�le to be saved, thereby using the fuzzing template generated by

Algorithm 3. If the reachability constraint is indeed tainted by

$_FILES[*][‘name’], we will perform fuzzing to jointly evaluate the

reachability constraint and the name of the �le to be saved, thereby

using the template generated by Algorithm 2.

Listing 2 and Listing 3 present two fuzzing templates for Listing 1,

which are generated by Algorithm 2 and Algorithm 3, respectively.

In these two fuzzing templates, $sym_�le_name, $sym_�le_ext,

$sym_isset_POST_action, and $sym_is_writable are variables to be

mutated, where the �rst two have the type of strings and the last two

are boolean. The pathinfo function used in fuzzing templates is a

PHP built-in API for returning the extension of a �le name with pa-

rameter PATHINFO_EXTENSION. The “in_array($ext ,array(‘php’)”
is to check whether the extension is ‘php’, which can be easily

extended to include additional sensitive extensions (e.g., ‘jsp’).

1 <?php

2 function is_vulnerable($sym_file_name ,

3 $sym_file_ext ,

4 $sym_isset_POST_action ,

5 $sym_is_writable)

6 {

7 $exp_reach = $sym_isset_POST_action and

8 $sym_is_writable;

9 $exp_fileName = "../wp-content/plugins/upload/" .

10 time() . "_" .

11 preg_replace("/\s/", "",

12 $sym_file_name .

13 $sym_file_ext);

14 if($exp_reach){

15 $ext = pathinfo($exp_fileName ,

16 PATHINFO_EXTENSION);

17 if(in_array($ext , array('php'))){

18 return TRUE;

19 }

20 }

21 return FALSE;

22 }

23 ?>

Listing 2: The Fuzzing Template With Reachability
Evaluated for Listing 1

1 <?php

2 function is_vulnerable($sym_file_name ,

3 $sym_file_ext)

4 {

5 $exp_fileName = "../wp-content/plugins/upload/" .

6 time() . "_" .

7 preg_replace("/\s/", "",

8 $sym_file_name .

9 $sym_file_ext);

10

11 $ext = pathinfo($exp_fileName ,PATHINFO_EXTENSION);

12 if(in_array($ext , array('php'))){

13 return TRUE;

14 }

15 return FALSE;

16 }

17 ?>

Listing 3: The Fuzzing Template Without Reachability
Evaluated for Listing 1

Since the reachability constraint of Listing 1 is not tainted by

the name of the uploaded �le (i.e., $_FILES[*][‘name’]), the fuzzing

template in Listing 3 will be used for fuzzing. As shown by this

84

RAID ’21, October 6–8, 2021, San Sebastian, Spain Huang and Zhang, et al.

example, it drastically reduces the fuzzing space by eliminating two

free variables to use the fuzzing template in Listing 3 compared to

that in Listing 2 without undermining the detection accuracy.

3.5 Executing a Fuzzing Template
We then execute each fuzzing template to assess whether its corre-

sponding PHP script is vulnerable. It starts with assigning values

to arguments in the fuzzing template (i.e., in the is_vulnerable()
function), following rules below:

• $sym_file_ext: if this argument refers to the extension of

the name for the original uploaded �le, we build a set of

sensitive extensions such as “.php”, “.gif.php”, “.mp3.php”,

“.zip.php”, “pdf.php”, and “.jpg.php”.

• $sym_file_name or an argument with the string type: if

this argument represents the extension-removed name of

the uploaded �le or its type is string, we leverage a PHP

Fuzzer [23] as a drop-in fuzzer to mutate string values

for $sym_file_name. We use di�erent mutators in PHP

Fuzzer [23] such as EraseBytes, InsertByte, ChangeByte,
ChangeBit, and ChangeASCIIInt. For each mutator, we it-

erate for 50 times with a length between 5 and 70.

• An argument with the boolean type (e.g., $sym_is_*): We

enumerate both True and False values to this argument if

it is a boolean type.

• An argument with the number type: We enumerate values

in [−20, 20] for an argument if it has the number type (e.g.,

integer, �oat, and double).

We execute each fuzzing template by iterating over arguments’

di�erent values. If any execution returns True, we will cease the
iteration and report that the PHP script is vulnerable. If no template

returns True after all mutated values are exhausted, UFuzzer will
stop and report this web application as non-vulnerable. We admit

that the selection of these fuzzing parameters in UFuzzer, similar to

that in other fuzzers, are empirical rather than provable. Neverthe-

less, they are highly con�gurable to support practical deployment.

4 GROUND-TRUTH-AVAILABLE
EVALUATION

We have implemented UFuzzer with approximately 28K LoC, which

reuses the AST-based symbolic interpreter in [15] with minor im-

provements. We leveraged PHP-Parser [22] for AST construction

and pretty printing. UFuzzer is deployed on an Ubuntu 18.04 LTS

64-bits operating systemwith AMD Fx-8350 CPU, 16 GB of memory,

and PHP 7.4. As our data contains a large set of real-world, open-

source plugins collected from WordPress, we install WordPress
libraries in our running environment.

Data:We have collected 27 publicly-reported vulnerable PHP ap-

plications. These 27 samples consists of 13 known samples used

in [15], 3 new vulnerable applications detected by UChecker [15],

and 11 more vulnerable samples we have recently collected. We

have identi�ed 32 vulnerability-free server-side PHP applications

that support �le upload capabilities. It is worth noting that it is

a labor-intensive process to collect publicly available, real-world

samples and verify whether they are vulnerable. Such challenge is

mainly attributed to the diversity of server-side applications, their

highly customized interfaces, and the high complexity.

Tools for Comparison: We have compared UFuzzer with

UChecker [15], RIPS [9, 11], WAP [20], and FUSE [17]. We have

deployed them in the same running environment of UFuzzer.
Evaluation Results: Table 1 presents the detection results and

the running time for UFuzzer, UChecker, RIPS, WAP, and FUSE. The
second and third columns in Table 1 present the names and lines

of code (LoC) for each sample, respectively. The fourth column

presents the number of fuzzing templates generated by UFuzzer.
The remaining columns demonstrate the detection result and the

running time for each program, where 4 and 6 stand for “detected”

and “undetected”, respectively. The last two rows of Table 1 sum-

marize the detection rates and the false positive rates.

UFuzzer is e�ective and e�cient on the ground-truth available

dataset. It detects 26 vulnerable samples out of 27 without incurring

any false positive. The running time is mostly within one second

for vulnerable cases and within one minute for non-vulnerable

ones. UFuzzer fails to detect Cimy User Extra Fields 2.3.8 since its
underlying symbolic interpreter crashes due to path explosion.

1 <php?

2 $valid_chars_regex = '.A-Z0 -9_␣!@#$%^&() +={}\[\]\',~`-';

3 $file_name = preg_replace('/[^'.$valid_chars_regex.']|\.+$/i', ""

, basename($_FILES[$upload_name]['name']));

4 /*...*/

5 if (!@move_uploaded_file(

6 $_FILES[$upload_name]["tmp_name"],

7 $save_path . $file_name)) {

8 /*...*/}

9 ?>

Listing 4: UChecker fails to correctly model the regex
operation in the PDWMedia File Browser plugin

Compared with UChecker, UFuzzer accomplishes a comparable

detection rate (i.e., 26/27 of UFuzzer v.s. 25/27 of UChecker, with 0

false positive for both). Although UFuzzer outperforms UChecker by
detecting only one more vulnerable sample (i.e., PDW Media File
Browser 1.1), this single sample alone is signi�cant to demonstrate

how UFuzzer addresses the intrinsic limitation faced by UChecker.
Speci�cally, this vulnerable application employs a regular expres-

sion operation as presented in Listing 4, which is challenging to be

e�ectively modeled and solved by satis�ability solvers (and hence

UChecker). In contrast, UFuzzer can easily execute this operation

in a native PHP run-time environment.

Although both RIPS and WAP accomplish comparable e�ciency

with UFuzzer, they have lower detection performances. Speci�cally,

RIPS su�ers from a high false positive rate of 12/32.WAP demon-

strates a low detection rate of 10/27.

FUSE has accomplished a lower detection rate of 9/27 and the

same false positive rate of 0/32. In addition, FUSE requires signif-

icantly longer time for detection, typically around a few hours.

It is also worthy noting that it has taken an excessive amount of

manual e�orts to make each PHP application fully operable, which

is unfortunately required by FUSE. When an application fails to

function, FUSE will miss the opportunity to perform detection. Sam-

ples annotated with “N/A” in Table 1 represent such cases. Despite

our best e�orts, these samples failed to operate in our evaluation

environment, mainly because of missed �les or unknown con�gura-

tion problems. Such evaluation results imply that FUSE has limited

applicability for large-scale vulnerability scanning.

85

UFuzzer : Lightweight Detection of PHP-Based Unrestricted File Upload Vulnerabilities Via Static-Fuzzing Co-Analysis RAID ’21, October 6–8, 2021, San Sebastian, Spain

System LoCs Fuzzing
Templates

Detected by
UFuzzer

Detected by
UChecker

Detected by
RIPS

Detected by
WAP

Detected by
FUSE

Known

Vulnerable

Adblock Blocker 0.0.1 369 2 4 (0.26s) 4 (0.50s) 4 (0.01s) 6 (0.58s) 6 (1.53h)

Audio Record 1.0 342 1 4 (0.29s) 4 (0.53s) 4 (0.01s) 6 (0.39s) 6 (1.28h)

Baggagefreight Shipping 0.1.0 5,581 1 4 (0.78s) 4 (1.12s) 4 (0.10s) 4 (1.00s) 4 (1.38h)

Estatik 2.2.5 9,823 3 4 (0.89s) 4 (1.72s) 4 (0.31s) 6 (1.00s) 6 (2.17h)

File Provider 1.2.3 983 1 4 (0.24s) 4 (0.40s) 4 (0.02s) 6 (0.65s) 6 (1.85h)

Finale - WooCommerce Sales Countdown Timer 2.8.0 28,643 6 4 (4.91s) 4 (5.01s) 4 (0.42s) 6 (1.00s) 4 (0.33h)

N-Media Website Contact Form with File Uploader 1.3.4 1,857 14 4 (0.26s) 4 (1.23s) 4 (0.06s) 6 (0.624s) 4 (1.38h)

Image Gallery with Slideshow 1.5.2 569 2 4 (0.34s) 4 (0.35s) 4 (0.04s) 4 (0.94s) 6 (4.35h)

Open Flash Chart Core 0.4 2,337 2 4 (0.35s) 4 (0.70s) 4 (0.10s) 4(0.94s) 6 (1.80h)

PDW Media File Browser 1.1 20,664 1 4 (3.59s) 6 (4.01s) 4 (3.68s) 4 (1.00s) 6 (3.03h)

Ip Blocker Lite 10.2 5,574 1 4 (1.46s) 4 (0.99s) 4 (0.05s) 6 (0.73s) 6 (1.53h)

Uploadify 1.0.0 285 1 4 (0.20s) 4 (0.31s) 4 (0.01s) 4 (0.53s) 6 (1.43h)

WooCommerce Custom Pro�le Picture 1.0 138 16 4 (0.15s) 4 (0.28s) 6 (0.01s) 6 (0.44s) 6 (1.55h)

WooCommerce Catalog Enquiry 3.0.1 3,560 8 4 (0.67s) 4 (1.21s) 4 (0.09s) 6 (1.00s) 4 (0.33h)

WooCommerce Checkout Manager 4.2.5 14,942 8 4 (1.70s) 4 (0.96s) 4 (0.70s) 6 (1.00s) 4 (0.33h)

WP Marketplace 2.4.1 13,956 1 4 (2.6s) 4 (2.60s) 4 (0.32s) 6 (1.00s) 4 (0.33h)

wp-Powerplaygallery 3.3 2,752 416 4 (1.33s) 4 (2.78s) 4 (0.07s) 6 (0.86s) 4 (2.21h)

WP Seo Spy 3.1 3,431 2 4 (0.50s) 4 (0.57s) 4 (0.07s) 4 (1.00s) 4 (0.81h)

WP Demo Buddy 1.0.2 2,208 8 4 (0.34s) 4 (0.28s) 4 (0.06s) 6 (1.00s) 6 (2.95h)

Avatar Uploader 6.x-1.2 495 1 4 (0.22s) 4 (52.74s) 4 (0.01s) 6 (0.54s) N/A

Foxypress 0.4.1.1-0.4.2.1 13,358 64 4 (1.79s) 4 (2.98s) 4 (0.30s) 4 (2.00s) N/A

Asset Manager 0.2 3,784 1 4 (0.22s) 4 (0.81s) 4 (0.04s) 6 (0.87s) N/A

Simple Ad Manager 2.5.94 1,937 4 4 (1.24s) 4 (5.35s) 4 (0.33s) 4 (1.00s) N/A

SpamTask 1.3.6 3,434 2 4 (0.61s) 4 (0.61s) 4 (0.15s) 4 (1.00s) N/A

MailCWP 1.100 4,3191 1 4 (5.01s) 4 (5.80s) 4 (1.26s) 4 (2.00s) N/A

Joomla-Bible-study 9.1.1 87,626 16 4 (13.70s) 4 (13.72s) 4 (1.31s) 4 (1.00s) N/A

Cimy User Extra Fields 2.3.8 9,432 100000+ 6 (N/A) 6 (N/A) 4 (0.97s) 6 (1.00s) 4 (5.50h)

Non-

Vulnerable

Fullscreen background slider 1.1 8,324 2 6 (7.09s) 6 (0.91s) 4 (0.01s) 6 (0.62s) 6 (1.80h)

TinyPNG for WordPress 0.2 256 8 6 (6.17s) 6 (0.33s) 6 (0.01s) 6 (0.64s) 6 (1.80h)

Mobile AppWidget 1.2 2,873 3 6 (9.95s) 6 (0.91s) 4 (0.07s) 6 (1.00s) 6 (1.81h)

BackupGuard 1.1.46 10,509 6 6 (14.07s) 6 (3.01s) 4 (7.79s) 6 (1.00s) 6 (4.28h)

WooCommerce Catalog Enquiry 3.1.0 (Fixed version) 3,545 2 6 (6.88s) 6 (1.09s) 4 (0.09s) 6 (1.00s) 6 (1.43h)

Telegram-chat 3.0.4 2,665 4 6 (5.76s) 6 (0.67s) 4 (0.06s) 6 (0.88s) 6 (1.83h)

Just a simple popup 2.0.1 948 4 6 (8.36s) 6 (0.38s) 4 (0.02s) 6 (0.48s) 6 (1.61h)

Booster for WooCommerce 2.8.2 47,689 40 6 (190.81s) 6 (25.81s) 4 (39.46s) 6 (14.00s) 6 (1.41h)

Morbits SMS 1.0 71,787 1 6 (175.31s) 6 (27.00s) 4 (11.84s) 6 (2.00s) 6 (1.81h)

Eventer 0.1.0 377 2 6 (1.70s) 6 (2.01s) 4 (0.02s) 4 (0.70s) 6 (1.68h)

Customize Random Avatar 1.0.0 1,254 2 6 (7.73s) 6 (0.94s) 4 (0.02s) 4 (0.70s) 6 (1.73h)

IntelliWidget Custom Post Types 1.1.1 903 2 6 (5.79s) 6 (0.40s) 4 (0.02s) 6 (0.47s) 6 (1.61h)

PHP Event Calendar 1.5 10,730 1 6 (11.95s) 6 (1.41s) 4 (1.34s) 6 (1.00s) N/A

Results

Detection Rate 26/27 25/27 26/27 10/27 9/27

False Positive Rate 0/32 0/32 12/32 2/32 0/32

Table 1: Evaluation Results Using Ground-Truth-Available Data (4 and 6 refer to vulnerable and non-vulnerable, respectively).
UFuzzer detects 26 out of 27 known vulnerable scripts with no false positives; it outperforms UChecker, RIPS, andWAP.

5 DETECTING NEW VULNERABLE PHP
APPLICATIONS

We have used UFuzzer to detect PHP applications with unrestricted

�le upload vulnerabilities. We leverage two repositories, includ-

ing WordPress plugins and GitHub, which both o�er a large num-

ber of PHP-based, open-source applications. We collected 9,157

WordPress plugins in a reverse chronological order (starting from

4/22/2018) based on their last updated time.We also retrieved source

code of top 900 highly rated (i.e., “start”-ed) PHP content manage-

ment systems (CMS) from GitHub (on 07/01/2020). Since UChecker
achieved comparable detection performance on the ground-truth-

available data, we also use it to scan all these applications.

Table 2 presents the detection results. UFuzzer and UChecker
together detect 32 vulnerable applications. The �rst 21 are from

GitHub and the remaining 11 are WordPress plugins. We have con-

�rmed all of them allow the uploading of PHP �les through i) actual

exploiting or ii) code review. The “veri�cation method” column in

the table presents how each application is veri�ed. Speci�cally, 16

out of 32 applications can be installed and we have successfully

exploited their �le uploading vulnerabilities. The remaining 16 ap-

plications fail to operate mainly due to the lack of con�guration

�les (e.g., required database con�guration �les are missing). We

therefore manually review their source code thoroughly. All of

these 32 vulnerable applications have not been previously reported

to the best of our knowledge.

Among these 32 vulnerable applications, UFuzzer detects 31

whereas UChecker only detects 15. UFuzzer also e�ectively iden-

ti�es the source of each vulnerable application, i.e., the �le name

and the line no. of the vulnerable statement (see the 4th column

of Table 2). Manual analysis reveals that some APIs of false neg-

atives introduced by UChecker are not currently covered in its

PHP-to-Z3 translation rules. Comparatively, UFuzzer executes these
PHP APIs in native PHP runtime environment. UFuzzer misses

one vulnerable sample since UFuzzer was not successful in mu-

tating inputs that satisfy their reachability conditions. For ex-

ample, the fuzzing template of Gallerio 1.0.1 has the reach-

ability condition of $reach_reach = ($sym_Isset_POST_doadd
and $_POST_doadd_symbol == ‘yes’ and $sym_file_name .
$sym_file_ext != ‘’) and the string mutator fails to generate

‘yes’ for the free variable $_POST_doadd_symbol.
Among these 32 vulnerable applications, our manual investi-

gation reveals that 13 samples need administration privilege for

86

RAID ’21, October 6–8, 2021, San Sebastian, Spain Huang and Zhang, et al.

No. Application UFuzzer Vuln Source
File : Line No. UChecker Veri�cation

Method
Root
Cause

Admin
Required? CVE

1 Basic-Laravel-CMS - PHP Framework For Web Artisans 4 uploader.php:31 4 Code Review LS No

2 BloggerCMS - Easiest Static Blog Generator 4 Image.php:77 6 Code Review SInS No

3 Lapin_CMS - Slim 3 RAD Skeleton 4 upload.php:36 6 Code Review SInS No

4 Learningphp-CMS 4 upload.php:41 4 Code Review LS No

5 Mini_CMS - PHP Based Mini Blog 4 zamiesc-post.php:40 4 Exploiting SInS No

6 laravelCMS - PHP Framework For Web Artisans 4 Pro�leController.php:29 4 Code Review SInS No

7 WikiDocs - Databaseless Markdown Wiki Engine 4 submit.php:264 6 Code Review SInS No

8 Bu�alo-Webpage-CMS 4 actionProductoCtrl.php:81 6 Code Review SInS No

9 LCMS - College Website with CMS 4 student_avatar.php:13 4 Code Review LS No

10 Palette - PHP Based Site Builder 4 upload.php:27 6 Code Review LS No

11 Progress_Business - CMS for Company Pro�le Web 4 adding_news.php:12 4 Exploiting LS No

12 publisher.mod - FlatCore CMS Module 4 upload.php:29 6 Code Review SInS No

13 User-Management-PHP-MYSQL 4 edit-user.php:32 4 Exploiting SC No

14 MicroCMS1 - CMS Based On Model-View-Controller 4 uploads.php:31 6 Code Review LS No

15 BlogStop - Simple Content Management System 4 admin_edit_post.php:22 6 Exploiting LS Yes

16

CMS-Blogging-System - Blog Made with PHP and

MySQL

4 add_post.php:15 4 Code Review LS Yes

17 Cmsphp - Simple PHP based CMS System 4 add_post.php:21 4 Code Review LS Yes

18 CMSPortfolio - PHP based Portfolio Template 4 func.php:464 6 Code Review SInS Yes

19 CMSProjectPHP 4 add_post.php:16 4 Code Review LS Yes

20 CMSsite - Simple CMS Site 4 pro�le.php:27 6 Exploiting LS Yes

21 CmsV1 - CMS Based on PHP 4 add_user.php:21 4 Code Review LS Yes

22 N5 Upload Form 1.0 4 n5uploadform.php:156 6 Exploiting LS No CVE-2021-24223

23 Testimonials King Light 0.1 4 testimonial-king-form.php:38 6 Code Review MisAPI No

24 WP-Curriculo Vitae Free 6.1 4 enviarCadastro.php:86 6 Exploiting LS No CVE-2021-24222

25 Easy Form Builder 1.0 4 newForm.php:49 4 Exploiting LS No CVE-2021-24224

26 imagements 1.2.5 4 imagements.php:127 4 Exploiting SInS No CVE-2021-24236

27 Event Banner 1.3 4 admin_events.php:29 6 Exploiting LS Yes CVE-2021-24251

28 Quick Image Transform 1.0.1 4 �le-upload.php:79 6 Exploiting SC Yes

29 College Publisher Import 0.1 4 college-publisher-import.php:144 6 Exploiting LS Yes

30 BSK Files Manager 1.0.0 4 bsk-�les-manager.php:269 6 Exploiting MisAPI Yes

31 Banner Cycler 1.4 4 admin.php:167 6 Exploiting LS Yes

32 Gallerio 1.0.1 6 gallerio.php:610 4 Exploiting LS Yes

Table 2: Detecting New Vulnerable Applications. UFuzzer detected 31 vulnerable PHP applications that have not been previously re-
ported, where 1-21 are fromGitHub and 22-32 are WordPress plugins. Each vulnerability is veri�ed through either exploiting or thorough
code review. The root cause of each vulnerable sample has also been labeled, where LS for “lacking sanitization”, MisAPI for “misusing
sanitization APIs”, SInS for “sanitizing incorrect sources”, and SC for “sanitizing at the client”.

successful exploitation. While these 13 applications require attack-

ers to gain higher privileges, they may still lead to unintended

behaviors that could be potentially misused. In fact, one of such

examples, Event Banner 1.3, receives CVE-2021-24251.
We attribute root causes of these 32 new vulnerable applications

into four categories including lacking sanitization (LS), misusing
sanitization APIs (MisAPI), sanitizing incorrect sources (SInS), and
sanitizing at the client (SC). To further illustrate each root cause,

we present a few representative cases below.

Lacking Sanitization: Basic Laravel CMS is a content manage-

ment system (CMS). Its vulnerable code is presented in Listing 5,

which does not check the extension of the uploaded �le. Although

the developer attempts to randomize the name of the saved �le, the

random number is derived from a very narrow range and there-

fore highly predictable. Listing 6 shows the fuzzing template that

successfully detects this vulnerability, which evaluates both the

reachability condition and the �le extension.

1 <?php

2 if ($_FILES['file']['name']) {

3 if (! $_FILES['file']['error ']) {

4 $name = md5(rand (100, 200));

5 $ext = explode('.', $_FILES['file']['name']);

6 $filename = $name . '.' . $ext [1];

7 $destination = '/public/images/' . $filename;

8 $location = $_FILES["file"]["tmp_name"];

9 move_uploaded_file($location , $destination);

10 //...

11 } else{

12 //...

13 }

14 }

15 ?>

Listing 5: Vulnerable Code of Basic Laravel CMS

1 function is_Vulnerable_0(string $sym_file_name ,

2 string $sym_file_ext ,

3 int $_FILES_file_error_symbol){

4 $exp_reach = ($sym_file_name . $sym_file_ext and

5 !$_FILES_file_error_symbol);

6 $funCall = explode('.', $sym_file_name . $sym_file_ext);

7 $exp_filename = '/public/images/' . (md5(rand (100, 200)) .

8 '.' . $funCall [1]);

9 if ($exp_reach) {

10 $ext = pathinfo($exp_filename , PATHINFO_EXTENSION);

11 if (in_array($ext , array('php'))) {

12 return true;

13 }

14 }

15 }

Listing 6: A Fuzzing Template for Basic Laravel CMS

Misusing Sanitization APIs: Misusing Sanitization APIs: BSK
Files Manager 1.0.0 [5] is a WordPress plugin for �le manage-

ment. However, it does not guarantee that the �le provided is a

legitimate �le extension and allows high privilege users to upload

arbitrary �les including “.php” or “.exe” �les. Listing 7 presents the

vulnerable code snippet. We suspect this vulnerability is rooted in

the mis-interpretation of the “sanitize_file_name()”, a Word-

Press built-in API. This function is for removing special illegal

characters rather than guaranteeing to return a �lename that is

allowed to be uploaded [38]. Therefore, a �le with the executable

“.php” extension can still be uploaded. The fuzzing template that

87

UFuzzer : Lightweight Detection of PHP-Based Unrestricted File Upload Vulnerabilities Via Static-Fuzzing Co-Analysis RAID ’21, October 6–8, 2021, San Sebastian, Spain

successfully revealed this vulnerability is presented in Listing 8; it

only concerns the name of the �le to be saved since the reachability

constraint is not tainted by the name of the uploaded �le.

1 function bsk_files_manager_file_upload_file($file ,

$destination_name_prefix , /*...*/){

2 if (!$file["name"]){

3 return false;

4 }

5 if ($file["error"] != 0){

6 return false;

7 }

8 //...

9 $destinate_file_name = $destination_name_prefix.'_'.

10 sanitize_file_name($file["name"]);

11 $ret = move_uploaded_file($file["tmp_name"],

12 /*...*/.$this ->_files_upload_folder

13 . $destinate_file_name);

14 //...

15 return $destinate_file_name;

16 }

Listing 7: Vulnerable Code in BSK Files Manager 1.0.0

1 function is_vulnerable($sym_files_upload_folder ,

2 $bsk_files_manager_file_id ,

3 $sym_file_name , $sym_file_ext ,

4 $sym_FILES_error ,

5 /*...*/)

6 {

7 $exp_reach = (!($sym_file_name . $sym_file_ext) and

8 $sym_FILES_error != 0 and /*...*/);

9 $exp_filename = /*...*/ . $sys_files_upload_folder .

10 trim($bsk_files_manager_file_id) . '_' .

11 sanitize_file_name($sym_file_name . $sym_file_ext);

12 if ($exp_reach) {

13 $ext = pathinfo($exp_filename , PATHINFO_EXTENSION);

14 if ($ext == 'php') {

15 return true;

16 }

17 }

18 return false;

19 }

Listing 8: A Fuzzing Template for BSK Files Manager 1.0.0

Sanitizing Incorrect Sources: Imagements 1.2.5 [37] is a

WordPress plugin that supports a visitor to leave an image-

based comment in users’ blogs. Listing 9 presents the vulner-

able code snippet. The function “add_action()” is a WordPress
built-in API to bind a function (“imagments_formverwerking()”

in this case) with an action(i.e. “comment_post” in this case).

The “imagments_formverwerking()” function intends to perma-

nently store an uploaded �le in the server. The developer seems

aware of this type of vulnerability and uses a �lter (see the

“add_�lter()” function) to abort any uploading action if it submits

a non-image �le. Unfortunately, the added �lter is �awed. It in-

vestigates $_FILES[‘image’][‘type’], which is the type of the �le

derived from the client’s request. Since an attacker has full con-

trol of client-side software (e.g., the browser), she can upload a

PHP executable script and meanwhile instrument the browser to

change $_FILES[‘image’][‘type’] to “image/png”, successfully by-

passing this �lter. The fuzzing template that successfully reveals

this vulnerability was illustrated in Listing 10.

1 add_action('comment_post ', 'imagements_formverwerking ');

2 add_filter('preprocess_comment ', 'imagements_verify_post_data ');

3 function imagements_formverwerking (){

4 if(isset($_POST['checkbox '])){

5 $name = $_FILES['image ']['name'];

6 //...

7 move_uploaded_file($_FILES["image"]["tmp_name"],

8 PATH . '/images/' . $name);

9 }

10 }

11 function imagements_verify_post_data($commentdata){

12 if(isset($_POST['checkbox '])) {

13 if($_FILES['image ']['name'] != null) {

14 if($_FILES["file"]["error"] > 0) {

15 //...

16 } else {

17 if(!($_FILES['image ']['type'] == 'image/x-png'||

18 $_FILES['image ']['type'] == 'image/pjpeg '||

19 $_FILES['image ']['type'] == 'image/jpeg' ||

20 $_FILES['image ']['type'] == 'image/jpg' ||

21 $_FILES['image ']['type'] == 'image/png')) {

22 wp_die('this␣file␣is␣no␣image ...');

23 }

24 }

25 }

26 //...

27 }

28 }

Listing 9: Vulnerable Code in Imagements 1.2.5

1 function is_Vulnerable(string $sym_const_PATH ,

2 string $sym_file_name ,

3 string $sym_file_ext){

4 $exp_filename = $sym_const_PATH . '/images/' .

5 ($sym_file_name . $sym_file_ext);

6 $ext = pathinfo($exp_filename , PATHINFO_EXTENSION);

7 if (in_array($ext , array('php'))) {

8 return true;

9 }

10 return false;

11 }

Listing 10: A Fuzzing Template for Imagements 1.2.5

Sanitizing at the Client: User-Management-PHP-MYSQL [25] is

an open-source web application collected from GitHub. Listing 11

presents the client-side HTML page and the server-side PHP script

to process the �le submission request. The developer seems aware

of this vulnerability and implemented the validation function at

the client using JavaScript (i.e., by only allowing �les with “jpg” or

“jpeg” extensions). Unfortunately, since an attacker has full control

of her browser, she can either disable this validation function or

manipulate the �le name carried by the POST request. Listing 12

presents the fuzzing template that reveals this vulnerability.

1 <?php

2 if(isset($_POST['submit '])){

3 $file = $_FILES['image ']['name'];

4 $final_file = str_replace('␣', '-', strtolower($file));

5 if (move_uploaded_file($_FILES['image ']['tmp_name '],

6 "images/" . $final_file)) {

7 //...

8 }

9 }

10 ?>

11 <!doctype html >

12 <html lang="en" class="no-js">

13 <!--...-->

14 function validate () {

15 var extensions = new Array("jpg", "jpeg");

16 var final_ext = // Get the file extensions by JavaScript

17 // return true if the final_ext is in extensions

18 // return false otherwise

19 }

20 <form method="post" <!--...--> onSubmit="return␣validate ();">

21 <!--...-->

22 <button <!--...--> type="submit">Register </button >

23 </form >

24 <!--...-->

88

RAID ’21, October 6–8, 2021, San Sebastian, Spain Huang and Zhang, et al.

25 </html >

Listing 11: Vulnerable Code in User-Management-PHP-MYSQL

1 function is_Vulnerable_0(string $sym_file_name , string

$sym_file_ext){

2 $exp_filename = '../ images/' . str_replace('␣', '-',

strtolower($sym_file_name . $sym_file_ext));

3 $ext = pathinfo($exp_filename , PATHINFO_EXTENSION);

4 if (in_array($ext , array('php'))) {

5 return true;

6 }

7 return false;

8 }

Listing 12: A Fuzzing Template for
User-Management-PHP-MYSQL

6 RELATEDWORK
The majority of web-server-oriented vulnerability detection meth-

ods employ static program analysis, where representative ones

include [6, 9, 10, 14, 27, 28, 31, 35, 39]. These methods focus on a

variety of well-known vulnerabilities such as SQL injection, XSS,

and DoS. A few other methods [3, 4, 13, 18, 21, 34, 36] employ

fuzzing or penetration testing to reveal vulnerabilities and failures

in server-side web applications. A few other tools such as JBro-

Fuzz [29], Wapiti [30], Wfuzz [16], Burp [24], and w3af [33] are

also built to fuzzing HTTP requests through interception. While

these methods have shown great promise in detecting server-side

web vulnerabilities, they focus on conventional ones other than

unrestricted �le upload vulnerabilities.

A few existing projects [2, 7, 10, 26, 32] analyzed unrestricted

�le upload vulnerabilities without delivering detection capabilities.

RIPS [9, 11] and WAP [20], and UChecker [15] claim their capabili-

ties of detecting unrestricted �le upload vulnerabilities. RIPS [9, 11]

leverages static taint analysis while WAP[20] combines taint anal-

ysis and machine learning. RIPS and WAP are prone to low de-

tection performance of this speci�c type of vulnerabilities since

taint-analysis is over-approximating to model the exploitation. The

learning-based software defect detection commonly su�ers from

the data sparsity challenge [1], where program samples with the

same vulnerability usually fall short for both quantity and diversity.

UChecker [15] and FUSE [17] are designed to detect unrestricted

�le upload vulnerabilities. UChecker symbolically interprets a PHP

application and generates constraints that model conditions to suc-

cessfully exploit a vulnerability. Unfortunately, the semantic gaps

between PHP and the solver language introduce intrinsic challenges

for constraint modeling. FUSE employs black-box fuzzing and it

requires the tested web to be fully operable. Nevertheless, we ac-

knowledge that the FUSE employs more types of exploitation inputs

(i.e., PHP, XHTML, and JS) compared to the current implementa-

tion of UFuzzer, which currently focuses on PHP. While we plan to

extend UFuzzer to cover more types of exploitation inputs in the

future, UFuzzer can immediately complement UChecker and FUSE.

7 DISCUSSION
Incomplete Interpretation of OOP and Loops: The current implementa-

tion of UFuzzer does not interpret all PHP grammars. Although it in-

terprets essential OOP grammars including class declaration, object

initialization, and the invocation ofmember functions,UFuzzer does

not handle other OOP features such as inheritance, function over-

riding, and deserialization. Since UFuzzer directly interprets AST,

it takes little e�ort to represent a loop statement in a heap graph.

However, signi�cant challenges arise when one intends to execute a
loop-included fuzzing template with mutated inputs. Speci�cally, it

would be di�cult to identify reasonable variable values to exercise

a generated loop e�ectively and e�ciently. Therefore, we skip the

process of loops in the current implementation.

The practical impact of such incomplete interpretation is how-

ever alleviated by the “locality analysis” of UFuzzer’s interpreter,
which inherits from UChecker. Speci�cally, we �rst use “locality
analysis” to identify statements that are likely to be relevant to the

vulnerability and then only symbolically interpret these identi�ed

statements. These identi�ed statements, which usually represent a

very small portion of the entire program, rarely contain advanced

OOP features and loops in our evaluated and scanned cases. This

suggests a limited impact on our current implementation.

Nevertheless, extending UFuzzer’s interpretation capability

could enhance its detection capabilities. For example, we can track

the relationship of classes when they are declared to interpret OOP

polymorphism features. We can execute a loop-included fuzzing

template through massive parallelization. Such solutions fall into

our future work, and our plan to open UFuzzer’s code will also

facilitate the community’s e�orts towards this direction.

Focusing on the File Extension: UFuzzer investigates whether an

uploaded �le could have the “.php” extension, which represents an

immediate, arguably the most signi�cant and common exploitation

of the studied vulnerability. It might also be risky if one can submit

a �le of executable content without executable extension to a web

system. However, it requires additional exploitations to execute

the �le (e.g., altering �le names via other interfaces). Nevertheless,

we acknowledge that it will enhance UFuzzer by analyzing the

executable content in an uploaded �le.

Replicating Exploitations Using Template Inputs: UFuzzer “fuzzes” a
fuzzing template that approximates the original code rather than

the original code itself. Therefore, an input that successfully “ex-

ploits” the fuzzing template is unlikely to be directly reused to

reproduce the exploitation in the operating web system correspond-

ing to this fuzzing template. Nevertheless, these template inputs

will drastically help a fuzzer reduce the space of the fuzzing inputs.

Again, our design associates a template input with an uninitialized

variable, a superglobal variable, or the output of an operation/API.

Therefore, an input associated with a superglobal variable can be

directly used for exploitation; an input associated with an opera-

tion/API can be used to guide a fuzzer to generate the input(s) for

this operation/API that will lead to wanted template inputs.

False Positives: Although UFuzzer has not introduced any false posi-

tives in our experiments using a large set of real-world applications,

it is still possible for UFuzzer to introduce false positives for two

major reasons. First, it does not model the con�guration of web

servers that could mitigate such vulnerabilities at run time. For ex-

ample, a server could be con�gured (e.g, in .htaccess or php.ini)
to completely disable �le uploading for the entire web system. Nev-

ertheless, we believe UFuzzer’s detected vulnerabilities, although

only concerning �awed code, are useful to improve systems’ fun-

damental security despite the fact they cannot be exploited due to

runtime con�guration. Second, a fuzzing template may fail to model

89

UFuzzer : Lightweight Detection of PHP-Based Unrestricted File Upload Vulnerabilities Via Static-Fuzzing Co-Analysis RAID ’21, October 6–8, 2021, San Sebastian, Spain

the context of uninitialized variables and symbolized operations,

which however could involve sanitization actions. A potential so-

lution to address this challenge is to trade e�ciency for accuracy,

such as interpreting more statements and modeling symbolized

operations with �ner granularity.

False Negatives: UFuzzer introduces one false negative in detecting

new vulnerable applications. This is because the mutation process is

unguided and therefore it cannot guarantee the generation of values

that provably satisfy certain conditions in the fuzzing template. A

potential solution is to integrate UFuzzer and UChecker, where we
can infer values for applicable variables using a solver and mutate

values for the remaining.

8 CONCLUSION
We have built UFuzzer to automatically detect PHP-based web pro-

grams with unrestricted �le upload vulnerabilities. UFuzzer models

a server-side PHP web application using heap graphs and auto-

matically identi�es sub-graphs that are relevant to a vulnerability.

Identi�ed sub-graphs are refactored and eventually converted into

executable PHP programs for fuzzing. The evaluation results based

on real-world PHP applications demonstrated UFuzzer’s high de-

tection performance. It also detects 31 new vulnerable services that

have not been publicly reported, contributing 5 CVEs.

REFERENCES
[1] Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles Sutton. 2018.

A Survey of Machine Learning for Big Code and Naturalness. ACM Comput. Surv.
51, 4, Article 81 (July 2018), 37 pages.

[2] Oxana Andreeva, Sergey Gordeychik, Gleb Gritsai, Olga Kochetova, Evgeniya

Potseluevskaya, Sergey I Sidorov, and Alexander A Timorin. 2016. Industrial

control systems vulnerabilities statistics. Kaspersky Lab, Report (2016).
[3] I. Andrianto, M. M. I. Liem, and Y. D. W. Asnar. 2017. Web application fuzz testing.

In 2017 International Conference on Data and Software Engineering (ICoDSE). 1–6.
[4] Shay Artzi, AdamKiezun, Julian Dolby, Frank Tip, Danny Dig, Amit Paradkar, and

Michael D Ernst. 2008. Finding bugs in dynamic web applications. In Proceedings
of the 2008 international symposium on Software testing and analysis. ACM, 261–

272.

[5] bannersky. 2013. BSK Files Manager 1.0.0. [Online; accessed 30-July-2018].

[6] A. Barth, J. Caballero, and D. Song. 2009. Secure Content Sni�ng for Web

Browsers, or How to Stop Papers from Reviewing Themselves. In 2009 30th IEEE
Symposium on Security and Privacy. 360–371. https://doi.org/10.1109/SP.2009.3

[7] Davide Canali and Davide Balzarotti. 2013. Behind the scenes of online attacks:

an analysis of exploitation behaviors on the web. In Network and Distributed
System Security (NDSS).

[8] Wikipedia contributors. 2018. Unrestricted File Upload. https://www.owasp.

org/index.php/Unrestricted_File_Upload [Online; accessed 22-July-2018].

[9] Johannes Dahse and Thorsten Holz. 2014. Simulation of Built-in PHP Features for

Precise Static Code Analysis. In Network and Distributed System Security (NDSS).
[10] Johannes Dahse and Thorsten Holz. 2014. Static Detection of Second-Order

Vulnerabilities in Web Applications. In USENIX Security Symposium.

[11] Johannes Dahse and Jörg Schwenk. 2010. RIPS-A static source code analyser for

vulnerabilities in PHP scripts. In Seminar Work (Seminer Çalismasi). Horst Görtz
Institute Ruhr-University Bochum.

[12] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An e�cient SMT solver. In

International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[13] F. Duchene, R. Groz, S. Rawat, and J. Richier. 2012. XSS Vulnerability Detec-

tion Using Model Inference Assisted Evolutionary Fuzzing. In 2012 IEEE Fifth
International Conference on Software Testing, Veri�cation and Validation. 815–817.

[14] Wassermann Gary and Zhendong Su. 2008. Static detection of cross-site script-

ing vulnerabilities. In 2008 ACM/IEEE 30th International Conference on Software
Engineering. IEEE, 171–180.

[15] J. Huang, Y. Li, J. Zhang, and R. Dai. 2019. UChecker: Automatically Detecting

PHP-Based Unrestricted File Upload Vulnerabilities. In 49th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).

[16] 2014) Kali.org.(February 18. accessed on April 15, 2020. Wfuzz Package Descrip-

tion. http://tools.kali.org/web-applications/wfuzz.

[17] Taekjin Lee, Seongil Wi, Suyoung Lee, and Sooel Son. 2020. FUSE: Finding File

Upload Bugs via Penetration Testing. In Network and Distributed System Security
(NDSS).

[18] L. Li, Q. Dong, D. Liu, and L. Zhu. 2013. The Application of Fuzzing in Web Soft-

ware Security Vulnerabilities Test. In 2013 International Conference on Information
Technology and Applications. 130–133.

[19] Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark Barrett, and Morgan Deters.

2014. A DPLL (T) theory solver for a theory of strings and regular expressions.

In International Conference on Computer Aided Veri�cation. Springer, 646–662.
[20] Ibéria Medeiros, Nuno Neves, and Miguel Correia. 2016. Detecting and remov-

ing web application vulnerabilities with static analysis and data mining. IEEE
Transactions on Reliability 65, 1 (2016), 54–69.

[21] Andrey Petukhov and Dmitry Kozlov. 2008. Detecting security vulnerabilities in

web applications using dynamic analysis with penetration testing. Computing
Systems Lab, Department of Computer Science, Moscow State University (2008),

1–120.

[22] Nikita Popov. 2014. PHP Parser. URl: https://github. com/nikic/PHP-Parser (visited
on 2014-03-28) (2014).

[23] Nikita Popov. 2019. PHP Fuzzer. URl: https://github.com/nikic/PHP-Fuzzer (visited
on 2020-12-09) (2019).

[24] PortSwigger.(n.d). accessed on April 15, 2020. Burp Suite.

http://portswigger.net/burp/.

[25] Ajay Randhawa. 2018. User-Management-PHP-MYSQL. https://github.com/

scurite/User-Management-PHP-MYSQL [Online; accessed 05-Dec-2020].

[26] Imam Riadi and Eddy Irawan Aristianto. 2016. An Analysis of Vulnerability

Web Against Attack Unrestricted Image File Upload. Computer Engineering and
Applications Journal 5, 1 (2016), 19–28.

[27] Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant,

and Dawn Song. 2010. A symbolic execution framework for javascript. In 2010
IEEE Symposium on Security and Privacy. IEEE, 513–528.

[28] Sooel Son and Vitaly Shmatikov. [n.d.]. SAFERPHP: Finding Semantic Vulnera-

bilities in PHP Applications. In Proceedings of the ACM SIGPLAN 6th Workshop
on Programming Languages and Analysis for Security.

[29] Sourceforge.(n.d). accessed on April 15, 2020. JBroFuzz.

https://sourceforge.net/projects/jbrofuzz/.

[30] Sourceforge.(n.d). accessed on April 15, 2020. Wapiti.

https://wapiti.sourceforge.io/.

[31] Cristian-Alexandru Staicu, Michael Pradel, and Benjamin Livshits. 2018. Synode:

Understanding and Automatically Preventing Injection Attacks on Node. js. In

Network and Distributed System Security (NDSS).
[32] Nasir Uddin and Mohammad Jabr. [n.d.]. File Upload Security and Validation in

Context of Software as a Service Cloud Model. In IT Convergence and Security
(ICITCS), 2016 6th International Conference on.

[33] w3af. (n.d.). accessed on April 15, 2020. w3af - Open Source Web Application

Security Scanner. http://w3af.org/.

[34] Liu Qiang Wang Chunlei, Liu Li. 2014. Automatic fuzz testing of web service

vulnerability. IET Conference Proceedings (2014).
[35] Gary Wassermann and Zhendong Su. 2007. Sound and precise analysis of web

applications for injection vulnerabilities. In ACM Sigplan Notices, Vol. 42. ACM,

32–41.

[36] Gary Wassermann, Dachuan Yu, Ajay Chander, Dinakar Dhurjati, Hiroshi Ina-

mura, and Zhendong Su. 2008. Dynamic test input generation for web applica-

tions. In Proceedings of the 2008 international symposium on Software testing and
analysis. ACM, 249–260.

[37] williewonka. 2012. Imagements. https://wordpress.org/plugins/imagements/

[Online; accessed 05-Dec-2020].

[38] WordPress.org. accessed on April 15, 2020. sanitize_�le_name. URl:https://

developer.wordpress.org/reference/functions/.

[39] Yichen Xie and Alex Aiken. 2006. Static Detection of Security Vulnerabilities in

Scripting Languages.. In USENIX Security Symposium.

90

https://doi.org/10.1109/SP.2009.3
https://www.owasp.org/index.php/Unrestricted_File_Upload
https://www.owasp.org/index.php/Unrestricted_File_Upload
https://github.com/scurite/User-Management-PHP-MYSQL
https://github.com/scurite/User-Management-PHP-MYSQL
https://wordpress.org/plugins/imagements/
URl: https://developer.wordpress.org/reference/functions/
URl: https://developer.wordpress.org/reference/functions/

	UFuzzer: Lightweight Detection of PHP-Based Unrestricted File Upload Vulnerabilities Via Static-Fuzzing Co-Analysis
	Repository Citation

	Abstract
	1 Introduction
	2 Background
	2.1 Unrestricted File Upload
	2.2 Heap Graphs

	3 System Design
	3.1 Taint Analysis
	3.2 Graph Refactoring With Symbolic Values
	3.3 Deriving Executable Expressions for The Reachability Constraint and The File Name
	3.4 Generate Fuzzing Templates
	3.5 Executing a Fuzzing Template

	4 Ground-Truth-Available Evaluation
	5 Detecting New Vulnerable PHP Applications
	6 Related Work
	7 Discussion
	8 Conclusion
	References

