11th BROADBAND DIELECTRIC SPECTROSCOPY AND ITS APPLICATIONS DONOSTIA - SAN SEBASTIAN – SPAIN – SEPTEMBER, 2022

T.A. Ezquerra

Is the sub-glass temperature relaxation of furan-based polymers related to their high gas barrier properties?

Oscar Gálvez¹, Oscar Toledano¹, Francisco Javier Hermoso¹, Mikel Sanz¹ <u>Tiberio A. Ezquerra², A. Linares do Santos², Aurora Nogales², Mari Cruz García-Gutiérrez²</u> Gonzalo Santoro², Esther Rebollar³ Izabela Irska⁴, Sandra Paszkiewicz⁴, Anna Szymczyk⁵

 ¹Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain.
 ²Instituto de Estructura de la Materia, IEM-CSIC, Madrid,
 ³Instituto de Química Física Rocasolano, IQFR-IEM, Madrid, Spain
 ⁴Institute of Material Science and Engineering, ⁵Department of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, Szczecin, Poland

- Introduction to polyfuranoates : Outstanding gas barrier properties
- Broadband Dielectric Spectroscopy (BDS) of Poly(trimethylene 2,5-furanoate) (PTF) Poly(trimethylene terephthalate) (PTT)
- Fourier transform Infrared Spectroscopy (FTIR) of Poly(trimethylene 2,5-furanoate) PTF Poly(trimethylene terephthalate) (PTT)
- BDS versus FTIR

Motivation

• Interest in Polymers based on renewable raw materials for potential applications in pharmacy, medicine, agriculture, tissue engineering, textile industry, packaging etc.

• Werpy T, Petersen G (2004) Top Value Added Chemicals from Biomass: Volume I – Results of Screening for Potential Candidates from Sugars and Synthesis Gas. Golden, CO (United States).

Motivation

• The use of FDCA allows obtaining polymers with better properties than their counterparts based on TPA.

- Poly(ethylene 2,5-furanoate) (PEF), exhibit much better barrier properties (11 times lower O₂ permeability, 19 times lower CO₂ permeability) than polyethylene terephthalate (PET).
- Poly(trimethylene 2,5-furanoate) PTF presents as well superior gas barrier properties than PET. (16-times for O₂, 48-times for CO₂, and 2 times for H₂O).
- S.K. Burgess, R.M. Kriegel, W.J. Koros, Macromolecules 2015, 48, 2184–2193.
- L. Genovese, M. Soccio, N. Lotti, A. Munari, A. Szymczyk, S. Paszkiewicz, A. Linares, A. Nogales, T.A. Ezquerra, Physical Chemistry Chemical Physics 2018, 20 (23), 15696-15706.
- G. Guidotti, M. Soccio, M.C. García-Gutiérrez, T.A. Ezquerra, V. Siracusa, E. Gutiérrez-Fernández, A. Munari and N. Lotti ACS Sustain. Chem. Eng., 2020, 8, 9558–9568.

BDS

- Complex dielectric permittivity (ϵ *) measurements (ϵ * = ϵ ' $\iota\epsilon$ '') were performed over a frequency range of $10^{-1} < F/Hz < 10^6$ starting at T= 123 K up to room temperature by using a Novocontrol system integrating an ALPHA dielectric interface and QUATRO temperature control system (Novocontrol).
- Polymer films were sandwiched between the two metallic electrodes of the spectrometer. The dielectric relaxations were empirically described in terms of the Havriliak-Negami (HN) equation

FTIR

- Fourier Transform IR (FTIR) spectra were acquired in vacuum (background pressure of 10⁻⁶ mbar) with a Perkin Elmer, Frontier spectrometer in a 4500-500 cm⁻¹ range with a resolution in the wavenumber of 2 and 4 cm⁻¹.
- The temperature range was varied between 20 K and 330 K by using a closed cycle He cryostat (CTI cryogenics).
- A spectrum for the background was taken at every temperature.
- The FTIR spectroscopy experiments were performed in polymer thin films prepared by spin-coating on special IR transparent silicon substrates (Si FZ 25.4mm Ø x 1mm polished window).

versus

- Genovese, L.; Soccio, M.; Lotti, N.; Munari, A.; Szymczyk, A.; Paszkiewicz, S.; Linares, A.; Nogales, A.; Ezquerra, T. A. Physical Chemistry Chemical Physics 2018, 20 (23), 15696-15706.
- Soccio, M.; Nogales, A.; Ezquerra, T. A.; Lotti, N.; Munari, A. Macromolecules 2012, 45 (1), 180-188
- Papadopoulos, P.; Kossack, W.; Kremer, F.; Soft Matter, 2013, 9, 1600–1603

- Araujo, C. F.; Nolasco, M. M.; Ribeiro-Claro, P. J. A.; Rudic, S.; Silvestre, A. J. D.; Vaz, P. D.; Sousa, A. F. Macromolecules 2018, 51 (9), 3515-3526
- Papamokos, G.; Dimitriadis, T; Bikiaris, D.N.; Papageorgiou, G.Z.; Floudas G.: Macromolecules 2019, 52, 6533–6546
- Irska, I.; Paszkiewicz, S.; Pawlikowska, D.; Dryzek, J.; Linares, A.; Nogales, A.; Ezquerra, T. A.; Piesowicz, E. Polymer 2021, 229,

FTIR

PTF amorphous

*Araujo, C. F.; Nolasco, M. M.; Ribeiro-Claro, P. J. A.; Rudic, S.; Silvestre, A. J. D.; Vaz, P. D.; Sousa, A. F. Macromolecules 2018, 51 (9), 3515-3526

versus

- Araujo, C. F.; Nolasco, M. M.; Ribeiro-Claro, P. J. A.; Rudic, S.; Silvestre, A. J. D.; Vaz, P. D.; Sousa, A. F. Macromolecules 2018, 51 (9), 3515-3526
- Papamokos, G.; Dimitriadis, T; Bikiaris, D.N.; Papageorgiou, G.Z.; Floudas G.: Macromolecules 2019, 52, 6533-6546
- Irska, I.; Paszkiewicz, S.; Pawlikowska, D.; Dryzek, J.; Linares, A.; Nogales, A.; Ezquerra, T. A.; Piesowicz, E. Polymer 2021, 229,

FTIR

versus

- Araujo, C. F.; Nolasco, M. M.; Ribeiro-Claro, P. J. A.; Rudic, S.; Silvestre, A. J. D.; Vaz, P. D.; Sousa, A. F. Macromolecules 2018, 51 (9), 3515-3526
- Papamokos, G.; Dimitriadis, T; Bikiaris, D.N.; Papageorgiou, G.Z.; Floudas G.: Macromolecules 2019, 52, 6533–6546
- Irska, I.; Paszkiewicz, S.; Pawlikowska, D.; Dryzek, J.; Linares, A.; Nogales, A.; Ezquerra, T. A.; Piesowicz, E. Polymer 2021, 229,

Poly(trimethylene terephthalate) (PTT)

FTIR

versus

- Araujo, C. F.; Nolasco, M. M.; Ribeiro-Claro, P. J. A.; Rudic, S.; Silvestre, A. J. D.; Vaz, P. D.; Sousa, A. F. Macromolecules 2018, 51 (9), 3515-3526
- Papamokos, G.; Dimitriadis, T; Bikiaris, D.N.; Papageorgiou, G.Z.; Floudas G.: Macromolecules 2019, 52, 6533–6546
- Irska, I.; Paszkiewicz, S.; Pawlikowska, D.; Dryzek, J.; Linares, A.; Nogales, A.; Ezquerra, T. A.; Piesowicz, E. Polymer 2021, 229,

Poly(trimethylene terephthalate) (PTT)

FTIR

versus

- Araujo, C. F.; Nolasco, M. M.; Ribeiro-Claro, P. J. A.; Rudic, S.; Silvestre, A. J. D.; Vaz, P. D.; Sousa, A. F. Macromolecules 2018, 51 (9), 3515-3526
- Papamokos, G.; Dimitriadis, T; Bikiaris, D.N.; Papageorgiou, G.Z.; Floudas G.: Macromolecules 2019, 52, 6533-6546
- Irska, I.; Paszkiewicz, S.; Pawlikowska, D.; Dryzek, J.; Linares, A.; Nogales, A.; Ezquerra, T. A.; Piesowicz, E. Polymer 2021, 229,

Poly(trimethylene 2,5-furanoate) (PTF) versus Poly(trimethylene terephthalate) (PTT)

- Araujo, C. F.; Nolasco, M. M.; Ribeiro-Claro, P. J. A.; Rudic, S.; Silvestre, A. J. D.; Vaz, P. D.; Sousa, A. F. Macromolecules 2018, 51 (9), 3515-3526
- Papamokos, G.; Dimitriadis, T; Bikiaris, D.N.; Papageorgiou, G.Z.; Floudas G.: Macromolecules 2019, 52, 6533–6546
- Irska, I.; Paszkiewicz, S.; Pawlikowska, D.; Dryzek, J.; Linares, A.; Nogales, A.; Ezquerra, T. A.; Piesowicz, E. Polymer 2021, 229,

versus

versus

Poly(trimethylene terephthalate) (PTT)

Hydrogen bonds

*Araujo, C. F.; Nolasco, M. M.; Ribeiro-Claro, P. J. A.; Rudic, S.; Silvestre, A. J. D.; Vaz, P. D.; Sousa, A. F. Macromolecules 2018, 51 (9), 3515-3526

Poly(trimethylene 2,5-furanoate) (PTF): Quantum mechanical molecular dynamics simulation

- Energy calculations by the DFT method predicts the FDCA syn-syn configuration to be <1 kcal/mol less stable than anti-anti configuration.
- At 160 K, RT is around 0,32 kcal/mol suggesting that the internal conversion of anti-anti-gauche to syn-syn-trans conformations in PTF could occur even at low temperatures.
- We focus on the following modes: i) -C=O stretching (around 1722 cm⁻¹)

ii) C=C stretching (1582 cm-1)

because these bands exhibit opposite tendencies in their temperature dependences

Araujo, C. F.; Nolasco, M. M.; Ribeiro-Claro, P. J. A.; Rudic, S.; Silvestre, A. J. D.; Vaz, P. D.; Sousa, A. F. Macromolecules 2018, 51 (9), 3515-3526
Papamokos, G.; Dimitriadis, T.; Bikiaris, D. N.; Papageorgiou, G. Z.; Floudas, G. *Macromolecules* 2019, 52 (17)

Poly(trimethylene 2,5-furanoate) (PTF): Quantum mechanical molecular dynamics simulation

	C=O stretching sym	C=O stretching asym	C=C stretching
FDCA (anti-anti)	1774	1765	1591
FDCA (syn-syn)	1801	1783	1578
FDCA ₂ (HB)	1798	1775	1579
	1791	1772	1574

• We can hypothesize that as temperature increases, the observed blue-shift of the C=O stretching band and concurrent red-shift of the C=C stretching band would be expected if an increment of the syn-syn conformations takes place.

• Density-functional theory (DFT) method B3LYP (Becke's three parameter hybrid exchange functional plus the nonlocal correlation functional of Lee, Yang, and Parr. M06-2X functional (D3 version of Grimme's dispersion for dimers of FDCA. Gaussian 16 software.

FDCA₂(HB)

Conclusions

- The temperature dependence of the FTIR bands of PTF and PTT exhibit a similar behavior (red shift) with exception of those related to hydrogen bonding(blue shift)
- Quantum mechanical simulation (Functional Density Theory (DFT)) for PTF reveals that syn-syn conformations and hydrogen bonding are likely to occur in the vitreous state.
- The existence of hydrogen bonding in PTF may affect the "shape" of the β -relaxation in comparison to that of PTT.
- More Quantum mechanical simulation is needed in order to compare PTT and PTF (Work in progress;;)

Acknowledgements

The authors gratefully acknowledge the financial support of the Spanish Ministry of Science and Innovation (MICINN) through PID2019-107514GB-I00 / AEI / 10.13039/501100011033.

Soft and Polymer Matter Group

www.softmatpol.iem.csic.es

Esther Rebollar Alejandro Sanz

Oscar Gálvez (UNED)

Tiberio A. Ezquerra (CSIC)

Poly(trimethylene 2,5-furanoate) (PTF): Quantum mechanical molecular dynamics simulation

	C=O stretching sym	C=O stretching asym	C=C stretching
FDCA (anti-anti)	1774	1765	1591
FDCA (syn-syn)	1801	1783	1578
FDCA ₂ (HB)	1798	1775	1579
	1791	1772	1574
$FDCA_2(\pi-\pi)$	1813 , 1805	1783	1576 , 1574
		1744	

• We can hypothesize that as temperature increases, the observed blue-shift of the C=O stretching band and concurrent red-shift of the C=C stretching band would be expected if an increment of the syn-syn conformations takes place.

FDCA₂ FDCA₂ (π-**(HB)** π) ΔE_{dimer} -4,29 -6,38 $d(C=O\cdots H)$ 2,328 3,330 $d(\pi \cdot \cdot \cdot \pi)$ **Crystal**^a 2,47 3,39 FDCA₂(HB) FDCA2 (π-π)

HB (hydrogen bonding)

• K.J. Kim, J.H. Bae, Y.H. Kim. Polymer 42 (2001) 1023-1033