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Preface
Correlated systems are characterized by strong electron-electron interactions, resulting in many-
body effects eluding a static mean-field description. They thus proved largely intractable until
the development of dynamical mean-field theory (DMFT). In this approach, mapping the lat-
tice onto an auxiliary impurity problem gives a local dynamical self-energy, which captures the
essence of electronic correlations. DMFT is exact in the limit of infinite dimensions, and often
provides an excellent approximation for real crystal structures. This crucial insight represented
a paradigm shift in the study of correlations. Solving ever more complex impurity problems
nowadays allows the simulation of real materials, making contact with experiment via the cal-
culation of spectra, dynamical response functions, and non-equilibrium properties. Even subtle
non-local effects can be captured using various approaches, including clusters of impurities or
diagrammatic expansions. Thus DMFT finds application not only in correlated bulk systems but
also in heterostructures, and can even be employed to understand the properties of topological
phases of strongly correlated electron systems.

This year’s school will introduce the concept of dynamical mean fields and explore how it
can be used to understand the physics of real materials. Lectures will range from Fermi liquids
and the limit of infinite dimensions to the physics of quantum impurities and their relation to
the properties of correlated lattice systems.

A school of this size and scope requires backing from many sources. This is even more
true during the Corona pandemics, which provided scores of new challenges. We are very
grateful for all the practical and financial support we have received. The Institute for Advanced
Simulation at the Forschungszentrum Jülich and the Jülich Supercomputer Centre provided the
major part of the funding and were vital for the organization of the school as well as for the
production of this book. The Institute for Complex Adaptive Matter (ICAM) supplied additional
funds and ideas for successful online formats.

The nature of a school makes it desirable to have the lecture notes available when the lectures
are given. This way students get the chance to work through the lectures thoroughly while their
memory is still fresh. We are therefore extremely grateful to the lecturers that, despite tight
deadlines, provided their manuscripts in time for the production of this book. We are confident
that the lecture notes collected here will not only serve the participants of the school but will
also be useful for other students entering the exciting field of strongly correlated materials.

We are grateful to Mrs. H. Lexis of the Verlag des Forschungszentrum Jülich and to Mrs.
D. Mans of the Grafische Betriebe for providing their expert support in producing the present
volume on a tight schedule. We heartily thank our students and postdocs who helped with
proofreading the manuscripts, often on quite short notice: Elaheh Adibi, Neda Samani, and
Xue-Jing Zhang.

Finally, our special thanks go to Dipl.-Ing. R. Hölzle for his invaluable advice on the innu-
merable questions concerning the organization of such an endeavor, and to Mrs. L. Snyders for
expertly handling all practical issues.

Eva Pavarini, Erik Koch, Alexander Lichtenstein, and Dieter Vollhardt

August 2022



1 Why Calculate in Infinite Dimensions?

Dieter Vollhardt
Center for Electronic Correlations and Magnetism
University of Augsburg
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1.2 Dieter Vollhardt

1 Dimensions in physics: From zero to infinity

In physics the term dimension1 has a double meaning. On the one hand, it denotes the number
of coordinates required to specify the location of a point within an object (or, more generally,
a mathematical space). In particular, the dimension d of a point is d = 0, of a line d = 1,
of a surface d = 2, and of a solid body d = 3. On the other hand, Maxwell introduced the
dimension of a physical quantity, which is expressed in powers of fundamental units of mass,
length, time, etc. [2]. Thereby it became possible to analyze the relationship between different
physical quantities (“dimensional analysis”), which was later put on a firm theoretical basis by
renormalization group theory.
In this lecture the term dimension refers to spatial dimensions.

1.1 Integer and continuous spatial dimensions
1.1.1 Integer dimensions

In theoretical physics the dimensionality of a microscopic model with finite-range interactions
(or, for quantum-mechanical models in tight-binding approximation with finite-range hopping
amplitude) in all directions, corresponds to the dimension of the space considered. This is
particularly evident in the case of models on regular lattices, such as the hypercubic lattice,
which is a straightforward generalization of the simple cubic lattice (d = 3) to lower (d =

0, 1, 2) or higher (d = 4, 5, 6, ...,∞) dimensions. The usefulness of investigations of models
in dimensions higher than the “real” dimension d = 3 is not self-evident. In their 1964 paper
on the Ising model on general d-dimensional hypercubic lattices Fisher and Gaunt [3] found it
necessary to write:

Of course the behavior of model physical systems in four or more space-like dimen-
sions is not directly relevant to comparison with experiment! We can hope, however,
to gain theoretical insight into the general mechanism and nature of phase transitions.

The dimensionality of a lattice may be deduced from the total number of sites which can be
visited in a walk of N steps away from a given site. The higher the dimension d, the more sites
there are. For regular d-dimensional lattices and large N the number of sites in such a “sphere”
of radius N is proportional to Nd. This can be formalized as follows [4]: if cN denotes the
number of sites which are N steps from a given site, one finds for hypercubic lattices

lim
N→∞

ln cN
lnN

= d, (1)

where d is the dimensionality of the lattice. This relation, which also holds for regular two-
and three-dimensional lattices, may therefore be used as a definition of the dimensionality d
of a lattice-like structure. More specifically, for regular lattices both a dimension d and a co-
ordination number Z (the number of nearest neighbors of a site) can be defined; Z is then

1Dimension: from Latin dimensio “a measuring”, noun from past participle stem of dimetiri “to measure” [1].
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determined by the dimension d and the lattice structure. In particular, for a hypercubic lattice
one has Z = 2d. But there exist lattice-like structures without a relation between d and Z.
A famous example is the Bethe lattice (which is not a lattice but an infinite, loop-free graph
(“Cayley tree”) without lattice periodicity), where each site has the same number of nearest
neighbors Z. In this case the number of sites which are N steps away from a given site is
cN = Z

(
(Z−1)N − 1

)
/(Z−2) for Z ≥ 2, i.e., it increases exponentially with N. This is

a faster increase than Nd for any finite d. According to the definition (1) the Bethe lattice is
therefore effectively infinite-dimensional.

1.1.2 Continuous dimensions

Historically, the concept of spatial dimensions implied that the dimension is a fixed, integer
number, e.g., d = 3. But, both from a mathematical and physical point of view this is an unnec-
essary restriction.2 In particular, with the formulation of the renormalization group theory [8]
it became apparent that it is useful to regard the spatial dimension d as a continuous parame-
ter and to analytically continue d-dimensional integrals from integer to continuous values of d.
This led to the “ε-expansion”, with ε = 4 − d, which for continuous values of d close to the
critical dimension d = 4 of the Ginzburg-Landau theory can be arbitrarily small (ε � 1). Ex-
pansions in ε then make it possible to perform explicit perturbative calculations around d = 4,
as expressed by the striking title “Critical Exponents in 3.99 Dimensions” of a paper by Wilson
and Fisher [9].

1.2 Simplifications arising in infinite dimensions

The mathematical equations describing classical or quantum-mechanical many-body systems
can almost never be solved exactly in dimension d = 3. In many problems there does not
even exist a small physical parameter (“control parameter”), in which an expansion could be
performed (if such an expansion is tractable at all). One way out is to study problems in d=1,
where mathematical solutions are more readily available. Such investigations have indeed led
to a wealth of insight. However, one-dimensional systems are quite special and do not describe
behavior which is characteristic for systems in d > 2, e.g., thermal phase transitions. An alter-
native is to go in the opposite direction. Indeed, the coordination number of a three-dimensional
lattice can already be quite large, e.g., Z = 6 for a simple cubic lattice, Z = 8 for a bcc lattice
and Z = 12 for an fcc-lattice. It is then interesting to check whether the limit Z →∞ leads to
some simplifications. Such investigations do not go far back in time. In fact, Z was originally
regarded as a measure of the range of the interaction between spins in the Ising model, and
thus of the number of spins in the range of the interaction [10]. In this case the limit Z → ∞

2For example, there exists a class of fractal objects [5] (“fractals”), whose defining property is their scale
invariance or self-similarity. A quantitative measure of a fractal is its dimension (“fractal dimension”) which is, in
general, not an integer. For example, a rocky coast line has a fractal dimension between d = 1 and d = 2. It is even
possible to design and characterize electrons in fractal geometries [6]. A discussion of the notion of dimension in
a more general context can be found in ref. [7].
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describes an infinitely long-ranged interaction.3 Since a particle or spin then interacts with in-
finitely many other particles or spins (which are all “neighbors”, i.e., the system has ‘infinite
connectivity”‘), this limit was originally referred to as “limit of high density” [10] and later
as “limit of infinite dimensions” [3]. Starting with Fisher and Gaunt [3] the Ising model and
other classical models were investigated on general d-dimensional hypercubic lattices. Today
Z denotes the coordination number, i.e., the number of nearest neighbors.

1.2.1 Infinite dimensions and mean-field behavior

In the statistical theory of classical and quantum-mechanical systems mean-field theories play
an important role since they provide an approximate understanding of the properties of a model.
While in the full many-body model a particle or spin experiences a complicated, fluctuating field
generated by the other particles or spins, a mean-field theory introduces an average field (“mean
field”) instead. Usually the full interaction problem then reduces to an effective, single-particle
problem, which is described by a self-consistent field theory.
A mean-field theory can often be derived systematically by increasing the range of an interaction
(e.g., the coupling between spins) or the size of a parameter (e.g., the spin or orbital degeneracy
N, the spatial dimension d, or the coordination number Z) to infinity. In particular, the mean-
field theory of the Ising model (the so called “molecular” or “Weiss” mean-field theory, which
can be derived by the Bragg-Williams approximation [12]), becomes exact in the limit d→∞;
see section 2.1.4 This also answers the question serving as the title of this lecture Why calculate
in infinite dimensions? Namely, equations which depend on the dimension d and which are too
complicated to be solved in d = 3, often simplify in the limit d→∞ to such a degree that they
can be solved exactly.5 At best this leads to an approximate solution which retains characteristic
features of the problem in d < ∞ and provides insights into the (unknown) solution in d = 3.
Several examples will be discussed in this lecture. To this end I will address mainly many-body
systems (classical and quantum) of condensed matter physics and the simplifications arising in
d = ∞. However, to demonstrate the usefulness of this approach I first discuss the solution of
a famous quantum-mechanical two-body problem, the hydrogen atom, in the limit d→∞.

1.3 Example:
Derivation of Bohr’s atomic model from the Schrödinger equation

Bohr’s model of the hydrogen atom is semiclassical: it postulates that in the ground state the
electron moves in a circular orbit around the proton, like a planet around the sun in classical me-
chanics, and assumes in addition that the angular momentum and the energy of the electron are

3This limit is even useful for one-dimensional models. For example, for a solvable one-dimensional particle
model it was shown [11] that in this limit the equation of state reduces to the van der Waals equation.

4Due to the simplicity of the Ising model the limit of infinitely long-ranged spin coupling J and of infinite
dimensions d both yield the same mean-field theory. However, for more complicated models, in particular quantum
models with itinerant degrees of freedom, this will in general not be the case.

5To avoid trivial results or divergencies when taking the limit d→∞, an appropriate scaling of parameters or
coupling constants is necessary, as will be discussed later.
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quantized. Although this model was extremely useful in the pre-history of quantum mechanics6

its connection to the “proper” quantum mechanics was unclear for a long time. Today we under-
stand that the main features of Bohr’s model may be derived by solving the hydrogen atom with
the Schrödinger equation in infinite dimensions. This approach was introduced by Witten [15]
to demonstrate the usefulness of expansions in the inverse of some large parameter for deriving
approximate solutions of hard problems such as quantum chromodynamics. The results for the
hydrogen problem (which is, of course, exactly solvable in d = 3) showed that even atomic
physics greatly simplifies as one goes from d = 3 to d =∞, and that expansions in 1/d provide
valuable approximations for problems which are no longer exactly solvable [15, 16].
Following ref. [16] the radial Schrödinger equation in d-dimensional spherical coordinates for
the electron of a hydrogen atom with infinite proton mass and orbital angular momentum l is
given by (

−1

2

(
d2

d%2
+
d−1

%

d

d%

)
+
l(l+d−2)

2%2
− 1

%

)
ψ = εψ, (2)

where we used atomic units, i.e., % = r/a0 is the radial distance in units of the Bohr radius a0 =

~2/(e2m) and ε = E/(e2/a0) is the energy of the electron in units of Hartree.7 To eliminate the
first-order derivative in (2) the wave function is rescaled as ϕ = %(d−1)/2ψ, whereby (2) reduces
to (

−1

2

d2

d%2
+
Λ(Λ+1)

2%2
− 1

%

)
ϕ = εϕ. (3)

The d-dependence now enters only in the centrifugal potential, where Λ = l+(d−3)/2 replaces
the usual orbital angular momentum. As a consequence, the main quantum number n in d = 3

becomes n + (d−3)/2 in d ≥ 3. To make sure that the centrifugal term in (3) remains finite
in the limit d → ∞ another dimensional rescaling of the radial coordinate and the energy is
performed as R = (d−1

2
)−2% and E = (d−1

2
)2ε, respectively. This brings (3) into the form (we

only discuss the ground state, l = 0)(
− 2

(d−1)2
d2

dR2
+

1

2

d−3

d−1

1

R2
− 1

R

)
ϕ = Eϕ. (4)

Since the form of (4), which determines the radial probability amplitude ϕ in d ≥ 3, is the same
as that in d = 3, all properties of the d-dimensional hydrogen atom can be related to those of the
well-known solution in d = 3. In particular, one finds that, as in d = 3, the radial probability
|ϕ|2 is maximal at the distanceR = 1, corresponding to r = (d−1

2
)2a0. As d increases the width

of the electron distribution decreases, i.e., the electron is confined to a thinner and thinner
spherical shell of radius R around the nucleus. In addition, the factor (sinϑ)d−2 in the d-
dimensional volume element restricts the polar angle to ϑ → π/2 for d → ∞. Hence for
large d the electronic probability distribution approaches the shape of a planar, circular orbit as
described by the Bohr model!

6Even today the Bohr model plays a useful role, e.g., in the description of highly excited Rydberg atoms [13]
and cavity quantum electrodynamics [14].

7Note that the Coulomb potential of the hydrogen atom is that in d = 3, not in general d (in which case it would
have a 1/%d−2 dependence for d > 2).
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In d =∞ itself the derivative in (4), which originates from the kinetic energy of the electron, is
suppressed and the equation reduces to the classical energy expression

E(R) =
1

2R2
− 1

R
. (5)

This is the energy of the hydrogen atom in Bohr’s model. Its minimum determines the radial
coordinate and energy of the electron in d = ∞ as R = 1, E = −1/2. Hence in infinite
dimensions the electron no longer orbits around the nucleus, but is located at the minimum of
the effective potential. Quantum fluctuations are then completely quenched.8 For that reason
the electron does not emit radiation (photons) as had to be assumed by Bohr in 1913. This
assumption is found to be justified in d =∞.
The large-d approach to the Schrödinger equation outlined above can also be applied to more
complicated problems of atomic physics, such as the helium atom or the hydrogen molecule.
It turns out that perturbative calculations in the small parameter 1/d yield surprisingly accurate
results for the two-electron bond [16].
As explained above, the solution of classical and quantum-mechanical many-body problem
obtained in the limit d = ∞ (“mean-field theory”) may provide important physical insights,
which are not available otherwise. Since the mean-field theory of the classical Ising model is
particularly simple and its validity in d = ∞ follows directly from the law of large numbers,
we start with this famous example, then discuss the simplifications arising in d = ∞ in other
classical model systems, and finally turn to interacting fermions and derive the dynamical mean-
field theory (DMFT) of correlated electrons.

2 Construction of classical mean-field theories
in infinite dimensions

2.1 Ising model

In 1906 Weiss [17] introduced a model of magnetic domains, where he assumed that the align-
ment of the “elementary magnets” in each domain is caused by some sort of “molecular field”,
today referred to as “Weiss mean field”. But how does this molecular field arise in the first
place? To answer this question and to explain ferromagnetism in three-dimensional solids from
a truly microscopic point of view, Ising investigated a minimal microscopic model of interacting
classical spins with a non-magnetic interaction between neighboring elementary magnets [18],
which had been proposed to him by his thesis advisor Lenz in 1922. The Hamiltonian function
for the Ising model with coupling Jij between two spins at lattice sites Ri, Rj is given by9

H = −1

2

∑
Ri,Rj

Jij SiSj. (6)

8This does not violate the Heisenberg uncertainty relation since in the product of length and momentum the
dimensional scaling factors cancel.

9This notation of the Ising model, as it is used today, was actually introduced by Pauli at a Solvay conference
in 1930; a detailed discussion of the history of the Ising model and its many applications can be found in ref. [19].
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In particular, if the coupling is restricted to nearest-neighbor spins it takes the form

H = −1

2
J
∑
〈Ri,Rj〉

SiSj, (7)

where we assume ferromagnetic coupling (J > 0) and 〈Ri,Rj〉 indicates summation over
all nearest-neighbor sites (the factor 1/2 prevents double counting of sites). This can also be
written as

H = −
∑
Ri

hiSi, (8)

where now every spin Si interacts with a site-dependent, i.e., locally fluctuating, field

hi = J

(i)∑
Rj

Sj (9)

generated by the coupling of the spin Si to its neighboring sites; here the superscript (i) on the
summation symbol indicates summation over the Z nearest-neighbor sites of Ri.

2.1.1 Weiss mean field

In the Weiss mean-field theory the interaction of a spin with its local field in (8) is decoupled
(factorized), i.e., hi is replaced by a mean field hMF, which leads to the mean-field Hamiltonian

HMF = −hMF

∑
Ri

Si + Eshift. (10)

Now a spin Si interacts only with a global field hMF = JZS (the “molecular” or “Weiss” field),
where S ≡ 〈Si〉 = (1/L)

∑L
i=0 Si is the average value of Si, Eshift = LJZS2/2 is a constant

energy shift, and L is the number of lattice sites of the system.
Next we show that in infinite dimensions or for infinite coordination number Z this decoupling
arises naturally. First we have to rescale the coupling constant J as

J =
J∗

Z
, J∗ = const, (11)

so that hMF and the energy (or the energy density in the thermodynamic limit) remain finite in
the limit Z → ∞. Writing Si = S + δSi, where δSi is the deviation of Si from its average S,
(9) becomes hi = J∗(S +∆Si), where

∆Si =
1

Z

(i)∑
Rj

δSj (12)

is the sum over the fluctuations δSj of the Z nearest-neighbor spins of Si per nearest neighbor.
These fluctuations are assumed to be uncorrelated, i.e., random. The law of large numbers then
implies that the sum increases only as

√
Z for Z → ∞, such that ∆Si altogether decreases as
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Fig. 1: Already in three dimensions (d = 3) the coordination number Z of a lattice can be
quite large, as in the face-centered cubic lattice shown on the left, where Z = 12. In the limit
Z → ∞, or equivalently d → ∞, the Ising model effectively reduces to a single-site problem
where the local field hi is replaced by a global (“molecular”) mean field hMF.

1/
√
Z in this limit. As a consequence the local field hi can indeed be replaced by its mean hMF

(central limit theorem). Hence the Hamiltonian function (6) becomes purely local

HMF =
∑
Ri

Hi + Eshift, (13)

where Hi = −hMFSi. Thereby the problem reduces to an effective single-site problem (see
Fig. 1). We note that S corresponds to the magnetization m of the system (S ≡ m). In the
paramagnetic phase, where m = 0, the mean field hMF vanishes; hence (10) and (13) are only
non-trivial in the presence of ferromagnetic order. The magnetization m is obtained from the
partition function of the mean-field Hamiltonian (10) as m = tanh(βhMF) where β = 1/(kBT )

[12]. The self-consistency condition hMF = JZS ≡ J∗m then yields the well-known self-
consistent equation for the magnetization m as

m = tanh
(
βJ∗m

)
. (14)

The Weiss mean-field theory is seen to become exact in the limit of infinite coordination number
Z or dimension d. In this case 1/Z or 1/d serve as a small parameter which can be used, in
principle, to improve the mean-field theory systematically (see section 7.1). This mean-field
theory contains no unphysical singularities, is applicable for all values of the input parameters
(temperature and/or external magnetic field) and is often viewed as a prototypical mean-field
theory in statistical mechanics.

2.2 Ising model with random coupling: The spin glass problem

The term spin glass was introduced in the early 1970s to characterize the behavior of certain
disordered magnetic systems, i.e., alloys of a non-magnetic material with a few percent of ran-
domly distributed magnetic impurities, such as manganese in zinc oxide. At low temperatures
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a phase transition occurs, where the magnetic moments “freeze” into a state in which the spin
orientations are not aligned, but randomly oriented. The disorder is due to the random lo-
cal distribution of the spins and the fact that their coupling can be ferro- or antiferromagnetic.
Theoretical investigations of this experimental finding started in 1975 with Edwards and Ander-
son [20] who proposed a classical Heisenberg model with random finite-range couplings Jij ,
which can be positive or negative. In particular, they constructed an order parameter for the
spin glass phase and introduced the famous “replica trick”. Namely, to compute the averaged
free energy they considered n copies (“replicas”) of the system, calculated the corresponding
partition function Zn to obtain lnZ = limn→0

(
(Zn−1)/n

)
by taking the limit n → 0, and

then averaged lnZ over the randomness. Later in the year Sherrington and Kirkpatrick [21] in-
troduced a mean-field version of the Edwards-Anderson model by assuming Ising spins instead
of Heisenberg spins, but with random infinite-range spin couplings Jij in (6), whereby all spins
are equally coupled. For random Jij with zero mean (J ij = 0) but J2

ij 6= 0 the spin couplings
need to be scaled as Jij → J∗ij/

√
L, where L is the number of lattice sites, to keep the energy

density of the system finite in the thermodynamic limit L → ∞. As mentioned in section 1.2
the mean-field theory of the Ising model derived for infinite range-coupling is equivalent to that
for finite-range coupling in infinite dimensions d or for infinite coordination number Z. In the
latter case, and for spins with random nearest-neighbor couplings Jij , the scaling

Jij = J∗ij/
√
Z (15)

applies; in both cases the model has infinite connectivity. Thereby a mean-field investigation
of the spin glass problem became possible which, however, resulted in a negative entropy at
low temperatures [21]. This non-physical result was found to originate from the assumption
of “replica symmetry” [22]. The question of how to break this symmetry (“replica symmetry
breaking”) was answered by Parisi in 1979 [23], who realized that there must be an infinite
number of order parameters in the spin glass phase. His analytic procedure led to a consistent
and stable mean-field solution of the spin glass problem (for details see ref. [24]).10

The mean-field theory of the spin-glass problem illustrates particularly well that, in spite of the
simplifications introduced by a mean-field theory, the solution of this mean-field theory can still
be extraordinarily complicated. This will become evident again in the context of the dynamical
mean-field theory (DMFT) of correlated electrons (see section 6.1).
The limit of infinite dimensions and the methods of solution developed in the context of the
spin-glass mean-field theory have also been very useful in the study of classical liquids and
amorphous systems, such as glasses and granular matter, where calculations are notoriously
difficult. This made it possible to explore not only the thermodynamic properties but even the
general dynamics of liquids and structural glasses, including the famous glass transition and the
rheology of glasses, on a mean-field level [25, 26].

10Parisi was awarded one half of the Nobel Prize in Physics 2021 “for groundbreaking contributions to our
understanding of complex systems”. The Nobel Committee highlighted the great influence which Parisi’s concept
of broken replica symmetry and his method of solution of the mean-field theory of the spin-glass problem had on
the statistical physics of systems exhibiting multiple equilibria.
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2.3 Hard-sphere fluid

As mentioned above, the limit of infinite spatial dimensions leads to theoretical simplifications
not only in the study of lattice systems (in which case the coordination number Z tends to infin-
ity) but also in the case of systems in the continuum. This may be demonstrated by calculating
the equation of state of a classical dilute hard-sphere fluid11; here we follow ref. [27]. While at
low densities the virial series, i.e., the expansion of the equation of state in terms of the den-
sity, is a very useful technique to examine thermodynamic properties of a fluid in d = 3, this
approach breaks down at high densities. By contrast, these calculations are possible in infinite
spatial dimensions12 since in this limit the virial expansion βPV = N

∑∞
l=0Bl+1n

l terminates
after the second term, such that only the second virial coefficient B2 needs to be calculated (the
first virial coefficient takes the value B1 = 1 and characterizes the classical ideal gas). Let us
consider a classical fluid of hard spheres in d dimensions as the simplest case. An interaction
parameter does not explicitly enter in this model, since the interaction is either zero if the hard
spheres are not in contact, or infinite if they touch. The only coupling parameter is the radius
a of the hard spheres. The grand partition function Z = exp(βPV ) is expanded in powers of
z/λd, where z = exp(βµ) is the fugacity and λ = ~

√
2πβ/m is the thermal wave length. Each

term of this “Mayer cluster expansion” can be expressed in terms of graphs [12]. Due to the
linked cluster theorem Z reduces to a sum of connected graphs, Zc, with Z = exp(Zc−1),
which can be written as

Zc =
∞∑
l=0

bl

(
z

λd

)l
. (16)

Here the coefficients bl are determined by all possible connected graphs multiplied by a weight
which is determined by configurational integrals over the volume. The typical scale of volume
is the volume of a hard sphere with radius a in d dimensions, vd(a) = vd(1)ad, where vd(1) =

πd/2/Γ (1+d/2) is the volume of a d-dimensional unit sphere.

2.3.1 Equation of state

By differentiating the grand potential Ω(T, V, µ) = −β−1 lnZ = −PV with respect to the
volume V or the chemical potential µ, one obtains the pressure P or particle number N , respec-
tively, from which the equation of state is obtained by eliminating z/λd. In the limit d→∞ the
evaluation of the coefficients bl simplifies significantly because for large d every loop in a con-
nected graph is suppressed exponentially by a factor (

√
3/2)d/

√
d. This is due to the fact that

vd(1) decreases exponentially for d → ∞, which implies that the cross section of the spheres
vanishes. This leaves only loop-less (“tree”) diagrams. As a consequence, only the second
virial coefficient, given by B2 = (1/2)vd(a) remains, while all higher virial coefficients vanish

11A fluid is a substance which continuously deforms under tangential stress. Any liquid or gas is therefore a
fluid (but not all fluids are liquids).

12In the following P is the pressure, V the volume, N the particle number, n = N/V the number density, µ the
chemical potential, and m the mass of the hard sphere particles.



Why d=∞ dimensions? 1.11

in the limit d→∞.13 However, B2 has also a d dependence and vanishes for d→∞ since the
volume of a d-dimensional unit sphere vd(1) goes to zero in this limit. Therefore a scaling ofB2

with the dimension d is required to reach a proper mean-field limit d → ∞.14 For this purpose
we scale the hard-sphere radius a, the only coupling parameter in the problem, as a = dνa∗,
with a∗ as the scaled radius. The exponent ν has to be determined such that B2 remains finite
for d → ∞, i.e., vd(a) = vd(d

νa∗) ≡ v(a∗) = const. With Γ (1+d/2) ∼ (d/2)d/2 for d → ∞
one finds ν = 1/2, which implies the scaling

a→
√
da∗, a∗ = const (17)

for d → ∞. The shrinking of the volume (and thus of the cross section) of a d-dimensional
unit sphere for increasing d is thus compensated by a corresponding increase of the radius of
the hard sphere. Thereby B2 becomes B2 = (1/2) v(a∗). The mean-field equation of state of a
classical hard sphere fluid then takes the form

PV

kBT
= N

(
1 +

1

2
v(a∗)n

)
. (18)

The interactions in the hard-sphere fluid are here described entirely by the second virial coeffi-
cient, which characterizes the interaction between two particles.

3 Correlated electrons in solids

3.1 From the Ising model to the Hubbard model

One of the most striking solid-state phenomena is ferromagnetism as observed in magnetite
(Fe3O4) and elemental iron (Fe). How can ferromagnetism by explained? A crucial first step
in the development of a microscopic theory of ferromagnetism was the formulation of the Ising
model [18] discussed in Sect. 2.1. Ising solved the model in d = 1, found that a transition to a
ferromagnetic phase does not occur, and concluded (incorrectly) that this holds also in d = 3.
The Ising model is a classical spin model. But it had already been shown by Bohr (1911) and
van Leeuwen (1919) that magnetism is a quantum effect. Therefore another important step in
the development of a theory of ferromagnetism was Heisenberg’s formulation of a quantum spin
model in 1928 [29]. With this model is was possible to explain the origin of the Weiss molecular
field as the result of a quantum-mechanical exchange process. Clearly, a model of localized
spins cannot explain ferromagnetism observed in 3d transition metals such as iron, cobalt and
nickel. As pointed out by Bloch [30] in 1929 an appropriate model had to include the mobile
nature of the electrons, i.e., their wave character, which, in a solid, leads to electronic bands.
The conditions for ferromagnetism which he obtained for free electrons where quite unrealistic.

13This result for B2 is plausible since B2 has the dimension of a volume and vd(a) is the only characteristic
volume in the problem.

14To this end a scaled (dimensionless) “density per dimension” % was defined through nvd(a) = %d in ref. [28].
However, thereby thermodynamic variables are scaled rather than the coupling parameter a of the system, in
contrast to the general construction principle of mean-field theories.
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Obviously one had to go beyond free electrons and also take the mutual interaction between
their electric charges into account. This immediately leads to an enormously difficult many-
body problem, which is made particularly complicated by the fermionic nature of the electrons,
their long-range Coulomb interaction, their high density in the metallic state, and the presence
of a periodic lattice potential. Attempts by Slater [31] in 1936 to explain ferromagnetism in Ni
by including the Coulomb interaction within Hartree-Fock theory were also not successful.

3.1.1 Electronic correlations

It became clear that one had to include correlations, i.e., effects of the interaction between
electrons which cannot be explained within a single-particle picture and therefore go beyond
the physics described by factorization approximations such as Hartree or Hartree-Fock mean-
field theory. Wigner [32] was apparently the first who tried to calculate the contribution of
the mutual electronic interaction to the ground state energy beyond the Hartree-Fock result,
which he referred to as “correlation energy”.15 Such an approach is faced by two intimately
connected problems: the need for a sufficiently simple model of correlated electrons which
unifies the competing approaches by Heisenberg and Bloch (namely the picture of localized and
itinerant electrons, respectively), and its solution within a more or less controlled approximation
scheme. Progress in this direction was slow.16 A microscopic model of ferromagnetism in
metals (“band ferromagnetism”) did not emerge until 1963, when a model of correlated lattice
electrons was proposed independently by Gutzwiller [44], Hubbard [45], and Kanamori [46] to
explain ferromagnetism in 3d transition metals. Today this model is referred to as “Hubbard
model” [47].

15Electronic correlations play a fundamental role in modern condensed matter physics. They are known to be
strong in materials with partially filled d and f electron shells and narrow energy bands, as in the 3d transition
metals or the rare–earths and their compounds, but they also occur in materials without rare-earth or actinide
elements, such as “Moiré” heterostructures of van der Waals materials, e.g., twisted bilayers of graphene [33] and
two-layer stacks of TaS2 [34]. Electronic correlations in solids lead to the emergence of complex behavior, resulting
in rich phase diagrams. In particular, the cooperation between the various degrees of freedom of the correlated
electrons (spin, charge, orbital momentum) on a lattice with specific dimensionality and topology result in a wealth
of correlation and ordering phenomena such as heavy fermion behavior [35], high temperature superconductivity
[36], colossal magnetoresistance [37], Mott metal-insulator transitions [38], and Fermi liquid instabilities [39].
The surprising discovery of a multitude of correlation phenomena in Moiré heterostructures [33] reinforced this
interest in correlation physics. The unusual properties of correlated electron systems are not only of interest for
fundamental research but may also be relevant for technological applications. Indeed, the exceptional sensitivity of
correlated electron materials upon changes of external parameters such as temperature, pressure, electromagnetic
fields, and doping can be employed to develop materials with useful functionalities [40]. In particular, Moiré
heterostructures may enable “twistronics”, a new approach to device engineering [41]. Consequently there is a
great need for the development of appropriate models and theoretical investigation techniques which allow for a
comprehensive, and at the same time reliable, exploration of correlated electron materials [42].

16One reason for the slow development was that in the nineteen-thirties and forties nuclear physics attracted
more attention than solid-state physics, with a very specific focus of research during the 2nd World War. But apart
from that, the sheer complexity of the many-body problem itself did not allow for quick successes. High hurdles
had to be overcome, both regarding the development of appropriate mathematical techniques (field-theoretic and
diagrammatic methods, Green functions, etc.) and physical concepts (multiple scattering, screening of the long-
range Coulomb interaction, quasiparticles and Fermi liquid theory, electron-phonon coupling, superconductivity,
metal-insulator transitions, disorder, superexchange, localized magnetic states in metals, etc.). A discussion of the
many-body problem and of some of the important developments up to 1961 can be found in the lecture notes and
reprint volume by Pines [43].
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The single-band Hubbard model is the minimal microscopic lattice model of interacting fermions
with local interaction.17 The Hamiltonian consists of the kinetic energy Ĥ0 and the interaction
energy Ĥint (in the following operators are denoted by a hat):

Ĥ = Ĥ0 + Ĥint, (19a)

Ĥ0 =
∑
Ri,Rj

∑
σ

tij ĉ
†
iσ ĉjσ =

∑
k,σ

εkn̂kσ, (19b)

Ĥint = U
∑
Ri

n̂i↑n̂i↓ ≡ UD̂. (19c)

Here ĉ†iσ(ĉiσ) are creation (annihilation) operators of fermions with spin σ at site Ri (for sim-
plicity denoted by i), n̂iσ = ĉ†iσ ĉiσ, and D̂ =

∑
Ri
D̂i is the operator of total double occupation

of the system with D̂i = n̂i↑n̂i↓ as the operator of double occupation of a lattice site i. The
Fourier transform of the kinetic energy in (19b), where tij is the amplitude for hopping between
sites i and j, defines the dispersion εk and the momentum distribution operator n̂kσ. In the
following the hopping is restricted to nearest-neighbor sites i and j, such that −t ≡ tij . A
schematic picture of the Hubbard model is shown in Fig. 2.

3.2 Characteristic features of the Hubbard model

In the Hubbard model the Coulomb interaction between two electrons is assumed to be so
strongly screened that it can be described by a purely local interaction which occurs only on a
lattice site.18 Due to the Pauli principle a local interaction is only possible if the two electrons
have opposite spin.19 This distinguishes a local interaction from other model interactions since
it has no classical counterpart. The interaction is therefore completely independent of the lattice
structure and spatial dimension of the system. The kinetic energy Ĥ0 is diagonal in momentum
space and reflects the wave nature of the electrons, while the interaction energy Ĥint is diagonal
in position space and characterizes their particle nature. In view of the uncertainty principle the
two terms are therefore extremely “quantum incompatible”.

17It is interesting to note that Anderson had introduced the main ingredient of the Hubbard model, namely a
local interaction between spin-up and spin-down d electrons with strength U, already in his 1959 paper on the
theory of superexchange interactions [48] and, even more explicitly in his 1961 paper on localized magnetic states
in metals, where he formulated a model of s and d electrons referred to today as “single impurity Anderson Model”
(SIAM) or “Anderson impurity model” (AIM) [49]. The latter paper inspired Wolff [50] to study the occurrence of
localized magnetic moments in dilute alloys with a single-band model of noninteracting d electrons which interact
on a single site. In this sense the Hubbard model could be called “periodic Wolff model” in analogy to the standard
terminology “periodic Anderson model”, which generalizes the AIM by extending the interaction to all sites of the
lattice. Apparently Gutzwiller, Hubbard and Kanamori did not know (or were not influenced) by the earlier work
of Anderson and Wolff; at least they did not reference these papers.

18Thereby the Hubbard model applies particularly well to cold fermionic atoms in optical lattices where the bare
interaction is indeed extremely short-ranged [51].

19It appears as if the interaction between the electrons was spin-dependent. But the Coulomb interaction is, of
course, a spin-independent two-body interaction. The fact that the operators in (19c) contain spin indices is merely
a consequence of the occupation-number formalism.
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Fig. 2: Schematic illustration of interacting electrons in a solid described by the Hubbard
model. The ions enter only as a rigid lattice, here represented by a square lattice (d = 2,
Z = 4). The electrons, which have mass, negative charge, and spin (↑ or ↓), are quantum
particles which “hop” from one lattice site to the next with a hopping amplitude t. Together
with the lattice structure this determines the band structure of the non-interacting electrons.
The quantum dynamics leads to fluctuations in the occupation of lattice sites as indicated by the
sequence: a lattice site can either be unoccupied, singly occupied (↑ or ↓), or doubly occupied.
When two electrons meet on a lattice site, which is only possible if they have opposite spins
because of the Pauli exclusion principle, they encounter a local interaction U .

The physics described by the Hubbard model is very different from that of electrons with a
long-range Coulomb interaction in the continuum. Therefore the Hubbard model is far from
obvious. Its formulation required fundamentally new insights into the nature of the many-body
problem of interacting fermions (see footnote 16). In particular, screening is a basic ingredient
of the many-body problem of metals.
A direct interaction between electrons with equal spin direction, e.g., on neighboring sites, is not
described by the model, but can be easily included. Similarly the model can be generalized to
more than one band. Indeed, in Wannier basis the Hubbard model can be derived systematically
from a general Hamiltonian of interacting electrons including the kinetic energy, ionic potential
Uion(r), and two-body Coulomb interaction Vee(r−r′) [45].20

Since the single-band Hubbard model is obtained from a general interaction Hamiltonian it is
the fundamental quantum lattice model of interacting fermions21. As a consequence, many

20In Wannier basis the general Hamiltonian has infinitely many bands and model parameters. In the one-band
model (19) all other bands are projected onto a single effective s band. The matrix elements of the kinetic energy
and the Coulomb interaction are expected to fall off quickly with distance. Therefore one usually retains only the
first few contributions. Thus hopping is restricted to nearest-neighbor sites i and j, such that −t ≡ tij . It is also
natural to assume that the local part of the interaction (“Hubbard U”) is the largest matrix element of the Coulomb
interaction. Keeping only these parameters one obtains the Hubbard model, (19b), (19c). However, nearest-
neighbor interactions (density-density, bond-charge, exchange interactions and hopping of doubly occupied sites)
may be of appreciable size [45]. For a detailed discussion see ref. [52].

21More generally, the Hubbard model is the fundamental lattice model of quantum particles, since it may also
be used for interacting bosons [53, 51].
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well-known models can be derived from the Hubbard model in certain limits of the model
parameters. For example, at half filling and in the limit U � t the Hubbard model corresponds
to the Heisenberg model with antiferromagnetic exchange coupling J = 4t2/U. 22

3.2.1 Does the Hubbard model explain band ferromagnetism?

As discussed above, the Hubbard model was originally introduced to provide a microscopic
explanation of ferromagnetism in 3d transition metals [44–46]. Indeed, the Hubbard interaction
favors a ferromagnetic ground state, since this corresponds to the state with the lowest energy
(zero energy) due to the absence of doubly occupied sites. However, this argument ignores the
kinetic energy. While the lattice structure and spatial dimension do not influence the Hubbard
interaction, both play an important role in the kinetic energy, where they determine, for example,
the density of states of the electronic band at the Fermi energy (see section 6.2.2).
In spite of the extreme simplifications of the Hubbard model compared with interacting elec-
trons in a real solid, the model still cannot be solved analytically, except in dimension d = 1 for
nearest-neighbor hopping [54]. For dimensions d = 2, 3, approximations are required.23 Here
mean-field theories play an important role.

4 Static mean-field theories of the Hubbard model

4.1 Hartree approximation

Lattice fermion models such as the Hubbard model are much more complicated than models
with localized spins. Therefore the construction of a mean-field theory with the comprehensive
properties of the mean-field theory of the Ising model will be more complicated, too. The
simplest static mean-field theory of the Hubbard model is the Hartree approximation [56]. To
clarify the characteristic features of this mean-field theory we proceed as in the derivation of the
mean-field theory of the Ising model and factorize the interaction term. To this end we rewrite
the Hubbard interaction in the form of (8), i.e., we let an electron with spin σ at site Ri interact
with a local field ĥiσ (an operator, which has a dynamics) produced by an electron with opposite
spin on that site:

Ĥint =
∑
Ri

∑
σ

ĥiσn̂iσ, (20)

where ĥiσ = 1
2
Un̂i−σ (the factor 1/2 is due to the summation over both spin directions). Next

we replace the operator ĥiσ by its expectation value 〈ĥiσ〉, now a real number, and obtain the

22This can be shown using second order degenerate perturbation theory or by a unitary (Schrieffer-Wolff) trans-
formation.

23In view of the complexity of the many-body problem, progress in this field often relies on making good
approximations. As Peierls wrote: “... the art of choosing a suitable approximation, of checking its consistency
and finding at least intuitive reasons for expecting the approximation to be satisfactory, is much more subtle than
that of solving an equation exactly.” [55].
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mean-field Hamiltonian

ĤMF = Ĥkin +
∑
Ri,σ

〈ĥiσ〉n̂iσ + Eshift, (21)

where Eshift is a constant energy shift. Now a σ-electron at site Ri interacts only with a local
static field 〈ĥiσ〉 = 1

2
U〈n̂i−σ〉. The above decoupling of the operators corresponds to the Hartree

approximation24 whereby correlated fluctuations on the site Ri are neglected.
It should be noted that although (21) is now an effective one-particle problem it cannot be
solved exactly since, in general, the mean field 〈ĥiσ〉 may vary from site to site, leading to solu-
tions without long-range order. This is a new feature originating from the quantum-mechanical
kinetic energy in the Hamiltonian.
The Hartree approximation is valid in the weak-coupling (U→0) and/or low-density limit (n→0),
but clearly does not become exact in the limit d → ∞, since the Hubbard interaction between
two electrons is purely local and hence does not dependent on the spatial dimension. Therefore
the physics behind the factorizations (13) and (21) is very different. Namely, (13) describes the
decoupling of a spin from a bath of infinitely many neighboring spins whose fluctuations be-
come unimportant in the limit d→∞, while (21) corresponds to the decoupling of an electron
from one other electron (with opposite spin) on the same site.
While the Hartree approximation is useful for investigations at weak coupling, it will lead to
fundamentally wrong results at strong coupling, when the double occupation of a lattice site
becomes energetically highly unfavorable and is therefore suppressed. Indeed, a factorization
of the local correlation function 〈n̂i↑ n̂i↓〉 → 〈n̂i↑〉〈n̂i↓〉 eliminates correlation effects generated
by the local quantum dynamics. Hence the nature of the Hartree mean-field theory of spin-1

2

electrons with a local interaction is very different from the mean-field theory of spins with
nearest-neighbor coupling.

4.2 Gutzwiller approximation

Another useful approximation scheme for quantum many-body systems makes use of varia-
tional wave functions [57]. Starting from a physically motivated many-body trial wave function
the energy expectation value is calculated and then minimized with respect to the variational pa-
rameters. Although variational wave functions usually yield only approximate results, they have
several advantages: they are physically intuitive, can be custom tailored to a particular problem,
can be used even when standard perturbation methods fail or are inapplicable, and provide a
rigorous upper bound for the exact ground state energy by the Ritz variational principle.
To investigate the properties of the electronic correlation model which he had introduced [44]
(but which was later named after Hubbard), Gutzwiller also proposed a simple variational wave
function [44]. This “Gutzwiller wave function” introduces correlations into the wave function
for non-interacting particles by a purely local correlation factor in real space, which is con-

24Since the Hubbard interaction acts only between electrons with opposite spin on the same lattice site an
exchange (Fock) term does not arise.
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structed from the double occupation operator D̂, (19c), as

|ΨG〉 = gD̂ |FS〉 (22a)

=
∏
Ri

(
1− (1−g)D̂i

)
|FS〉. (22b)

Here |FS〉 is the wave function of the non-interacting Fermi sea and g is a variational parameter
with 0 ≤ g ≤ 1. The projector gD̂ globally reduces the amplitude of those spin configurations
in |FS〉 with too many doubly occupied sites for given repulsion U. The limit g = 1 describes
the non-interacting case, while g → 0 corresponds to U → ∞. The Gutzwiller wave function
can be used to calculate the expectation value of an operator, e.g., the ground state energy of
the Hubbard model, (19), as

EG(g, U) ≡ 〈ΨG|Ĥ|ΨG〉
〈ΨG|ΨG〉

. (23)

By computing the minimum of EG(g, U) with respect to the variational parameter g, the latter
is determined as a function of the interaction parameter U.

In general the evaluation of expectation values in terms of |ΨG〉 cannot be performed exactly.
Therefore Gutzwiller introduced a non-perturbative approximation scheme whereby he ob-
tained an explicit expression for the ground state energy of the Hubbard model [44, 58, 59].
The results of Gutzwiller’s rather complicated approach were later re-derived by counting clas-
sical spin configurations [60]; for details see ref. [61] and section 3 of ref. [62]. The Gutzwiller
approximation is therefore a semiclassical approximation. In the next section we will see that it
can also be derived by calculating the expectation values of operators in terms of the Gutzwiller
wave function in the limit d→∞.

4.2.1 Brinkman-Rice metal-insulator transition

The results of the Gutzwiller approximation [44,58] describe a correlated, normal-state fermionic
system at zero temperature whose momentum distribution has a discontinuity q at the Fermi
level, with q = 1 in the non-interacting case, which is reduced to q < 1 by the interaction as in
a Landau Fermi liquid. In 1970 Brinkman and Rice [63] noticed that in the case of a half-filled
band (n↑ = n↓ = 1/2) the Gutzwiller approximation describes a transition at a finite critical
interaction strength Uc from an itinerant to a localized state, where lattice sites are singly occu-
pied and the discontinuity q vanishes. This “Brinkman-Rice transition” therefore corresponds
to a correlation induced (“Mott”) metal-insulator transition. They argued [63] that the inverse of
q can be identified with the effective mass of Landau quasiparticles, q−1 = m∗/m ≥ 1, which
diverges at Uc.

The Gutzwiller approximation yields results which are physically very reasonable. In the 1970s
and 80s it was the only approximation scheme which was able to describe a Mott metal-insulator
transition at a finite value of the interaction and was in accord with basic properties of Landau
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Fermi liquid theory.25 This was confirmed by a detailed investigation of the assumptions and
implications of the Gutzwiller approximation, where I showed that the Gutzwiller-Brinkman-
Rice theory was not only in qualitative [66], but even in good quantitative agreement with
experimentally measured properties of normal-liquid 3He [61]; for a discussion see section 3
of ref. [62].

4.2.2 Can the Gutzwiller approximation be derived by quantum many-body methods?

The semiclassical Gutzwiller approximation clearly has features of a mean-field theory, since
the kinetic energy of the correlated system is merely a renormalization of the kinetic energy
of the non-interacting system. This also explains why the results obtained for the Hubbard
lattice model can even be used to describe liquid 3He [61, 67]. However, the validity of the
Gutzwiller approximation was unclear for a long time. In particular, it was not known how
to improve the approximation systematically. This was clarified a few years later, when the
Gutzwiller approximation was re-derived in two different ways: as a slave-boson mean-field
theory [68], and by an exact diagrammatic calculation of expectation values of operators in
terms of the Gutzwiller wave function in the limit d→∞ [69–71]26. The latter derivation will
be discussed next.

5 Lattice fermions in infinite dimensions

The expectation values of the kinetic and the interaction energy of the Hubbard model (19) can,
in principle, be calculated in terms of the Gutzwiller wave function for arbitrary dimensions d,
using diagrammatic quantum many-body theory. Introducing a new analytic approach in which
expectation values are expressed by sums over different lattice sites such that Wick’s theorem
leads to contractions which involve only anticommuting numbers, Walter Metzner and I showed
that in d = 1 the diagrams can be calculated analytically to all orders [69];27 for a discussion see
section 4 of ref. [62]. We also observed that the values of these diagrams could be calculated

25Other well-known approximation schemes, in particular those proposed by Hubbard, do not have these im-
portant properties: in the Hubbard-I approximation [45], which interpolates between the atomic limit and the
non-interacting band, a band gap opens for any U > 0, while the Hubbard-III approximation [64], which cor-
responds to the coherent potential approximation [65] for disordered systems, the Fermi surface volume is not
conserved.

26Kotliar and Ruckenstein [68] formulated a functional integral representation of the Hubbard and Anderson
models in terms of auxiliary bosons, whose simplest saddle-point approximation (“slave-boson mean-field the-
ory”) reproduces the results of the Gutzwiller approximation. Thus they showed that the results of the Gutzwiller
approximation can also be obtained without the use of the Gutzwiller variational wave function. By applying a
gauge transformation to the Gutzwiller wave function Gebhard [72] later found that the calculation of expectation
values with this wave function can be performed in d = ∞ even without diagrams. This provided a direct link
between the slave-boson mean-field theory and the results obtained with the Gutzwiller wave function in d = ∞.
The latter approach was generalized by Gebhard and collaborators to multi-band Hubbard models, which can be
used to describe the effect of correlations in real materials (“Gutzwiller density functional theory”) [73].

27The diagrams have the same form as the usual Feynman diagrams in quantum many-body theory, but a line
corresponds to the time-independent one-particle density matrix g0ij,σ = 〈ĉ†iσ ĉjσ〉0 of the non-interacting system
rather than to the one-particle propagator G0

ij,σ(t) since the variational approach involves only static quantities.
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in d = ∞ when the momentum conservation at a vertex was neglected. When summing over
all diagrams this approximation gave exactly the results of the Gutzwiller approximation [69].
Thus the Gutzwiller approximation had been derived systematically by diagrammatic quantum
many-body methods in d = ∞. This showed that the limit d → ∞ was not only useful for the
investigation of spin models, but also in the case of lattice fermion models.28

5.1 Simplifications of diagrammatic quantum many-body theory

The simplifications of diagrammatic many-body perturbation theory arising in the limit d→∞
are due to a collapse of irreducible diagrams in position space, which implies that only site-
diagonal (“local”) diagrams, i.e., diagrams which only depend on a single site, remain [70, 71].
To understand the reason for this diagrammatic collapse let us, for simplicity, consider diagrams
where lines correspond to the one-particle density matrix g0ij,σ as they enter in the calculation of
expectation values with the Gutzwiller wave function (note that, since g0ij,σ = limt→0− G

0
ij,σ(t),

the following arguments are equally valid for the one-particle Green function G0
ij,σ(t) or its

Fourier transform).
The one-particle density matrix g0ij,σ may be interpreted as the quantum amplitude of the hop-
ping of an electron with spin σ between sites Ri and Rj . The square of its magnitude is
therefore proportional to the probability of an electron to hop from Rj to a site Ri. For nearest-
neighbor sites Ri, Rj on a lattice with coordination number Z this implies |g0ij,σ|2 ∼ O(1/Z),
such that on a hypercubic lattice, where Z = 2d, and large d one finds [70, 71]

g0ij,σ ∼ O
( 1√

d

)
, (24)

and for general i, j one obtains [71, 75]

g0ij,σ ∼ O
(

1/d‖Ri−Rj‖/2
)
. (25)

Here ‖R‖ =
∑d

n=1 |Rn| is the length of R in the “Manhattan metric”, where electrons only
hop along horizontal or vertical lines, but never along a diagonal; for further discussions of
diagrammatic simplifications see ref. [76].
For non-interacting electrons at T = 0 the expectation value of the kinetic energy is given by

E0
kin = −t

∑
〈Ri,Rj〉

∑
σ

g0ij,σ. (26)

28In the limit d → ∞ simplifications occur even for fermions in the continuum. In the ground state of a
d-dimensional Fermi gas in the continuum, spatial isotropy implies that k-states occupy a Fermi sphere. As is
well-known from the discussion of the classical ideal gas in the microcanonical ensemble in the limit d → ∞
the volume of a high-dimensional sphere is located essentially at the surface. Therefore in the high dimensional
Fermi sphere essentially all states lie at the Fermi energy EF . This is easily confirmed by calculating the energy
per particle in d dimensions, E0

(d)/N =
(
d/(d+2)

)
EF [74], which indeed gives E0

(∞)/N = EF in d = ∞. It
implies that the pressure of the Fermi gas at T = 0 (“Fermi pressure”), P = 2E0

(d)/V d, which is larger than zero
in finite dimensions, goes to zero in this limit.
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The sum over nearest neighbors leads to a factorO(Z) (which isO(d) for a hypercubic lattice).
In view of the 1/

√
d dependence of g0ij,σ it is therefore necessary to scale the nearest-neighbor

hopping amplitude t as [70, 71]

t =
t∗√
d
, t∗ = const., (27)

so that the kinetic energy remains finite for d → ∞. The same result may be derived in a
momentum-space formulation.29 It is important to bear in mind that, although g0ij,σ ∼ 1/

√
d

vanishes for d → ∞, the electrons are still mobile. Indeed, even in the limit d → ∞ the
off-diagonal elements of g0ij,σ contribute, since electrons may hop to Z ∼ O(d) many nearest
neighbors with amplitude t∗/

√
d. 30

5.2 The Hubbard model in d=∞

A rescaling of the microscopic parameters of the Hubbard model with d is only required in the
kinetic energy, since the interaction term is independent of the spatial dimension.31 Altogether
this implies that only the Hubbard Hamiltonian with a rescaled kinetic energy

Ĥ = − t∗√
d

∑
〈Ri,Rj〉

∑
σ

ĉ†iσ ĉjσ + U
∑
Ri

n̂i↑n̂i↓ (28)

has a non-trivial d → ∞ limit where both the kinetic energy and the interaction contribute.
Namely, it is the competition between the two terms which leads to interesting many-body

29The need for the scaling (27) also follows from the density of states of non-interacting electrons. For nearest-
neighbor hopping on a d-dimensional hypercubic lattice, εk has the form εk = −2t

∑d
i=1 cos ki (here and in the

following we set Planck’s constant ~, Boltzmann’s constant kB , and the lattice spacing equal to unity). The density
of states corresponding to εk is given by Nd(ω) =

∑
k δ(ω−εk), which is the probability density for finding the

value ω = εk for a random choice of k = (k1, . . . , kd). If the momenta ki are chosen randomly, εk is the sum of d
many independent (random) numbers −2t cos ki. The central limit theorem then implies that in the limit d → ∞
the density of states is given by a Gaussian, i.e., Nd(ω)

d→∞−→ 1
2t
√
πd

exp
(
−
(

ω
2t
√
d

)2)
. Only if t is scaled with d

as in (27) does one obtain a non-trivial density of states N∞(ω) in d =∞ [77,70] and thus a finite kinetic energy.
The density of states on other types of lattices in d =∞ can be calculated similarly [78, 79].

30 Due to the diagrammatic collapse in d = ∞ it is possible to sum the diagrams representing the expectation
value of operators in terms of the Gutzwiller wave function exactly [70, 71]. Lines in a diagram correspond to
the one-particle density matrix g0ij,σ rather than the one-particle Green’s function G0

ij,σ(t). The results obtained
in infinite dimensions are found to coincide with those of the Gutzwiller approximation, which was originally
derived by classical counting of spin configurations (section 4.2). Obviously the Gutzwiller approximation is a
mean-field theory – but what is the corresponding mean field? To answer this question we note that the one-
particle irreducible self-energy (i.e., the quantity which has the same topological structure as the self-energy in the
Green’s function formalism) and which is denoted by S∗ in [70,71], becomes site-diagonal in infinite dimensions.
In the translationally invariant, paramagnetic phase the self-energy is then site-independent, i.e., constant. Since
the self-energy encodes the effect of the interaction between the particles (see footnote 32) it may be viewed as the
global mean field of the Gutzwiller approximation; its value is given by eq. (10) in [70]. Expectation values can be
evaluated exactly even when the Fermi sea |FS〉 in (22) is replaced by an arbitrary, not necessarily translationally
invariant one-particle starting wave function |Φ0〉 [70,71]. In general, the mean field S∗ii then depends on the lattice
site i (but is still site-diagonal) and is determined by the self-consistent eq. (11) in [70], which reduces to eq. (10)
in the paramagnetic case. Details of the calculation of S∗ii can be found in the paper by Metzner [71].

31In the limit d → ∞, interactions beyond the Hubbard interaction, e.g., nearest-neighbor interactions such
as Ĥnn =

∑
〈Ri,Rj〉

∑
σσ′ Vσσ′ n̂iσn̂jσ′ have to be scaled, too. In this case a scaling as in the Ising model,

Vσσ′ → V ∗σσ′/Z, is required [80]. In d = ∞ non-local contributions therefore reduce to their (static) Hartree
substitute and only the Hubbard interaction remains dynamical.
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Fig. 3: Correlation energy of the Hubbard model in second-order Goldstone perturbation the-
ory in U in units of 2U2/|ε0| vs. density n in dimensions d = 1, 3,∞. Here ε0 is the kinetic
energy for U = 0 and n = 1; adapted from ref. [70].

physics. Most importantly, the Hubbard model still describes nontrivial correlations among the
fermions even in d = ∞. This is already apparent from the evaluation of the second-order
diagram in Goldstone perturbation theory for the correlation energy at weak coupling [70]. The
integral over the three internal momenta (which lead to a nine-dimensional integral in d = 3)
reduces to a single integral in d = ∞. Obviously the calculation is much simpler in d = ∞
than in finite dimensions. More importantly, the results for the energy obtained in d = ∞ turn
out to be very close to those in d = 3 (Fig. 3) and therefore provide a computationally simple,
but quantitatively reliable approximation.
These results showed that microscopic calculations for correlated lattice fermions in d = ∞
dimensions were useful and very promising. Further insights followed quickly: (i) Müller-
Hartmann [80] proved that in infinite dimensions only the Hubbard interaction remains dy-
namical and that the self-energy becomes k-independent, i.e., local in position space, as in the
Gutzwiller approximation [70, 71] (see footnote 30), but retains its dynamics32

Σσ(k, ω)
d→∞≡ Σσ(ω), (29)

whereby typical Fermi liquid features are preserved [85] (for a discussion see section 5.2.2),
32This result may be understood as follows [81, 82]: The interaction between particles influences their motion.

This effect is described by a complex, spatially dependent and dynamical field, the self-energy Σσ(k, ω). On a
lattice with a very large number of nearest neighbors the spatial dependence of this field becomes increasingly
unimportant and vanished completely in d = ∞, as in the mean-field theory of the Ising model. So the field
becomes a mean field in position space but retains its full dynamics. In this respect there is a direct analogy to
non-interacting electrons in the present of static (“quenched”) disorder, where the self-energy also becomes k-
independent in the limit d→∞ (“coherent potential”). The coherent potential approximation [65] is a single-site
theory where an electron moves through an effective medium described by the self-energy Σσ(ω), and becomes
exact in d = ∞ [81, 83, 84]. In the case of the Hubbard model in the limit d → ∞ the coherent potential is more
complicated due to the interaction between the particles (see footnote 38).
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(ii) Schweitzer and Czycholl [86] demonstrated that calculations for the periodic Anderson
model also become much simpler in high dimensions, and (iii) Brandt and Mielsch [87] derived
the exact solution of the Falicov-Kimball model in infinite dimensions by mapping the lattice
problem onto a solvable atomic problem in a generalized, time-dependent external field; they
also indicated that in principle such a mapping was even possible for the Hubbard model.33

Due to the k-independence of the irreducible self-energy the most important obstacle for di-
agrammatic calculations in finite dimensions d ≥ 1, namely the integration over intermediate
momenta, is removed. At the same time the limit d → ∞ does not affect the dynamics of the
system. Hence, in spite of the simplifications in position or momentum space, the many-electron
problem retains its full dynamics in d =∞.

5.2.1 One-particle propagator and spectral function

In d =∞ the one-particle propagator of an interacting lattice fermion system (the “lattice Green
function”) at T = 0 is then given by

Gk,σ(ω) =
1

ω − εk + µ−Σσ(ω)
. (30)

The k-dependence of Gk(ω) now comes entirely from the energy dispersion εk of the non-
interacting particles. This means that in a homogeneous system described by the propagator

Gij,σ(ω) = L−1
∑
k

Gk,σ(ω)eik·(Ri−Rj) (31)

its local part, Gii,σ ≡ Gσ, is given by

Gσ(ω) = L−1
∑
k

Gk,σ(ω) =

∞∫
−∞

dE
N0(E)

ω − E + µ−Σσ(ω)
, (32)

where N0(E) is the density of states of the non-interacting system. The spectral function of the
interacting system (also often called density of states) is given by

Aσ(ω) = − 1

π
ImGσ(ω + i0+). (33)

5.2.2 k-independence of the self-energy and Fermi liquid behavior

The k-independence of the self-energy allows one to make contact with Fermi liquid the-
ory [85]. In general, i.e., even when Σ has a k-dependence, the Fermi surface is defined by
the ω = 0 limit of the denominator of (30) (in the paramagnetic phase we can suppress the
spin index)34

εk +Σk(0) = EF . (34a)
33Alternatively, it can be shown that in the limit Z → ∞ the dynamics of the Falicov-Kimball model reduces

to that of a non-interacting, tight-binding model on a Bethe lattice with coordination number Z = 3 which can be
solved analytically [88].

34We note that the notion of a (d−1)-dimensional Fermi surface of electrons on d-dimensional lattices is no
longer meaningful in d =∞ (see footnote 28). Therefore the following discussion addresses the consequences of
a momentum independent self-energy for finite-dimensional rather than strictly infinite-dimensional systems.
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According to Luttinger and Ward [89] the volume within the Fermi surface is not changed by
interactions, provided the latter can be treated in perturbation theory.35 This is expressed by

n =
∑
kσ

Θ
(
EF − εk −Σk(0)

)
, (34b)

where n is the electron density and Θ(x) is the step function. The k-dependence of Σk(0) in
(34a) implies that, in spite of (34b), the shape of the Fermi surface of the interacting system will
be quite different from that of the non-interacting system, except for the rotationally invariant
case εk = f(|k|). By contrast, for lattice fermion models in d = ∞, where Σk(ω) ≡ Σ(ω),
the Fermi surface itself, and hence the enclosed volume, is not changed by the interaction. The
Fermi energy is simply shifted uniformly from its non-interacting valueE0

F toEF = E0
F+Σ(0),

to keep n in (34b) constant. Thus G(0), the ω = 0 value of the local lattice Green function,
and the spectral function A(0) = − 1

π
ImG(i0+) are not changed by the interaction at all. This

“pinning behavior” is well-known from the single-impurity Anderson model [91]. A renormal-
ization of N(0) can only be due to a k-dependence of Σ.
For ω → 0 the self-energy has the property [85]

Im Σ(ω) ∝ ω2, (34c)

which implies Fermi liquid behavior. The effective mass of the quasiparticles

m∗

m
= 1− dReΣ

dω

∣∣∣∣
ω=0

= 1 +
1

π

∫ ∞
−∞

dω
ImΣ(ω+i0−)

ω2
≥ 1 (34d)

is seen to be enhanced. In particular, the momentum distribution

nk =
1

π

∫ 0

−∞
dω ImGk(ω) (35)

has a discontinuity at the Fermi surface given by nk−F −nk+F = (m∗/m)−1, where k±F = kF±0+.

5.2.3 Is there a unique d → ∞ limit of the Hubbard model?

The motivation for the scaling of the hopping amplitude in the limit d → ∞, (27), deserves
a more detailed discussion. To obtain a physically meaningful mean-field theory of a model
it is necessary that its internal or free energy remains finite in the limit d or Z → ∞. While
for the Ising model the scaling J = J∗/Z, J∗ = const., is rather obvious, this is not so for
more complicated models. Namely, fermionic or bosonic many-particle systems are typically
described by a Hamiltonian with non-commuting terms, e.g., a kinetic energy and an interaction,
each of which is associated with a coupling parameter, usually a hopping amplitude and an
interaction, respectively. In such a case the question of how to scale these parameters has no
unique answer since this depends on the physical effects one wishes to explore. The scaling

35Recently necessary and sufficient conditions for the validity of Luttinger’s theorem [89] based on the Atiyah-
Singer index theorem were derived, by which the topological robustness of a generalized Fermi surface may be
quantified [90].
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should be performed such that the model remains non-trivial and “physically interesting” and
that its energy stays finite in the d, Z → ∞ limit. Here “non-trivial” means that not only 〈Ĥ0〉
and 〈Ĥint〉 but also their competition, expressed by the commutator

〈
[Ĥ0, Ĥint]

〉
, should remain

finite. In the case of the Hubbard model it would be possible to scale the hopping amplitude as in
the mean-field theory of the Ising model, i.e., t→ t∗/Z, t∗ = const., but then the kinetic energy
would be reduced to zero in the limit d, Z →∞, making the resulting model uninteresting (but
not unphysical) for most purposes. For the bosonic Hubbard model the situation is even more
subtle, since the kinetic energy has to be scaled differently depending on whether it describes
the normal or the Bose-Einstein condensed fraction; for a discussion see ref. [92]. Hence, in
the case of a many-body system described by a Hamiltonian with several terms, a mean-field
solution in the limit d → ∞ depends crucially on how the scaling of the model parameters is
chosen.

6 Dynamical mean-field theory (DMFT)
of correlated electrons and its applications

The diagrammatic simplifications of quantum many-body theory in infinite spatial dimensions
provide the basis for the construction of a comprehensive mean-field theory of lattice fermions
which is diagrammatically controlled and whose free energy has no unphysical singularities.
The construction is based on the scaled Hamiltonian (28). The self-energy is then momentum
independent, but retains its frequency dependence and thereby describes the full many-body dy-
namics of the interacting system.36 The resulting theory is both mean-field-like and dynamical
and therefore represents a dynamical mean-field theory (DMFT) for lattice fermions which is
able to describe genuine correlation effects as will be discussed next.

6.1 The self-consistent DMFT equations

In d = ∞, lattice fermion models with a local interaction effectively reduce to a single site
embedded in a dynamical mean field provided by the other interacting fermions as illustrated
in Fig. 4. The self-consistent DMFT equations can be derived in different ways depending on
the physical interpretation of the correlation problem emerging in the limit d, Z → ∞ [81, 93,
94]; for a discussion see ref. [76]. The mapping of the lattice electron problem onto a single-
impurity Anderson model37 with a self-consistency condition in d =∞ introduced by Georges
and Kotliar [93], which was also employed by Jarrell [94], turned out to be the most useful
approach, since it made a connection with the well-studied theory of quantum impurities [91],
for whose solution efficient numerical codes such as the quantum Monte-Carlo (QMC) method

36This is in contrast to Hartree(-Fock) theory where the self-energy acts only as a static potential.
37The mapping itself can be performed without approximation, but leads to a complicated coupling between the

impurity and the bath which makes the problem intractable. This can be solved in the limit d → ∞ when the
momentum dependence of the self-energy drops out.
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Fig. 4: In the limit d or Z → ∞ the Hubbard model effectively reduces to a dynamical single-
site problem which may be viewed as a lattice site embedded in a k-independent, dynamical
fermionic mean field. Electrons can hop from the mean field onto this site and back, and interact
on the site as in the original Hubbard model (see Fig. 2). The local dynamics of the electrons is
independent of the dimension or coordination number and therefore remains unchanged.

[95] had already been developed and were readily available.38 For a detailed discussion of the
foundations of DMFT see the review by Georges, Kotliar, Krauth, and Rozenberg [96] and the
lecture by Kollar at the Jülich Autumn School 2018 [97]; an introductory presentation can be
found in ref. [98].
For T > 0 the self-consistent DMFT equations are given by:
(I) the local propagator Gσ(iωn), which is expressed by a functional integral as

Gσ(iωn) = − 1

Z

∫ ∏
σ

Dc∗σDcσ[cσ(iωn) c∗σ(iωn)] exp
(
Sloc

)
(36)

with the partition function

Z =

∫ ∏
σ

Dc∗σDcσ exp
(
− Sloc

)
(37)

and the local action

Sloc = −
∫ β

0

dτ1

∫ β

0

dτ2
∑
σ

c∗σ(τ1)G−1σ (τ1−τ2) cσ(τ2) + U

∫ β

0

dτ c∗↑(τ)c↑(τ)c∗↓(τ)c↓(τ). (38)

Here Gσ is the effective local propagator (also called “bath Green function”, or “Weiss mean

38Alternatively Janiš derived the self-consistent DMFT equations by generalizing the coherent potential approx-
imation (CPA) [81]. In the CPA quenched disorder acting on non-interacting electrons is averaged and produces a
mean field, the “coherent potential”. In the case of the Hubbard model in d =∞ the fluctuations generated by the
Hubbard interaction may be treated as “annealed” disorder acting on non-interacting electrons [82] which, after
averaging, produce a mean field, the self-energy. Numerical solutions of the DMFT equations starting from the
CPA point of view have not yet been developed.
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field”39), which is defined by a Dyson equation

Gσ(iωn) =
((
Gσ(iωn)

)−1
+Σσ(iωn)

)−1
. (39)

Furthermore, by identifying the local propagator (36) with the Hilbert transform of the lattice
Green function

Gk σ(iωn) =
1

iωn − εk + µ−Σσ(iωn)
, (40)

(this identification is exact in d =∞ [96]), one obtains
(II) the self-consistency condition

Gσ(iωn) =
1

L

∑
k

Gk σ(iωn) =

∞∫
−∞

dε
N(ω)

iωn − ε+ µ−Σσ(iωn)
(41)

= G0
σ

(
iωn−Σσ(iωn)

)
. (42)

In (41) the ionic lattice enters only through the density of states of the non-interacting elec-
trons.40

The self-consistent DMFT equations can be solved iteratively: starting with an initial guess for
the self-energy Σσ(iωn) one obtains the local propagator Gσ(iωn) from (41) and thereby the
bath Green function Gσ(iωn) from (39). This determines the local action (38) which is needed
to compute a new value for the local propagator Gσ(iωn) from (36). By employing the old
self-energy a new bath Green function Gσ is calculated and so on, until convergence is reached.

It should be stressed that although the DMFT corresponds to an effectively local problem, the
propagator Gk(ω) depends on the crystal momentum k through the dispersion relation εk of
the non-interacting electrons. But there is no additional momentum-dependence through the
self-energy, since this quantity is local within the DMFT.

Solutions of the self-consistent DMFT equations require the extensive application of numerical
methods, in particular quantum Monte-Carlo (QMC) simulations [94,96] with continuous-time
QMC [99] still as the method of choice, the numerical renormalization group [100], the density
matrix renormalization group [101], exact diagonalization [96], Lanczos procedures [102], and
solvers based on matrix product states [103] or tensor networks [104]. Here the recent develop-
ment of impurity solvers making use of machine learning opens new perspectives [105].

39This expresses the fact that G describes the coupling of a single site to the rest of the system, similar to the
Weiss mean-field hMF in the mean-field theory of the Ising model (see section 2.1). However, in the case of the
DMFT the mean field depends on the frequency, i.e., is dynamical. It should be noted that, in principle, both local
functions Gσ(iωn) and Σσ(iωn) can be viewed as a dynamical mean field since both enter in the bilinear term of
the local action (38).

40Eq. (42) illustrates the mean-field nature of the DMFT equations very clearly: the local Green function of the
interacting system is given by the non-interacting Green function G0

σ at the renormalized energy iωn −Σσ(iωn),
which corresponds to the energy measured relative to the energy Σσ(iωn) of the surrounding fermionic bath, the
dynamical mean field.
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6.1.1 Characteristic features of DMFT

In DMFT the mean field is dynamical, whereby local quantum fluctuations are fully taken into
account, but is local (i.e., spatially independent) because of the infinitely many neighbors of
every lattice site (“single-site DMFT”). The only approximation of DMFT when applied in
d < ∞ is the neglect of the k-dependence of the self-energy. DMFT provides a comprehen-
sive, non-perturbative, thermodynamically consistent and diagrammatically controlled approx-
imation scheme for the investigation of correlated lattice models at all interaction strengths,
densities, and temperatures [96, 98], which can resolve even low energy scales. It describes
fluctuating moments, the renormalization of quasiparticles and their damping, and is especially
valuable for the study of correlation problems at intermediate couplings, where no other in-
vestigation methods are available. Unless a symmetry is broken the k-independence of the
self-energy implies typical Fermi-liquid properties of the DMFT solution.
Most importantly, with DMFT it is possible to compute electronic correlation effects quanti-
tatively in such a way that they can be tested experimentally, for example, by electron spec-
troscopies. Namely, DMFT describes the correlation induced transfer of spectral weight and
the finite lifetime of quasiparticles through the real and imaginary part of the self-energy, re-
spectively. This greatly helps to understand and characterize the Mott metal-insulator transition
(MIT) to be discussed next.

6.2 Mott transition, ferromagnetism, and topological properties

Intensive theoretical investigations of the Hubbard model and related correlation models using
DMFT over the last three decades have provided a wealth of new insights into the physics
described by this fundamental fermionic interaction model. In the following subsection only a
few exemplary results will be discussed; more detailed presentations can be found in refs. [96,
76], and the lecture notes of the Jülich Autumn Schools in 2011, 2014, and 2018 [42].

6.2.1 Metal-insulator transitions

Mott-Hubbard transition The interaction-driven transition between a paramagnetic metal
and a paramagnetic insulator, first discussed by Mott [106] and referred to as “Mott metal-
insulator transition” (MIT), or “Mott-Hubbard MIT” when studied within the Hubbard model,
is one of the most intriguing phenomena in condensed matter physics [107,108]. This transition
is a consequence of the quantum-mechanical competition between the kinetic energy of the
electrons and their interaction U: the kinetic energy prefers the electrons to be mobile (a wave
effect) which invariably leads to their interaction (a particle effect). For large values of U
doubly occupied sites become energetically too costly. The system can reduce its total energy
by localizing the electrons, which leads to a MIT. Here the DMFT provided detailed insights
into the nature of the Mott-Hubbard-MIT for all values of the interaction U and temperature
T [96, 109, 98, 76]. A microscopic investigation of the Mott MIT obtained within DMFT from
a Fermi-liquid point of view was performed only recently [110].
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While at small U the interacting system can be described by coherent quasiparticles whose
spectral function (“density of states” (DOS)) still resembles that of the free electrons, the DOS
in the Mott insulating state consists of two separate incoherent “Hubbard bands” whose centers
are separated approximately by the energy U (here we discuss only the half-filled case without
magnetic order). At intermediate values of U the spectrum then has a characteristic three-peak
structure which is qualitatively similar to that of the single-impurity Anderson model [111]
and which is a consequence of the three possible occupations of a lattice site: empty, singly
occupied (up or down), and doubly occupied.
At T = 0 the width of the quasiparticle peak vanishes at a critical value of U which is of the or-
der of the band width. So the Mott-Hubbard MIT occurs at intermediate coupling and therefore
belongs to the hard problems in many-body theory, where most analytic approaches fail and in-
vestigations have to rely on numerical methods. Therefore several features of the Mott-Hubbard
MIT near the transition point are still not sufficiently understood even within DMFT. Actually,
it was recently argued that the Mott-Hubbard transition in the infinite-dimensional one-band
Hubbard model may be understood as a topological phase transition, where the insulating state
is the topological phase, and the transition from the metallic (Fermi liquid) to the insulating
state involves domain wall dissociation [112].
At T > 0 the Mott-Hubbard MIT is found to be first order and is associated with a hysteresis
region in the interaction range Uc1 < U < Uc2 where Uc1 and Uc2 are the values at which the
insulating and metallic solution, respectively, vanish [96,109]; for more detailed discussions see
refs. [96,98,76]. The hysteresis region terminates at a critical point, above which the transition
becomes a smooth crossover from a “bad metal” to a “bad insulator”; for a schematic plot of
the phase diagram see fig. 3 of ref. [98]. Transport in the incoherent region above the critical
point shows remarkably rich properties, including scaling behavior [113].
Mott-Hubbard MITs are found, for example, in transition metal oxides with partially filled
bands. For such systems band theory typically predicts metallic behavior. One of the most
famous examples is V2O3 doped with Ti or Cr [114]. However, it is now known that certain or-
ganic materials are better realizations of the single-band Hubbard model without magnetic order
and allow for much more controlled investigations of the Mott state and the Mott MIT [115].

Metal-insulator transitions in the presence of disorder DMFT also provides a theoretical
framework for the investigation of correlated electrons in the presence of disorder. When the ef-
fect of local disorder is taken into account through the arithmetic mean of the local DOS (LDOS)
one obtains, in the absence of interactions, the coherent potential approximation (CPA) [83,84];
for a discussion see ref. [76]. However, CPA cannot describe Anderson localization. To over-
come this deficiency a variant of the DMFT was formulated where the geometrically averaged
LDOS is computed from the solutions of the self-consistent stochastic DMFT equations and is
then fed into the self-consistency cycle [116]. This corresponds to a “typical medium theory”
which can describe the Anderson transition of non-interacting electrons. By implementing this
scheme into DMFT to study the properties of disordered electrons in the presence of interactions
it is possible to compute the phase diagram of the Anderson-Hubbard model [117].
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6.2.2 Band ferromagnetism

The Hubbard model was introduced in 1963 [44–46] in an attempt to explain metallic (“band”)
ferromagnetism in 3d metals such as Fe, Co, and Ni starting from a microscopic point of view.
However, at that time investigations of the model employed strong and uncontrolled approxi-
mations. Therefore it was uncertain for a long time whether the Hubbard model can explain
band ferromagnetism at realistic temperatures, electron densities, and interaction strengths in
d > 1 at all. Three decades later it was shown with DMFT that on generalized fcc-type lattices
in d = ∞ (i.e., on “frustrated” lattices with large spectral weight at the lower band edge) the
Hubbard model indeed describes metallic ferromagnetic phases in large regions of the phase di-
agram [79,118]. In the paramagnetic phase the susceptibility χF obeys a Curie-Weiss law [119],
where the Curie temperature TC is now much lower than that obtained by Stoner theory, due
to many-body effects. In the ferromagnetic phase the magnetization M is consistent with a
Brillouin function as originally derived for localized spins, even for a non-integer magneton
number as in 3d transition metals. Therefore, DMFT accounts for the behavior of both the mag-
netization and the susceptibility of band ferromagnets [79, 118]; see section 6.1 of my lecture
notes at the 2018 Jülich Autumn School [97]. As the Mott MIT, band ferromagnetism is a hard
intermediate-coupling problem.

6.2.3 Topological properties of correlated electron systems

The interest in non-trivial topological properties of electronic systems sparked by the theory
of the quantum Hall effect greatly increased when it was realized that the spin-orbit interac-
tion can generate topologically insulating behavior [120]. Initially, investigations focused on
topological features of non-interacting systems. But during the last decade the influence of
electronic interactions on these topological properties received more and more attention. Here
DMFT turned out to be a useful tool. For example, DMFT was employed to study interaction
effects in two-dimensional topological insulators [121], and to analyze the robustness of the
Chern number in the Haldane-Hubbard model [122] as well as of the topological quantization
of the Hall conductivity of correlated electrons at T > 0 [123]. Furthermore, to better under-
stand the topological phase transition from a Weyl-semimetal to a Mott insulator the topological
properties of quasiparticle bands were computed [124]. DMFT also made it possible to explore
topological phase transitions in the Kitaev model in a magnetic field and to calculate the cor-
responding phase diagrams [125]. Correlation-induced topological effects can even arise from
non-Hermitian properties of the single-particle spectrum in equilibrium systems [126]. Re-
cently it was demonstrated explicitly that a topologically nontrivial multiorbital Hubbard model
remains well-defined and nontrivial in the limit d→∞ for arbitrary, but even, d [127].

6.2.4 Nonequilibrium DMFT

The study of correlated electrons out of equilibrium by employing a generalization of the DMFT
has become another fascinating new research area [128]. Nonequilibrium DMFT is able to
explain, for example, the results of time-resolved electron spectroscopy experiments, where
femtosecond pulses are now available in a wide frequency range. In such experiments a probe
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is excited and the subsequent relaxation is studied. One recent example is the ultrafast dynamics
of doubly occupied sites in the photo-excited quasi-2d transition-metal dichalcogenide 1T-TaS2

[129]. Such excitations may even result in long-lived, metastable (“hidden”) states [130].

6.3 Correlated electrons in bulk materials, surfaces, and nanostructures
The development and application of theoretical techniques to explore the basic features of the
physics described by the one-band Hubbard model took several decades. During that time first-
principles investigations of the even more complicated many-body problem of correlated mate-
rials were clearly out of reach. The electronic properties of solids were mainly studied within
density-functional theory (DFT) [131], e.g., in the local density approximation (LDA) [132],
the generalized gradient approximation (GGA) [133], and the LDA+U method [134]. Those
approaches can describe the ground state properties of many simple elements and semiconduc-
tors, and even of some insulators, quite accurately, and often predict the magnetic and orbital
properties [132] as well as the crystal structures of many solids correctly [135]. However,
these methods fail to describe the electronic and structural properties of correlated paramag-
netic materials since they miss characteristic features of correlated electron systems such as
heavy quasiparticle behavior and Mott physics. This situation changed dramatically with the
advent of DMFT.

6.3.1 DFT+DMFT and GW+DMFT

The computational scheme introduced by Anisimov et al. [136] and Lichtenstein and Kat-
snelson [137], which merges material-specific DFT-based approximations with the many-body
DMFT and which is now denoted by DFT+DMFT (or rather more specifically LDA+DMFT,
GGA+DMFT, etc.), provides a powerful new method for the microscopic computation of the
electronic, magnetic, and structural properties of correlated materials from first principles even
at finite temperatures [138–142]. In particular, this approach naturally accounts for the exis-
tence of local moments in the paramagnetic phase. By construction, DFT+DMFT includes the
correct quasiparticle physics and the corresponding energetics, and reproduces the DFT results
in the limit of weak Coulomb interaction U. Most importantly, DFT+DMFT describes the
correlation-induced many-body dynamics of strongly correlated electron materials at all values
of the Coulomb interaction and doping.
As in the case of the single-band Hubbard model the many-body model of correlated materials
constructed within the DFT+DMFT scheme consists of two parts: an effective kinetic energy
obtained by DFT which describes the material-specific band structure of the uncorrelated elec-
trons, and the local interactions between the electrons in the same orbital as well as in different
orbitals. Here the static contribution of the electronic interactions already included in the DFT-
approximations must be subtracted to avoid double counting [136–141]. Such a correction is
not necessary in the fully diagrammatic, but computationally very demanding GW+DMFT ap-
proach, where the LDA/GGA input is replaced by the GW approximation [143]. The resulting
many-particle problem with its numerous energy bands and local interactions is then solved
within DMFT, typically by CT-QMC.
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Bulk materials The application of DFT+DMFT made investigations of correlated materials
much more realistic and led to the discovery of novel physical mechanisms and correlation
phenomena. Take, for example, the Mott MIT. Within the single-band Hubbard model the
Mott MIT was originally explained as a transition where the effective mass of quasiparticles
diverges (“Brinkman-Rice scenario”) [63]. After DMFT had opened the way to study multi-
band models, an orbitally-selective Mott MIT was identified [144]. Then, with the advent of
DFT+DMFT, a site-selective Mott MIT was discovered in Fe2O3 with its numerous energy
bands and local interactions [145]. With DFT+DMFT it was also shown that the non-trivial
topological properties of α-Ce are driven by the f -d band inversion, which originates from the
formation of a coherent 4f band around the Fermi energy [146].
DFT+DMFT has been remarkably successful in the investigation of correlated materials, in-
cluding transition metals and their oxides, manganites, fullerenes, Bechgaard salts, f -electron
materials, magnetic superconductors, and Heusler alloys [138–141]. In particular, the study of
Fe-based pnictides and chalcogenides led to the new insight that in metallic multi-orbital materi-
als the intra-atomic exchange J can also induce strong correlations [147]. Clearly DMFT-based
approaches will be very useful for the future design of correlated materials [148], such as ma-
terials with a high thermopower for thermoelectric devices which can convert waste heat into
electric energy [149].

Surfaces, layers, and nanostructures DMFT studies of inhomogeneous systems greatly im-
proved our understanding of correlation effects at surfaces and interfaces, in thin films and
multi-layered nanostructures [150] and, most recently, in infinite layer nickelates [151]. Thereby
they provided a new understanding of potential functionalities of such structures and their ap-
plication in electronic devices. DMFT has been extended to study correlations also in finite
systems such as nanoscopic conductors and molecules [152]. In this way many-body effects
were shown to be important even in biological matter, e.g., in the kernel of hemoglobin and
molecules with important biological functions [153].

7 Beyond mean-field theory

Mean-field approximations provide useful information on the general physical properties of
many-body problems. In particular, DMFT with its dynamical but local self-energy has been
a breakthrough for the investigation and explanation of electronic correlation effects in models
and materials. Although it is an approximation when used in d < ∞, experiments with cold
atoms in optical lattices demonstrated that DMFT can be remarkably accurate in d = 3 [154].
A dynamical, local self-energy was also shown to be well justified in iron pnictides and chalco-
genides [155] as well as in Sr2RuO4 [156]. Nevertheless mean-field results clearly cannot ex-
plain correlation phenomena occurring on finite length scales, the critical behavior at thermal or
quantum phase transitions, or unconventional superconductivity observed in finite-dimensional
systems. In such cases corrections to mean-field theory must be included.
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7.1 1/d corrections

For mean-field theories derived in the limit d → ∞ corrections can be obtained, in principle,
by performing an expansion in the parameter 1/d around the mean-field results:

Mean-field theory of the Ising model 1/d-expansions [3] around this paradigmatic mean-
field theory41 have been performed in great detail, resulting in high-order expansions of the free
energy and of susceptibilities [158]. Expansions in 1/d to determine the critical temperature TC
in d <∞ appear to be asymptotic [159].

Gutzwiller approximation Systematic 1/d-expansions around the Gutzwiller approximation
lead to excellent agreement with results obtained by variational Monte-Carlo techniques in d =

2, 3 [75, 71, 72]. However, finite orders in 1/d do not remove the Brinkman-Rice transition
(section 4.2.1) found in d =∞.

Coherent potential approximation (CPA) The CPA corresponds to the exact solution of
the Anderson disorder model in d = ∞ [83, 84], but does not describe Anderson localization.
Corrections to the CPA self-energy in 1/d can be calculated, but bare perturbation theory leads
to unphysical divergencies at the band edges [83]. Indeed, such expansions do not fulfill the
condition Im

(
z−Σ(z)

)
≶ 0 for Imz ≶ 0 (Herglotz analyticity) which would guarantee the

non-negativity of the density of states. This also holds for 1/d-corrections to the conductivity
of disordered electrons. The conductivity has the correct analytic properties only if the self-
energy is properly connected to the irreducible vertex function by a Ward identity [160,161]. To
this end vertex corrections need to be included which, however, mix corrections with different
powers in 1/d. Self-consistent 1/d-expansions around CPA which are able to describe the
Anderson localization transition are presently not in sight. Here numerical cluster approaches
to be discussed in section 7.2 are more successful.

DMFT of correlated lattice electrons Systematic calculations of 1/d-corrections to the DMFT
start with a Luttinger-Ward functional of the non-local Green function Gij,σ(iωn), from which
the non-local self-energyΣij,σ(iωn) is obtained by functional derivative. To calculate first-order
corrections in 1/d one needs to consider only one pair of nearest-neighbor sites [162]. This gen-
eralizes the single-impurity problem of the DMFT to a two-impurity problem. It is then pos-
sible, in principle, to formulate a self-consistent, thermodynamically consistent approximation
which is correct to order 1/d [162, 160]. This scheme requires an exact cancellation of certain
diagrams in the approximation. Unfortunately, numerical computations within this approach
are unstable and can easily lead to acausal solutions. Although the scheme was modified such
that the diagrammatic cancellation is assured at each iteration step [163] and thereby provided a
causal solutions in test calculations for the Hubbard model, acausal behavior cannot be ruled out

41For the ferromagnetic Ising model high-temperature expansions can be converted to 1/d-expansions around
mean-field theory [157].
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in general. Therefore it is still not clear whether, and how, controlled and thermodynamically
consistent 1/d expansions around DMFT can be constructed. Apparently analytic calculations
in this directions were not further pursued in view of the successes of numerical cluster ap-
proaches which, although not systematic in 1/d, are explicitly causal [164] (see below).

7.2 Beyond DMFT

There are different, mostly numerical, techniques to include non-local correlations into the
DMFT; for a review see ref. [165]; in the following we mention four approaches:

Extended DMFT This is an early strategy to include intersite quantum fluctuations into
DMFT [166], where the interaction strength of a nearest-neighbor density-density interaction is
scaled such that its fluctuation part contributes even in the large d limit.

Cluster extensions The dynamical cluster approximation (DCA) [167] and the cellular DMFT
(CDMFT) [168] map a lattice model onto a cluster of sites, which is then self-consistently em-
bedded in a dynamical mean field. Thereby it has become possible to compute, for example,
typical features of unconventional superconductivity in the Hubbard model in d = 2, such as
the interplay of antiferromagnetism and d-wave pairing as well as pseudogap behavior [164],
but also signatures of Anderson localization in disordered systems [169].

Diagrammatic generalizations By extending the DMFT on a diagrammatic level through
the inclusion of non-local contributions, corrections to the local self-energy of the DMFT can
be calculated explicitly. Here the dynamical vertex approximation (DΓA) [170] and the dual
fermion theory [171] are powerful approaches. For example, they provided new insights into
the mechanism of superconductivity arising from purely repulsive interactions, e.g., in the two-
dimensional Kondo lattice model [172] and the Hubbard model [173]. In particular, in the re-
pulsive Hubbard model a specific set of local particle-particle diagrams was identified which de-
scribe a strong screening of the bare interaction at low frequencies. Thereby antiferromagnetic
spin fluctuations are suppressed, which in turn reduce the pairing interaction. Thus dynamical
vertex corrections were found to reduce Tc strongly [173]. With these approaches one can also
determine critical behavior, not only in the vicinity of thermal phase transitions (T > 0) [174]
but also near quantum phase transitions (T = 0) [175].

Functional renormalization group (fRG) In this approach the fRG flow [176] does not start
from the bare action of the system, but rather from the DMFT solution [177]. Local correlations
are thus included from the beginning, and nonlocal correlations are generated by the fRG flow,
as demonstrated for the two-dimensional Hubbard model [177].
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8 Summary

In the absence of exact solutions of models in statistical and condensed matter physics in di-
mensions d= 2 and 3, mean-field solutions give indispensable, albeit approximate, information
about the properties of these models. A well-established strategy for deriving a mean-field the-
ory is the solution of a model in infinite dimensions or on a lattice with infinite coordination. In
fact, solutions obtained in this way are sometimes referred to as “mean-field solution”, even if
the physical meaning of the “mean field” is not directly apparent.
In particular, the exact solution of the Hubbard model in d = ∞, which corresponds to a dy-
namical mean-field theory (DMFT) of correlated lattice fermions, has now become the generic
mean-field theory of correlated electrons. It provides a comprehensive, non-perturbative and
thermodynamically consistent approximation scheme for the investigation of correlated fermi-
ons, especially electrons in solids and cold fermionic atoms in optical lattices, in finite dimen-
sions. Non-local extensions of the DMFT make it possible to explore and explain correlation
effects which occur on the scale of several lattice constants and at thermal and quantum phase
transitions. Furthermore, the combination of DMFT with methods for the computation of elec-
tronic band structures resulted in a conceptually new theoretical framework for the realistic
study of correlated materials.
The further development of this approach and its applications is a subject of active research.
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T. Schäfer, A.A. Katanin, M. Kitatani, A. Toschi, and K. Held,
Phys. Rev. Lett. 122, 227201 (2019)



Why d=∞ dimensions? 1.45

[176] W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and K. Schönhammer,
Rev. Mod. Phys. 84, 299 (2012)

[177] C. Taranto, S. Andergassen, J. Bauer, K. Held, A. Katanin, W. Metzner, G. Rohringer, and
A. Toschi, Phys. Rev. Lett. 112, 196402 (2014); D. Vilardi, C. Taranto, and W. Metzner,
Phys. Rev. B 99, 104501 (2019)





2 Fermi Liquids

Giovanni Vignale
University of Missouri
Columbia, MO 65211

Contents

1 A tale of many fermions 2

2 Phenomenological theory 6
2.1 The Landau energy functional . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 The heat capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 The Landau parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Compressibility and spin susceptibility . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Galilean invariance and effective mass . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Measuring m∗, K and χS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 The lifetime of quasiparticles 15
3.1 General formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Three-dimensional electron gas . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Two-dimensional electron gas . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Measuring the quasiparticle lifetime . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 The kinetic equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Microscopic basis of the Landau theory of Fermi liquids 26
4.1 Existence of quasiparticles and self-energy . . . . . . . . . . . . . . . . . . . . 26
4.2 Landau interaction function and scattering amplitude . . . . . . . . . . . . . . 28

5 Fermi liquid of massless Dirac fermions 30

6 Non-Fermi-liquid behavior 33
6.1 Disordered electron liquid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 Luttinger liquid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.3 Fractional quantum Hall liquid . . . . . . . . . . . . . . . . . . . . . . . . . . 35



2.2 Giovanni Vignale

1 A tale of many fermions

One of the triumphs of quantum mechanics in the 20th century was the explanation of the atomic
structure (periodic table of the elements) in terms of elementary fermions (electrons) endowed
with intrinsic spin ~/2 and obeying Pauli’s exclusion principle, such that no two fermions can
occupy the same quantum state. When many fermions (N ) are present in a finite region of space
the Pauli exclusion principle creates a kind of effective repulsion between the particles: this
repulsion exists even if we pretend that there are no physical interactions between the particles,
e.g., in the limiting case of the ideal Fermi gas. Under such conditions the minimum energy
state is attained by singly occupying the N lowest lying single-particle states: this maximally
compact state is known (for large N ) as the “Fermi sea“, and the energy of the highest occupied
state is known as the Fermi energy, denoted by εF . When many interacting fermions condense in
a state close to the minimum energy allowed by the Pauli exclusion principle (i.e., such that the
average occupation numbers of the N lowest single-particle states are close to 1) one obtains a
Fermi liquid. Physical realizations of the Fermi liquids concept range from interacting electrons
in metals and semiconductors (our main interest here), to liquid 3He, to gases of cold fermionic
atoms, to nuclear matter, electrons in white dwarves, and neutron stars.

The behavior of Fermi liquids confronts us at the outset with a puzzle. In spite of strong mutual
interactions the particles appear in many measurements to behave as if they were essentially
non-interacting. Many properties of electrons in metals, for example heat capacity and electric
conductivity, can be qualitatively understood in terms of the Sommerfeld picture, which is based
on the degenerate ideal Fermi gas model. But this model is not easily justified. The average
interaction energy per electron can be roughly estimated to be on the order of e2n

1
3 , where

n = N/V is the average electronic density and V is the volume. For electrons in Na this works
out to be ' 4.29 eV, which is already larger than the value εF ' 3.24 eV of the Fermi energy.
There is no sense in which the Coulomb interaction can be considered a small perturbation,
and yet the electrons behave by and large as noninteracting particles, while the presence of the
interaction manifests itself in rather subtle ways.

It was not until the late 1950s that this puzzling state of affairs was clarified from a theoretical
point of view by L.D. Landau [1]. Although Landau did not provide a rigorous solution of
the problem, he did provide a firm basis for the understanding of the “normal“ low-energy
behavior of interacting Fermi systems. The solidity of this basis was subsequently confirmed
by theoretical and experimental work.

Perhaps the most striking feature of Landau’s approach is that he completely sidestepped what
most physicists would have considered a prerequisite for further progress, namely a complete
description of the interacting ground state. Instead, he focused on the excited states. His basic
idea was that, under very broad conditions, the low-lying excitations of a system of interacting
Fermions with repulsive interactions are connected to the low-lying states of a non-interacting
ideal Fermi liquid by a suitably slow switching-on of the interaction between the particles.
There are several subtleties in the specification of the switching-on process, beginning with a
precise definition of the words “suitably slow”. For the time being we will not delve into these
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subtleties, but simply notice that the switching-on procedure establishes a one-to-one corre-
spondence between the eigenstates of the ideal system and a set of (approximate) eigenstates
of the interacting system. Since the eigenstates of the noninteracting system are specified by
a set of occupation numbers {N~kσ} of single-particle momentum eigenstates, it follows that
the corresponding low-lying excitations of the interacting system can also be described by the
same set of occupation numbers. It is important to understand that the quantum numbers N~kσ
that specify an excited state of the Fermi liquid are not the true momentum occupation numbers
nkσ =

〈
â†~kσâ~kσ

〉
for that state. Rather, they are momentum occupation numbers of the ideal

system from which the excited state has evolved.

Because in an interacting system the n~kσ’s are not constants of the motion, one could have
naively expected that any memory of the initial noninteracting momentum distribution {N~kσ}
would be completely lost at the end of the switching-on process. Landau’s insight was the
recognition that, for states that are weakly excited (i.e., close to the noninteracting Fermi distri-
bution) the occupation numbers change very slowly even when particle-particle interactions are
strong. The main consequence of this fact is that the N~kσ retain their validity as approximate
quantum numbers, which specify an excited state. Thus, low-energy elementary excitations
of an interacting Fermi liquid can be described in terms of addition or removal of individual
quasiparticles from a filled Fermi sphere of radius kF , where kF is the Fermi momentum of a
non interacting electron gas of the same density. In other words, the interacting system has a
Fermi surface that coincides with that of the non-interacting system – a statement that is known
as Luttinger’s theorem. For example, a state of the ideal system containing a particle of mo-
mentum ~~k with k ≥ kF outside the non-interacting Fermi sphere evolves into an excited state
of the interacting system containing one quasiparticle of momentum ~~k outside the interacting
Fermi sphere. Likewise, a state of the noninteracting system containing one empty state (a hole)
of momentum ~~k within the non-interacting Fermi sphere evolves into an excited state of the
interacting system containing a quasihole of the same momentum. More complex excitations
consisting of multiple quasiparticles and quasiholes can be constructed in a similar fashion. By
definition, the ground-state hasN~kσ = Θ(kF−k). In contrast to this, the momentum occupation
numbers n~kσ in the ground-state decrease discontinuously by an amount Z (with 0 < Z ≤ 1)
as ~k crosses the Fermi sphere from inside to outside. The discontinuity, Z, is of course 1 in the
noninteracting system and less than 1 in the interacting system. The existence of a discontinu-
ity in the momentum occupation number at k = kF is one of the distinctive signatures of the
normal Fermi liquid.

The physical basis of the Landau theory rests on the surprising ineffectiveness of electron-
electron scattering to change the momentum distribution of quasiparticles near the Fermi level.
What happens is that most of the states into which two quasiparticles near the Fermi surface
might end up after a collision are already occupied by other electrons, and therefore, according
to the Pauli exclusion principle, unavailable. Because of this “Pauli blocking” effect, which op-
erates irrespective of the strength of the interaction, the rate at which a quasiparticle is scattered
out of a state of momentum k ' kF vanishes for k → kF . This result can be obtained from a
simple phase space argument.
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kk’

kF

Fig. 1: Schematic illustration of two possible decay processes for a quasiparticle near the
Fermi surface. The quasiparticle makes a transition from ~k to ~k′, producing an electron-hole
pair in the process. Momentum and energy conservation restrict the momentum of the hole to
the shaded regions.

Consider a quasiparticle with initial wave vector ~k with k > kF . At zero temperature the
empty states into which the quasiparticle can decay lie within a shell of thickness |k−kF | just
above the Fermi surface. The number of states in this region is clearly proportional to |k−kF |
– a result valid in one, two and three dimensions. Now, through the Coulomb interaction, the
momentum and energy change of the quasiparticle will be offset by the momentum and energy
of an electron-hole pair. In two and three dimensions, the state of the hole must lie within a
shell of thickness |k− kF | below the Fermi surface (see Fig. 1). This contributes another factor
of |k−kF | to the probability of decay, which, as anticipated, is thus found to be proportional to
(k−kF )2 in three dimensions.1

Accordingly in two and three dimensions in the limit k→ kF , the inverse of the scattering rate,
i.e., the scattering time τ~k, becomes long enough to include many cycles of oscillation of an
external field that is able to create the quasiparticle excitation out of the ground-state (the fre-
quency of this field being proportional to the excitation energy which is of order |k−kF |). Thus,
on a time scale that is short compared to τk (but still long compared to the inverse excitation fre-
quency) the occupation numberN~kσ can be regarded as a good quantum number for the excited
state.2

Strictly speaking however the N~kσ are not exact quantum numbers (for that to be true the scat-
tering rate would have to actually vanish), and if one waits long enough, i.e., up to times t� τ~k,

1In two dimensions, a more accurate calculation shows that the scattering rate vanishes at a somewhat slower
rate −(k−kF )2 ln |k−kF | (see Section 3.3). In the presence of disorder the quasiparticle inelastic lifetime is
shorter. This is discussed in Section 6.1.

2The alert reader will notice that the phase-space argument is circular: one assumes the existence of quasiparti-
cles to deduce that their lifetime is long. This does not prove the existence of quasiparticles, but shows that one can
assume their existence without falling in a contradiction. This discussion does also clarify that a “suitably slow”
switching-on must be carried out in a time intermediate between the fast time scale of order 1

vF |k−kF | related to the
resolution of a quasiparticle state and the quasiparticles lifetime which we have shown to be of order εF

~(vF |k−kF |)2 .
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one will see them change. Thus a quasiparticle state is not an exact eigenstate of the interacting
Fermi liquid. Rather, it must be understood as a superposition of closely spaced exact eigen-
states with energies spread over a range of width ~/τ~k � ε~k about the median quasi-particle
energy ε~k. Such a state decays with a characteristic lifetime τ~k, and can be regarded as station-
ary only for times much shorter than τ~k. It turns out that these “quasi-eigenstates” completely
determine the response of the system to macroscopic perturbations.
So strong has been the impact of the Landau theory in condensed matter physics that the Landau
Fermi liquid is often referred to as the Fermi liquid tout-court. It is important therefore to
keep in mind that there are situations in which the Landau description of the Fermi liquid fails
completely. A well known case is that of one-dimensional electronic systems. In this case
the spectral density of electron-hole pairs exhibits a peak at small wavevector q and frequency
ω = vF q. All the electron-hole pairs with given momentum ~q have essentially the same
energy comprised between ~|ω−(q)| =

∣∣∣~vF q − ~2q2
2m

∣∣∣ and ~ω+(q) = ~vF q + ~2q2
2m

. Due to the
massive quasi-degeneracy of the noninteracting spectrum, an arbitrarily weak interaction causes
a complete reconstruction of the many-body eigenstates, and, in particular, destroys the “Fermi
surface” (actually, two points in 1D). Thus, there is no Landau Fermi liquid in one dimension.
The correct paradigm in this case is the Luttinger liquid, where the low-energy excitations are
collective charge and spin density waves and single-particle excitations are no longer sharply
defined. Whether similar departures from Fermi liquid theory can also occur in two dimensions
remains a very active and contentious area of research.
In spite of its occasional failures, the concept of a quasiparticle is an encompassing one. It
applies not only to electrons in metals and doped semiconductors (where the renormalization
factors m∗

m
and Z remain close to 1) but also to 3He atoms in the liquid phase where m∗

m
' 3 and

to highly correlated heavy fermion systems where m∗

m
can run in the hundreds. Considering the

diversity in coupling constants and physical character of these systems it is quite amazing that
they can be subsumed under the same generic theoretical paradigm.
This Chapter is organized as follows:
In Section 2 we summarize the basic results of the phenomenological theory of the Fermi liquids
due to and mostly developed by Landau.
Section 3 presents a simple theory of the quasiparticle inelastic lifetime based on the Fermi
golden rule of elementary quantum mechanics.
The microscopic underpinning of the Landau theory is briefly reviewed in Section 4 and some
numerical results for quasiparticle properties are presented.
Section 5 presents the Fermi liquid theory for massless Dirac Fermions in graphene.
Finally, Section 6 illustrates some ways in which the standard theory of Fermi liquids may fail
due to reduced dimensionality, disorder effects, and high magnetic fields.
The material presented in this chapter is largely adapted from the discussion of the normal Fermi
liquid theory in “Quantum theory of the electron liquid” (G.F. Giuliani and G. Vignale, Cam-
bridge University Press, 2005) [2] and in “The Theory of Quantum Liquids, Vol. I” (D. Pines
and P. Noziéres, W.A. Benjamin 1966) [3], to which you are referred for more detailed deriva-
tions and discussions.
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2 Phenomenological theory

2.1 The Landau energy functional

As discussed in the previous section, a set of noninteracting occupation numbers Nkσ = 0

or 1 defines, by continuation, a quasi-eigenstate of the interacting Fermi liquid. Similarly, a
distribution of fractional occupation numbers 0 ≤ Nkσ ≤ 1 defines an ensemble of quasiparticle
states in which the state of momentum ~~k and spin σ has a probability Nkσ to be occupied
and 1−Nkσ to be empty. At the heart of Landau’s macroscopic theory of the Fermi liquids
lies an Ansatz for the functional dependence of the energy of the liquid on the quasiparticle
distribution functionN~kσ. This functional is in fact an expansion for the energy to second order
in the deviation of the quasiparticle distribution function from its ground-state value N (0)

~kσ
=

Θ(kF−k):

E
[
{N~kσ}

]
= E0 +

∑
~kσ

E~kσ δN~kσ +
1

2

∑
~kσ,~k′σ′

f~kσ,~k′σ′ δN~kσδN~k′σ′ , (1)

where E0 is the ground-state energy (which needs not be specified!), E~kσ is the energy of a
single quasiparticle, f~kσ,~k′σ′ is the Landau interaction function and δN~kσ = N~kσ−N

(0)
~kσ

is the
deviation of the quasiparticle distribution function from the ideal Fermi distribution at T = 0.
Because the quasiparticles are well defined only in the immediate vicinity of the Fermi surface,
it is evident that this expansion makes sense only when δN~kσ is restricted to a thin shell of
momentum space surrounding the Fermi surface. In addition, since every wave vector sum
introduces a factor Ld (the d-dimensional volume), the interaction function f~kσ,~k′σ′ must scale
as the inverse of the volume 1

Ld
in order to keep the energy proportional to the volume in the

thermodynamic limit.
Both the quasiparticle energy and the interaction function (as well as the Landau parameters
introduced below) are phenomenological quantities that the Landau theory of Fermi liquid as-
sumes to be given. In practice, they must be either determined from measurements of physical
properties, or calculated by a microscopic many-body theory.
The energy E~kσ of a single quasiparticle can be formally viewed as the functional derivative of
the energy with respect to the quasiparticle distribution function evaluated at the ground-state:

E~kσ =

(
δE

δN~kσ

)
N~kσ=N

(0)
~kσ

. (2)

Since the ground-state of the N+1-particle system is obtained by adding a quasiparticle of
wavevector kF to the ground state of the N -particle system, it is evident that

EkF σ = µ , (3)

where µ is the chemical potential.
In an isotropic liquid, for |~k| close to kF , the quasiparticle energy can be expanded as

E~kσ ' µ+ ~v∗F (k−kF ), (4)
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where

v?F =
1

~

∣∣∣∣∂E~kσ
∂~k

∣∣∣∣
k=kF

(5)

defines the effective Fermi velocity of a quasiparticle. v∗F can be conveniently written as

v∗F =
~kF
m?

, (6)

which defines the quasiparticle effective massm?. The effective mass in turn determinesN?(0),
the quasiparticle density of states (per unit volume) at the Fermi level µ. This is given by
N?(0) = m?

m
N(0), where N(0) is the density of states at the Fermi surface of a non interacting

electron gas, N(0) = nd
2εF

in d-dimensions.
A fundamental role in the Landau theory is played by the quantity

Ẽ~kσ =
δE

δN~kσ
= E~kσ +

∑
~k′σ′

f~kσ,~k′σ′ δN~k′σ′ , (7)

sometimes referred to as the local quasiparticle energy. This can be interpreted as the energy
of a quasiparticle modified by its interaction with other quasiparticles. From the form of this
equation it is clear that, within the Landau theory, this effect is treated in a mean field approxi-
mation.
We next turn our attention to the quasiparticle interaction function. An inspection of Eq. (1)
reveals that this quantity can be expressed in terms of functional derivatives of the Landau
energy functional with respect to the quasiparticle distribution function as

f~kσ,~k′σ′ =
δ2E

δN~kσδN~k′σ′
=

δẼ~kσ
δN~k′σ′

, (8)

where the functional derivatives are evaluated at the ground-state distribution. Notice that in
order to correctly perform the second derivative appearing in Eq. (8), one needs to know the en-
ergy functional E[{N~kσ}] up to second order in δN~kσ. This implies, for instance, that to derive
the expression for the interaction function in a paramagnetic system one needs the knowledge
of the energy functional appropriate to an infinitesimally polarized electron liquid. This com-
plication does not arise in the case of the quasiparticle energy, since its calculation only requires
a knowledge of the Landau energy functional up to first order in δN~kσ. Finally, in order to cal-
culate thermal properties at finite temperature T one also needs an expression for the entropy of
the liquid. This is given by

S
[
{N~kσ}

]
= −kB

∑
~kσ

(
N~kσ lnN~kσ + (1−N~kσ) ln (1−N~kσ)

)
, (9)

which coincides with the entropy of the noninteracting ensemble of origin, and vanishes in the
ground-state. This is a direct consequence of the assumed one-to-one correspondence between
states of the interacting and non-interacting systems.
Eqs. (1) and (9) are widely used to calculate, from a macroscopic point of view, the thermal
equilibrium properties, the response functions, and the transport properties of an interacting
Fermi liquid, and to establish relationships between different such properties. What follows is
a summary of the main results.
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2.2 The heat capacity

As it turns out, the low-temperature specific heat of a Fermi liquid coincides with that of a
noninteracting Fermi gas comprised of particles of mass m∗: it is therefore given by

cv(T ) =
π2

3
N∗(0)Ldk2BT , (10)

where, as we have seen, N∗(0), the density of quasiparticle energy states per unit volume at the
Fermi level, differs from the corresponding quantity in the non interacting case by the substi-
tution of the bare electronic mass m with m∗.3 This is a direct consequence of Eq. (9) for the
entropy, which in turn implies that the quasiparticle distribution function at thermal equilibrium
is given by

N eq
~kσ
(µ, T ) =

1

eβ(E~kσ−µ) + 1
, (11)

where β = 1/kBT . Notice that the Landau interaction function does not appear in this expres-
sion. This is because the thermal excitation of the system does not contribute to the quasiparticle
energy. Thus the effective mass can in principle be directly measured from the heat capacity,
or by any other measurement that is sensitive only to the quasiparticle density of states. The
situation is quite different when the excitation is caused by an external field such as pressure or
magnetic field, as we show next.

2.3 The Landau parameters

It is useful to introduce at this point the Landau Fermi liquid parameters. One starts from
the observation that within the dynamically relevant shell in which δN~k′σ′ is finite, the Landau
interaction function depends only on the cosine of the angle θ between ~k and ~k′. Accordingly we
can set f~kσ,~k′σ′ ' fσσ′(cos θ) and introduce the dimensionless quantities F s,a

` which are defined
in terms of spin symmetric (s) and spin antisymmetric (a) angular averages of fσσ′(cos θ) as
follows

F s,a
` =

LdN∗(0)

2

∫
dΩd

Ωd

(
f↑↑(cos θ)± f↑↓(cos θ)

){ P`(cos θ) , 3D

cos `θ , 2D
, (12)

where the + and− signs are associated with s and a respectively, Ωd = 2d−1π is the solid angle
in d = 3 or 2 dimensions, and P`(cos θ) is the `-th Legendre polynomial.
It must be noted that this definition (introduced in Ref. [2]) differs from the one commonly
used in previous texts and in large part of the literature. Nervous readers can revert to the
standard notation by simply making the substitution F s,a

` → F s,a`
2`+1

in three dimensions and

F s,a
` →

F s,a`
2
(1+δ`0) in two dimensions.

3We are considering here only the mass renormalization that arises from interactions between the particles. In
a crystalline environment the crystal potential and the electron-phonon coupling produce additional mass renor-
malizations.
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k
F 
+ δk

F

Fig. 2: Calculation of the compressibility in the Landau theory of Fermi liquids. The chemical
potential, i.e., the energy of a quasiparticle at the Fermi surface, changes due to (i) the variation
of the Fermi momentum, (ii) the addition of quasiparticles to the shaded region.

The inverse of Eq. (12) is

f↑↑(cos θ)± f↑↓(cos θ) =
2

LdN∗(0)

∞∑
`=0

F s,a
`

{
(2`+1)P`(cos θ) , 3D

(2−δ`0) cos `θ , 2D
, (13)

where + is associated with s and − with a.

2.4 Compressibility and spin susceptibility

An important property of a Fermi liquid is the proper compressibility K,4 given by the relation

1

K
= n2∂µ

∂n
=

nkF
d

∂µ

∂kF
. (14)

The compressibility determines, among other things, the magnitude of the screening wave vec-
tor and the hydrodynamic sound velocity s = 1√

nmK
. For a non interacting system one simply

has the result

K0 =
N(0)

n2
. (15)

To evaluate the derivative ∂µ
∂kF

within the Landau theory of Fermi liquids one must recall that,
according to Eq. (3), the change in µ as the Fermi surface expands to accommodate the addi-
tional density δn is the sum of two terms: one is the change in the bare quasiparticle energy
when the wave vector varies from kF to kF+δkF ; the other is the interaction energy with the
additional quasiparticles created by the expansion of the Fermi sphere (see Fig. 2). The first
term is responsible for changing the density of states in Eq. (15) from N(0) to N∗(0), but the

4For a charged Fermi liquid the proper compressibility is calculated under the assumption that the system
remains charge-neutral during the compression and there is no energy cost associated with the compression of the
neutralizing background of charge.
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k
F

k
F

Fig. 3: Calculation of the spin susceptibility in the Landau theory of Fermi liquids. In the
presence of a magnetic field the up- and down-spin Fermi surfaces split in such a way that the
energies of two quasiparticles at the two Fermi surfaces are equal. The additional quasipar-
ticles are down-spin electrons above the unperturbed Fermi surface (dashed line) and up-spin
holes below it.

second term involves the Landau parameter F s
0 , since the additional quasiparticle distribution is

spherically symmetric (` = 0) and spin-independent (superscript s). The result is

K

K0

=
m?/m

1 + F s
0

. (16)

Thus, the interaction enters the proper compressibility not only through the effective mass, but
also, explicitly, through the spin symmetric spherical average of the Landau interaction function.

The spin susceptibility can be calculated in a completely analogous way (see Fig. 3). In the
presence of an external magnetic field B the Hamiltonian is modified by the addition of the
Zeeman energy term

ĤZ =
gµB
2
BŜz , (17)

where g is the noninteracting g-factor for the electrons and Ŝz is the z-component of the spin in
units of ~

2
. Here gµB

2
is the magnetic moment of the electron.5 The spin susceptibility is defined

as the derivative of the magnetization with respect to the magnetic field at zero magnetic field.
In an ideal Fermi gas it works out to be

χS0 =
(gµB

2

)2
N(0) . (18)

In a Fermi liquid the energy of a quasiparticle of wave vector ~k and spin σ in the presence of
the magnetic field becomes

E~kσ(B) = E~kσ +
1

2
gµBBσ , (19)

where, it must be noted, the g-factor of the quasiparticle coincides with that of the bare electron
(as long as spin-orbit interactions are neglected), because the many-body state described by the

5For free electrons g ' 2, but this value can be considerably different for electrons in a solid state environment,
due to the spin-orbit interaction: for example in GaAs one has g = −0.44.
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quasiparticle at ~kσ is an eigenstate of Ŝz with eigenvalue ~σ/2. Because of the Zeeman energy,
the Fermi surfaces of up-spin and down-spin electrons shift by equal amounts in opposite di-
rections, i.e., the radius of the down-spin Fermi surface increases by an amount δkF↓, while the
radius of the up-spin Fermi surface decreases by the same amount.
The equilibrium value of δkF↓ is determined by the condition that the energy of an up-spin
quasiparticle at the up-spin Fermi surface be equal to that of a down-spin quasiparticle at the
down-spin Fermi surface: if this were not the case one could gain energy by transferring quasi-
particles from one Fermi surface to the other. The common value of the energy is, of course, the
chemical potential (see Eq. (3)). The mathematical form of the equilibrium condition is thus

ẼkF↑↑ +
1

2
gµBB = ẼkF↓↓ −

1

2
gµBB . (20)

Now, by making use of Eq. (7) and following the same procedure we used for the case of the
compressibility, we obtain the elegant result

χS
χS0

=
m?/m

1 + F a
0

, (21)

where the interaction enters both through the effective mass and through the Landau parameter
F a
0 . This has the same structure as Eq. (16). The ` = 0 component is selected by the spherical

symmetry of the quasiparticle distribution, and the a subscript reflects the spin-antisymmetry of
that distribution.
Looking at Eqs. (16) and (21) we see that measurements of K and χS , combined with a knowl-
edge of the effective mass from the heat capacity allow us to determine the values of the Landau
parameters F s

0 and F a
0 . Negative values of these parameters, arising from the exchange inter-

action enhance both the proper compressibility and the spin susceptibility. Because these two
quantities must be finite and positive in a stable ground state, we conclude that the uniform and
paramagnetic state will be unstable if F a

0 or F s
0 become less than −1.6

2.5 Galilean invariance and effective mass

The effective mass of quasiparticles that we have discussed in the previous section arises en-
tirely from the interaction between the Fermions in a translationally invariant Fermi liquid.
Translational invariance is a good assumption for liquid 3He or for nuclear matter, but hardly
so for electrons in a solid state environment. The interaction of the electron with the periodic
crystal potential and with lattice vibrations is an important source of effective mass renormal-
ization. But if the system is translationally invariant, in the sense that momentum is strictly
conserved, and if in addition the kinetic energy is of the Galilean-invariant form p2/2m with m
the bare particle mass, then an exact relation exists between the quasiparticle effective mass and
the interaction function:

m∗

m
= 1 + F s

1 , (22)

where F s
1 is the ` = 1 (dipolar) component of the spin-symmetric Landau parameter.

6For the electron gas only the spin instability is real, as the density instability is preempted by the “improper”
contribution arising from the charged background.
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Fig. 4: Relation between the effective mass and the Landau parameters. When the original
Fermi surface centered at O is viewed from a reference frame moving at speed v it appears
to be shifted by an amount mv/~. The shift can be described in terms of quasiparticles and
quasiholes added to the original Fermi distribution in the shaded crescent-shaped regions.

The origin of this relation is illustrated in Fig. 4. We consider a quasiparticle of momentum
~p = ~~k in the reference frame in which the center of mass of the liquid is at rest. If we now
change the reference frame to one in which the center of mass of the liquid moves to the right
with velocity ~v the same quasiparticle will appear to have momentum ~~k +m~v where m is the
bare mass of the particle, not the quasiparticle mass! This is because under this transformation
the total momentum of the fluid changes by m~v. But the momentum of the quasiparticle is not
the only thing that changes. The entire momentum distribution shifts bym~v and the net result of
this shift can be described as the creation of quasiparticles and quasiholes in the shaded crescent-
shaped regions of Fig. 4, with quasiparticles residing in the right crescent, and an equal number
of quasiholes residing in the left crescent.
The corresponding change in energy of the quasiparticles (calculated to first order in ~v) has two
contributions:

(i) the change of the single quasiparticle energy E~kσ due to the fact that the quasiparticle
momentum is shifted from ~~k to ~~k+m~v

(ii) the energy of interaction between the quasiparticle of momentum ~~k and the additional
quasiparticles and quasiholes that appear in the crescent-shaped regions of Fig. 4

The first contribution involves the effective mass of the quasiparticle, and the second contribu-
tion involves the dipolar component of the Landau interaction function (reflecting the dipolar
structure of the additional quasiparticle distribution). Combining the two contribution must
yield the exact change in the energy of the system under the Galilean transformation, namely
∆E = ~~v · ~k, which does not depend the particle mass. Clearly, this is possible only if a pre-
cise relation exists between the quasiparticle mass and the interaction function, and this is what
Eq. (22) gives us.
The importance of momentum conservation in the above discussion cannot be overemphasized.
Consider, for example, the following question: what is the spin-current j↑−j↓, carried by a
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rs F s
0 F a

0 F s
1 F a

1 F s
2 F a

2

1 -0.21 -0.17 -0.04 -0.0645 -0.0215 -0.0181
2 -0.37 -0.25 -0.03 -0.0825 -0.0168 -0.0126
3 -0.55 -0.32 -0.02 -0.0915 -0.0107 -0.0073
4 -0.74 -0.37 0.0 -0.0956 -0.0047 -0.0022
5 -0.95 -0.40 0.03 -0.0965 +0.0009 +0.0023

Table 1: Calculated values of Landau Fermi liquid parameters of the three-dimensional elec-
tron liquid. The values of F a

1 , F s
2 , and F a

2 were calculated by Yasuhara and Ousaka [5].

quasiparticle of wave vector ~k and spin ↑? Recall that the “spin current” is the difference be-
tween the current carried by spin-up particles and that carried by spin-down particles, where the
spin of a particle (as well as the spin of a quasiparticle) is a good quantum number. One might
be tempted to answer “~~k/m” on the (wrong) assumption that a spin-up quasiparticle carries no
down-spin current, but this is incorrect because the difference between the total up- and down-

spin momenta of the particles ~̂P↑ − ~̂P↓ is not a constant of the motion. In fact, the magnitude
of the spin-current is smaller than ~~k

m
[4]. What happens is that in the process of switching-on

the interaction some momentum is transferred from the up- to the down-spin component of the
electron liquid. This reduces the spin current without altering the total momentum and spin. The
reduction can be expressed in terms of an effective spin mass mS > m such that j↑ − j↓ = ~k

mS
.

The relation between mS and m∗ has the same form as the relation (22) between the “charge
mass”, m, and m∗, i.e.,

m∗

mS

= 1 + F a
1 . (23)

Numerical values of several Landau parameters of the uniform electron liquid (in the jellium
model) obtained from approximate microscopic calculations [5] are listed in Table 2.5 for sev-
eral different densities.

2.6 Measuringm∗,K and χS
The effective mass, the proper compressibility, and the spin susceptibility of liquid 3He have
been the object of many experimental studies by a variety of techniques (see, for example,
Ref. [6]). Values of the effective mass, the spin susceptibility and the compressibility are re-
ported in Ref. [7]. The effective mass ratio m∗/m ranges between 3 and 6 as the pressure is
increased from 0 to 33 bar. In the same interval of pressures the spin susceptibility enhancement
factor (1+F a

0 )
−1 is nearly constant at a value between 3.5 and 4, while the compressibility ratio

K/K0 decreases from 6 to 1 [7].
For electron liquids the situation is generally complicated by the presence of solid-state effects
which are hard to identify and eliminate from the analysis. This is especially the case in what
would appear to be the best realization of the three-dimensional jellium model, namely elemen-
tal metals. In spite of this difficulty valiant attempts have been made to determine a variety of
Fermi liquid properties in these systems.
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Fig. 5: Experimentally determined spin susceptibilities of elemental metals vs theoretical values
obtained from an analytical fit to quantum Monte Carlo results (see Ref. [2] for details).

Fig. 5 shows a comparison between the spin susceptibilities of some elemental metals deter-
mined via the measurement of the Knight shift in the nuclear magnetic resonance, versus the
spin susceptibility calculated directly from the second derivative of the energy with respect to
spin polarization, which is known from quantum Monte Carlo calculations. The agreement is
quite good for the three middle elements (with intermediate values of rs) but it is much less
satisfactory for the low-density metal Cs, and absolutely disappointing for Li.

The experimental situation improves considerably in two-dimensional electronic systems, which
can be made essentially free of lattice and disorder effects. Here the electronic density can be
changed by electrical means (gates), thus allowing a systematic study of interaction effects.
Thus, for example, measurements of the capacitance of double-layer GaAs quantum wells
(Eisenstein, 1994) [8] have allowed a precise determination of the proper compressibility of the
two-dimensional electron liquid, confirming, in particular, that this quantity becomes negative
below a certain density, without implying an instability of the system (stability being ensured
by the presence of remote neutralizing charges on the gates or on the donors).

Coming to the effective mass and the spin susceptibility, the most accurate measurements so
far have been done on systems such as n-type Silicon inversion layers, n-doped GaAs/AlGaAs,
and p-doped GaAs (see Ref. [2] for details). While the early experiments were done at densities
of the order of 1012 cm−2, corresponding to rs ∼ 3 in Si, the most recent ones have reached
considerably lower densities in both GaAs (1.7× 109 cm−2, i.e. rs = 13.4) and in Si inversion
layers (1011 cm−2, i.e. rs = 8.4). At such low densities, the many-body renormalizations
(i.e., the Landau parameters) are strong: for example, the spin susceptibility enhancement m

∗g∗

mbgb

(where mb and gb are the “bare” mass and g-factor determined by the band structure of the host
semiconductors: gb ∼ 2 in Si and gb ∼ 0.44 in GaAs) can be as large as 5. [9] This is consistent
with the theoretical expectation that the 2DEG should become ferromagnetic at sufficiently low
density: however, no ferromagnetic instability has been observed so far.

Recently, tilted field experiments have allowed the determination of the spin susceptibility of
the two-dimensional electron liquid in very narrow AlAs quantum wells in a broad range of den-
sities [10]. Fig. (6) shows the comparison, obviously very satisfactory, between the measured
data and the values obtained from quantum Monte Carlo calculations.
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Fig. 6: Spin susceptibility enhancement vs rs for the 2DEL in narrow AlAs quantum wells.
Circles and triangles denote experimental data taken in different samples and for different ori-
entations of the magnetic field. The quantum Monte Carlo predictions at zero and full spin
polarization are shown by the dotted and solid lines respectively. From Vakili et al. [10].

3 The lifetime of quasiparticles

3.1 General formulas

Up to this point we have treated quasiparticles as if they were exact eigenstates of the many-
fermion system. In reality, as we pointed out in the introduction, quasiparticles are not exact
eigenstates, and do decay in time by transferring their momentum and energy to other quasi-
particles. The key point of the Landau theory of Fermi liquids is that the decay rate tends to
zero much more rapidly than the quasiparticle energy (relative to the chemical potential) when
the latter tends to zero. It is this circumstance that allows us in a first approximation to ne-
glect the decay rate and to treat the interaction between quasiparticles at the mean-field level,
i.e., simply as a modification of the quasiparticle energy which is describable in terms of the
Landau interaction function. However, the residual interactions, beyond the mean-field approx-
imation, cause quasiparticles to decay. This decay process plays an essential role in the study
of transport phenomena, where an external field drives the quasiparticles out of their thermal
equilibrium distribution. In this situation the residual interactions between quasiparticles pull
the quasiparticle distribution back towards equilibrium, thus providing a kind of restoring force
which determines the magnitude of the response to the external field.
The most relevant process contributing to the decay of a quasiparticle state in a Fermi liquid
is particle-hole pair production. At zero temperature, given a quasiparticle close to the Fermi
surface, there is a certain probability that, because of the interaction, part of the energy and mo-
mentum of the quasiparticle will be lost by exciting a single electron-hole pair out of the Fermi
sea. Upon losing part of its initial momentum and energy the quasiparticle makes a transition
to an available lower energy state. At finite temperatures the scenario is slightly complicated
by the fact that the available final states are neither definitely occupied nor definitely empty, but
the basic physical picture remains the same.
In principle a quasiparticle can also lose momentum and energy by exciting multiple particle-
hole pairs and/or collective modes (zero sound in a neutral Fermi liquid or plasmons in the
electron liquid). As it turns out both processes are irrelevant for quasiparticles near the Fermi
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surface at sufficiently low temperature. Decay by emission of collective modes is forbidden
by energy and momentum conservation, since collective modes owe their very existence to
having frequencies that are significantly higher than particle-hole excitation energies at the same
momentum. As for multiple particle-hole pair excitations, we note that the spectral density of
these excitations vanishes, at low energy, much more rapidly than the spectral density of single
particle-hole pairs.
The simplest way to estimate the particle-hole contribution to the quasiparticle decay rate is to
make use of the Fermi golden rule to compute the transition probability between the initial and
the final state of the system. Within this approach the rate at which a quasiparticle of spin σ
and momentum ~~k is scattered by the Coulomb interaction into an empty state of momentum
~(~k−~q ), while a second quasiparticle of spin σ′ and momentum ~k′ is scattered into an empty
state of momentum ~(~k′+~q ) is given by

2π

~

∣∣∣∣W (~q )

Ld

∣∣∣∣2 δ(ε~k−~qσ+ε~k′+~qσ′−ε~kσ−ε~k′σ′), (24)

where W (~q )
Ld

is the matrix element of an effective interaction between quasiparticles, taken be-
tween the initial and final plane-wave states. The δ-function ensures that the energy is conserved
through the collision.
Eq. (24) is approximate in more than one way. First of all, the correct two-particle scattering
amplitude is a function of ~k,~k′, and ~q, as well as the relative spin orientation, not just of the
momentum transfer ~q. Secondly, Eq. (24) violates the indistinguishability of the particles, since
the scattering amplitude is not antisymmetric upon interchange of the two final plane-wave
states of parallel spin. Finally, Eq. (24) is not entirely self-consistent, since the quasiparticle
energy is approximated by the bare particle energy. In spite of these defects, Eq. (24) is still an
excellent starting point to begin to understand the microscopic physics of the Fermi liquid. In
what follows I focus on the case of the electron liquid, where the long range of the Coulomb
interaction requires some special attention: however the final result has the same form for all
Fermi liquids.
The inverse lifetime 1/τ (e)~k

of a plane wave state initially occupied by an electron of momentum

~~k and spin σ, is given by the sum of the probabilities of all the allowed decay processes:

1

τ
(e)
~kσ

=
2π

~
∑
~q~k′σ′

∣∣∣∣W (~q )

Ld

∣∣∣∣2 n~k′σ′(1−n~k′+~qσ′)(1−n~k−~qσ) δ(ε~k−~qσ+ε~k′+~qσ′−ε~kσ−ε~k′σ′), (25)

where the Fermi occupation factors guarantee that the plane-wave state ~k′σ′ is indeed occupied
by an electron, while the final states ~k′ + ~q σ′, and ~k − ~q σ′ are empty and therefore available
for occupation after the scattering event.
A nice feature of Eq. (25) is that part of the calculation can be carried out without specifying
the form of the scattering amplitude W (~q ). We work, for simplicity, in the paramagnetic state,
and approximate n~kσ by the noninteracting occupation numbers n(0)

~kσ
. Then we make use of the

fluctuation-dissipation theorem for the non-interacting electron gas (see Ref. [2] for details) to



Fermi Liquids 2.17

evaluate the sum over ~k′ and σ′:

π

~Ld
∑
~k′σ′

n
(0)
~k′σ′

(
1−n(0)

~k′+~q σ′

)
δ

(
ε~k′+~q σ′−ε~k′σ′

~
− ω

)
= − Imχ0(q, ω)

1− e−β~ω
. (26)

Here χ0(q, ω) is the density-density response function of the noninteracting Fermi liquid, also
known as the Lindhard function [2]. Naturally, the appearance of the spectral density of particle-
hole pairs,− Imχ0(q, ω), shows that these excitations play a central role in the process. Eq. (25)
can now be rewritten as

1

τ
(e)
~kσ

= − 2

(2π)d

∞∫
−∞

dω
1−nF (ε~kσ−~ω−µ)

1− e−β~ω

∞∫
0

dqqd−1
∣∣W (~q)

∣∣2 Imχ0(q, ω)

∫
dΩdδ

(
ε~kσ−ε~k−~qσ−~ω

)
(27)

where nF (x) = 1/(eβx + 1) is the Fermi-Dirac distribution function at zero chemical potential,
so that nF (ε~kσ−µ) = 1/(eβ(ε~kσ−µ) + 1) = n

(0)
~kσ

is the noninteracting occupation number. In
obtaining this expression we have introduced the variable ~ω = ε~kσ−ε~k−~qσ through the intro-
duction of an auxiliary delta function and its corresponding integration. Notice that the angular
integration only involves the delta function.
The corresponding formula for the lifetime of a quasihole (τ

(h)
~kσ

) is obtained from Eq. (27) by
performing the replacements 1−nF (ε~kσ−~ω−µ)→ nF (ε~kσ−~ω−µ) and 1−e−β~ω → 1−eβ~ω,
and changing the overall sign. This can be used to demonstrate that the principle of detailed
balance (see Eq. (50) below), is satisfied at the appropriate level of accuracy, i.e., we have

n~kσ

τ
(e)
~kσ

=
1− n~kσ
τ
(h)
~kσ

. (28)

This important result guarantees (see Section 3.5) that the equilibrium Fermi-Dirac distribution
of quasiparticles is stable against quasiparticle decay processes.
We shall henceforth concentrate only on the calculation of the quasiparticle lifetime. The cal-
culation will be carried out separately for three and two-dimensional systems below. In one
dimension, a calculation of 1/τ (e)~kσ

based on Eq. (27) would result in a divergent integral at fi-
nite temperatures: we can conclude that the Landau Fermi liquid picture cannot be consistently
applied to 1D systems, as mentioned in the introduction.

3.2 Three-dimensional electron gas

In this case the angular integration is rather simple once the z-axis is taken along the direction
of ~q. We have:∫ 2π

0

dφ

∫ π

0

dθ sin θ δ
(
ε~kσ−ε~k−~qσ−~ω

)
=

2πm

~2kq
Θ

(
1−

∣∣∣∣q2 + 2mω
~

2kq

∣∣∣∣ ) , (29)

where Θ(x) is the familiar Heaviside step function which mandates a precise behavior for the
limits of the remaining quadratures. As it turns out however, these limiting conditions are
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Fig. 7: Regions of wave vector integration for the calculation of the low-energy quasiparticle
lifetime. For k → kF and ~ω � εF the leading contribution to the wave vector integral
comes from region II where |ω|

vF
< q < 2kF − |ω|vF . Two-dimensional plasmon excitations do not

contribute to the lifetime and hence are not shown.

irrelevant, in view of the behavior of the integrand. This can be seen as follows: for positive
frequencies the Fermi thermal occupation factor 1− nF (ε~kσ−~ω−µ) cuts off the integral for ω
of the order of |ε~kσ−µ|, an energy which, by definition, is much smaller than the Fermi energy
εF . For negative frequencies, on the other hand, it is the thermal occupation factor 1/(1−e−β~ω)
that cuts off the frequency integral for ω of the order of kBT, an energy scale that we assume
to be much smaller than εF . At very low frequency the most stringent limits on the q-integral
come from the factor Imχ0(q, ω) which contains the structure of the particle-hole continuum
and differs from zero only along the segment shown in Fig. 7. This sets the lower limit of the q
integral at q ∼ |ω|

vF
∼ 0 and the upper limit at q ∼ 2kF + |ω|

vF
∼ 2kF . Notice that the dominant

contribution to the integral (for ω → 0) comes from the region labeled as II in Figure 7. In this
region it is legitimate to approximate Imχ0(q, ω) by its zero temperature and low-frequency
form

Imχ0(q, ω) ' −
πω

2vF q
N(0) . (30)

Accordingly the formula for 1/τ (e)k in three dimensions is seen to be proportional to

1

τ
(e)
~kσ

∝
∫ ∞
−∞

dω ω(
1 + eβ(~ω−ε~kσ+µ)

)(
1− e−β~ω

) ∫ 2kF

0

dq
∣∣W (~q )

∣∣2 . (31)

The frequency integral can be calculated analytically and is given by

1

2~2
(ε~kσ−µ)2 + (πkBT )

2

1 + e−β(ε~kσ−µ)
. (32)

The integral over the wave vector q deserves special attention. It is quite obvious at this point
that one cannot make use of the bare Coulomb interaction. The integral would emphatically
diverge. This is of course a consequence of the long range of the Coulomb interaction. It is then
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quite natural to employ for W (~q ) some sort of screened interaction. In this case the q integral
presents no problems. A reasonable approximation is provided by the choice W (~q ) ' vq

ε(q,0)
so

that ∫ 2kF

0

dq
∣∣W (~q )

∣∣2 ' 1

N2(0)

∫ 2kF

0

dq

(
N(0)vq
ε(q, 0)

)2

. (33)

Further simplification can be achieved by making use of the Thomas-Fermi approximate dielec-
tric function, that is the static long wavelength limit of the RPA dielectric function, given by
ε(q, 0) = 1 + 4πe2N(0)

q2
. This gives the result∫ 2kF

0

dq
∣∣W (~q )

∣∣2 ' 2kF
N2(0)

ξ3(rs) , (34)

where the function ξ3(rs) is given by

ξ3(rs) =

√
α3rs
4π

tan−1
√

π

α3rs
+

1

2
(
1+ π

α3rs

) . (35)

Recall that rs(=
(

3
4πna3

)1/3 in 3D) is the average distance between electrons in units of the Bohr
radius a = ~2

me2
. For most densities in the metallic range ξ3(rs) ' 1. Notice that ξ3(rs) ∼

√
rs

as rs → 0: thus, due to the non-perturbative nature of the screening, the quasiparticle decay rate
turns out being proportional to the electron charge e, rather than e4, as one could have naively
expected.
Collecting the various factors we finally obtain for the inelastic quasiparticle lifetime in three
dimensions the following result

1

τ
(e)
~kσ

' π

8~εF
(ε~kσ−εF )2 + (πkBT )

2

1 + e−β(ε~kσ−εF )
ξ3(rs) in 3D, (36)

where we have approximated µ with εF and k with kF .
The inverse lifetime of a quasiparticle at the Fermi surface (k = kF ) vanishes as T 2 at small
temperatures. On the other hand, at T = 0, the inverse lifetime vanishes as (ε~kσ−εF )2. One
power of ε~kσ−εF (or T ) arises from the phase space restrictions on the scattering process. The
second one stems from the linearly vanishing density of particle-hole pair excitations. The
numerical prefactor is simply a Fermi surface average of the statically screened Coulomb inter-
action. This is the expected behavior, an indication that the Landau theory of the electron liquid
is consistent with the microscopic perturbative approach.

3.3 Two-dimensional electron gas

The two-dimensional case presents a few new twists. The most important difference to the
three-dimensional case is the q dependence of the integrand of Eq. (27), which must be handled
with special care in the regions q ' 0 and q ' 2kF . This necessitates a more precise treatment
of the limits of integration.
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We begin by considering the angular integration which in this case gives the interesting result

∫ 2π

0

dφ δ
(
ε~kσ−ε~k−~qσ−~ω

)
=

2Θ
(
1−

∣∣∣ q2+ 2mω
~

2kq

∣∣∣)√(
~2kq
m

)2
−
(
~ω + ~2q2

2m

)2 , (37)

an expression that features an extra frequency dependence with respect to the three-dimensional
case. The other necessary ingredient is the expression for Imχ0(q, ω) in two dimensions, which,
at low frequency and in region II of Fig. 7, is approximately given by

Imχ0(q, ω) ' −
ω

qvF

N(0)√
1−

(
q

2kF

)2 (2D), (38)

where N(0) = m
π~2 . Within the necessary accuracy, we can set k = kF in the argument of the

square root appearing in Eq. (37), which can then be rewritten as

~2

2m

√√√√(q2 − ( |ω|
vF

)2
)(

4k2F−q2
)
. (39)

Accordingly we see that the contribution of region II to the q integral of Eq. (27) is

8πkF

∫ 2kF− |ω|vF

|ω|
vF

∣∣N(0)W (~q )
∣∣2dq√

q2 −
(
|ω|
vF

)2
(4k2F−q2)

(2D). (40)

This integral can be evaluated rather easily. Notice that in the limit ω → 0 it presents a logarith-
mic divergence originating from the regions q ' 0 and q ' 2kF . To extract the exact coefficient
of the logarithmic singularity we set q = 0 and q = 2kF in the regular parts of the integrand,
when evaluating the contributions of q ' 0 and q ' 2kF respectively. Up to corrections that
remain finite as ω → 0 the integral is then found to be equal to

π
(
|N(0)W (0)|2 + |N(0)W (2kF )|2/2

)
kF

ln
4εF
|ω|

. (41)

It is convenient, at this point, to define the “coupling constant”

ξ2(rs) ≡ |N(0)W (0)|2 + 1

2
|N(0)W (2kF )|2 , (42)

which, in the Thomas-Fermi approximation (see [2]), depends on rs in the following manner:

ξ2(rs) = 1 +
1

2

(
rs

rs +
√
2

)2

. (43)

Notice that, unlike its three-dimensional counterpart, ξ2(rs) tends to a constant, 1, in the high-
density limit.7 Combining Eqs. (27), (37), (38), and (40), we find that the quasiparticle lifetime

7The surprising fact that the inverse lifetime fails to vanish in the noninteracting limit rs → 0 is an artifact
due to our asymptotic expansion of the integral (40), which requires the limit k → kF to be taken before the limit
rs → 0. The expansion fails for rs < |k/kF − 1|.
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is given by the integral

1

τ
(e)
~kσ

' ~ξ2(rs)
2πεF

∫ ∞
−∞

ω ln 4εF
|ω|(

1 + eβ(~ω−ε~kσ+µ)
)(
1− e−β~ω

) dω in 2D. (44)

Consider first the “zero-temperature” situation |ε~kσ−εF | � kBT . In this case it is clear that
the main contribution to the integral comes from the region ω ' ε~kσ−εF . Now, since in this
region the logarithm is slowly varying, we can take it out of the integration to give the factor
ln 4εF
|ε~kσ−εF |

. This leaves us with a frequency integral which coincides with that of Eq. (31),
which we calculated exactly. The only difference is that in this case we need to take the limit
kBT

|ε~kσ−εF |
→ 0. By making use of Eq. (32) we therefore obtain the result

1

τ
(e)
~kσ

' ξ2(rs)
(ε~kσ−εF )2

4π~εF
ln

4εF
|ε~kσ−εF |

, kBT � |ε~kσ−εF | . (45)

The other relevant case is that of kBT � |ε~kσ−εF |, which corresponds to the case of a quasi-
particle lying on the Fermi surface. In this case a direct inspection of Eq. (44) shows that the
most relevant contributions to the integral come from a region of the order of kBT/~ centered
about the origin. In this situation the logarithm can again be taken out of the integral8 as to give
a factor of ln 4εF

kBT
. The remaining integral can then again be evaluated by means of Eq. (32) in

the limit of |ε~kσ−εF |
kBT

→ 0. This immediately gives9

1

τ
(e)
~kσ

' ξ2(rs)
(πkBT )

2

8π~εF
ln

4εF
kBT

, |ε~kσ−εF | � kBT . (46)

The only significant difference with the three-dimensional case is the appearance here of the
logarithmic factors. This fact was first discovered by Giuliani and Quinn in Ref. [11].
The basic comments made about the three-dimensional result continue to apply. We emphasize
that the above calculation focused on the leading term in the low-energy/low-temperature ex-
pansion of the inverse lifetime.10 The complete calculation of the “subleading” contributions of
order (ε~kσ−εF )2 and (kBT )

2 is more tricky: in particular, it can be shown that the regions I and
III in the q integral (see Fig. 7) do contribute to the result at this order.

3.4 Measuring the quasiparticle lifetime

Thanks to the great improvements in the manufacture of high-quality quantum well systems
it has become possible to directly measure, by means of precise and elegant tunneling experi-
ments between parallel identical quantum wells, the quasiparticle lifetime of a two-dimensional
electron liquid (Murphy et al., Ref. [12]).

8This is due to the fact that if f(x) is a well behaved function in the interval [−a, a], then in the limit a → 0,
with logarithmic accuracy,

∫ a
−a ln |x|f(x) dx ' ln |a|

∫ a
−a f(x) dx as one can readily verify.

9The coefficient of Eq. (46) can also be quickly inferred from Eq. (45) by making use of the general result (32).
10It is somewhat sobering to remark that a surprisingly vast variety of contradicting results for the coefficients

of Eqs. (45) and (46) have appeared in the literature.
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Fig. 8: Momentum-conserving tunneling between two identical free-electron bands separated
by a potential difference eV . Because of energy conservation, the tunneling probability de-
creases rapidly when eV exceeds the spectral width Γ of the single-particle states in each band.

The basic idea of the experiment is shown in Fig. 8. The two identical parabolas separated
by an energy eV represent the energy vs wave vector relation of the quasiparticle states in the
two quantum wells, and the shaded regions show the energy spread of these states due to finite
lifetime of a quasiparticle at the Fermi surface (we are, of course, at finite temperature). Here
k‖ is the two-dimensional in-plane-wave vector, V is the electric potential difference between
the two quantum wells, and Γ is the width of the quasiparticle peak in the spectral function
at k‖ = kF , which is directly related to the quasiparticle lifetime. Under the assumption that
electron-impurity and electron-phonon scattering are negligible the two-dimensional wave vec-
tor of the tunneling electrons is conserved and overall energy conservation causes the tunneling
probability to decrease sharply when eV exceeds Γ . More precisely, a plot of the tunneling
conductance vs voltage is approximately a Lorentzian centered at zero voltage with width at
half maximum equal to 2Γ , as shown in the inset of Fig. 9. From this width the quasiparticle
lifetime can be inferred.
In practice, the interpretation of the experimental data is complicated by the presence of disor-
der, which leads to imperfect momentum conservation and a finite linewidth even in the limit of
zero temperature. This extrinsic contribution, however, is expected to be nearly independent of
temperature, and when one subtracts it from the data one obtains values that are in reasonably
good agreement with the theory presented in this section (see Fig. 9).

3.5 The kinetic equation

Perhaps the technical centerpiece of the Landau theory of Fermi liquids is the kinetic equation,
which governs the time evolution of the quasiparticle distribution function in out-of-equilibrium
situations, such as in the presence of slowly varying external fields. The main idea is to treat
the system as an assembly of quasiparticle wave packets characterized by an average position ~r
and an average momentum ~~k (k ' kF ). The quantum mechanical uncertainties in position and
energy are assumed to be negligible on the scale of spatial and temporal variation of the external
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Fig. 9: Inset: Lorentzian lineshape of the current-voltage (I-V) relation in tunneling between
two-dimensional GaAs quantum wells. Main figure: a plot of the half-width Γ , identified with
the inverse of the quasiparticle lifetime, vs temperature for systems of different density (a resid-
ual T=0 contribution, attributed to disorder, has been subtracted). The solid line is the theoret-
ical prediction from Eq. (46) which is only applicable asymptotically. Adapted from Ref. [12].

fields. This description makes sense only if the wavevector and frequency of the external field
are much smaller than the Fermi wave vector and the Fermi energy respectively. In addition,
the thermal energy kBT must be much smaller than the Fermi energy in order that the notions
of Fermi surface and quasiparticles be well defined. Under these assumptions the quasiparticle
wave packets can be treated as classical particles, with canonical coordinates and momenta ~r
and ~~k, described by a “classical” Hamiltonian

Hcl(~r, ~~k, σ) = E~kσ − eφσ(~r, t) +
∑
~k′σ′

f~kσ,~k′σ′ δN~k′σ′(~r, t) (47)

where φσ(~r, t) is a (generally spin-dependent) scalar potential. The last term on the right hand
side of Eq. (47) describes the effect of the short-range interaction between the quasiparticles. It
has the form of a mean effective potential whose strength is controlled by the Landau interaction
function. The long-range electrostatic potential (Hartree potential) is self-consistently included
in the external field.
The equation of motion for the quasiparticle distribution function follows immediately from
Liouville’s theorem for a classical flow in phase space

∂N~kσ(~r, t)
∂t

+
1

~
∂Hcl

∂~k
·
∂N~kσ(~r, t)

∂~r
− 1

~
∂Hcl

∂~r
·
∂N~kσ(~r, t)

∂~k
=

(
∂N~kσ(~r, t)

∂t

)
coll
. (48)

The collisional time derivative on the right hand side of Eq. (48) takes into account the fact
that the evolution of the quasiparticle distribution function is affected by collision processes
that are not included in the classical mean field Hamiltonian. As discussed in previous sections,
quasiparticle collisions result in a finite lifetime of quasiparticles (τ (e)~kσ

) and quasiholes (τ (h)~kσ
)

near the Fermi surface. We can therefore write(
∂N~kσ
∂t

)
coll

= −
N~kσ
τ
(e)
~kσ

+
1−N~kσ
τ
(h)
~kσ

, (49)
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where the first term represents the rate at which quasiparticles leave the state ~kσ and the second
is the rate at which they are scattered into it. Besides the interaction contributions derived in
Section 3, the total decay rates will in general include contributions from electron-impurity and
electron-phonon scattering.
It is evident that the collisional derivative must vanish when N~kσ is the thermal equilibrium
distributionN eq

~kσ
, i.e., the Fermi-Dirac distribution with energy E~kσ (see Eq. (11)). This principle

of detailed balance leads to an exact relation between quasiparticle and quasihole lifetimes:

N eq
~kσ

τ
(e)
~kσ

=
1−N eq

~kσ

τ
(h)
~kσ

, (50)

which is satisfied (at the appropriate level of accuracy) by the formulas presented in Section 3
(see Eq. (28)). Expanding Eq. (48) to first order in the strength of the external fields we obtain
the linearized kinetic equation for the deviation of the distribution function from equilibrium.
This equation has the form

∂δN~kσ(~r, t)
∂t

+ ~v~kσ ·
∂δN~kσ(~r, t)

∂~r
+ ~v~kσ · ~F~kσ(~r, t) δ(E~kσ−µ) =

(
∂δN~kσ(~r, t)

∂t

)
coll

(51)

where v~kσ = ~~k/m∗ is the quasiparticle velocity, and

~F~kσ(~r, t) = −~∇~r
(
− eφσ(~r, t) +

∑
~k′σ′

f~kσ,~k′σ′ δN~k′σ′(~r, t)
)

(52)

is the classical force acting on the quasiparticle. This equation is the starting point for most
applications of the Landau theory of Fermi liquids.
One outstanding application of the kinetic equation is the study of the macroscopic dynamics of
the quasiparticle distribution function in the absence of external fields, leading to the prediction
of self-sustained collective modes (i.e., normal modes of oscillation of the Fermi surface) of
different symmetries. In this manner one can obtain the (long-wavelength) dispersion of the
zero-sound mode in the neutral Fermi liquid and plasmons in the electron liquid. Focusing, for
example, on plasmons, we neglect the collision term (justified, since the collision rate is much
smaller than the plasmon frequency) and notice that φσ(~r, t) is the self-consistent electrostatic
potential (Hartree potential) associated with a density fluctuation δn(~r, t) =

∑
~k′σ′ δN~k′σ′(~r, t).

We take advantage of linearity by performing a Fourier transformation with respect to the vari-
ables ~r and t in Eqs. (51) and (52). This gives us(

ω−~q · ~v~kσ
)
δN~kσ(~q, ω) + ~q · ~v~kσ δ

(
E~kσ−µ

)∑
~k′σ′

(
vq+f~kσ,~k′σ′

)
δN~k′σ′(~q, ω) = 0 , (53)

where vq = 4πe2/q2 in 3D and vq = 2πe2/q in 2D. A nontrivial solution δN~k′σ′(~q, ω) 6= 0

of this equation exists only if ω equals the plasmon frequency ωp(q). In the long wavelength
limit, q → 0, we get ωp(q) = (4πne2/m)1/2 in 3D and ωp(q) = (2πne2q/m)1/2 in 2D. Notice
that these results involve the bare electron mass m, not the quasiparticle mass, which appears
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in ~v~kσ. How did the quasiparticle mass get converted back to the bare mass? The answer is
that the Landau interaction function, acting on the self consistent solution of Eq. (53) reinstates
the bare mass according to the Galilean invariance relation discussed in section 2.5. Inclusion
of the quasiparticle collision term does not change these results (if translational and Galilean
invariance are in force), but affects the dispersion and introduces damping of the collective
modes at finite wave vector.
The other classic application of the kinetic equation for quasiparticles is the calculation of the
transport coefficients of a Fermi liquid. These are the spin diffusion constant, Ds, the shear and
bulk viscosities, η and ζ respectively, and the thermal conductivity κ. Ds is the constant of pro-
portionality between the spin current and the gradient of spin density that drives it. Similarly,
η and ζ can be viewed as the traceless and traceful components of a diffusion tensor for the
momentum density – with the momentum current being driven by a gradient in the macroscopic
velocity field. Lastly, κ is the constant of proportionality between the heat (entropy) current and
the gradient of temperature that drives it. Quasiparticle collisions, which are responsible for the
finite quasiparticle lifetime, are absolutely essential to calculate these transport coefficient. In
fact, these coefficients would all be infinite if those collisions were neglected, which of course
becomes a better and better approximation as the temperature is reduced. This counterintu-
itive result (divergence of the transport coefficients for T → 0) follows from the “asymptotic
freedom” of the Landau quasiparticles in this limit. Indeed, one can show that the transport
coefficient are qualitatively described by the following formulas

Ds ∼ v2F τs , η ∼ Sτη , ζ ∼ Bτζ , κ = ncvv
2
F τq , (54)

where S andB, are, respectively, the high-frequency shear modulus and the bulk modulus (both
on the order of nεF ) and cv is the heat capacity (per particle) of the Fermi liquid. Here τs, τη
etc... are transport relaxation times which are related to the quasiparticle lifetime (since they
all depend on the same scattering probabilities) but are not identical with it or with each other.
All these scattering times diverge in the limit of zero temperature as 1/T 2 in three dimensions.
In two dimensions the situation is more delicate as the scattering times associated with spin
diffusion and thermal conductivity diverge as 1/(T 2 lnT ), while the scattering time associated
with the viscosity continues to diverge as 1/T 2 [14]. This is due to the fact that the scattering
processes that are responsible for the logarithmic divergence have zero momentum transfer and
therefore do not contribute to the transfer of momentum within the liquid. The divergence is
eventually cut off when the quasiparticle mean free path becomes comparable to the macro-
scopic size of the system, at which point the coefficients lose their hydrodynamic significance.
You might wonder why the density diffusion constantDn does not appear in our list of transport
coefficients. The answer is that in the absence of impurities or external potentials quasiparti-
cle collisions cannot change the total particle current: this leads to an infinite conductivity and
then, via the Einstein relation – which connects the conductivity to the diffusion constant – to an
infinite diffusion constant! The physical interpretation of this surprising result is that a density
imbalance in a Fermi liquid does not relax via a diffusion process, but through the emission of
sound waves.
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The transport coefficients (or, equivalently, the transport relaxation times defined by Eq. (54))
can be calculated with the help of the kinetic equation. For the neutral Fermi liquid 3He this was
first done by Abrikosov and Khalatnikov [13]. Explicit formulas for the transport coefficients
in terms of angular averages of quasiparticle scattering probability are known for the three-
dimensional case: see Eqs. (1.171) and (1.151) of Ref. [3]. The scattering probability is obtained
from the Fermi golden rule, just as in the calculation of the quasiparticle lifetime. We refer the
interested reader to Ref. [3] for details.

4 Microscopic basis of the Landau theory of Fermi liquids

Landau guessed the theory of interacting Fermi liquids largely on a basis of physical intuition.
Shortly afterwards, it was shown that indeed the theory could be “derived” (or, more accurately,
shown to be self-consistent) from the microscopic Hamiltonian under certain assumptions of
continuity and regularity. Nowadays the Landau theory is recognized as an early example of
renormalization, whereby the exact many-body Hamiltonian is transformed, through recursive
elimination of fast degrees of freedom, into an effective Hamiltonian of weakly interacting
quasiparticles. A “poor man” version of this theory, based on seminal work by Hamann and
Overhauser [15], can be found in Section 8.6 of Ref. [2].
Without going into technical details, which can be easily found in the literature (including
Ref. [2]), we summarize the main correspondences between the Landau theory and the micro-
scopic theory.

4.1 Existence of quasiparticles and self-energy

The existence of long-lived quasiparticles, with an inverse lifetime that scales as |k−kF |2 for
k → kF corresponds to the fact that the microscopic retarded Green function has the form

G(~k, ω) = G(reg)(~k, ω) +
Z~k

ω − E~k~ + i
2τ~k

, (55)

where G(reg)(~k, ω) is a regular function of ~k and ω, and we have omitted the spin dependence
for simplicity. Thus, the retarded Green function is dominated by a single pole of strength
Z~k (0 < Z~k < 1) at the complex frequency z =

E~k
~ −

i
2τ~k

in the lower half of the complex
plane (as required by causality). The imaginary part of the frequency at the pole implies an
exponential decay, with a characteristic time τ~k, of the squared amplitude of a plane-wave state.
The quasiparticle energy, the strength of the pole (also known as the renormalization constant),
and the plane-wave lifetime are determined by the (retarded) self-energy function11 as follows

E~k = ε~k +ReΣ ret
σ (~k, E~k) , (57)

11We remind the reader that the self-energy is defined as the difference between the inverse noninteracting Green
function and the inverse Green function:

Σ = G−10 −G−1 (56)
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Fig. 10: Behavior of the plane-wave states average occupation number in three dimensions at
rs = 2 (solid line) and rs = 5 (dashed line). The jump of nk at k = kF is the renormalization
constant ZkF .

where ε~k is the bare particle energy,

Z~k ≡
(
1− 1

~
∂

∂ω
ReΣ ret(k, ω)

∣∣∣∣
~ω=E~k

)−1
, (58)

and
~
2τ~k
≡ Z~k

∣∣ ImΣ ret(k, E~kσ)
∣∣ . (59)

Crucially, the validity of the Fermi liquid scenario requires that

ImΣ ret(~k, E~kσ) ∼ −a
(
k−kF

)2
, (60)

where a is a positive constant, and the approximate equality ∼ disregards the possibility of log-
arithmic terms ln |k−kF |. Microscopic calculations of the self-energy confirm that the asymp-
totic form (60) is, at the very least, self-consistent, i.e., the presence of a pole of the form (55)
in the Green function guarantees the vanishing of the imaginary part of the self-energy, which
in turn implies a divergence of the quasiparticle life time.12

The existence of an infinitely sharp quasiparticle peak of strength Z~kσ in the spectral function
(defined as the negative of the imaginary part of the retarded Green function) implies that the
momentum state occupation number n~k has a discontinuity as a function of k at k = kF , the
magnitude of the discontinuity being given by ZkF . This is shown in Fig. 10. The fact that
the discontinuity occurs precisely at k = kF where kF is related to density by the ideal gas
relation, is known in the literature as Luttinger’s theorem. Notice that Z~k and the ground state
occupations n~kσ are “invisible” in the Landau theory of Fermi liquids, which abstracts from
the detailed structure of the ground state. On the other hand, all the parameters of the Landau
theory can be calculated from the microscopic theory following well-defined procedures. For

12It must be noted that the plane-wave lifetime of Eqs. (55) and (59) is not exactly the same as the lifetime of a
quasiparticle and a quasihole. The inverse of the former differs from the inverse of latter by factors 1− n~k and n~k
respectively. See Ref. [2] for details.



2.28 Giovanni Vignale

example, the effective mass of the quasiparticle works out to be

m∗

m
=

1

ZkF

(
1 + m

~2kF
∂
∂k

ReΣ ret(k, µ)
∣∣∣
k=kF

) . (61)

The results of several microscopic calculations of the effective mass of quasiparticles in the 2D
and 3D electron gas are presented and critically discussed in Chapter 8 of Ref. [2].

4.2 Landau interaction function and scattering amplitude

What about the Landau interaction function? What is its representation in the microscopic
theory? Considering Eq. (7) and the microscopic expression, Eq. (57), for the quasiparticle
energy, combined with Eq. (58) for the renormalization constant we arrive at

f~k,~k′ = Z~kZ~k′
δΣ(~k, E~k)
δN~k′

, (62)

where we continue to ignore the spin for simplicity. The problem with this expression is that the
quasiparticle occupation number N~k′ is not a well-defined microscopic quantity. However, one
can calculate the change in the Green function that follows from a change in the corresponding
occupation number n~k′ of the non-interacting ground state from which the interacting state
is supposed to arise under adiabatic switching-on of the interaction. According to Landau’s
hypothesis of continuity, such a change will result in an identical change of the quasiparticle
occupation number, while at the same time propagating through the expression for the self-
energy to produce the desired δΣ. The analysis is quite complex (see Section 8.5.5 of Ref. [2]
for details) but the final result is simple, at least formally:

f~k,~k′ = Z~kZ~k′ limω→0
lim
q→0

Γ~kE~k;~k′E~k′
(q, ω) , (63)

where ~k and ~k′ lie on the Fermi surface and Γ~kE~k;~k′E~k′
(q, ω) is the probability amplitude for

the two particles with momenta ~k and ~k′ and energies E~k and E~k′ respectively to scatter against
each other with momentum and energy transfers q and ω, where both q and ω tend to zero in
the order specified by Eq. (63) (i.e., q must tend to zero before ω does). Notice that this is the
scattering amplitude between two particles embedded in the many-body system. As such it has a
very complex diagrammatic representation but it can, in principle be calculated by the methods
of many-body theory. In the simplest approximation, i.e., first order perturbation theory, the
calculation becomes trivial and we find

f~k,~k′ = −v~k−~k′ , (64)

where v~k−~k′ is the Fourier transform of the Coulomb interaction.13

13This formula is valid for same-spin electrons. If the electrons have opposite spin the first order interaction is
zero.
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The Landau interaction function f~k,~k′ , from which the Landau parameters are extracted, should
not be confused with the effective interaction between quasiparticles which is used to calculate
the quasiparticle lifetime and the collision term in the kinetic equation of Section 3.5. The
essential difference, already evident from Eq. (63), is that the Landau interaction function is
the limit of the microscopic scattering amplitude for zero momentum and energy transfer, with
the additional specification that the momentum transfer q tends to zero before the frequency
transfer ω. In contrast to this, the effective interaction determines the scattering amplitude for
all momentum transfers such that 0 < q ' 2kF , which connect two wave vectors on the Fermi
surface and, again, for small energy transfers ω � εF , such that the quasiparticles remain close
to the Fermi surface. Even in the limit of small q this is different from the Landau interaction
function because the energy transfer goes to zero first!14

This leaves us with the problem of extending the Landau interaction function to finite q, thus
generating what is known as an effective interaction between quasiparticles [16–19]. This is
an extremely difficult task, even if one limits oneself to seeking a “local” interaction, which
depends only on q and ω and is averaged over the quasiparticle momenta ~k and ~k′ over the
Fermi surface. A very useful concept in this context has been that of the dimensionless many-
body local field factors, denoted by Gs(a)(q). The local field factors were originally introduced
to generate approximate expressions for the density and spin response functions of a Fermi
liquid beyond the random phase approximation: this concept is described in detail in Section
5.4 of Ref. [2]. It is now understood [17] that the local field factors are in a very precise sense
the finite-q extension of the ` = 0 Landau parameters:

− lim
q→0

v(q)Gs(a)(q) = f
s(a)
0 , (66)

where v(q) is the Fourier transform of the bare interaction (Coulomb interaction for an electron
liquid).15 Armed with this understanding and with a decent microscopic calculation of the
local field factors (see Ref. [2], Appendix 11) it is relatively easy to construct a local effective
interaction appropriate to the problem at hand.16 The most famous effective interaction between
quasiparticles is perhaps the Kukkonen-Overhauser (KO) interaction [16], which is especially
suitable for calculations of the superconducting transition temperature. The explicit form of this
interaction is

V s
eff(q, ω) = v(q) +

(
v(q)(1−Gs(q))

)2 χ0(q, ω)

1− v(q)(1−Gs(q))χ0(q, ω)
, (67)

14It can be shown that the relation between the amplitudes calculated for q → 0 with these two different orders
of limits is

A
s(a)
` = f

s(a)
` /(1+F

s(a)
` ) (65)

where F s(a)` are the Landau parameters and As(a)` is the `-th component in the Legendre-polynomial expansion of
the q → 0 limit of the scattering amplitude in the symmetric (s) or antisymmetric (a) spin channel.

15The quantity −v(q)Gs(a)(q), often generalized to finite frequency, is known in the density functional theory
literature as the “exchange-correlation kernel”.

16Different effective interactions arise depending on whether one consider the interaction between two particles
extraneous to the Fermi liquid, e.g., two charged impurities in the electron gas, an extraneous particle and a
quasiparticle, or two quasiparticles. Even in the latter case differences arise depending on if one wants to calculate
a superconducting transition temperature or a self-energy, since different classes of diagrams are involved in the
two cases.
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for the spin-symmetric channel (s), and

V a
eff(q, ω) =

(
v(q)Ga(q)

)2 χ0(q, ω)

1 + v(q)Ga(q)χ0(q, ω)
, (68)

for the spin antisymmetric channel (a), where χ0(q, ω) is the well-known Lindhard function,
i.e., the density/spin response function of the non-interacting electron gas, and V s(a)

eff ≡ V ↑↑eff +

(−)V ↑↓eff . An application of the KO interaction to a study of superconductivity in an electron-
hole liquid can be found in Ref. [18]. For a very recent application of this interaction to the
study of superconductivity in elemental metals see Ref. [19].

5 Fermi liquid of massless Dirac fermions

We now discuss some peculiarities of the Fermi liquid formed by “massless Dirac fermions”
(MDF). MDFs occur near the crossing of two bands, such as occurs in a single layer of C
atoms (graphene) and in numerous Dirac and Weyl semimetals: the band dispersion is linear
in k near the crossing point, which we set at k = 0 (see Fig. 11): εk = ~vk where v is the
fermion velocity, independent of momentum. A Fermi liquid is realized when the Fermi level
crosses one of the bands (say the upper one) in the vicinity of the crossing. The existence of
a non-vanishing Fermi wave vector kF , related to the density of electrons in the upper band
by the usual Fermi liquid relation, k2F = 2πn, and a non-vanishing Fermi energy εF = ~vkF ,
are sufficient to establish the existence of a normal Fermi liquid at sufficiently low temperature
kBT � εF . This is because the structure of the low-energy excitations in the MDF system is
indistinguishable from that of the low-energy excitations in an ordinary parabolic band:

εk = εF + ~v
(
k−kF

)
= εF + ~

kF
mc

(
k−kF

)
, (69)

where mc ≡ ~kF/v, also known as the “cyclotron mass”, plays the same role as the bare
electron mass for parabolic bands. Unlike the bare electron mass, however, mc is density-
dependent, scaling as n1/2 in 2D, and thus vanishing as the Fermi level approaches the crossing
point for kF → 0. In view of this correspondence, we expect the Fermi liquid concept to be
robust in this new situation, in particular we expect to find long-lived quasiparticles with an
effective mass m∗ that is somewhat different from mc due to the presence of electron-electron
interaction. Nevertheless there are some important differences to be kept in mind. We list them
below.

1. First of all, the range of validity of the Fermi liquid theory shrinks to zero as the Fermi en-
ergy approaches the crossing point of the bands, also known as the “Dirac point”. When
εF = 0 there is no Fermi surface and no Fermi liquid. The length and time scales provided
by k−1F and ~ε−1F diverge, and the system becomes scale-invariant (or quantum-critical).
The only energy scale left is kBT itself and the inverse lifetime of electrons and holes
must be proportional to kBT , which is of the same order of magnitude as the energy of
the excitations. This defines the so-called “Planckian regime”, and we see that the whole
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Fig. 11: Band dispersion for massless Dirac Fermions in the vicinity of the crossing point
(Dirac point). Also shown is the Fermi level which defines our Fermi liquid.

concept of quasiparticle falls apart in this regime. The nature of the quantum critical
state at εF = 0 (also known as the charge neutrality point) is not completely understood
at present. Strong electron-electron interactions have been dealt with by a hydrodynamic
description, where individual particles are superseded by collective variables such as den-
sity and current. Alternatively, it has been suggested that electrons and holes in the upper
and lower band bind together to produce a gapped state known as “excitonic insulator”.

2. Although, for finite kF , the structure of the low-energy excitations remains the same as in
the standard parabolic case, there are some important differences in the structure of higher
energy excitations. In particular, the presence of electrons in the fully occupied lower
band cannot be ignored, as it gives a significant contribution to the Fermi liquid properties.
These contributions fall into two categories: (i) contributions to the Landau interaction
function arising from interactions between the electrons near the Fermi surface and those
in the fully occupied bands, (ii) contributions to the quasiparticle lifetime arising from
interband transitions at energies lower than or comparable to the Fermi energy.

Concerning (i) it must be noted that the relative strength of the electron-electron interac-
tion, as measured by the ratio of the potential energy to the kinetic energy, is no longer
density-dependent: rather it becomes a fixed constant α = e2

~v of order 1. However, there
is now another measure of the importance of interaction effects, and that is Λ/kF where
Λ is an ultraviolet cutoff wave vector, which determines the largest momentum of the
occupied states for which the linear (massless) band model is still valid. This cutoff is
poorly defined, but is expected to be of order 1/a, where a is the lattice constant. So even
though α is constant, interaction effects become stronger as kF tends to zero, which is
similar to the familiar situation, but leads to very different phenomenology in this case.
For example it can be shown that the inverse compressibility, proportional to ∂µ/∂n,
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is increased by interactions rather than decreased [20]. This happens because when the
electronic density is increased the Fermi level in the upper band moves farther away from
the lower band: the negative exchange energy that is lost due to this effect outweighs the
negative exchange energy that is gained by having more electrons in the upper band. The
same phenomenon is observed for the spin susceptibility, which is now suppressed, rather
than enhanced, by interactions.

Concerning point (ii), a detailed analysis presented in Ref. [21] shows that the quasipar-
ticle lifetime (in the upper band, +) is given by

1

τ
(e)
k,+

' εF
~

1

πN(0)

(
ξk,+
εF

)2

ln

(
Λ

ξk,+

)
, (70)

at zero temperature and

1

τ
(e)
k,+

' εF
~

π

2N(0)

(
kBT

εF

)2

ln

(
Λ

kBT

)
, (71)

at finite temperature. This is essentially the Giuliani-Quinn result [11] discussed earlier in
Section 3.3. Three main differences with respect to the classic calculation for an ordinary
two-dimensional electron gas have been identified in Ref. [21]: i) a simple Fermi golden
rule approach with statically screened Coulomb interactions is not viable in graphene as
it yields logarithmically-divergent intra-band scattering rates due to the collinear scatter-
ing singularity; ii) the leading-order contribution to the quasiparticle decay rate in the
low-energy and low-temperature limits is completely controlled by scattering events with
small momentum transfer: the 2kF contributions are suppressed by the chiral nature of
massless Dirac carriers in graphene; iii) because of point ii), the leading order contri-
bution to the quasiparticle decay rate is completely independent of the strength of the
background dielectric constant ε: the result is therefore universal in that it does not de-
pend on the substrate on which graphene is placed.

3. As the Fermi level approaches the crossing point with decreasing density, the Fermi liquid
concept remains in force as long as kF > 0, but the effective mass of quasiparticles is
found to be logarithmically suppressed relative to the noninteracting cyclotron mass [22].
Another way of saying this is that the Fermi velocity v is renormalized to v∗(kF ) > v

where v∗(kF ) diverges logarithmically in first order perturbation theory as kF → 0:

v∗(kF )

v
= 1 +

α

4
ln

(
Λ

kF

)
. (72)

While an increase of the velocity, leading to a reshaping of the bands near the Dirac point,
has been experimentally observed, the divergence of v∗(kF ) poses a problem of legiti-
macy for the microscopic perturbation theory on which this prediction is based. Clearly
a non-perturbative approach is needed to analyze the kF → 0 limit. This approach is
provided by the renormalization group, which is reviewed in Ref. [22], and generally
confirms the predictions of the weak coupling theory.
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6 Non-Fermi-liquid behavior

6.1 Disordered electron liquid

Thus far we have only considered translationally invariant electron liquids. But real electron
liquids are inevitably subjected to potentials that break translational invariance, such as the
periodic potential in a crystal lattice, or the potential from randomly distributed impurities.

A general approach to inhomogeneous interacting Fermi liquids begins with a consideration
of the exact eigenstates |φα〉 of a single particle – an electron in our case – in the external
potential. These are Bloch waves in a perfectly periodic crystal lattice, but have no definite
symmetry in the presence of a random impurity potential. In either case, the ground-state of
the noninteracting system is obtained by singly occupying the eigenstates with the N lowest
energies εα. The highest occupied eigenvalue defines a Fermi energy εF = εN , but not a Fermi
surface. Excited states are obtained by promoting some electrons from below the Fermi level to
above the Fermi level. All these states are described by a set of occupation numbers Nα.

We now start from one of these states, and slowly turn on the electron-electron interaction,
expecting to generate long-lived interacting states characterized by a quasiparticle distribution
Nα. But here comes an important difference. While in the homogeneous case the interaction
between quasiparticles is hindered by the Pauli exclusion principle and by the conservation of
momentum and energy, in an inhomogeneous system the constraint of momentum conservation
does not exist. It is therefore expected that the quasiparticles will interact more strongly and
decay more rapidly than in the homogeneous case. How much more rapidly? This is an es-
sential question, since the very existence of the Fermi liquid requires that the decay rate of a
quasiparticle of energy ε tend to zero more rapidly than ε−εF when ε→ εF .

The answer depends on whether the system is periodic or disordered. In periodic systems
crystal momentum (the Bloch wave vector) is conserved up to reciprocal lattice vectors. While
the occurrence of “umklapp” processes can alter the numerical value of the lifetime it does not
lead to qualitative departures from the homogeneous picture.

In disordered systems the lack of momentum conservation has more serious consequences. First
of all, if disorder is sufficiently strong, it can lead to localization of the quasiparticle states and
hence change the electrical properties of the system from metal to insulator. We will not pursue
this scenario here. Even in the weak disorder regime, i.e., for kF ` � 1, where ` is the electron
mean free path, the combined effects of disorder and interactions can be significant. Because
density fluctuations relax at a slower pace than in a perfect crystal the electrons within them stay
together for a longer time and hence interact more strongly: this “electron loitering” leads to an
enhanced quasiparticle decay rate. In three dimensions the decay rate goes as 1

τ (e)
∼ (ε−εF )3/2

and 1
τ (e)
∼ (kBT )

3/2 in the limits of kBT � ε−εF and kBT � ε−εF respectively [23].
This is considerably larger than (ε−εF )2 and (kBT )

2 yet still small compared to ε−εF . In two
dimension, on the other hand, one finds 1

τ (e)
∼ (ε−εF ) at T = 0, and 1

τ (e)
∼ (kBT ) ln(kBT ) at

finite temperature [24, 23], which implies that the conventional Fermi liquid picture is, at best,
marginally valid.
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In concomitance with the enhancement of the quasiparticle decay rate, the single-particle den-
sity of states, N(ε), is reduced in the vicinity of the Fermi level, going as (ε−εF )1/2 in three
dimensions, and | ln(ε−εF )| in two dimensions [25]. These results are based on perturbation
theory, and therefore cannot be trusted when the correction to the unperturbed density of states
becomes too large (e.g., in two dimensions, for ε → εF ). Notice, however, that a suppression
of the density of states at the Fermi level is also predicted in the limit of strong disorder, even
though the physics appears to be quite different in that regime. Other thermodynamic and trans-
port properties, such as the heat capacity and the conductivity, show non-analytic behavior in T
at low temperature. Remarkably, there is no non-analytic correction to the compressibility.17

Going beyond perturbation theory, in the true spirit of the Landau theory of Fermi liquid, has
turned out to be an extremely difficult task, and the problem remains unsolved to date (for a
relatively recent review, see Ref. [27]). Suffice it to say that the scattering amplitudes in the
antisymmetric spin channel have been predicted to diverge in the low energy sector, suggesting
a diverging spin susceptibility associated with the formation of ferromagnetic domains at the
length scale of the divergence. At the same time the inverse conductance is seen to initially
increase, as if the system were going towards an insulating state, but it then reaches a maximum
and begins to decrease as the divergence of γa takes over. These findings show very clearly
that the noninteracting theory of localization needs serious revision in the presence of electron-
electron interactions.

6.2 Luttinger liquid

An interesting phenomenon, known by the colorful name of “orthogonality catastrophe”, lies at
the heart of the distinction between Fermi liquids and non Fermi liquids. Imagine injecting an
extra electron into the ground-state of a strongly correlated N -electron system. Since the new
electron lacks the appropriate correlations with the pre-existing electrons, the state of the N+1-
electron system after the injection is essentially orthogonal to the ground-state. In mathematical
terms, the orthogonality catastrophe implies that the renormalization constant Z, defined in
Section 4, vanishes in the thermodynamic limit.18 We take this to be the defining feature of a
non-Fermi liquid state.
A classic example of non-Fermi liquid behavior is the so-called “Luttinger liquid” [28], which
is realized in quasi-one dimensional electronic systems such as Bechgaard salts, TTF-TCNQ,
and carbon nanotubes, as well as in confined systems of fermionic cold atoms. The reduced
effective dimensionality of these systems hinders single particle motion to the point that the
particles must be regarded as strongly correlated even when their interactions are weak.
An immediate consequence of this situation is the disappearance of the quasiparticle δ-function
peak in the spectral function A(kF , ω) at the chemical potential: there are no single-electron

17 It should mentioned, for completeness, that additional non-analytic corrections to the density of states and
the specific heat arise when the transverse electromagnetic interaction between the electrons is taken into account.
See Ref. [26] for details.

18It can be shown that the renormalization constant is the square of the overlap between the excited state of the
system immediately after the injection of an electron and the ground-state of the system.
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Fig. 12: Schematic behavior of the local spectral function at A(kF , ω) for a Luttinger liquid in
the weak coupling regime (thin line) and in the strong coupling regime (thick line). In both cases
A(kF , ω) ∼ 1

|ω−µ/~|ν for ω → µ/~, with the exponent ν tending to 1 for weak interactions and
becoming negative for strong interactions. Notice the absence of the quasiparticle δ-function
peak at ω = µ/~.

quasiparticles. For weak interactions the δ-function peak is replaced by a power-law diver-
gence for ω → µ/~. With increasing coupling strength a sort of energy gap develops, whereby
A(kF , ω) vanishes with a power law for ω → µ/~ as shown in Fig. 12. The position of the
lateral maxima in the spectral function is a rough measure of the energy of the disturbance cre-
ated by the injection of the new electron in the liquid, while the “width” of these maxima is
inversely proportional to the time needed for the many-electron system to adjust to the presence
of the new electron. Another consequence of the vanishing of Z is that the plane-wave occupa-
tion number nk is no longer discontinuous at k = kF , even though a singularity persists in its
derivatives with respect to k.
Luttinger liquids exhibit anomalous transport properties. For example, the electrical conduc-
tivity is expected to vanish at zero temperature. One might find this not so surprising since it
is known that in a one dimensional system any amount of random disorder causes localization
of the one-electron states, and hence a vanishing conductivity at T = 0. But, in the Luttinger
liquid any perturbation that breaks translational invariance, e.g., even a single impurity, leads
to an insulating state at T = 0. The physical reason for this effect is that the perfectly clean
system is on the verge of spontaneously forming a charge density wave (CDW) of wave vector
2kF . Under these conditions even a single impurity can pin down an insulating CDW state.

6.3 Fractional quantum Hall liquid

It is still an open question whether non-Fermi liquid behavior occurs in more than one di-
mension. Although many theories suggest that this should be the case, for example in the
normal phase of the superconducting cuprates, the experimental evidence remains somewhat
ambiguous. A notable exception is the fractional quantum Hall liquid which occurs in the
two-dimensional electron liquid at high magnetic field. This system presents the most radical
departures from Landau Fermi liquid theory so far encountered in any condensed matter system,
and the experimental evidence is extremely strong.
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The basic reason for this exotic behavior is the quenching of the kinetic energy at high magnetic
field. The kinetic energy of an electron in a magnetic field B is quantized in units of ~ωc (where
ωc =

eB
mc

is the cyclotron frequency) so that its admissible values are

εn =

(
n+

1

2

)
~ωc (73)

where n is a non-negative integer. These energy levels are known as Landau levels. The number
of degenerate states in each Landau level is proportional to the magnetic field and to the area
(A) of the system, and is given by

NL =
eBA
hc

. (74)

Thus, in the limit of large magnetic field all the electrons fall in the lowest Landau level and
the kinetic energy becomes a constant N ~ωc

2
, where N is the number of electrons. The key

parameter that controls the properties of the system is the filling factor

ν =
N

NL

, (75)

which is less than 1 for a fractionally filled lowest Landau level. In this situation, the non-
interacting ground-state is highly degenerate because the electrons can be distributed in many
different ways among orbitals of the lowest Landau level. The degeneracy is removed, however,
by the interaction. Under these conditions, the concept of an adiabatic connection between non-
interacting and interacting states, which is central to the Landau theory of Fermi liquids, has no
meaning, since the non-interacting limit of an interacting state is a completely ill-defined notion.
Indeed, the incompressible quantum Hall liquid state, introduced by Laughlin [29] to explain
the quantum Hall effect at filling factors of the form ν = 1

2k+1
, where k is a positive integer, is

not connected in any obvious way to a non-interacting state. The many-body wave function that
describes it has multiple zeroes (of order 2k+1) on the hypersurfaces of configuration space on
which two electrons come in contact: in this sense, the zeroes of the wave function are “bound”
to the particles. These multiple zeroes are far more powerful than the simple zeroes required by
the Pauli exclusion principle in a non-interacting, and are ultimately responsible for giving the
Laughlin state a particularly low interaction energy.
An exotic connection to a non-interacting state continues to exist, however, as has been pointed
out by Jain, based on the beautiful idea of composite fermions [30]. Composite fermions are
constructed by attaching to each electron an infinitely thin flux tube carrying an even number 2k
of magnetic flux quanta Φ0 ≡ hc

e
. These composite particles, like the original electrons, are sub-

ject to the external magnetic field B and interact with each other via the Coulomb interaction.
The vector potential produced by the magnetic flux tubes exerts no force on the particles, and
therefore does not contribute to the particle-particle interaction. When two composite particles
are adiabatically interchanged along a path that does not enclose other particles the wave func-
tion is multiplied by an Aharonov-Bohm phase factor eiπ(2k+1) = −1: this indicates that the
composite particles are fermions and the problem of interacting composite particles is math-
ematically identical to the original problem of interacting electrons. While the transformed
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problem appears at first sight more difficult than the original, the advantage of this description
appears when one introduces a mean field approximation. To this end, the fictitious magnetic
fluxes attached to the particles are spread out, creating a uniform and constant magnetic flux
proportional to the particle density. This average magnetic flux combines with the external
physical flux, yielding an effective flux

B∗A = BA− 2kΦ0N (76)

where the flux tubes have been assumed to be antiparallel to the external field for k > 0 and
parallel for k < 0. The composite fermions feel the effective field B∗ and their effective filling
factor ν∗ is therefore given by (see Eqs.(74), (75) and (76))

1

ν∗
=

1

ν
− 2k . (77)

Thus, by cleverly choosing the values of 2k and ν, it is possible to convert a strongly-correlated
problem of electrons at fractional filling ν into a weakly correlated problem of composite
fermions at integral filling factor ν∗. For example if ν = 1

3
and 2k = 2, then we have

ν∗ = 1, which corresponds to a full Landau level of composite fermions. But the non-interacting
ground-state at integer filling factor is perfectly well defined (one simply has to completely fill
an integer number of Landau level) and provides a suitable starting point for an analytic continu-
ation when the interactions are turned on. Although this conversion is inspired by a questionable
mean field approximation, it provides a conceptual framework for constructing correlated wave
functions of excellent quality for electrons starting from uncorrelated wave functions for com-
posite fermions. The composite fermion picture also establishes a beautiful connection between
the seemingly different phenomena of the integral and fractional quantum Hall effects. Accord-
ing to this picture, the fractional quantum Hall effect of electrons is nothing but the integral
quantum Hall effect of composite fermions.
The special case of a half-filled Landau level (ν = 1

2
) provides an extreme example of the

power of the composite fermion idea. In this case, Eq. (77), with 2k = 2, yields ν∗ = ∞,
implying that the composite fermions experience no magnetic field on the average (i.e., the
number of occupied Landau levels of composite fermions is infinite). If the mean field approx-
imation makes sense one would then expect to see here some of the characteristic signatures
of a two-dimensional Fermi liquid, such as a two-dimensional Fermi surface [31]. In fact, sur-
face acoustic wave propagation experiments have provided considerable evidence in support of
this prediction. However, one must keep in mind that the “Fermi liquid” behavior is limited to
density and current response properties: it certainly does not apply to single-particle properties.
For example, tunneling experiments show a pseudogap in the spectral density of one-electron
excitations, characteristic of an “orthogonality catastrophe”, and no sign of the quasiparticle
peak characteristic of an ordinary Fermi liquid.
The edge of a 2D electron liquid at high magnetic field provides yet another example of non
Fermi liquid behavior. It can be shown that the collective oscillations of the density in such an
edge are dynamically equivalent to the collective oscillations of a chiral Luttinger Liquid [32],
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i.e., a Luttinger liquid in which, after diagonalizing the electron-electron interaction, only one
half of the bosons – those propagating to the right or those propagating to the left – are retained.
Unlike previous putative realizations of the Luttinger liquid paradigm, the edges of the 2D elec-
tron liquid are essentially free of disorder effects and, more importantly, the Luttinger liquid
coupling constant coincides with the bulk filling factor ν. This has allowed a rather detailed
experimental verification of the non-universal exponents in the power-law decay of the corre-
lation functions of the Luttinger liquid. Studies of the tunneling current between edges in the
fractional quantum Hall regime have also provided the first convincing evidence of fractionally
charged excitations in condensed matter systems.
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1 Introduction

A quantum impurity model describes a localized, discrete quantum system, the impurity, cou-
pled to noninteracting excitations with a continuous (non-discrete) excitation spectrum, the
bath. Such models were first invoked in the 1960s to explain certain anomalies in the resis-
tivity of magnetic alloys, where the impurities are localized magnetic moments (or localized
spins, for short). In subsequent decades, quantum impurity models turned out to be relevant in
several other contexts, including transport through quantum dots and nanotubes, whose discrete
energy levels act as impurities; dissipation and decoherence of qubits, described as impurities
coupled to bosonic baths; and dynamical mean field theory, where a single lattice site is viewed
as an impurity coupled to a self-consistently determined bath. This lecture aims to introduce
the physics of quantum impurity models from a renormalization group perspective. By way of
introduction, we begin with some historical remarks.
In 1934, de Haas, de Boer and van den Berg [1] discovered an unexpected phenomenon when
measuring the resistance of gold as a function of temperature, ρ(T ): it showed a minimum at
T = 3.70 K, whereas it had been expected that the resistance would decrease monotonically
with decreasing temperature as phonons freeze out, reaching its smallest value at T = 0. The
fact that ρ(T ) instead turns upward once T drops below 3.70 K indicates that in this regime
the electron scattering rate increases with decreasing temperature—a finding that was very sur-
prising at the time. In subsequent years, similar resistance minima were found in numerous
so-called dilute magnetic alloys: metals such as Cu, Ag, Au containing a small concentration
of magnetic impurities such as Cr, Mn, Fe.
The origin of the resistance minima observed for magnetic alloys remained puzzling until 1964,
when Kondo offered an explanation [2]. He considered a model, since known as the Kondo
model, describing a dilute concentration of localized spin-1/2 impurities immersed in a metallic
conduction band, with a spin-exchange coupling between the localized spins and the conduction
band. This coupling causes spin-flip scattering events: when a conduction electron scatters off
a localized spin, the spin of both can flip. Kondo computed the corresponding scattering rate
to lowest nontrivial order in the exchange coupling, and found that it increases with decreasing
temperature, causing the resistance ρ(T ) to likewise increase. This explained the resistance
minimum.
Moreover, Kondo found that the scattering rate, γ(T ), increased logarithmically with decreasing
T , like ln(D/T ), where D is a large energy scale such as the bandwidth of the conduction
band. This meant that while he had resolved an experimental puzzle, he had simultaneously
discovered a theoretical one, which came to be known as the Kondo problem: what happens
to the scattering rate in the limit T → 0? The perturbative result, implying a logarithmic
divergence, clearly can not be trusted in this limit.
To answer this question, nonperturbative methods were called for. Over the years, a wide variety
of approaches were applied to the Kondo problem, including the numerical renormalization
group (NRG) [3, 4], the Bethe Ansatz [5, 6], conformal field theory [7], bosonization [8, 9],
and Monte Carlo methods [10]. As a result, the answer to the above question is now very well
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established: the scattering rate γ(T ) approaches a constant value for T → 0, because the local
spin is screened by conduction electrons to form a spin singlet. The screened singlet acts just
like a static (i.e. nonmagnetic) impurity, off which other electrons scatter very strongly, albeit
without flipping their spin. The screening of a localized spin by conduction electrons has come
to be known as the Kondo effect.

The crossover, with decreasing T, from an unscreened spin to a spin singlet is a paradigmatic
example of a renormalization group (RG) flow between two RG fixed points. The goal of these
notes is to elucidate the physics of quantum impurity models from such an RG perspective.

In the following sections, we will introduce two paradigmatic models describing spin screening:
the single-impurity Anderson model and the Kondo model; explain why a perturbative treat-
ment fails at low temperatures; describe Wilson’s numerical renormalization group approach
for reaching low temperature; and discuss various physical quantities exhibiting signatures of
spin screening. In the final section, we briefly discuss a model that does not show full spin
screening—the two-channel Kondo model. We set ~ = 1 and kB = 1 throughout.

2 Single-impurity Anderson model: local moment formation

In 1961, P.W. Anderson introduced a “highly simplified” model, since known as the single-
impurity Anderson model (SIAM), to explain the formation of local moments in magnetic al-
loys. In such systems, the magnetic impurities have d or f orbitals that are strongly localized,
yet nevertheless hybridize with the host metal, in such a manner that they behave as localized
spins (or magnetic moments) acting as dynamical degrees of freedom. A fully realistic descrip-
tion is very challenging, since d or f shells typically host several electrons, with strong local
Coulomb interactions. Anderson argued that the essential physics could be captured by con-
sidering just a single, local level rather than an entire shell. He thus studied the Hamiltonian
HSIAM = Hbath +Hloc +Hhyb, with

= 0Fε

dε

U+dε

∆

∆

kε

kv

kv

Hbath =
∑

ks

εkn̂ks , n̂ks = c†kscks , (1a)

Hloc =
∑

s

(
εd − 1

2
hs
)
n̂ds + Un̂d↑n̂d↓ , n̂ds = d†sds , (1b)

Hhyb =
∑

ks

vk
(
c†ksds + d†scks

)
. (1c)
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Here, Hbath describes a band of free (noninteracting) electrons with spin s ∈ {↑, ↓} and energy
εk (k is a continuous momentum index),Hloc describes a discrete, localized level with energy εd,
spin s, Zeeman splitting h if a magnetic field is applied (we set gµB = 1), and Coulomb energy
cost U if the level is doubly occupied. Hhyb describes hybridization between the d level and the
conduction band, allowing electrons to hop back and forth between the two with amplitude vk
(we choose it real and constant, vk = v). As a result, the d level acquires a finite width, ∆.
Since Hbath and Hhyb are quadratic, the conduction band can be integrated out, in principle. One
then finds that the dependence of the d level dynamics on bath parameters enters only via the
hybridization function

∆(ω) =
∑

k

v2k
ω − εk + i0+

. (2)

When this function is expressed through its spectral representation, ∆(ω) =
∫
dε Γ (ε)

ω−ε+i0+
, the

corresponding hybridization spectrum is given by

Γ (ε) =
∑

k

|vk|2 δ(ε−εk) . (3)

It characterizes how strongly a conduction band level with energy ε couples to the impurity.
Anderson assumed the hybridization spectrum to be constant near the Fermi energy; for con-
creteness, we will use the box-shaped form,

Γ (ε) = (∆/π)Θ
(
D−|ε|

)
, ∆/π = v2ν . (4)

Here, D is the half-bandwidth of a flat band centered on the Fermi energy at εF = 0, related
to the density of states per spin, ν, by ν = 1/(2D), and ∆ is the width acquired by the d level
through hybridizing with the bath. (This follows from Eq. (23) below.) Unless stated otherwise,
we measure energy in units of D = 1.
The Hilbert space of the local level is spanned by four states, |0〉, |↑〉, |↓〉, |↑↓〉, describing the
local level being empty, occupied by one electron with spin ↑ or ↓, or doubly occupied, respec-
tively. They are eigenstates of Hloc, with eigenenergies E0 = 0, E↑ = εd−1

2
h, E↓ = εd+

1
2
h,

and E↑↓ = 2εd+U, respectively. Unless stated otherwise, we will consider the case of zero
magnetic field, h = 0. We are interested in the local moment regime, where the parameters are
chosen such that the empty and doubly-occupied levels lie well above the (broadened) singly-
occupied levels; this implies E0−Es > ∆ and E↑↓−Es > ∆, i.e.

εd +∆ < 0, εd + U > ∆, (5)

Then, the average occupancy of the local level, nd =
∑

s〈n̂ds〉, is ' 1. Thus, the d level hosts a
local moment, containing a spin-up or down electron with equal probability, nd↑ = nd↓ ' 1

2
.

Transitions between these two spin states can occur via second-order hopping processes involv-
ing |0〉 or |↑↓〉 as virtual, high-energy intermediate states. Their net result is that the spin on the
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d level has flipped from |↑〉 to |↓〉, or vice versa, and a particle-hole excitation has been created
in the band. The effective spin-flip rate due to such processes is found to be

J =
v2

εd+U
− v2

εd
= − Uv2

εd (εd+U)
= − 2U∆

πεd (εd+U)
. (6)

Note that J > 0, since in the local moment regime of Eq. (5), εd < 0. If one is interested only
in the physics of these spin-flip processes, it is convenient to consider the Kondo model, which
we discuss next.

3 Kondo model: spin-exchange interaction

The Kondo model (KM) is obtained from the SIAM by projecting the latter onto the subspace
in which the local occupancy is strictly nd = 1, i.e., only the impurity states |↑〉 and |↓〉 are
considered, and focusing on the scattering of low-energy band excitations only. Formally, this
can be achieved using a so-called Schrieffer-Wolff [11] transformation (outlined in App. A).
Then, one obtains an effective Hamiltonian of the form HKM = Hbath +Hspin +Hexchange, with

Hbath =
∑

ks

εkn̂ks , Hspin = hŜzd , (7a)

Hexchange = JŜd · ŝc, ŝc =
∑

ks,k′s′

c†ks
1
2
σss′ck′s′ . (7b)

This defines the KM. Here, Hbath again describes a free conduction band; Ŝd are spin-1
2

op-
erators acting in the space spanned by |↑〉 and |↓〉; and ŝc are conduction band spin operators,
describing its spin density at the impurity site. The local spin couples to the conduction electron
spin density via an antiferromagnetic exchange interaction, J > 0, favoring an anti-alignment
of the spins of the impurity and the conduction band. The KM describes the low-energy be-
havior of the SIAM, at energy scales for which charge fluctuations involving |0〉 and |↑↓〉 are
“frozen out”, i.e., can occur only virtually.
The KM is an interesting model in its own right. It has been studied using a wide variety of
theoretical methods, both analytical and numerical, and can be regarded as thoroughly under-
stood. Below, we briefly summarize some of its salient properties. These will be elaborated in
subsequent sections.
Perturbative treatment: When the KM is used to perturbatively compute the scattering rate of
conduction electrons off the local spin in an expansion in powers of J, this rate is found to
increase logarithmically with decreasing temperature, γ(T ) ∼ J + νJ2 log(D/T ).
Effective coupling: The perturbation expansion can be expressed through an effective, T -
dependent dimensionless coupling, g(T ), having the form

g(T ) =
1

1/g0 − ln(D/T )
, g0 = νJ . (8)

At large temperatures, T ' D, the effective coupling reduces to its bare value, g0. However, it
increases with decreasing T due to the logarithm in the denominator.
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Kondo temperature: When the temperature becomes sufficiently small, the perturbative cor-
rection is no longer small and the perturbative treatment breaks down (becomes invalid). The
characteristic crossover scale at which this happens is called the Kondo temperature, TK. One
way of defining it is as the temperature at which the effective coupling diverges, g(TK) = ∞,
i.e., where the denominator in Eq. (8) vanishes, 1/g0 = ln(D/TK). This yields

TK ∼ De−1/(Jν) . (9)

The Kondo temperature is exponentially small in the exchange coupling, reflecting the fact that
g(T ) depends logarithmically on T .
Universality: For T > TK, the effective coupling can be expressed in the form

g(T ) =
1

ln(D/TK)− ln(D/T )
=

1

ln(T/TK)
. (10)

(g(T ) is not defined for T < TK, since its perturbative derivation becomes invalid.) This
beautiful expression shows that the physics depends on the bare parameters of the model, J ,
ν and D, only in the combination TK. When physical quantities, such as the resistivity or spin
susceptibility are measured for different materials, or computed using different bare parameters,
they will collapse onto a universal scaling curve when plotted as functions of T/TK.
Spin singlet ground state: The regime T < TK is beyond the reach of perturbative methods.
However, the nature of the ground state can be anticipated from the fact that the effective cou-
pling becomes large with decreasing temperature: the ground state will be such that the ex-
change interaction in the Hamiltonian, Ŝd · ŝc, is minimized. Consequently, the ground state of
the KM is a spin singlet, i.e., has total spin S = 0.
Kondo cloud: The singlet ground state can be visualized as follows: A cloud of conduction
electrons with a net spin of 1/2, the so-called Kondo cloud, binds the local spin 1/2 into a
singlet. Commonly used schematic depictions of this singlet include the following:

d c d Kξ
]

| 〉| 〉 − | 〉| 〉
[

2
√1, , .

The singlet may be viewed as a bound state with binding energy TK, albeit not a very tightly
bound one: since TK is an exponentially small energy scale, the spatial extent of the Kondo
cloud scales is exponentially large, scaling as ξK ∼ vF/TK, where vF is the Fermi velocity.
Spin screening: The effect of the Kondo cloud on the local spin is called spin screening: by
binding the local spin into a singlet, the cloud hides the presence of a local dynamical degree
of freedom from the rest of the system. This has striking consequences for the temperature
dependence of various physical quantities: as the temperature is decreased from above to below



Impurity Models 3.7

TK, their behavior changes from reflecting the presence of a free spin to reflecting its absence
(since it is screened into a singlet). Correspondingly, T � TK is called the local moment (LM)
regime, and T � TK the strong-coupling (SC) regime.
We next discuss the leading T dependence of three physical quantities in these regimes: the
impurity entropy S(T ), the impurity spin susceptibility χ(T ), and the spin scattering rate, γ(T ).
Corresponding numerical results will be shown in Sec. 5 when discussing the SIAM, whose
low-energy behavior matches that of the KM.
Impurity entropy: The high- and low-temperature limits of the impurity entropy are given by

S(T ) '




ln(2) , T � TK ,

ln(1) = 0 , T � TK .
(11)

These reflect the fact that the free, unscreened impurity has two degenerate states, |↑〉 and |↓〉,
whereas the ground state is a non-degenerate singlet.
Spin susceptibility: The static spin susceptibility, defined as the linear response of the local spin
to an applied magnetic field, has the following limiting behaviors:

χ(T ) =
d
〈
Szd(h)

〉
T

dh

∣∣∣∣∣
h=0

'





1

4T

(
1−O

(
ln(T/TK)

))
, T � TK ,

χ(0)
(
1−O(T 2/T 2

K)
)
, T � TK .

(12)

For high temperatures, it shows the Curie behavior, χ(T ) ∼ 1/T, characteristic of a free spin,
with logarithmic corrections reflecting the onset of spin screening. As spin screening becomes
stronger with decreasing temperature, the Curie behavior is cut off, and for T → 0 the suscep-
tibility approaches a constant, comparable in magnitude to 1/TK. In fact, this constant can be
used to define the Kondo temperature, setting TKχ = 1/

(
4χ(0)

)
[4,12]. (This definition has the

advantage that it does not depend on bare parameters of the model. It differs from that of Eq. (9)
by a constant of order unity, but that is no cause for concern, since the Kondo temperature in
any case is a crossover scale, whose prefactor is a matter of convention.) A rough characteriza-
tion of the crossover from high to low temperatures is provided by the Curie-Weiss expression
χ(T ) ' 1/

(
4(T+TKχ)

)
, but it should be recognized that this does not properly account for the

leading high- and low-T corrections indicated in Eq. (12).
Electron scattering: The rate at which conduction electrons scatter off the impurity has the
limiting forms

γ(T ) ∼ 1

ln(T/TK)
, T � TK , (13a)

γ(T ) = γ(0)
(
1−O(T/TK)2

)
, T/TK � 1 . (13b)

At high temperatures, it is simply proportional to the effective coupling, g(T ). Its logarithmic
growth is cut off as screening sets in, and it approaches a constant as T → 0.
Fermi liquid behavior: Once the local spin is fully screened into a singlet, the “remaining”
conduction electrons scattering off it can no longer flip their spins; instead, they merely acquire
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a phase shift. In this sense, the screened singlet acts as a static impurity, without any dynamics.
However, it is a strong scatterer: for an electron incident at the Fermi energy, the phase shift
acquired during scattering turns out to be δ(ε=0) = π/2, the maximum value possible for
scattering off static impurities.
Nozières has developed a Fermi-liquid description [13] of the strong-coupling regime. It in-
volves no dynamical impurity at all (since the latter is fully screened), only low-energy quasipar-
ticle excitations, i.e., dressed versions of the original, bare conduction electrons of the KM. The
quasiparticles experience mutual interactions that are weak and purely local, i.e., act only at the
site of the screened impurity. The parameters of the Hamiltonian are fully determined by the en-
ergy dependence of the scattering phase shift, δ(ε), and can be extracted from zero-temperature
properties of the KM (which in turn are known exactly from a Bethe Ansatz solution [5, 6]).
A perturbative treatment of these interactions readily yields the leading quadratic temperature
dependence, (T/TK)2, indicated in Eqs. (12) for χ(T ) and (13a) for γ(T ). Fermi-liquid theory,
combined with results from the exact Bethe Ansatz solution of the Kondo model [5,6], can also
be used to analytically derive the prefactors of the quadratic terms [14, 12], yielding

χ(T )

χ(0)
− 1 = −0.821 T

2

T 2
Kχ

,
γ(T )

γ(0)
− 1 = −π

4

16

T 2

T 2
Kχ

, T/TKχ � 1 . (14)

These prefactors are universal constants, characteristic of the strong-coupling regime of the KM.
They serve as useful and stringent consistency checks for numerical treatments of the KM.

4 Numerical renormalization group

A description of the crossover from high to low temperatures, and of the strong-coupling regime,
requires nonperturbative approaches [3–10]. Here, we focus on the numerical renormalization
group (NRG), developed by Ken Wilson in 1975 as a specific implementation of his general RG
ideas [3]. Although almost 50 years old, NRG remains the gold standard for solving quantum
impurity models, due to its great flexibility, ability to resolve low-energy properties with high
accuracy, and the insights it yields about the RG evolution of a system from high to low energies.
Here, we discuss NRG for the example of the SIAM; since its low-energy behavior is governed
by the Kondo model, the SIAM, too, exhibits a Kondo effect, with an exponentially small Kondo
temperature. Hence, NRG results for the SIAM also serve to illustrate the physics for the KM
discussed in the previous section. The SIAM was first treated with NRG by Krishna-murthy,
Wilkens and Wilson in 1980 [15, 16]. For NRG reviews, see Refs. [4, 17].
Since the Kondo effect involves an exponentially small energy scale, Wilson’s goal was to de-
vise a numerical scheme capable of resolving arbitrarily low energy scales. He achieved this
goal by (i) discretizing the hybridization spectrum on a logarithmic grid that becomes arbitrarily
dense around the Fermi energy; (ii) mapping the resulting discrete model onto a semi-infinite
chain, called a Wilson chain, containing the impurity at the beginning and exponentially decay-
ing hopping matrix elements along the chain; and (iii) diagonalizing this chain iteratively, while
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ω−1 1
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I−1 I−2

ξ−2

Fig. 1: (a) Box-shaped hybridization spectrum Γ (ω). (b) Partitioning of the support of Γ (ω)
into logarithmically spaced intervals, I±n. (c) Hybridization function after logarithmic dis-
cretization.

retaining only low-energy states. This procedure yields a set of approximate eigenstates of the
Hamiltonian spanning all energy scales of the model. We now discuss these steps one by one.
(i) Logarithmic discretization: The bath spectrum, defined on the interval ε ∈ [−1, 1], is dis-
cretized on a logarithmic grid. Its grid points are chosen at ±Λ−n, with n = 1, 2, 3, . . . , N ,
where Λ > 1 is a discretization parameter, and N is large enough that Λ−N is smaller than the
smallest physical energy scale of interest (e.g. T ). (In practice, a typical choice is Λ = 2, and
N is chosen such that Λ−N is below machine precision, O(10−16).) The grid defines a set of
intervals I±n, defined as I+n = [Λ−n, Λ−n+1] and I−n = [−Λ−n+1, Λ−n] (see Fig. 1(b)). Next,
one represents each interval I±n by a single state, with energy ξ±n and hopping amplitude (to
the impurity) γ±n (see Fig. 1(c)), and replaces the bath Hamiltonian and hybridization terms by

Hbath → Hstar
bath =

∑

±n,s
ξ±na

†
±nsa±ns , (15a)

Hhyb → Hstar
hyb =

∑

±n,s
γ±n(a

†
±nsds + h.c.) , (15b)

where a±ns annihilates the representative bath mode ±n with spin s. This is known as the star
geometry, because the depiction of the impurity-bath couplings in Fig. 1 is reminiscent of rays
emanating from a star. If the discrete bath energies and couplings are chosen as [18],

γ2±n =

∫

I±n

dω Γ (ω) , ξ±n =

∫
I±n

dω Γ (ω)
∫
I±n

dω Γ (ω)/ω
, (16)

then the resulting hybridization spectrum, Γ star(ε) =
∑
±n(γ±)

2 δ(ε−ξ±n), serves as a repre-
sentation of the original Γ (ε) that becomes increasingly good the lower the energy [4]. (More
sophisticated choices are available to improve the approximation, see Refs. [19–21].)
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(ii) Wilson chain: Next, the star geometry is mapped to a chain. To this end, note that in Hstar
hyb ,

the impurity operator ds couples to discretized bath modes only in the combination tdf
†
0s =∑

±n γ±na
†
±ns. (td is chosen such that f0s obeys {f0s, f †0s} = 1.) It is therefore advisable to

perform a unitary transformation from the 2N discrete modes {a±n,s} to a new set of L+1=2N

orthonormal modes containing f0s, say {f`s}, with ` = 0, 1, 2, . . . ,L . This can be achieved
by tridiagonalizing the single-particle Hamiltonian matrix for Hstar

bath +Hstar
hyb , say hstar, which has

dimensions (2N+1)×(2N+1), using Lanczos tridiagonalization. For example, for N = 2 we
obtain

hstar =




ξ+2 0 γ+2 0 0

0 ξ+1 γ+1 0 0

γ+2 γ+1 0 γ−1 γ−2

0 0 γ−1 ξ−1 0

0 0 γ−2 0 ξ−2



→ hchain =




0 td 0 0 0

td ε0 t0 0 0

0 t0 ε1 t1 0

0 0 t1 ε2 t2

0 0 0 t2 ε3



, (17)

where the central row and column of hstar represent the mode ds, and the Lanczos scheme is
initialized with the vector (0, 0, 1, 0, 0)T . Such a tridiagonalization converts Hstar

bath into a form
representing a tight-binding chain of L+1 sites,

Hchain
bath =

L−1∑

`=0

∑

s

t`
(
f †`sf`+1,s + h.c.

)
+

L∑

`=0

∑

s

ε` f
†
`sf`s , (18a)

with the impurity d level (at site ` = −1) coupled to site ` = 0 with amplitude td:

Hchain
hyb =

∑

s

td
(
d†sf0s + h.c.

)
. (18b)

The corresponding Wilson chain representation of the SIAM for a chain with largest site index
L is given by HL = Hloc +Hchain

bath +Hchain
hyb , with Hloc given by Eq. (1b).

An important consequence of logarithmic discretization is that the hopping matrix elements t`
and on-site energies ε` decay exponentially along the chain: the integration intervals I±n in
Eqs. (16) have width Λ−n(Λ−1), thus γ±n ∼ Λ−n/2 and ξ±n ∼ Λ−n, which leads to t` ∼ Λ−`/2

and ε` ∼ Λ−`. The characteristic energy scale of site ` is given by the hopping amplitude onto
that site, t`−1 ∼ Λ−(`−1)/2. Thus, Wilson chains exhibit energy scale separation: different parts
of the chain represent different energy scales, with the characteristic energy of site ` decreasing
exponentially with increasing `.
(iii) Iterative diagonalization: The energy scale separation along a Wilson chain can be ex-
ploited to numerically diagonalize HL in iterative fashion, adding one site at a time, starting
from site ` = 0. In doing so, the resolution of the low-energy part of the eigenspectrum will
increase exponentially. However, the number of eigenstates will increase exponentially, too.
Therefore, a systematic truncation scheme is needed to limit the number of eigenstates that are
computed explicitly.
Wilson proposed an energy-based truncation scheme: Suppose that H` has been diagonalized,
yielding a set of eigenstates satisfyingH`|α〉` = E`

α|α〉`. This set of eigenstates is called shell `.
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These are divided into two groups: the Nkeep lowest-lying states are kept, the remaining ones
discarded. (Typical choices for Nkeep range between 500 and 5000.) Then a new site, `+1, is
added, andH`+1 is diagonalized in the direct product space of the new site and the kept states of
shell `, whereas the contribution from its discarded states is neglected. Their neglect is justified
due to energy scale separation: the energies of the discarded, high-lying states from shell ` are
significantly larger than the characteristic energy of that shell, Ehigh

` � Λ−(`−1)/2, which in turn
is larger than the coupling to the new site, t` = Λ−`/2. The contribution of discarded states on
the eigenstates of the new shell L+1, estimated by a second-order perturbation argument, is of
order t2`/E

high
` . This is � (Λ−`/2)2/Λ−(`−1)/2 = Λ−(`+1)/2, and hence much smaller than the

characteristic energy of the new shell, Λ−`/2. Therefore, the effect of discarded states can be
safely neglected.

For a chain of total length `, Wilson’s iterative diagonalization scheme yields a set of Nkeep

eigenstates for each shell ` ≤ L . In combination, they resolve the spectrum of the Hamiltonian
on all energy scales from 1 to Λ−(L−1)/2. Conceptually, the eigenenergies of shell ` represent
the low-energy part of the finite-size spectrum of the impurity plus bath put in a spherical box
of radius R` ∼ Λ(`−1)/2, centered on the impurity. As ` increases, the box radius increases
exponentially, and the finite-size level spacing, 1/R` ∼ Λ−(`−1)/2, decreases exponentially.
From an RG perspective, increasing R` amounts to decreasing the infrared cutoff, here given
by the finite-size level spacing, and thus probing the system at lower energy scales. A detailed
discussion of this perspective may be found in Refs. [3, 22].

To analyze how the structure of the spectrum changes with `, Wilson defined a set of rescaled
excitation energies for each shell,

E `α = Λ(`−1)/2(E`
α − E`

GS

)
. (19)

These are measured with respect to the ground state (GS) energy of that shell, and scaled such
that the spacing of the lowest excitations isO(1). A plot of the rescaled energies E `α versus shell
number ` on a linear scale, or equivalently, vs. the energy scale Λ−`/2 on a logarithmic scale,
with ` increasing in steps of 2, is called an NRG energy level flow diagram. It reveals how the
rescaled eigenspectra evolve (“flow”) with increasing system size. (` is increased in steps of 2
because of an even-odd effect inherited from Hchain

bath : its single-particle eigenspectra for L even
or odd are structurally different, causing the same to be true for the many-body eigenspectra
of HL.) An example of an NRG energy level flow diagram is shown in Fig. 2 below.

Once a Wilson chain has been iteratively diagonalized, the approximate eigenstates so obtained
can be used to compute physical quantities. These include thermodynamic quantities, such
as the impurity entropy S(T ) and spin susceptibility χ(T ), but also dynamical, frequency-
dependent quantities, such as the dynamic spin susceptibility χ(ω), or the impurity spectral
function, A(ω) and the retarded self-energy, ΣR(ω). For details, see Refs. [23, 24, 17].
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Fig. 2: SIAM: NRG energy level flow diagrams (for ` = even), showing three fixed-point
regimes, associated with the free orbital (FO), local moment (LM) and strong-coupling (SC)
fixed points.

5 NRG results for the single-impurity Anderson model

In the following, we illustrate the RG flow of the SIAM with NRG results. Before we start, let
us specify our definition of the Kondo temperature for the SIAM. Following Haldane [25, 26]
and Refs. [14, 12], we use

TK =
1

4χ(0)
'
√
U∆/2 e−πU/8∆+π∆/2U ex

2

, x =
(
εd+U/2

) π√
2U∆

. (20)

The first equality for TK corresponds to TKχ from our discussion of the spin susceptibility of the
Kondo model; the second follows from analytical results for χ(0) from the exact Bethe-Ansatz
solution of the Anderson model [5]. The parameter x measures the distance to the particle-hole
symmetric point, where εd = −U/2.
Or numerical results were computed using the following parameters (all energies are given in
units of D): U = 2 · 10−3, εd = −U/2 = −10−3, ∆ = 0.04U, and h = 0 (unless stated
otherwise). We are thus in the wide-band limit, ∆,U � D = 1. The corresponding Kondo
temperature from Eq. (20) is TK = 1.3533 · 10−8. The numerical NRG parameters were chosen
as Λ = 1.7, Nkeep = 5000.
Figure 2 shows an energy level flow diagram for the SIAM. We observe that there are three
energy ranges during which the flow of the finite-size spectrum is almost stationary (` indepen-
dent). Within each of these, Λ−`/2 lies within an energy regime governed by one of the RG
fixed points of the model. Here, the nomenclature “fixed point” really is appropriate: the spec-
trum literally remains fixed while changing ` (conceptually, increasing the system size R`). The
energy ranges in between, where the levels shift and/or cross each other, are associated with
crossovers between fixed points.
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Fig. 3: SIAM: Top: Temperature dependence of the impurity entropy, S(T ). The plateaus at
ln(4) = 2 ln(2), ln(2) and ln(1) = 0 in the FO, LM and SC regimes, respectively, reflect the
number of states that are energetically available to the impurity in these regimes: four (|0〉, |↑〉,
|↓〉, |↑↓〉) in the FO regime, two (|↓〉, |↑↓〉) in the LM regime, and one (screened singlet) in the
SC regime. Bottom: Temperature dependence of the static spin susceptibility, χ(T ). In the LM
regime it shows Curie behavior, χ(T ) ∼ 1/T . In the SC regime it saturates at a value, χ(0),
which we use as definition for the Kondo temperature, setting TK = 1/(4χ(0)).

For the SIAM, the RG flow has three fixed point regimes (first analyzed with NRG in Refs. [15,
16]), clearly visible in Fig. 2. (I) The free orbital (FO) regime involves excitation energies & U.
It is governed by “free” (not hindered by U ) charge fluctuations, arising through real transitions
between all four states of the d level, |0〉, |↑〉, |↓〉, and |↑↓〉. (II) The local moment regime (LM)
involves excitation energies in the range between the Kondo temperature, TK and U. Here,
charge fluctuations can occur only virtually, giving rise to spin-flip transitions between |↑〉 and
|↓〉. Real transitions to |0〉 or |↑↓〉 are frozen out, since the available excitation energies are
too small to overcome the associated cost in Coulomb energy, U. (III) The strong-coupling
(SC) regime involves excitation energies well below TK. It features a screened spin-singlet,
off which Fermi-liquid quasiparticles scatter without spin-flip scattering (cf. the discussion on
p. 7). Spin-flip scattering is frozen out, since that would require breaking up the spin singlet,
which has binding energy ∼ TK.
This interpretation of the fixed point spectra is beautifully confirmed by the temperature depen-
dence of two thermodynamic quantities, the impurity entropy, S(T ), and the static local spin
susceptibility, S(T ), shown in Fig. 3. As explained in the caption of these plots, both quanti-
ties show distinctly different behaviors in the three fixed point regimes, characteristic of a free
orbital, a local moment or a screened singlet, respectively.
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Fig. 4: SIAM: Frequency dependence of the imaginary part of the dynamical spin susceptibility,
χ′′(ω), plotted on a log-log scale, for a range of different temperatures.

Next, we turn to dynamical quantities. First, we consider the dynamical spin susceptibility,
defined as

χ(ω) = χ′(ω) + iχ′′(ω) =

∫ ∞

−∞
dt eiωt(−i)Θ(t)

〈[
Sz(t), Sz(0)

]〉
T
. (21)

The static spin susceptibility discussed earlier, χ(T ), is equal to the zero-frequency limit of the
real part here, χ′(ω = 0). The frequency dependence of the imaginary part, χ′′(ω), is shown
in Fig. 4. For T = 0 and ω � TK, it increases with decreasing ω, characteristic of an almost
free spin in the LM regime. It reaches a maximum at ω ' TK, where spin screening becomes
strong, and for ω → 0 decreases linearly with ω. This linear dependence is characteristic of
the Fermi liquid behavior of the system in the SC regime (energies� TK), and indicative of a
well-screened impurity spin. For temperatures T � TK, the maximum in χ′′(ω) occurs at T,
and the peak value of χ′′ decreases with increasing T. This illustrates how a finite temperature
cuts off the RG flow towards strong coupling.
Another dynamical quantity of great interest is the retarded correlator for the d level,

Gs(ω) =

∫ ∞

−∞
dt eiωt(−i)Θ(t)

〈
{ds(t), ds(0)}

〉
T
=

∫
dω′

As(ω′)
ω − ω′ + i0+

. (22)

Specifically, we are interested in its spectral function, As(ω) = − 1
π
ImGs(ω), which charac-

terizes the local density of states associated with the d level, and in the corresponding retarded
self-energy, Σs(ω), defined via

Gs(ω) =
1

ω − εd −∆(ω)−Σs(ω)
, (23)
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Fig. 5: SIAM: Local spectral function,A(ω), for eight different temperatures, shown on a linear
scale (left) and a logarithmic scale (right).

Fig. 6: Local self-energy, Σ(ω), for eight different temperatures, shown on a linear scale (left)
and a logarithmic scale (right).

where ∆(ω) is the hybridization function from Eq. (2). Note that ∆(0) = −i∆, which is why
∆ sets the hybridization-induced width of the d level. (For the wide-band limit (∆, U � D)
considered here,∆(ω) ' −i∆ actually holds to very good approximation throughout the regime
|ω| ≤ U/2.) Since we will mostly consider the case h = 0 (no magnetic field), we will
henceforth drop the spin index s.

Figure 5 shows the local spectral function, A(ω), for a number of different temperatures, rang-
ing from T � TK to T � TK. It features two broad peaks at ω = ±U/2, the so-called Hubbard
side-bands. These arising from real transitions between the d level and the band and are es-
sentially independent of T. Additionally, once T drops below TK, A(ω) develops a sharp peak
at ω = 0, known as the Kondo resonance. At zero temperature, its width is essentially given
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Fig. 7: SIAM: Fermi-liquid scaling behavior of the local self-energy, Σ(ω, T ). For ω, T � TK,
the rescaled data collapses onto a universal scaling curve in accordance with Eq. (24).

by TK and its height is A(0) = 1/(π∆). The latter relation follows from Eq. (23) by using
ImΣ(0)

∣∣
T=0

= 0, a well-established analytical result that follows from Nozières’ Fermi-liquid
treatment of the SC regime [13, 14, 12]. Figure 6, which shows the imaginary part of the self-
energy, −ImΣ(ω), confirms this fact: At T =0, the self-energy indeed drops to zero in the
energy range |ω| � TK.
The occurrence of the Kondo resonance is perhaps the most striking manifestation of spin
screening. Intuitively, it arises because at very low energies, ω, T � TK, Fermi-liquid quasi-
particles scatter purely elastically off the screened singlet: they acquire a phase shift, but their
energy and spin does not change.
When ω and/or T increase from 0, inelastic scattering sets in and −ImΣ becomes nonzero. As
long as ω, T � TK, this can still be described using Fermi-liquid theory. By combining known
relations from Refs. [27, 12] one finds

−ImΣ(ω, T ) =
π2∆

(
ω2+π2T 2

)

32T 2
K

, ω, T � TK . (24)

This implies that a plot of −ImΣ(ω, T )/T 2 vs. ω/T should yield a scaling collapse. Indeed,
when the self-energy is computed using state-of-the-art NRG methodology [28,29], this scaling
behavior is beautifully recovered, as shown in Fig. 7.
The application of a local magnetic field h favors the state |↑〉 over |↓〉. It thus tends to polarize
the local spin, thereby disrupting spin screening. As a result, the RG flow to strong coupling
is cut off at the energy scale h. This has dramatic consequences for the local spectral function:
The Kondo resonances for A↑(ω) and A↓(ω) shift apart and get suppressed with increasing
field. This behavior is shown in Fig. 8.
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Fig. 8: SIAM: Dependence of the local spectral function on magnetic field, computed at T = 0.

We conclude our discussion of the SIAM by putting it into the context of dynamical mean-field
theory (DMFT) [30]. There, one considers a correlated lattice model but assumes the self-
energy to be purely local. This allows the model to be mapped onto a quantum impurity model
with a hybridization function that has to be determined self-consistently. For the one-band
Hubbard model, the corresponding impurity model is the SIAM. DMFT self-consistency then
has drastic consequences: at sufficiently high temperature or interaction strength, the Kondo
resonance is completely suppressed [31,32], and the system undergoes a Mott transition from a
metallic state to an insulating state.

6 Two-channel Kondo model

We end these notes by making a few remarks about a quantum impurity model that does not
show spin screening: the two-channel Kondo (2CK) model [33]. Its Hamiltonian is similar to
that of the usual (one-channel) Kondo model, but now there are two conduction bands, labeled
by a channel index j = 1, 2, that couple symmetrically to the local spin-1

2
:

H2CK =
∑

ks

∑

j=1,2

εkn̂kjs + JŜd · ŝc, ŝc =
∑

ks,k′s′

∑

j=1,2

c†kjs
1
2
σss′ck′js′ . (25)

This model also involves some screening of the local spin by conduction electrons, but full spin-
screening is not possible: if the local spin-1

2
would form a spin singlet with a Kondo cloud from

one channel, that would break channel symmetry. If two Kondo clouds from both channels try
to screen the spin-1

2
without breaking channel symmetry, they together constitute a spin-1 cloud

and overscreen the spin-1
2
, yielding another spin-1

2
object. Repeating this heuristic argument,

one concludes that a spin singlet cannot be formed as long as channel symmetry is respected.
Therefore, the quasiparticles do not behave as a Fermi liquid—instead, the model shows non-
Fermi-liquid behavior.
This has striking consequences for physical quantities. Here, we only mention two zero-
temperature properties that are decidedly non-Fermi-liquid in character. Figure 9 shows cor-
responding NRG results.
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Fig. 9: Two-channel Kondo model. Top: temperature dependence of the impurity entropy, S(T ).
We defined TK through the condition S(TK) =

(
S(∞)+S(0)

)
/2 such that the crossover is

centered on TK . Bottom: Frequency dependence of the imaginary part of the dynamical spin
susceptibility, χ′′(ω), plotted on a log-log scale, for a range of different temperatures.

Impurity entropy: At T =0, the impurity entropy S(0) does not equal ln(1) = 0, but 1
2
ln(2) =

ln(
√
2). The unusual fractional prefactor reflects the fact that the impurity retains some dynam-

ical character, since it is not fully screened.
Dynamical spin susceptibility: At T =0, the imaginary part of the susceptibility approaches a
constant as ω → 0, χ′′(ω) ∼ const (in contrast to the Fermi liquid behavior, χ′′(ω) ∼ ω, of
the one-channel Kondo model). That, in turn, implies that the real part diverges logarithmically,
χ′(ω) ∼ ln(TK/ω). This, too, indicates that the impurity is not fully screened but retains some
dynamical character, even at T = 0.
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A Schrieffer-Wolff transformation

The KM can be obtained from the SIAM using a Schrieffer-Wolff transformation [11] and a pro-
jection onto the subspace were nd=1. Here, we briefly outline the key steps of this derivation.
The starting point is the SIAM Hamiltonian, written in the form HSIAM = H0 + H1, with
H0 = Hbath +Hloc being O(v0) and H1 = Hhyb being O(v1), where v = vk is the hybridization
parameter. The goal is to find a unitary transformation such that the new Hamiltonian, H̃ =

eAHSIAM e
−A, contains no terms of order O(v1). Here, A is anti-unitary, A† = −A, with an

hybridization expansion of the form A = O(v1) +O(v2) + . . . . Expanding H̃ in powers of A
using the Baker-Campbell-Hausdorff formula, one obtains

H̃ = (H0+H1) + [A, H0+H1] +
1
2

[
A, [A, H0+

/
H1]
]
+O(v3) (26)

(The term slashed out isO(v3).) To ensure that the right side contains no termsO(v1), we must
choose A such that H1 = −[A,H0], implying

H̃ = H0 +
1
2
[A,H1] +O(v3) . (27)

One may readily verify that the requirement H1 = −[A,H0] is satisfied by

A =
∑

ks

v

(
1

εk−εd
c†ksds +

U

(εd− εk)(εd+U − εk)
d†−sd−sc

†
ksds

)
− h.c. (28)

Inserting this into Eq. (27) and dropping terms that are zero in the subspace where nd = 1, one
obtains

H̃|nd=1 =
∑

ks

εkn̂ks +
∑

kk′

ṽkk′ Ŝd · c†ks 12σss′ck′s′ + . . . (29)

where the coupling matrix elements are given by

ṽkk′ =
−1

2
v2U

(εd− εk)(εd+U − εk)
+ (k ↔ k′) . (30)

In Eq. (29), the ellipsis . . . stands for terms of the form
∑

kk′ c
†
ksck′s, describing potential scat-

tering, i.e., scattering without any spin dependence. These are usually ignored when discussing
the Kondo effect, because in contrast to the spin-exchange interaction of the second term in
Eq. (29), they do not give rise to a logarithmic temperature dependence when treated pertur-
batively. In renormalization group (RG) terminology, spin-exchange is a relevant perturbation,
whereas potential scattering is not.
Now consider low-energy excitations close to the Fermi energy, then ṽkk′ simplifies to

ṽkk′ ' −
v2U

εd (εd+U)
= J, ∀|εk|, |εk′| � |εd|, |εd+U | . (31)

In this limit, H̃ of Eq. (29) thus reduces to the Kondo Hamiltonian HKM of Eq. (7), with an
exchange coupling constant J given by Eq. (31). Note that this equals the expression for J
given in Eq. (6) above, found by considering 2nd order spin-flip processes.
To summarize the above discussion: the low-energy behavior of the SIAM, at energy scales for
which charge fluctuations involving |0〉 and |↑↓〉 are ”frozen out” (can occur only virtually), is
described by the KM.
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1 Introduction

Widespread interest has been devoted in the last three decades to strongly correlated materials,
which are being used in emerging technologies, such as spintronics, quantum computing and
high temperature superconductivity for example. They are characterized by strong electronic
interactions between their d and f -band valence electrons. The interplay between charge local-
ization (Mott physics) and itinerant behavior (quasi-particles) provides a challenge for standard
electronic theories, such as density function theories. In recent years significant progress in un-
derstanding the underlying physics of strong electron correlation effects has been made by the
dynamical mean-field theory (DMFT) method [1], in particular with the harnessing of DMFT
to widespread materials modelling methods, such as density functional theory (DFT), with the
DFT+DMFT combined approach [2].
Despite this formidable achievement, practical challenges remain with the DFT+DMFT ap-
proach. At the heart of the theory is the choice of the quantum engine that solves the many-body
Anderson Impurity Model (AIM), an underlying model that provides the local Green function
of the compound of interest via a self-consistent mapping. Currently, methods of reference at
finite temperature are based on statistical sampling, with for instance the continuous-time quan-
tum Monte Carlo solver [3]. The latter provide exact results (within sampling error bars) on the
imaginary axis for the fully rotationally-invariant AIM Hamiltonian.
Other solvers can provide robust information on the real axis, such as numerical renormalization
group approach [4], but their application remains currently challenging for the case multi-orbital
systems for the DFT+DMFT approach.
Another well-known method that provides information on the real-axis is the exact diagonal-
ization (ED) approach. Here, the DMFT hybridization is approximated by a finite number (Nb)
of effective bath orbitals. In practice, Nb is restricted because of the exponential growth of the
Fock space with the total number of sites (bath and impurity). The growth of the Hilbert space
is mitigated by Lanczos-based algorithms, which utilize the sparse nature of the Hamiltonian,
and to a large degree enable routine calculations for systems up to Ns ⇡ 12 [5]. Overall, the
limitation Ns limits the scope of applicability of this method, and typically discretization effects
remain large for multi-orbital systems.
In summary, the quantum engine at the heart of DMFT remains an active topic of research,
and there is no single silver bullet that provides a general solution of the AIM problem for all
contexts and all parameters ranges. Generally, with a few exceptions, most quantum solvers
are also computationally demanding, adding a significant overhead to the DFT calculation.
Until the latter is addressed, high-throughput material design will remain beyond the reach of
most researchers, without access to dedicated large HPC infrastructures: the quantum solver
used to provide the solution of the embedding theory, as for every calculation applied to each
material of interest, has to be solved hundred’s of time with a large inherent computational cost.
Furthermore, if approaches such as DMFT are made widely available to engineers and scientists,
it would be repeated all across the world, at the cost of thousands of computing hours for every
single calculation, generating large hallmarks in terms of energy consumption, data storage and
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computational slow-downs. Approximate methods provide cost effective alternatives, such as
perturbation based theories, but they are qualitatively wrong in known limits of the theory.
The fundamental problem lies in the fact that the effects of the Coulomb interaction and of the
specific material cannot be separated. Otherwise, one could calculate the interaction contribu-
tions once and forever, store them and add them every time a new material is calculated.
The most prominent example of the strategy is indeed the local density approximation (LDA) to
density functional theory (DFT), where the Kohn-Sham exchange-correlation potential is taken
from a homogeneous electron gas that is calculated at the density of the real system in the same
point. In this way, DFT profits from the existence of tabulated and interpolated Quantum Monte
Carlo (QMC) results, shared with the entire scientific community.
In the latter context, the Anderson impurity model (AIM) plays a central role in the dynamical
mean-field theory (DMFT), very similarly to the role of the local density approximation in DFT,
where the exchange functional involves solving the quantum problem of a gas of interacting
electrons. Contrary to DMFT however, where the AIM is solved every single time without data
storing or sharing, the success of DFT has been established by a simple but efficient strategy:
the difficult problem of the interacting electronic gas has been solved at a large computational
cost with Quantum Monte Carlo, once and for all, and for everyone, shared with the wider
scientific community for the benefit of all [6].
It is very surprising that only moderate work has been done on storing and sharing solutions of
the AIM obtained at large computational costs (typically in the several thousands of core-hours
for every single-point calculation on a given compound), as the obtained many-body solution of
the AIM is not specific to a given material. Furthermore, repeatedly solving the AIM correlated
problem at large computational cost is also required when only small variations are introduced
by finite displacements (for lattice dynamics properties). This limits the scope of predictions
for structure optimization or other interesting applications under applied constraints, such as
external pressure, due to the overwhelming number of required calculations, when relaxing
different chemical compositions with numerous single-point calculations of the same chemical
composition are required. This latter fundamental limitation of DMFT, and more generally
quantum embedding approaches, can be addressed with advances in the field of data science.
Application of machine learning (ML) to quantum physics as neural networks and gaussian
processes to accelerate material discovery have been well studied, for instance for accelerating
DFT [7–9] optimizing QMC in terms of speed [10–12] and accuracy [13], and similarly for
analytic continuation [14].
In the context of DMFT, the pioneering work of Arseneault et al. [15] has opened new avenues
in applying ML to the Anderson impurity model for a broad range of parameters. Recently, the
application of neural networks (NN) combined with different exact solvers has further estab-
lished the validity of ML approaches in the context of DMFT [16–18]. These approaches have
pioneered in applying ML to quantum many-body systems.
We note that ML and its applicability is limited in terms of offering an overall general solution
of quantum many-body systems, for reasonably sized data-bases, due to the rich and complex
nature of the many-body problem.
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Here, we review the literature on machine learning and neural networks within the context of
condensed matter. We also address a simpler task than providing the whole solution of the
AIM from a data-science perspective. Instead, we use here physically inspired approximate
and cost efficient solvers to DMFT, and outline an approach to provide many-body correc-
tions to account for the obtained errors of the fast solver [19]. The credit to this work goes
to the lead author of this work, Dr Evan Sheridan (Phasecraft), and to Dr Francois Jamet (UK
National Physics Laboratory) and Zelong Zhao (King’s College London).

1.1 Supervised learning and linear regression

We illustrate here the concept of supervised learning within the framework of linear regression.
Let’s consider for instance a data set that we’d like to fit with a simple regression model. For
sake of illustration we’ll consider data obtained from electric vehicles, where we relate the
mileage in miles per gallon equivalent (MPGe) to the vehicle weight and battery capacity [20].

Vehicle List
Vehicle weight (Kg) Battery Capacity (kWh) Mileage (MPGe)
1000 54 108
1500 81 103
2000 108 98
2500 135 93
3000 162 88
3500 189 83
4000 217 78

The data set is composed of two-dimensional vectors, where xi
1 is the vehicle weight, and xi

2 the
battery capacity of a given vehicle. We note that the given features need to be chosen with care
for a given problem. To perform any sort of learning, we need to represent a model function for
the mileage

h✓(x) = ✓0 + ✓1x1 + ✓2x2 . (1)

The ✓ parameters, or weights, are the model parameters that will be learned throughout the
supervised learning process. Introducing the extra term x0 = 1, the notation simplifies to

h✓(x) =
dX

i=0

✓ixi . (2)

In the spirit of regression, we need to identify the optimal parameters ✓i that provide the best
model for the known dataset (training set), and ultimately for inferring the mileage on future
vehicles (inference process). How can we learn from the available data at hand, and obtain the
model parameters? To address this question, we need to define a figure of merit of our model,
or a cost function

J(✓) =
1

2

nX

i=1

�
h✓(x

(i))� y(i)
�2

, (3)
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where yi are the known mileage obtained from the table above. Minimizing the cost function
will hence provide the theoretical model. This can be achieved with a gradient descent algorithm
for instance, starting from a initial guess for ✓, and repeatedly updating the parameter values by
following the steepest gradient,

✓j := ✓j � ↵
@

@✓j
J(✓). (4)

The gradient descent update is performed over all parameters ✓j simultaneously and the proce-
dure iterated until convergence is achieved. The parameter ↵ plays the role of a learning rate,
indeed for small ↵ changes in the model parameters ✓ are small and progress is slow, with the
caveat that a large number of iterations is required to reach convergence, whereas for large ↵

changes in the model parameters are rapid, but convergence might be hampered from sudden
jumps in the iteration process. To implement the algorithm, one can analytically calculate the
derivative and one can easily check that the following is obtained

@

@✓j
J(✓) =

�
h✓(x)� y

�
xj, (5)

and combined with equation (4) we obtain the training rule, also known as Widrow-Hoff rule

✓j := ✓j + ↵
�
y(i)
� h✓(x

(i))
�
x(i)
j . (6)

As mentioned above, the learning rate is proportional to the proportional coefficient ↵, but
perhaps counter-intuitively the amplitude of the learning is proportional to the error rate y(i)

�

h✓(x(i)). Thus, this algorithm learns most from large deviation from the sample, i.e., when our
prediction has a large error and h✓(x(i)) deviates most from y(i). Some practical considerations
are absent from the discussion above. In particular, the parameter ✓ can be updated for every
measurement or known data point of the training set, albeit the latter is in reality finite. This
highlights the importance of the learning rate. Furthermore, our model is limiting in terms of
dependencies and extensions: what if we would like to add a parameter in the model related
to the weight of the battery, which is a function of both the total vehicle weight and battery
capacity? Such a parameter should feed from the previous variable and provide a higher level
model parameter. In the next section we will extend this simple model and learning process to
a more general framework that allows for this flexibility. The formulae obtained above are of
course nothing else than the well known linear regression method, but it provides a means to set
the terminology and general extension to neural networks, discussed in the section hereafter.

1.2 A single layer neural network: the perceptron model

Neural networks are a flexible ensemble of data-driven models, largely inspired by the human’s
brain network of synapses and neurons, that provide non-linear neural connections. In contrast
to a biological neuron, inside the artificial neural network the neuron, or perceptron, is in the
form of a simple function whose operation is to take an input vector x = {x1, . . . , xn} (the
feature vector) and activate a logical threshold if the signal is large enough,

f(x) = �
�
x.w + b

�
, (7)
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Fig. 1: a) Schematic of a biological neuron, which consist of a cell nucleus, synapses connected
via dendrites to the cell, myelin sheath that embeds the axon that ultimately provides the output
signal via the axon terminal to another neuron. b) Simplified artificial neuron model: input
signals Ini are multiplied by a proportional weighting factor W and a constant bias b is added
to the signal, providing the output Outi that connect with the other neurons.

where � is a continuous activation function, w is a set of parameters that are specific to the
neuron, and b is the bias parameter. Connecting a network of neurons together and adjusting
the weights to match the value of a target output provide a mean to use the network to build
non-linear predictive responses for different given inputs, which is foundation of learning.
The perceptron model was originally introduced by Frank Rosenblatt, who simulated and built
purpose hardware for this model in the early 1960s that provided a direct and parallel imple-
mentation of perceptron learning [21]. This model is the first neural network learning model
introduced, which is simple and limited, but provides the basic concepts and is a good learning
tool. The original motivation for deriving this theory was related to the physiology of the brain
learning process, and in particular pattern recognition. The theory is based on a simplified model
for the brain neuron: the latter consist of a complex interplay between input signals carried by
synapses, interconnected with the neuron cell which provides a time-dependent output signal
transported via the axon terminals (see Fig. 1.a). Many complex physiologic phenomena occur
via the brain neuron cells in the learning process. The simplest model of an artificial neuron con-
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Perceptron Model for ML
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Fig. 2: a) Schematic of the perceptron model. Inputs xi are weighted with wi, and collected by
a sum-rule ⌃, before entering a threshold logic unit and triggering the activation function. The
output is then obtained and compared to the training set. The perceptron learns by the error
correction method, where the weights are updated based on the obtained error. b) A typical
classification task where the training set consists in a set of data points labeled as circles or
squares. After the learning process, the perceptron weights wi correspond to the equation of
the separation line.

siders a simple proportional relation between input and output signals via a weight coefficient
wi and a constant applied bias bi (see Fig. 1.b). This model omits the time-dependence of the
output signal and many other factors, but provides a basic building block for inter-neuron con-
nections. Typically, the perceptron model consist of a layer of artificial neuron cells, connected
to a set of input signals xi (see Fig. 2a). To mimic the learning process, a summation is applied
to the neuron layer, which collects the weighted sum of all input signals. A threshold logic unit
is then applied which determines the outcome of the final output binary signal, typically the
output signal being z = 1 if the learning outcome is positive, and z = 0 in the alternative. This
provides typically a means to classify data in two categories (classifier). A typical example is
a set of data points in Euclidean space which are delimited in two classes, as to whether they
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lie above a delimiting line, or below it (see Fig. 2b). The line coefficients wi are unknown, but
instead we know for a group of points whether they belong to the class +1 or �1.
In this example, we are provided with a given training data set

�
(xi, yi)

�� i= 1, . . . , n
 

. We
define the activation function fw(x) = wTx

• y = +1, if wTx > 0

• y = �1, if wTx < 0

The prediction of the perceptron model is the sign of the activation function sign
�
fw(x)

�
. The

aim of this approach is to learn from the data set and minimize the classification error.
We will use a two neuron model, and following the general recipe, we will set the weights to
random initial values: w1 = 0.4 and w2 = �0.2 (note that weights can be either positive or
negative). Our training set is set as follow:

Training set
x1 x2 outcome
0.2 0.3 1
0.4 0.1 0

The learning process occurs by testing the algorithm on the training set and to adjust in turns
the network weights in the learning process. Weights are typically adjusted by comparing the
prediction of the network on a given data point, and correcting for errors obtained in the eval-
uation. We provide here a simple example and recipe to optimize weights in the single layer
neural network, with a simple learning algorithm and objective function. To be more specific,
we use the objective function C

z = 1, if
nP

i=1
xi wi  ✓

z = 0, if
nP

i=1
xi wi > ✓

where ✓ is the threshold value. This part defines the logical activation function that converts the
signal, modulated by the network weights, into a prediction. The task of the learning process
is to train the network weights, for a given objective function, such that the training set is
reproduced accurately. For the sake of illustration, we use here a threshold value ✓ = 0.1.

Training set
x1 x2 !1 !2 Prediction P Dataset D

0.2 0.3 0.4 –0.2 1 1
0.4 0.1 0.4 –0.2 1 0

Applying our randomized neural network, we observe that the first training data point is actually
well classified by the network with original choice of weights. However, for the second data
point, our network produces a wrong prediction. After every error of the network, we perform
a weight update with the following learning rule

�wi = ↵ (t� z) xi, (8)
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Fig. 3: a) Activation step-function. b) Activation sigmoid function.

where t is the target value (training set), z the current output, ↵ the learning rate, wi the weight
associated with input i, xi the corresponding input value. We note the direct correspondence
with the parameter update obtained in equation (6) in the steepest descent approach. The fol-
lowing pseudo-code provides the general approach for a single or multiple layer neural network

Algorithm 1 Neural network pseudo-code
inputs for sample data point: ✓,wi,xi

Require: C = 0
call Evaluation function: xi, ↵, ✓, wi, Di output wi

Prediction Pi  

nP
i=1

xiwi  ✓

Cost function kD�Pk

Learning wi  ↵ (D�P) xi

Iterate over training set

The weights obtained from the neural network will eventually provide a means to predict the
class of an unknown data point yi. The weights have a very simple geometrical interpretation,
they represent the line parameters (see Fig. 2.b). In the simple perceptron model, the relation
between outputs and inputs remains linear, due to the limited complexity of the model.
We note that in our approach, the choice of the threshold value ✓ and logical rule to determine
whether the weighted signal falls within class A or B is entirely arbitrary. The mathematical
formulation of the logical threshold unit is denoted as activation function. In general, there is a
breadth of possible choices available and studied in the literature, providing different learning
efficiency and resilience towards noise, typical examples are the step function and the sigmoid
function (1/ (1+e�z)), ReLU (max(z, 0)), or tanh (see Fig. 3).
To expand the scope of this approach, and allow for identifying non-linear boundaries between
more complex sample sets, the perceptron model can simply be extended by allowing for several
neuron layers between inputs and the logical threshold function. The current is simply modu-
lated several times, by the weights of the respective layers. Furthermore, we can also allow for
connections between a neuron of one layer with multiple neurons of the next layer, allowing for
a large number of weight parameters. This is the realization of a so-called neural network.
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Fig. 4: Simple extension of the perceptron model, where we have now an intermediate neuron
layer between the input fully connected layer and the binary output.

1.3 Neural networks

A neural network is a direct extension of the perceptron model. It has two main components: (i)
the network architecture in terms of number of layers, neurons per layer, and how neurons are
inter-connected, and (ii) the parameters defining connections (weights), with the task to learn
the parameters for achieving a given task. In our application to DMFT, this task will consist in
learning the errors of a given approximate solver to the Anderson impurity model.
In our context, the input will consist of a Green function G(⌧) represented in imaginary time,
which is essentially a vector of d dimension

�
x(i)

1 , x(i)
2 , ..., x(i)

d

�
. We’ll come back to our main

aim in the next sections, but for now we extend the example of the perceptron model where we
want to classify an input in a binary class ŷ = 0 or ŷ = 1 (see Fig. 4). On the left of this figure,
the input is connected to the first layer, the fully connected layer. The second layer is denoted
as a hidden layer, as its presence merely provide additional degrees of freedoms to propagate
the information forward to the logical threshold unit. It is worth noting that we have so far only
considered forward propagation of the information throughout the network. After doing a first
single forward pass through the network, for a given initial choice of weights wi and a given
input vector xi, we need to update the parameters for the learning process.
Here, we need to generalize the learning formula introduced in the context of the perceptron
model. This extension leads to the concepts of training loss, and validation loss. The former
is a metric used to assess how the model fits the training data, i.e., it assesses the error of the
model on the training set. It is worth noting that the training set is a portion of the entire dataset
used to initially train the model. Computationally, the training loss is calculated by taking the
sum of errors for each example in the training set. It is also important to note that the training
loss is measured after each batch, that is usually visualized by plotting a curve of the training
loss after each update of the weights. The latter (validation loss) is a metric used to assess the
performance of the learning model on the validation set. The validation set is another portion of
the dataset set aside to validate the performance of the model, usually a smaller portion of the
dataset as the largest chunk is used to train the model instead (typical splits of the entire dataset
in validation/training are 20% validation and 80% training).
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The loss function used in neural networks is based on the binary cross-entropy formula

L = �
�
yi log2(ŷi) + (1�yi) log2(1�ŷi)

�
, (9)

where y represents the expected outcome and ŷ the outcome produced by the model. Let’s
have a look at a simple example: for a neural network that tries to determine whether a picture
contains a cat, the outcome is either of 1 (cat) or 0 (no cat). With a sample that has two pictures,
the first of which contain cats, whilst the second doesn’t. Let’s imagine that the neural network
is 80% confident that the first image contains a cat: y = 1 and ŷ = 0.8. The loss function in
equation (9) gives L = 0.32. For the second image, the network gives a 90% probability that
there aren’t any cats in the picture, y = 0 and ŷ = 0.1, with L = 0.15. The loss function
is designed such that either the first term yi log2(ŷi) or the second term (1�yi) log2(1�ŷi) are
naught or small when the network has a large confidence in asserting the classification, whilst
the loss function is large in uncertain situations. The loss function can be averaged over the
training sample (or the validation sample), leading to the overall cost function C

C = �
1

N

NX

i=1

�
yi log2(ŷi) + (1�yi) log2(1�ŷi)

�
. (10)

For DMFT we are however not focusing on binary classification, and instead our predicted and
model values are in general real. The fairly straightforward extension to a real number can be
achieved simply by generalizing the cost function with a regression model, for instance

C =
1

N

NX

i=1

(yi � ŷi)
2. (11)

1.4 Back-propagation

Once the error is established, the weight update is less obvious than in the case of the perceptron
model, where the error obtained on each components xi could directly be linked and associated
with a well defined weight wi.
Although the gradients of the loss function will provide eventually the weight update, as a
generalization of the linear update that we have seen in the previous section, the connection
between error and weights is convoluted due to the multiple intermediate layers. Let us first
introduce more specific notation for the neural network. Fig. 5 provides a schematic of a max-
imally connected feed-forward network, where the web of neuron connections is illustrated,
with the associated activation values h and the prediction made in the final layer h4

1. In what
follows, we consider training the network on input data X = {x1, . . . , xN} and their associated
outputs Y = {y1, . . . , yN}. The first-pass through the network consists of assigning h0

i = xi

and evaluating the activation functions at each layer of the network as

hl
j = �

⇣X

k

wl
jkh

l�1
k + blj

⌘
= �

�
zlj
�
, (12)
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2.7 data driven dmft

hl
j = �

�

�
k

wl
jkhl�1

k + bl
j

�
, (2.74)

= �(zl
j), (2.75)

where zl
j = �k wl

jkhl�1
k + bl

j which can be more compactly expressed in matrix form as,

hl = �[wlhl�1 + bl]. (2.76)

Nevertheless, for clarity we opt to keep index notation in what follows, despite the more compact
notation afforded through vectorisation. At the end of the first-pass through the network the
cost function is evaluated,

C =
1

2N

N

�
i

|yi � hL
i |

2, (2.77)

Figure 2.9: Schematic of a feed-forward neural network. An input vector is propagated through the
system, via a number of “hidden layers”, triggering the activation functions hj

i of each neuron
i in layer j. This process parametrises a model encapsulated in the output layer, containing a
single value neuron for univariate supervised learning or multiple neurons for multivariate
supervised learning.

where hL
i is a nested function of xi with many intermediate evaluations of �,

hL
i = �L

�

�
k

wL
ik�L�1

�

�
k

wL
ik�L�2[. . . xi . . .] + bL�1

i

�
+ bL

i

�
. (2.78)

36

Fig. 5: Schematic of a feed-forward neural network. An input vector is propagated through the
system, via a number of hidden layers, triggering the activation functions hj

i of each neuron i
in layer j.

where zlj =
P

k wl
jkh

l�1
k + blj which can be more compactly expressed as,

hl = �
�
wlhl�1 + bl

�
. (13)

At the end of the first-pass through the network the aforementioned cost function is evaluated,

C =
1

2N

NX

i

��yi � hL
i

��2, (14)

where hL
i is a nested function of xi with many intermediate evaluations of �,

hL
i = �L

✓X

k

wL
ik�

L�1
⇣X

k

wL
ik�

L�2
�
. . . xi . . .

�
+ bL�1

i

⌘
+ bLi

◆
. (15)

Given the nested structure of this function and the sheer number of parameters that Wij can
have, it is prohibitive to find analytical solutions for the combination of weights that minimize
equation (14). Instead, established gradient descent methods are applied [22] and define what
is now known as the backpropagation approach.
The central question of the backpropagation method is to calculate the variation of the cost
function with respect to all of the network parameters, @C/@wl

jk and @C/@blj , and to use these
gradients to update the weights. The first step to obtaining these expressions is to express the
error in the j-th neuron of layer l as

� l
j =

@C

@zlj
=

@C

@hl
j

@hl
j

@zlj
=

@C

@hl
j

�0�zlj
�
, (16)

where we have applied the chain rule. In this form, � l
j doesn’t exploit the connectivity of the

overall network. Indeed, calculating

@C

@wl
jk

=
@C

hl
j

@hl
j

@wl
jk

=
@C

@hl
j

�0�zlj
�
hl�1
k = � l

j hl�1
k , (17)
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shows that variation of the cost in layer l with respect to its weight is dependent on the activated
output in the preceding layer. Hence, relating the errors from layer-to-layer can allow for a
systematic way to calculate the variation of the cost in each layer of the network

� l
j =

@C

@zlj
=
X

k

@C

@zl+1
k

@zl+1
k

@zlj
=
X

k

�l+1
k

@zl+1
k

@zlj
=
X

k

�l+1
k wl+1

kj �0�zlj
�
. (18)

Similarly, @C/@blj can be found as @C
@blj

= � l
j . All weights in the network can then be updated by

gradient descent in the following manner,

wl
jk ! wl

jk � ⌘
@C

@wl
jk

, and blj ! blj � ⌘
@C

@blj
, (19)

where ⌘ is the so-called learning rate. The origin of the name backpropagation refers to the
equations above as for the update � l

j one must first know all errors in the subsequent layer �l+1
k ,

and hence the error propagates backward through the network.
In summary, the learning process in the neural network consists of repeated forward- and
backward-passes throughout the network, after each pass the cost function is reduced. The
forward-pass propagates the input forward for the evaluation of the cost function, while the
backward-pass updates the network weights starting in the output layer and back-propagating
the information to the input layer, that in turn implements the weight updates that reduce the
cost function on the next forward pass.

2 Generating a quantum database for
the Anderson impurity model

We have now introduced all the concepts in the field of data science required for designing
a data-driven approach for solving quantum many-body hamiltonians. To apply the learning
process outlined above, we need first to decide on a compact representation of the many-body
quantities that will be used in the neural network.

2.1 Polynomial basis method

One way to represent the Green function in a compact formulation is via a polynomial support
basis. We expand G(⌧) in an arbitrary orthogonal polynomial basis P (k)

i

�
x(⌧)

�
(e.g., Legendre,

Chebyshev, or else) where i is the polynomial order, k is the species and x(⌧) = 2⌧/��1 is a
transformation to absorb the temperature dependence from [�1, +1] to [0, �]. The expansion is

G(k)(⌧) =
X

i�0

P (k)
i

�
x(⌧)

�
G(k)

i . (20)

Applying the orthogonality constraints obeyed by the polynomials
Z �

0

P (k)
i

�
x(⌧)

�
P (k)
i0

�
x(⌧)

�
W
�
x(⌧)

�
d⌧ = W̃ (i) �i,i0 , (21)
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provides a means to obtain the basis coefficients that can be calculated as
Z �

0

G(k)(⌧)P (k)
i

�
x(⌧)

�
W (x(⌧))d⌧ =

Z �

0

X

i0�0

G(k)
i0 P (k)

i0

�
x(⌧)

�
P (k)
i

�
x(⌧)

�
W
�
x(⌧)

�
d⌧ = W̃ (i)G(k)

i .

(22)
For the purpose of this discussion one restrict the analysis only to the Legendre polynomials,
where W (x) = 1 and W̃ (i) = 4/�/(2i+1).
With the Gi, we can express G(⌧) on an arbitrarily fine imaginary time ⌧ grid, absent from
discretization constraints. For a given G(⌧), the procedure outlined above provides us with the
gl coefficients, or as an alternative a simple fitting procedure can be achieved, which amounts
to the minimization of the function

min{gl}
�
G(⌧)�G{gl}

FIT (⌧)
�
, (23)

where the fitted (model) function G{gl}
FIT (⌧) is parametrized by the basis coefficients gl, i.e.

G{gl}
FIT (⌧) =

NlX

l�0

p
2l+1

�
Pl

�
x(⌧)

�
gl. (24)

It is straightforward to find G{Gl}
FIT (⌧) using the conjugate gradient method for example, as the

number of Legendre coefficients Nl is generally of the order of a few tenths, typically Nl ⇡ 20.
This procedure is indeed exceptionally computationally efficient. Furthermore, it can also be
used to filter out noise if a Monte Carlo solver is used to generate the database, shifting the
paradigm of dealing with a statistical problem to that of an optimization one. It allows the
advantage of including a-priori information, such as tail exponents etc.

2.2 Generating the validation dataset with exact diagonalization

Now that we have introduced the representations of our dataset, we need to provide a training set
of reference data against which the neural network can learn and validate. As a reference solver
for the AIM, it is essential that the solver can efficiently compute solutions in fast and stable
ways over a wide range of parameters (Coulomb U, bandwidth W and inverse temperature
� = 1/T ). A variety of solvers are available for use in DMFT calculations, and they can be
selected to match the computational resources available to complete a calculation in a time-
efficient way. As we will see hereafter, we will consider two families of solvers

i. A selection of fast approximate solvers that have low computational cost an provide a
reasonable solution of the AIM in some limits of the parameter space, failing in other
regions of parameters (e.g. strong or weak interaction limits).

ii. A choice of benchmark solver against which the solvers in (i) above can be compared.

We discuss first the choice of an exact solver for validation and training in (ii). We use here the
exact diagonalization method, a typical approach known for solving the AIM in DMFT [23],
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where the infinite lattice surrounding the impurity site is approximated by a discretized bath of
finite size Nb. The first step is to parametrize the Weiss field G0 for each orbital and spin in terms
of a finite number of bath orbitals by approximating the Weiss field in terms of a non-interacting
Anderson impurity model

G
�1
And,m(i!n) = i!n + µ� ✏imp

m �

k=NbX

k=1

Vm,kV ⇤
m,k

i!n � ✏m,k
(25)

where k is the index for the bath level, m is the index for each orbital/spin. This entails minimiz-
ing a distance between the Weiss field and the parametrized impurity Green function obtained
in equation (25), using a cost function

�2(✏k, Vk) =
n=ncX

n=0

An

��GAnd(i!n; {✏k, Vk})� G0(i!n)
��2. (26)

For using ED as a solver for DMFT, it is common practice to weight the cost function towards
smaller imaginary frequencies by using a prefactor An ⇡ 1/i!2

n. This avoids fitting cost on the
asymptotic regions of the Green function, which are known analytically, but instead provides a
good solution in the low energy regime.
Once a set of ✏k, Vk has been identified, the calculation proceeds as a standard brute force matrix
diagonalization by scanning quantum sectors of the AIM (either total spin Sz or numbers of up
and down particles). The focus in DMFT-AI is however reversed: one can limit the database to
the large ensemble of parameters ✏k, Vk which are tractable with typically 6, 7 or 8 bath sites,
such that the solution of the AIM remains exact without the need for iterative solvers (Lanczos,
Arnoldi, . . . ) and the computational cost reasonable. We hence limit ourselves to a large but
finite set of corresponding hybridization functions that will be used to train the neural network.
We now turn to the discussion of the fast and approximate solvers. Perturbation theory is a well-
known and successful diagrammatic method for solving quantum many-body problems in the
weak-coupling limit. It is quite often the first port of call in a scientist’s arsenal when tackling
the quantum many-body problem. The goal of weakly perturbative methods for the AIM is to
approximate ⌃(i!n) analytically with diagrammatic expansions in the Coulomb repulsion U/t

for (t is the hopping term in the Hubbard model)

G�1
0 (i!n) = ⌃(i!n) + G�1(i!n). (27)

Weak coupling expansions in U/t up to second order, O(2), were successfully used for the
AIM [1] to capture the main features of the Mott transition at strong coupling in the nonpertur-
bative regime. This only applies at half-filling, and can be attributed to the simple form of the
atomic Green function in the t/U ! 0 limit being proportional to U2 [1]. Nonetheless, iterative
perturbation theory (IPT) is extremely useful for generating solutions for the AIM at low com-
putational cost, in spite of the parameter regimes where the solution can be qualitatively wrong.
Specifically, the second order perturbation of ⌃(i!n) at inverse temperature � and half-filling
is given by,

⌃ IPT(i!n) = ⌃1(i!n) + ⌃2(i!n) =
U

2
+ U2

Z �

0

d⌧ ei!n⌧G2
0(⌧) G0(�⌧), (28)
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where ⌃1,2(i!n) consist of the non-skeleton O(2) representations of the self-energy. Iterating
over (27) with the above form of the self-energy is the foundation of the IPT theory, that suc-
cessfully captures the Mott transition. Higher order diagrams can also be readily incorporated
into this approach, to provide further corrections, but the complexity rapidly increases with the
diagrammatic order, limiting the scope of manually correcting this approach. Practically, this
amounts to replacing (28) with

⌃(i!n) = ⌃1(i!n) + ⌃2(i!n) + ⌃3(i!n), (29)

where ⌃3(i!n) encapsulates all of irreducible third-order processes allowed, coming at an ad-
ditional computation cost due to calculating the integrals associated with the higher-order di-
agrams and their additional interaction vertices. IPT is a good example to illustrate the data-
driven approach outlined in these notes: the neural network that we will discuss below learns
the error obtained in IPT and provides a highly non-linear solution in a multi-dimensional space
to account for ⌃n(i!n) with n > 2, absent in standard IPT.
There are of course other approaches than neural networks that deal with corrections beyond
second-order perturbation theories, and out of half-filling. For instance the Non-Crossing Ap-
proximation (NCA) is the lowest order strong-coupling perturbative method that sums up all
diagrams without crossing hybridization lines. In this scheme the propagator of the impurity is
mapped to an integro-differential Volterra equation that is solved for the strongly-coupled form
of the self-energy in equation (27).
Both NCA, IPT, and the exact-diagonalization solver with a very small number of bath sites
(typically zero, also known as Hubbard-1, or with Nb = 1, 2, 3 bath sites) represent a valid
ensemble of approximate solvers which all introduce a negligible overhead in terms of calcula-
tions, and also all need corrections for providing quantitatively accurate solutions of the AIM,
covering both the weak- and strong-coupling limits in the phase-space of the AIM. Finally, we
note that those solvers are tractable and can also provide solutions in both real and Matsubara
frequencies, but we’ll limit the discussion in a first instance to the imaginary time formalism
hereafter.

2.3 Data representation

The construction of a high-quality database of training samples is of key importance for any
data-driven approach. Specifically, there must be sufficient representative samples, such that
after the training process the inference process will produce the most likely outputs. Strate-
gies for generating databases in machine learning are key for the success of any data-driven
approach, and require great care in identifying robust and well thought strategies.
Before presenting the database construction at great lengths, we first need to view the AIM
from a data-science perspective. Bearing this in mind, we look at the AIM from a black box
perspective, and regard it only in terms of its inputs and outputs. In doing so, the AIM merely
provides a relation between input X = {x1, . . . ,xNS} and output samples Y = {y1, . . . ,yNS},
where NS is the number of database samples or images.



DMFT with AI 4.17

Fig. 6: Depiction of two approaches for machine learning solutions of the Anderson Impurity
Model. a The approach taken by [15] which uses as input features xi the physical parameters
of the AIM {Ui, Wi, "i, Vi} b The approach taken here uses approximate solutions, expressed in
different bases, (�k), of the AIM as the feature vectors.

We limit our discussion to the single-orbital AIM, which is completely described by the set of
parameters {U, W, ", �, V }, where U is the Hubbard parameter, W is the half-bandwidth of the
bath-states, " is the impurity on-site energy, � is the inverse temperature and V characterizes
the impurity-bath coupling. Furthermore, we can split these contributions into the different
components of the AIM, where {U, "} represent the physics of the impurity while {W, V }

represent respectively the bath. � is viewed from the perspective of the grand canonical as a
fixed parameter of the entire system and the database hence generated at constant temperature.
This doesn’t preclude generating data for various temperatures, as indeed we’ll discuss below
the differences that occur in the network as we move from high to low temperature.
In practice, the AIM can absorb inputs in different representations, for instance a set of hamil-
tonian parameters for ED, or a function in imaginary time for IPT and NCA (the Weiss field).
Typically, one might have

• inputs: xi =
�
Ui, Wi, "i, Vi

 

• outputs: yi =
�
G(⌧), G(l), G(i!n), G(!)

 
,

depending on the choice of basis. The basis choices above are the imaginary-time, Legendre,
imaginary-frequency and real-frequency bases, respectively.
Outputs can however be seen as vectors of given length, and in this case, each input vector has
a dimension of 4, whereas the output has the number of imaginary-time points (usually N⌧ >

200) for the imaginary time Green function, while it is known that the number of Legendre
coefficients Nl < 50 is more compact [15]. The mapping is illustrated in Fig. 6a. In Ref [15],
the authors employ a similar approach for the input features, but attempt to learn the spectral
function A(!) instead.
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2.4 Defining the unknowns: from learning solutions to learning errors

The approach discussed in this lecture is different with regard to the input vectors xi, where
instead we use a combination of approximate solutions to the AIM. We illustrate the idea in
Fig. 6b for the i-th AIM instance, which is still characterized by the set {Ui, Wi, "i, Vi}, but the
feature space increases by N�Nb�4, where N� is the number of approximate solvers used, �

refers to the different impurity solver types, and Nb is the number of basis coefficients used.
For example, if we consider using two different approximate solvers {�1, �2}, then the input
features for a model would be (let’s say for IPT and NCA),

xi =
�
G�1

and(⌧), G�2
and(⌧)

 
or xi =

�
G�1

and(l), G
�2
and(l))

 
, (30)

in the imaginary-time or Legendre polynomial bases respectively, and the output vectors are
given by,

yi = Gand(⌧) or yi = Gand(l). (31)

In this case, the length of the feature vector is 2Nb and the length of the output vector is Nb. This
is a straightforward generalization, we will discuss how this impacts the cost function hereafter.
Moreover, instead of learning the relationship between the input parameters {Ui, Wi, "i, Vi} and
the exact solution of the AIM, we attempt to learn the error between a set of approximate so-
lutions of the AIM and its exact solution, generated using a reference solver such as ED, but
equivalently, quantum Monte Carlo can be used as a valid exact benchmark at higher compu-
tational costs (we note however that the compute cost for generating a database is not a large
concern, as these calculations only need to be performed once and for all).
We then learn the error of a set of approximations, rather than using just one, noting that differ-
ent approximate AIM solvers have their merits in different parts of the AIM parameter space.
As mentioned in the previous section, IPT is a well-known and successful diagrammatic method
for solving quantum many-body problems in the weak-coupling limit, and can also capture
some features of the strongly interacting limit. Similarly, the Hubbard-I approach is exact in the
weakly hybridized atomic limit, but can qualitatively fail outside of this parameter regimes.
We note that while the weak-coupling expansion has its merits, for scenarios out at strong-
coupling it can be qualitatively wrong. To address this, for example, the Non-Crossing Ap-
proximation (NCA) is the lowest order strong-coupling perturbative method that sums up all
diagrams without crossing hybridization lines.
It is also possible to use basis-truncated approximate ED solutions that use fewer bath sites to
represent the Weiss field, which thus provide a more consistent coverage of the parameter AIM
space, albeit with larger errors when small numbers of bath fitting parameters are used.
Thus, a natural extension for data driven methods lies with the combination of different ap-
proximations, which span a wider range of the AIM parameter space, rather than just using one
quantum solver alone.
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2.5 Constructing the database

Having established the form of the inputs and their associated outputs, we now discuss the
construction of the database. We first deal with inverse temperature, �: unlike the rest of the
parameters, the Green function is explicitly dependent on it, so each database is constructed at
a specific �. The next parameters to decide are {U, W, "}, all of which are randomly distributed
between their extremal values. Therefore, for each instance of an AIM, random samples of
each are drawn from the uniform distributions U 2 [Umin, Umax], W 2 [Wmin, Wmax] and " 2

["min, "max].
Determining the hybridization parameters is slightly more difficult, as regards to how it man-
ifests itself in the impurity solver. The ED solver necessitates a discrete representation of the
bath parameters, while this is not true for other impurity solvers, and there is a connection be-
tween the lattice bandwidth W and the range of hybridizations that need to be considered in the
database.
Furthermore, we want to be able to deal with both discrete and continuous representations of
the bath to allow for various approximate solvers. For illustration, we take the Hilbert transform
of specific form of the density of states, i.e.,

G(z) =

Z 1

�1

A(✏)

z � ✏
d✏ (32)

with two typical density of states samples being the semi-circular DOS given by

A(✏) =
2
p
�✏2

(⇡W )2
⇥
�
W�|✏|

�
(33)

or the constant DOS, given by,

A(✏) =
⇥
�
W 2
�✏2

�

2W
, (34)

where ⇥ is the Heaviside step-function.
Using either, truncates the limits of integration in Eq. (32) from �W to +W , where W is the
half-bandwidth, and provides hence the energy scale associated with the hybridization parame-
ters V in the Weiss field (z = i!n), the latter being given by,

�(i!n) =
NX

i=1

V 2
i

i!n � ✏i
, (35)

where Vi and ✏i are the bath parameters, and which become an additional parameter in the
database construction.
Specifically, along with the number of samples in the database and the inverse temperature �,
the number of bath parameters determines the overall time it takes for the construction of the
database. After the number of bath sites is chosen, random samples of each are drawn from the
uniform distributions V 2 [Vmin, Vmax] and ✏ 2 [✏min, ✏max].
To ensure that the discrete representation of the hybridization function retains consistent physi-
cal characteristics, its bath parameters are all scaled to the chosen values of W, such that both ✏i
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and Vi are normalized by it and ✏i is centered on its weighted arithmetic mean with respect to V 2
i .

Alternatively, it is possible to create discrete representations of the bath by treating ✏i and Vi as
fit parameters in Eq. (35) to a continuous representation generated from the half-bandwidth W.
The next step is to generate the database that will be used for the training of the data-driven
model. To do this, each instance of {Ui, Wi, "i, �i(i!n)} is passed to the set of approximate
solvers {�1, . . . , �N} as well as one exact solver. In this case, the exact solution is obtained by
the ED algorithm using a large number of bath sites, generally between 4–6 is enough to ensure
a converged solution for the single-site AIM.

3 Training a model solver to solve the
Anderson impurity model

We now outline the details of the multivariate maximally connected neural network regression
model that is used for the training against the database we have just constructed. As established
above, the set of inputs for the model are X = {x1, . . . ,xNs}, where xi is a set of different
approximate solutions of the AIM, while the outputs are Y = {y1, . . . ,yNs}, where yi is an
exact solution of the AIM given by ED. For all models trained in this section, they proceed by
minimizing the cost function,

C(X,Y,↵) =
1

Ns

NsX

j

�
yj � g↵(xj)

�2
, (36)

with respect to the parameters ↵ to produce a model g↵(xi) := GM(xi), where GM(xi) is the
model Green function of the problem. GM(xi) is constructed such that the error between it
and the true solution yi is minimized, and therefore GM(xi) corrects for the error between the
approximate solution xi and the exact one yi, for all Ns entries in the database. The neural
network we use is shown as a schematic in Fig. 7. In the input layer, each neuron evaluates

f(x·w + b) = f
⇣X

i,j

wijG
�j(ki) + b1

⌘
(37)

with f(. . .) being the activation function of the input layer neurons (colored pink), index i is
associated to the feature (i.e. mesh point) and index j indicates the approximate solver used,
wij are the set of neural weights, and xi is in general of the format �N entries, despite the
depiction in Figure 7 that suggests that the number of approximate solvers is 2. This procedure
then repeats itself as the values propagate forward through the network such that f(x·w + b)

of each neuron are used as the inputs for the next layer in the network, until eventually the
output layer is reached. As the neural network is being used to solve a regression problem,
the output layer applies a linear activation function to its neurons, which does not modify its
input data. Therefore, when the output layer is reached the cost function (36) is evaluated for
a “mini-batch” of samples, after which the weights throughout the entire network are updated
in accordance with the backpropagation method. This procedure is then repeated until GM is
found with weights ↵ that minimize C(X,Y,↵).
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Fig. 7: Depiction of the maximally connected feed-forward artificial neural network used to
generate solutions of the Anderson Impurity Model to produce a model output GM(⌧) or GM(l).
In the schematic, there is 1 hidden layer with 5 neurons and the output layer has 5 neurons.

It is important to keep in mind the number of parameters in the model g↵(xi) so as to avoid
potential over-fitting scenarios. For the neural network presented in Fig. 7 the total number of
parameters N↵ can be determined by the following equation,

N↵ =
X

l

�
N l

NN l�1
N + 1

�
, (38)

where N l
N is the number of neurons in layer l. For example, if there are 20 neurons in the input

and hidden layer, 100 neurons in the output layer and 200 is the length of the input vector, then
the total number of parameters of the network broken down per layer is given by:

N↵ = 20(200+1)| {z }
input layer

+ 20(20+1)| {z }
hidden layer

+ 100(20+1)| {z }
output layer

= 6540|{z}
total

. (39)

The value of N↵ is pertinent when considering sources of data over-fitting, as it should not ex-
ceed to the total number of feature observations in the database. In addition to what determines
the number of weights in the neural network, the following series of adjustable parameters have
an effect on its performance They are usually referred to as hyperparameters:

• Learning rate: step-size update for the weights of the network

• Mini-batch size: number of samples after which the neural network weights are updated

• Epochs: number of sweeps of the neural network

• Activation functions: family of non-linear neuron activation functions, including tanh,
elu and relu
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• Cross-validation split: %-split of the database between training/validation samples

• Basis functions: equidistant ⌧ -basis, adaptive ⌧ -basis or Legendre Gl-basis

Typically a hyperparameter grid search is employed over these parameters and by doing so, the
model is trained iteratively as the learning steps occur across different values of its parameters.
Ultimately it will produce the final optimized value of the cost function for both the training
and validation datasets, where the minimum cost function provides a measure for the optimum
choice of parameters to be used for the inference process in future DMFT calculations.

3.1 Data processing: symmetry, augmentation and transformation

Once the database of approximate and exact solutions is obtained, and before the data is passed
on to the machine learning algorithm for training, there are a number transformation operations
that allow the database to be augmented through symmetry operations. Without having to re-run
the impurity solver, there are a number of ways to both extend and transform the database in
ways that are optimal for learning a model.
For simplicity, we assume a database under consideration is expressed in either the imaginary-
time or in the Legendre polynomial basis.
The first symmetry operation makes use of the fact that the Green function can be decomposed
into its symmetric and anti-symmetric contributions by decomposing it into the Legendre basis,

GS(⌧) =
X

l�0
even

p
2l+1

�
Pl

�
x(⌧)

�
Gl and GAS(⌧) =

X

l�0
odd

p
2l+1

�
Pl

�
x(⌧)

�
Gl, (40)

where GS(⌧) and GAS(⌧) are respectively the symmetric and anti-symmetric parts of total Green
function which give the total Green function when summed, i.e.

G(⌧) = GS(⌧) + GAS(⌧). (41)

In practice, if performed in the ⌧ basis, the latter requires an intermediate step of generating the
Legendre coefficients, or reading them in from a database which has them stored already. For
the size of the databases dealt with in this lecture (typically less than 40k samples), the latter
can be added practically at no additional computational cost. Physically, the symmetric part of
the Green function represents the physics at half-filling while the anti-symmetric component
encodes the information away from half-filling. This operation need not only be used for the
augmentation of the database, it can similarly be used for partitioning it. Specifically, instead
of training a model on both the symmetric and anti-symmetric components simultaneously, two
separate models can be trained on the symmetric and anti-symmetric components separately,
after which they are recombined to produce the total answer in Eq. (41).
The same procedure can be followed in the Legendre basis, where the symmetric part of Gl is
encoded in the even coefficients and the anti-symmetric part in its odd ones. For both bases,
this operation allows the database to be augmented by a factor of two.
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The strategy to learn different features on a given dataset is very much akin to the concepts
developed in deep learning: an image would be decomposed in different features with different
characteristics, and the neuron model optimized for such.
The second symmetry operation on G(⌧) that we can consider is particle-hole equivalence, i.e.,
Ge(⌧) = Gh(��⌧) where Ge is the electron Green function and Gh is the hole Green func-
tion. Therefore, for every entry in the database that is away from half-filling, the corresponding
electron (if hole-type) or hole (if electron-type) Green function can be generated simply by
flipping G(⌧). If, however, the database is expressed in the Legendre basis instead, this trans-
formation requires that the odd coefficients be multiplied by �1. We note that for both basis
representations, this can double the size of the database.

3.2 Activation function with many-body quantities
In addition to augmenting the database by exploiting symmetry operations, the data must also
be transformed into a representation appropriate for how the training data will be manipulated,
an in particular for designing a suitable activation function.
Scaling the input and output variables so that they are normalized is a standard technique when
preparing data for training algorithms such as neural networks. One example for instance:
standard activation functions, as seen in the early chapters of this lecture, are dealing usually
with positive signals, so care will be needed to manipulate and transform the Green functions
in a suitable format.
Another need for the mapping lies with protecting the weights that are learned in the model
from becoming too large or biased towards large input values. Specifically, this is essential
for when input variables are the Legendre coefficients, as the Legendre basis has no inherent
scale for the coefficients. On the other hand, while an inherent scale exists for G(⌧), i.e.,
�1  G(⌧)  0 when ⌧ > 0, it is also possible to create a family of scaling transformations
and test their efficacy throughout the training process. The following scaling transformations
work regardless whether the aforementioned symmetrization or augmentation procedures have
been followed.
T0 is the unscaled Green function and each transformation is a function of T0. For G(⌧) the
situation is quite simple, there are only a few transformations that can be done to normalize
in between the range [0, 1] or [�1, 1]. We note that if GAS(⌧) is used, i.e., the anti-symmetric
part of the Green function, it is important to ensure that the scaling operations do not shift
the data out of the scaling range, and so an extra constant shift should be applied in these
cases to counteract this behavior. For the Legendre basis, it is clear that the unscaled data
is not normalized. Fortunately, by applying a tanh function this can readily be achieved. In
the example shown, we see the first anti-symmetric component of the Green function, G1, is
scaled to be much closer to G0 and G2, the either-side symmetric components. As stated above
for the ⌧ basis, the dependence of training the model is also assessed as a function of these
transformations.
Moreover, we emphasize that to recover the physical Green function it is necessary to apply the
relevant inverse transformation T

�1, which are given in Table 1.
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a) Tr T
�1
r

T0 G(⌧) G(⌧)

T1 �G(⌧) �G(⌧)

T2 G(⌧) + 1/2 G(⌧)� 1/2

T3 �2
�
G(⌧)+1/2

�
�G(⌧)/2� 1/2

T4 2
�
G(⌧)+1/2

�
G(⌧)/2� 1/2

b) Tr T
�1
r

T0 Gl Gl

T1 tanh(Gl) tanh�1(Gl)

T2 � tanh(Gl) � tanh�1(Gl)

Table 1: Scaling transformations for a): G(⌧) and b): Gl

3.3 An error correction approach for solving DMFT

Here we present results that pertain to the machine learning framework outlined above. We be-
gin with a discussion of the different aspects of the generated databases, and this is followed by
details on the training of an artificial neural network with those generated databases. We con-
clude by illustrating how the generated data-driven solver is able to capture the Mott transition
in the half-filled single-band Hubbard model the using DMFT scheme presented above.

3.4 Database of solutions for the Anderson Impurity Model

Using the procedure outlined in the previous section we generate a database of size Ns = 103

at inverse temperatures of � = {1, 2, 5, 10, 20, 50} eV�1 over the parameter ranges indicated
in Table 2 for discrete sets of bath parameters. The range of temperatures chosen represent the
high-temperature and intermediate temperature limits, whereby the features of the Green func-
tion are smoother, and hence our choice of the range. Each database entry constitutes a random
combination of all parameters in Table 2. The parameters chosen cover a range of physical fea-
tures, for example the Hubbard U is uniformly randomly sampled over the range {1, . . . , 10},
in addition to W 2 {1, . . . , 10} and " 2 {�1, . . . , 1}, then the various combinations of U, W, "

result in metals or insulators. Take for instance if {U, W, "} = {8, 2, 0} then the result is insu-
lating, and if {U, W, "} = {2, 8, 0} the result is metallic. In Table 2 we clarify the notation for
the approximate solvers ED-[1,2,3]. ED-1 means solving the AIM with one bath site only, and
hence results in a truncated approximation to the exact ED solution of the AIM (which in this
case uses 4 bath sites). We note that these latter ED solvers are significantly faster than the ED
solution obtained at large cost for Nb > 6, due to the exponential increase of the Hilbert space.
Of course the latter are themselves approximate solutions, similar to IPT or Hubbard-I, and the
large error induced by the finite size effects of the bath discretization. We note that interestingly
the machine learning framework does act in this respect as a Hilbert space extrapolation tool,
inferring information on small Hilbert spaces that remains pertinent for larger dimensions.
Furthermore, in Fig. 8 we show the distribution of all chosen parameters for the 10, 000 samples
in the database corresponding to � = 20 eV�1. As expected, {U, W, "} are distributed evenly,
Nb = 4 is constant as the number of bath-sites is not changed, and {✏i, Vi} are chosen by
normalizing to W . While the illustrated database is not the only one that could be considered,
it is not a special choice. For all other databases we analyzed, the distribution of parameters
behaves similarly to the � = 20 eV�1 case presented.
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U (eV) {1, . . . , 10}
Nbath, ✏i, Vi 4
W (eV) {1, . . . , 10}
" {�1, . . . , 1}
� (eV�1) {1, 2, 5, 10, 20, 50}
Nsamples 10,000
S Hubbard-I, IPT, NCA, ED-[1,2,3]

Table 2: Parameter selection for the database of AIM solutions shown in Fig. 8 where
{pi, . . . , pf} denotes that a parameter is randomly selected from this interval [pi, pf ]. U is
the Hubbard interaction, Nbath stands for the number of bath sites, W is the Half-bandwidth, "
is the electron on-site energy, � is the inverse temperature, Nsamples is the number of database
entries, and S denotes the total ensemble of approximate quantum solvers used in the ML ap-
proach. ED-[1,2,3] denotes the exact diagonalization solver with respectively 1, 2, 3 bath sites.

We review the strength and weaknesses of the Hubbard-I, IPT and NCA solvers for representa-
tive samples of the database against the corresponding exact diagonalization results. The latter
provide valid approximations of the AIM in different limits (Hubbard-I and IPT are good in the
weakly hybridized limit, NCA is a good approximation for stronger interactions). In general,
the Hubbard-I, IPT and NCA solvers are however in quantitative and qualitative disagreement.

Fig. 8: Typical statistical distribution of the Anderson Impurity Model parameter space for a
database for � = 20 eV�1, Nbath = 4 with 10,000 entries.
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Hyperparameter Range Optima
⌘ [0.0001, 0.0002, 0.001, 0.01] 0.0002

Mini-batch size {4, 8, 16, 32, 64} 8
Optimizer {Adamax, Nadam} Nadam

Activation functions {elu, relu, tanh } tanh
Hidden Layers {1, 2, 3, 4} 1

Table 3: Hyperparameter grid-search over the neural network parameters with a fixed number
epochs = 20 and � = 1 eV�1

For example, the Hubbard-I solver indicates for highly hybridized AIM an insulating solution
when in reality the system is metallic. Nevertheless, we emphasize that this behavior is ex-
pected and welcome, since the end-goal is to systematically correct for the error between the
approximate and exact solutions.

3.5 A Neural Network Impurity Solver

The very first step to training a machine learning model is the hyperparameter grid-search
over its independent parameters using tensorflow [24]. Specifically, for our neural network we
coarse-grain the number of epochs to 20, set the inverse temperature to � = 1 eV�1 and scan
across all combinations of parameters in Table 3. Ultimately, 401 different neural networks are
trained and the combination of parameters with the minimum cost function ⇠ 10�6 is given
by that combination of parameters shown in the “Optima” column of Table 3. Additional fixed
parameters in the grid search are: evenly spaced time grid, Hubbard-I, IPT and NCA solvers as
inputs xi to the neural network as they all require minimal computational resources in compar-
ison to the ED methods, no data augmentation, and the T4 imaginary-time transformation from
Table 1. It is noteworthy that either increasing the complexity of the network, i.e., increasing its
depth beyond 1, or increasing the learning rate to an order beyond 10�2 has detrimental effects
on the minimization of the cost function. Practically, it would be computationally prohibitive to
perform this grid search for every � and their additional free-parameters. In what follows, all
networks use the optimal values as specified in Table 3 and use an 80/20 cross-validation split,
i.e., 80% training data and 20% validation data.
We propose a collection of data scaling transformations of the input and output data which
improve the training of the neural network in the imaginary-time and Legendre bases. Fig. 9
presents the validation loss for these scenarios, for � = 1 eV�1. For the Legendre basis the
effect of data transformations is quite significant, as shown in Fig. 9. Here we see that by
applying a tanh-type Legendre transformations, the final value of the loss can be improved
by at least 2 orders of magnitude, reduced from 10�4 to 10�6. We expect the effect of this
transformation to be enhanced for larger values of � (lower temperatures), where the range
of Gl can greatly exceed the value of unity, and therefore necessitates the application of an
appropriate data transformation. At higher temperatures (i.e lower �), the Legendre coefficients
are often bounded close to unity, and so the neural network is less sensitive to the untransformed
input as compared to lower temperatures.



DMFT with AI 4.27

Fig. 9: Validation loss for the Legendre basis transformations at � = 1 eV�1. The transforma-
tions applied on the database lead to different figures of merit for the network predictions.

In Figure 10 we show the value of the cost function when trained in the Legendre basis using
the T1/2 data transformation. We observe for the training in the Legendre basis that higher
temperatures are more amenable to the training procedure and that including more approximate
solvers increases accuracy of the final validation loss. Therefore, we see that by executing
suitable basis transformations which are supplemented by a multitude of different approximate
solvers, the accuracy of the overall predictive quality of the neural network can be improved.
We note that production of high quality data on larger values of � requires a larger number of
imaginary time slices or Legendre coefficients.

Fig. 10: Cost function for the Legendre mesh for different inverse temperatures � using as input
the approximate solvers Hubbard-I, IPT and NCA.
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Fig. 11: CTQMC and Neural Network solvers used for a DMFT prediction of the quasiparticle
weight Z as a function of U at � = 20 eV�1 and W = 1.0 eV for the single-band half-filled
Hubbard model on a Bethe lattice.

3.6 A data-driven approach to the Mott transition

The motivation behind developing the data-driven impurity solver is to alleviate DMFT calcu-
lations from the intensive computational burden imposed by Exact Diagonalization and Monte
Carlo methods. In Fig. 11 we illustrate how the neural network solver, used in a DMFT calcu-
lation, can predict the Mott transition at � = 20 eV�1, W = 1.0 eV (at half-filling). This is
compared with the equivalent exact CTQMC results.
For each value of U, both solvers are run for 30 iterations to a self-consistent solution. As U

is increased the Mott transition occurs at U/D ⇡ 4–6, consistent with other calculations in
the literature [1], up to a factor of 2 due to the choice of D = 2eV . We emphasize that
the network uses approximate solutions as its input during its cycle, for which it predicts the
error-free corrected output instantly. By contrast the CTQMC has to be run long enough to
mitigate its statistical error bars. This proof-of-concept calculation highlights the power of the
data-driven method for a prototypical strongly correlated system, where the solver runs nearly
instantaneously, without any significant overheads.

4 Conclusion and code availability
We reviewed neural networks as a data-driven framework that can readily be trained for pro-
viding solutions of the Anderson impurity model. This provides an impurity solver capable of
capturing the Mott transition using DMFT for the Hubbard model. So far this approach remains
robust at higher temperatures, using approximate solutions results in consistently reliable re-
sults. We anticipate that improved results at lower temperatures could be attained by extending
this method to larger databases or more compact representations of the Green function.
The code discussed in these notes, coined Data driven Dynamical Mean Field Theory (D3MFT)
is available on GitHub at http://github.com/zelong-zhao/d3mft. For the installation of this pack-
age, please make sure that you have the Anaconda manager installed on your system, then
simply run ./install.sh d3mft. Once installed, there are different examples which can be run.
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1 Quantum impurity models

A quantum impurity model describes an atom or molecule embedded in some host with which
it exchanges electrons or spin. This exchange allows the impurity to make transitions between
different quantum states, and these transitions lead to non-trivial dynamical properties. Quan-
tum impurity models play a prominent role, for example, in the theoretical description of dilute
metal alloys and in theoretical studies of quantum dots and molecular conductors. These models
also appear as an auxiliary problem whose solution yields the dynamical mean-field description
of correlated lattice models.
The Hamiltonian of a general impurity model has the form

H = Hloc +Hbath +Hmix, (1)

where Hloc describes the impurity, characterized by a small number of degrees of freedom
(typically spin and orbital degrees of freedom denoted by a, b, . . .), and Hbath describes an
infinite reservoir of free electrons, labeled by a continuum of quantum numbers p and a discrete
set of quantum numbers ν (typically spin). Hmix describes the exchange of electrons between
the impurity and the bath in terms of hybridization amplitudes V a

pν . Denoting the impurity
creation operators by d† and the bath creation operators by c†, the three terms are

Hloc =
∑
ab

εabd†adb +
1

2

∑
abcd

Uabcdd†ad
†
bdcdd, (2)

Hbath =
∑
pν

εpc
†
pνcpν , (3)

Hmix =
∑
paν

(
V a
pν d

†
acpν + (V a

pν)
∗c†pνda

)
. (4)

In most of the following discussions, we focus on the single-orbital Anderson impurity model,
where the local Hamiltonian

Hloc = Hµ +HU , (5)

Hµ = −µ(n↑ + n↓), (6)

HU = U n↑n↓, (7)

has a Hilbert space of dimension four. The discrete quantum number labeling the impurity
states is the spin σ, nσ = d†σdσ is the density operator for impurity electrons with spin σ, and
the chemical potential is µ = −ε. The bath and mixing terms are

Hbath =
∑
pσ

εpc
†
pσcpσ, (8)

Hmix =
∑
pσ

(
Vpσ d

†
σcpσ + V ∗pσc

†
pσdσ

)
. (9)

An illustration of the Anderson impurity model is shown in Fig. 1.
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U

Fig. 1: Schematic representation of the Anderson impurity model. The left panel illustrates the
Hamiltonian representation. Spin up and down electrons on the impurity (black dot) interact
with an on-site energy U and hop to a continuum of non-interacting bath levels with energy
εp. The amplitudes for these transitions are given by the hybridization parameters Vpσ. Right
panel: Action representation of the Anderson impurity model, where the bath is replaced by the
hybridization function ∆σ(τ).

1.1 Action formulation

For analytical and numerical studies of equilibrium impurity problems, it can be useful to ex-
press the partition function and the imaginary-time Green function in terms of the imaginary-
time action. By integrating out the bath degrees of freedom in the path integral formalism one
obtains the partition function of the Anderson impurity model as

Z = Trd
(
T e−S

)
,

with the impurity action S = Smix+Sloc given by

Smix =
∑
σ

∫ β

0

dτdτ ′ d†σ(τ
′)∆σ(τ ′−τ)dσ(τ), (10)

Sloc =

∫ β

0

dτ
(
− µ

(
n↑(τ)+n↓(τ)

)
+ U n↑(τ)n↓(τ)

)
. (11)

T is the time-ordering operator. The impurity Green function becomes

G(τ) = −
〈
T d(τ)d†(0)

〉
S
= − 1

Z
Trd
(
T e−Sd(τ)d†(0)

)
.

The imaginary-time and Matsubara-frequency representations are related by

G(iωn) =

∫ β

0

dτ eiωnτG (τ) , G(τ) =
1

β

∑
n

e−iωnτG(iωn),

where the fermionic Matsubara frequencies are ωn = (2n+1)π/β and β = 1/T is the inverse
temperature.
The hybridization function ∆σ(τ ′−τ) in Eq. (10) represents the amplitude for hopping from the
impurity into the bath at time τ and back onto the impurity at time τ ′. It is a function of the
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bath energies and hybridization amplitudes and is most conveniently expressed in Matsubara
frequency space:

∆σ(iωn) =
∑
p

|Vpσ|2
iωn − εp

. (12)

It is also useful to introduce the Green function of the non-interacting impurity, G0, which is
related to the hybridization function by

[Gσ0 ]−1(iωn) = iωn + µ−∆σ(iωn). (13)

1.2 Dynamical mean-field theory

Quantum impurity models are a key ingredient of the dynamical mean-field theory (DMFT),
which provides an approximate description of correlated lattice models [1]. The success of
DMFT created a demand for accurate and versatile impurity solvers and triggered the devel-
opment of the continuous-time impurity solvers. These solvers have been discussed in detail
in various lecture notes [2], reviews [3] and books [4]. Our presentation here follows closely
Chapter 8 in Ref. [4].
In this section, we briefly introduce the DMFT approximation, which maps an interacting lattice
model, such as the Hubbard model, onto an effective single-site problem (impurity model)
subject to a self-consistency condition for the bath.
The Hubbard model

HHubbard = −t
∑
〈ij〉σ

(
d†iσdjσ + d†jσdiσ

)
+ U

∑
i

ni↑ni↓ − µ
∑
iσ

niσ

describes electrons hopping between nearest neighbor sites of some lattice with amplitude t.
Two electrons on the same site interact with energy U. The chemical potential term has been
added because we will work in the grand canonical ensemble. The noninteracting dispersion
εk is obtained as the Fourier transform of the hopping matrix. For example, in the case of a
one-dimensional lattice with lattice spacing a, εk = −2t cos(ka).
Inspired by the Weiss molecular-field theory [1], we focus on one particular site of the lattice
and replace the remaining degrees of freedom of the model by a bath of non-interacting levels
and a hybridization term that connects the interacting site to the bath. The effective single-site
problem thus becomes an Anderson impurity model,1

Himp =
∑
pσ

εpc
†
pσcpσ +

∑
pσ

(
Vpσd

†
σcpσ + V ∗pσc

†
pσdσ

)
+ Un↑n↓ − µ(n↑+n↓). (14)

Here, the d† create electrons on the impurity, nσ = d†σdσ, and the c†p create electrons in bath
states labeled by a quantum number p. In this effective single-site model, hoppings from the
impurity into the bath and back represent processes in the original Hubbard model where an

1In the DMFT context, the bath energy levels εp of the impurity model are not directly related to the dispersion
of the lattice model, εk.
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electron hops from a given site into the lattice and returns to it after some excursion through the
lattice. The hybridization parameters Vp give the amplitudes for such processes.
The DMFT procedure optimizes the parameters εp and Vp such that the bath of the Anderson
impurity model mimics the lattice environment as closely as possible. If we work with the
impurity action, the bath properties are encoded in ∆(τ) or G0(τ) and these functions thus play
the role of the mean field. It is a dynamical mean field, because the hybridization function ∆ or
Weiss Green function G0 depends on (imaginary) time or frequency.
The self-consistent solution is constructed in such a way that the impurity Green function
Gimp(iωn) reproduces the local lattice Green function Gloc(iωn) ≡ Gi,i(iωn). In other words, if
G(k, iωn) is the momentum-dependent lattice Green function of the Hubbard model, we seek
bath parameters and hybridizations such that the DMFT self-consistency condition∫

(dk)G(k, iωn) ≡ Gimp(iωn) (15)

is satisfied.2 The solution of Eq. (15) is obtained by iteration. To define a practical procedure, we
have to relate the left-hand-side of Eq. (15) to impurity model quantities. This step involves, as
the essential approximation of the DMFT method, a significant simplification of the momentum-
dependence of the lattice self-energy [5].
The self-energy describes the effect of interactions on the propagation of electrons. In the non-
interacting model, the lattice Green function is G0(k, iωn) =

(
iωn+µ−εk

)−1, with εk being
the Fourier transform of the hopping matrix. The Green function of the interacting model is
G(k, iωn) =

(
iωn+µ−εk −Σ(k, iωn)

)−1 with Σ(k, iωn) the lattice self-energy. Therefore

Σ(k, iωn) = G−10 (k, iωn)−G−1(k, iωn).

Similarly, we obtain the impurity self-energy

Σimp(iωn) = G−10 (iωn)−G−1imp(iωn),

with G−10 defined in Eq. (13). The DMFT approximation is the identification of the lattice
self-energy with the momentum-independent impurity self-energy,

Σ(k, iωn) ≈ Σimp(iωn).

This approximation allows us to rewrite the self-consistency equation (15) as∫
(dk)

(
iωn+µ−εk −Σimp(iωn)

)−1 ≡ Gimp(iωn). (16)

Since both Gimp(iωn) and Σimp(iωn) are determined by the impurity model parameters εp and
Vp (or the function ∆(τ) or G0(τ)), Eq. (16) defines a self-consistency condition for these
parameters (or functions).
We now formulate the self-consistency loop for the Weiss Green function G0(iωn). Starting
from an arbitrary initial G0(iωn), for example, the local Green function of the noninteracting
lattice model, we iterate the following steps until convergence:

2
∫
(dk) denotes a normalized integral over the Brillouin zone.
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1. Solve the impurity problem, that is, compute the impurity Green function Gimp(iωn) for
the given G0(iωn),

2. Extract the self-energy of the impurity model: Σimp(iωn) = G−10 (iωn)−G−1imp(iωn),

3. Identify the lattice self-energy with the impurity self-energy, Σ(k, iωn) = Σimp(iωn)

(DMFT approximation), and compute the local lattice Green function:

Gloc(iωn) =

∫
(dk)

(
iωn+µ−εk −Σimp(iωn)

)−1
,

4. Apply the DMFT self-consistency condition, Gloc(iωn) = Gimp(iωn), and use it to define
a new Weiss Green function G−10 (iωn) = G−1loc (iωn) +Σimp(iωn).

The computationally expensive step is the solution of the impurity problem (Step 1). When the
loop converges, the bath contains information about the lattice (through the density of states),
and about the phase (metal, Mott insulator, antiferromagnetic insulator, . . . ). The impurity,
which exchanges electrons with the bath, thus feels, at least to some extent, as if it were a site
of the lattice.

2 Continuous-time QMC solvers – General formalism

Quantum impurity models are (0+1)-dimensional quantum field theories and as such are compu-
tationally much more tractable than interacting lattice models. The main objective is computing
the impurity Green function

G(τ) = −〈T d(τ)d†(0)〉 = − 1

Z
Tr
(
e−(β−τ)Hd e−τHd†

)
, (17)

where Z = Tr e−βH is the impurity model partition function, β the inverse temperature, T is
the (imaginary) time-ordering operator, and Tr = TrdTrc the trace over the impurity and bath
states. In the last expression we assumed that 0 ≤ τ < β.
Continuous-time Monte Carlo algorithms expand the partition function into a series of “dia-
grams” and stochastically sample these diagrams [3]. We represent the partition function as a
sum (or more precisely as an integral) over configurations C with weight wC ,

Z =
∑
C

wC , (18)

and implement a random walk C1 → C2 → C3 → · · · in configuration space in such a way that
ergodicity and detailed balance are satisfied. Using sign-weighted averages, the impurity Green
function can be estimated from a finite number M of measurements as

G =
∑
C

wC GC

Z
=

∑
C |wC | signC GC∑
C |wC | signC

≈
∑M

i=1 signCiGCi∑M
i=1 signCi

≡ 〈sign ·G〉MC

〈sign〉MC
. (19)
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To derive the general framework for the continuous-time solvers it is useful to express the
partition function as an imaginary-time ordered exponential in an interaction representation.
To do this, we split the Hamiltonian into two parts, H = H1 + H2, and define the imaginary-
time dependent operators in the interaction representation as O(τ) = eτH1Oe−τH1 . In this
representation, the partition function becomes Z = Tr

(
e−βH1T e−

∫ β
0 dτH2(τ)

)
.3

Next, we expand the time-ordered exponential into a power series,

Z =
∞∑
n=0

∫ β

0

dτ1 · · ·
∫ β

τn−1

dτn Tr
(
e−(β−τn)H1(−H2) · · · e−(τ2−τ1)H1(−H2)e

−τ1H1

)
. (20)

This yields a representation of the partition function of the form (18), namely, as an infinite sum
over the weights of certain configurations. The configurations are collections of time-points on
the imaginary-time interval: C = {τ1, . . . , τn}, n = 0, 1, . . . , where we assume the imaginary-
time ordering τi < τi+1 and the restriction τi ∈ [0, β). The expression for the Monte Carlo
weights is

wC = Tr
(
e−(β−τn)H1(−H2) · · · e−(τ2−τ1)H1(−H2)e

−τ1H1

)
(dτ)n. (21)

There are two complementary continuous-time Monte Carlo techniques: (i) the weak-coupling
approach, which scales favorably with system size (that is, the number of correlated sites or
orbitals in the impurity model) and allows the efficient simulation of relatively large impurity
clusters with simple interactions, and (ii) the hybridization-expansion approach, which can
handle impurity models with strong interactions among multiple orbitals. For simplicity, we
continue to focus on the single-orbital Anderson impurity model defined in Eqs. (6)–(9). In this
case, the weak-coupling continuous-time Monte Carlo approach expands Z in powers of the
interaction U in an interaction representation where the imaginary-time evolution is determined
by the quadratic partHµ+Hbath+Hmix of the Hamiltonian. The complementary hybridization-
expansion approach expands Z in powers of the impurity-bath hybridization term Hmix in an
interaction representation where the imaginary-time evolution is determined by the local part
Hµ+HU +Hbath of the Hamiltonian. The details of how the weights (21) are sampled and how
the observables are measured depend on the specific continuous-time method.

3 Weak-coupling approach

The weak-coupling continuous-time impurity solver [6] expands the partition function in pow-
ers ofH2=HU .4 Equation (21) then gives the weight of a configuration of n interaction vertices.
Since H1 = H−H2 = Hµ+Hbath+Hmix is quadratic, we can use Wick’s theorem to evaluate
the trace. The result is a product of two determinants of n×n matrices (one for each spin). The

3We can understand this formula by defining the operatorA(β) = eβH1e−βH and writing the partition function
asZ = Tr(e−βH1A(β)). The operatorA(β) satisfies dA/dβ = eβH1(H1−H)e−βH = −H2(β)A(β), the solution
of which is A(β) = T exp

(
−
∫ β
0
dτH2(τ)

)
.

4A related algorithm, based on an expansion in powers of HU−K/β (with K some non-zero constant), is the
continuous-time auxiliary field method [7].
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elements of these matrices are the Weiss Green functions Gσ0 for the time intervals defined by
the vertex positions

wC
Z0

= (−Udτ)n 1

Z0

Tr
(
e−(β−τn)H1n↑n↓ · · · e−(τ2−τ1)H1n↑n↓e

−τ1H1

)
= (−Udτ)n

∏
σ

detM−1
σ ,

where (
M−1

σ

)
ij
= Gσ0 (τi−τj) with Gσ0 (τ) = −

1

Z0

Tr
(
e−βH1T d(τ)d†(0)

)
,

and Z0 = Tr e−βH1 is the partition function of the non-interacting model.5 For the diagonal
elements, we adopt the convention (M−1

σ )ii = Gσ0 (0−).
At this point, one notices a potential sign problem. In the paramagnetic phase, where G↑0 = G↓0 ,
the product of determinants is positive, which means that for a repulsive interaction (U > 0)
odd perturbation orders yield negative weights. Except in the particle-hole symmetric case,
where odd perturbation orders vanish, these odd order configurations cause a sign problem.
Fortunately, we can solve this sign problem by shifting the chemical potentials for up and down
spins in an appropriate way [6]. To do so, we rewrite the interaction term as [8]

HU =
U

2

∑
s

∏
σ

(
nσ−ασ(s)

)
+
U

2
(n↑+n↓) + U

((
1

2
+δ

)2

− 1

4

)
, (22)

with

ασ(s) =
1

2
+ σs

(
1

2
+δ

)
. (23)

Here, δ is some constant and s = ±1 is an auxiliary Ising variable. This construction is not a
Hubbard-Stratonovich transformation, but simply a shift in the zero of energy. The constant
U
(
(1
2
+δ)2 − 1

4

)
in Eq. (22) is irrelevant and will be ignored in the following. We absorb

the contribution 1
2
U(n↑+n↓) into the non-interacting Green function by shifting the chemical

potential as µ→ µ−1
2
U. Explicitly, the Weiss Green function is redefined as6

(
Gσ0
)−1

= iωn+µ−∆σ →
(
G̃σ0
)−1

= iωn+µ−1
2
U−∆σ.

The introduction of an Ising variable si at each vertex position τi enlarges the configuration
space exponentially. A configuration C now corresponds to a collection of auxiliary spin vari-
ables defined on the imaginary-time interval: C = {(τ1, s1), (τ2, s2), . . . , (τn, sn)}. The weight
of these configurations is

wC = Z̃0(−Udτ/2)n
∏
σ

det M̃−1
σ , (24)

where (
M̃−1

σ

)
ij
= G̃σ0 (τi−τj)− ασ(si)δij. (25)

5We note that in the DMFT framework discussed in Section 1.2, the function Gσ0 is determined directly by
the self-consistency loop, without reference to a Hamiltonian. For the purpose of the present discussion, we may
however assume that we know Hbath and Hmix terms whose parameters yield Gσ0 through Eqs. (12) and (13).

6In a DMFT calculation, this means that the shifted chemical potential is used within the self-consistency loop.
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Fig. 2: Local update in the weak-coupling method. The horizontal line represents the
imaginary-time interval [0, β). We increase the perturbation order by adding an auxiliary spin
with random orientation at a random time and decrease it by removing a randomly chosen
auxiliary spin.

3.1 Sampling

For ergodicity it is sufficient that the sampling inserts the auxiliary spins with random orien-
tation at random times and removes randomly chosen spins. Detailed balance requires that
the probability p(C→C ′) to move from configuration C to C ′ satisfies w(C)p(C→C ′) =

w(C ′)p(C ′→C). Splitting p(C→C ′) = pprop(C→C ′)pacc(C→C ′) into a proposal and accep-
tance probability, and using the Metropolis-Hastings algorithm [4], we have

pacc(C→C ′) = min
(
1,R(C→C ′)

)
,

where

R(C→C ′) =
w(C ′) pprop(C ′→C)

w(C) pprop(C→C ′)

and Eq. (24) is used to compute the ratio of the weights. To complete the description of the
sampling we need to specify proposal probabilities for the insertion and removal of an auxiliary
spin. A simple and reasonable procedure is illustrated in Fig. 2. For the insertion, we pick a
random time in [0, β) and a random orientation for the new spin, while for the removal, we
simply pick a random spin. The corresponding proposal probabilities are

pprop(n→ n+1) = 1
2
(dτ/β), pprop(n+1→ n) = 1/(n+1). (26)

The first step is choosing with equal probability whether we insert or remove. If we insert, then
we are going from a configuration with n spins to a configuration with n+1 spins, and from
Eq. (24) and the above choices for pprop, the acceptance probability becomes pacc(n→ n+1) =

min
(
1,Rinsert(n→ n+1)

)
with

Rinsert(n→ n+1) =
−βU
n+1

∏
σ

det
(
M̃

(n+1)
σ

)−1
det
(
M̃

(n)
σ

)−1 . (27)

The acceptance probability for the removal follows from

Rremove(n+1→ n) = 1/Rinsert(n→ n+1). (28)



5.10 Philipp Werner

3.2 Determinant ratios and fast matrix updates

From Eq. (27), we see that each update requires the calculation of a ratio of two determinants.
At first sight, one might think that for a matrix of size n×n this is anO(n3) operation. However,
each insertion or removal of a vertex (or spin) merely changes one row and one column of the
matrix M−1

σ (or M̃−1
σ ).7 It is thus possible to evaluate this ratio in a time O(n2) for insertion

and O(1) for removal [3].
We first note that the objects which are stored and manipulated, besides the lists of the times
{τi} (or times and spins {(τi, si)}), are the matrices Mσ = (Gσ0 )−1, not M−1

σ = Gσ0 . Inserting a
vertex (or auxiliary spin) adds a new row and column to M−1

σ . We imagine inserting this row
and column on the border of the given matrix and write the resulting matrix in a block matrix
form (omitting the σ index for simplicity):

(
M (n+1)

)−1
=

( (
M (n)

)−1
Q

R S

)
.

The analogous blocks of the M matrix are defined as

M (n+1) =

(
P̃ Q̃

R̃ S̃

)
. (29)

Here Q, R, and S are n×1, 1×n, and 1×1 matrices which contain the functions G0 evaluated at
time intervals determined by the position of the new vertex (spin). They can be easily computed.
We want to find P̃ , Q̃, R̃, and S̃, and the ratio of determinants. Using the expression for the
block inversion of a matrix and for the determinant of a block matrix, the determinant ratio
needed for the acceptance probability becomes

det
(
M (n+1)

)−1
det
(
M (n)

)−1 = det
(
S −RM (n)Q

)
= S −RM (n)Q . (30)

Because we store M (n), computing the acceptance probability of an insertion move is just an
O(n2) operation. If the move is accepted, the new matrix M (n+1) can be computed from M (n),
Q, R, and S, also in a time O(n2):

S̃ =
(
S − (R) (M (n)Q)

)−1
, (31)

Q̃ = −(M (n)Q) S̃, (32)

R̃ = −S̃ (RM (n)), (33)

P̃ = M (n) + (M (n)Q) S̃ (RM (n)). (34)

In the case of removing a spin we imagine removing a bordering row and column. It follows
from Eqs. (30) and (31) that

det
(
M (n)

)−1
det
(
M (n+1)

)−1 = det S̃ = S̃. (35)

7In the following, we write the formulas without the tildes, that is, for the sampling of interaction vertices. For
the algorithm with auxiliary spins, it suffices to replace M→ M̃ and G0→G̃0.
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S̃ is just a 1×1 matrix so its determinant is trivial to compute. The above formulas also imply
that the elements of the reduced matrix are

M (n) = P̃ − (Q̃)(R̃)/S̃. (36)

The calculation of the removal probability is thus O(1), while the calculation of the new M (n)

matrix is O(n2).

3.3 Measurement of the Green function

To compute the contribution of a configuration C to the Green function, Gσ
C(τ), we insert in

the right-hand side of Eq. (21) a creation operator d† at time 0 and an annihilation operator d at
time τ and divide by wC . Wick’s theorem and Eq. (30) then lead to the expression [6]

Gσ
C(τ) = Gσ0 (τ)−

∑
k

Gσ0 (τ−τk)
∑
l

(
Mσ

)
kl
Gσ0 (τl). (37)

The estimate for the impurity Green function for a given imaginary-time then follows from
Eq. (19). To avoid unnecessary and time-consuming summations during the Monte Carlo sim-
ulation (evaluation of Eq. (37) for many τ -values), we accumulate the quantity [7]

Sσ(τ̃) ≡
∑
k

δ(τ̃−τk)
∑
l

(
Mσ

)
kl
Gσ0 (τl),

by binning the time points τ̃ on a fine grid. After the simulation is finished, we compute the
Green function as8

Gσ(τ) = Gσ0 (τ)−
∫ β

0

dτ̃ Gσ0 (τ−τ̃)
〈
Sσ(τ̃)

〉
MC. (38)

It is also possible to measure the Matsubara components of the Green function directly. Using
the imaginary-time translational invariance of the Green functions, one finds

Gσ
C(iωn) = Gσ0 (iωn)− Gσ0 (iωn)

∑
kl

1

β
eiωn(τk−τl)

(
Mσ

)
kl
Gσ0 (iωn),

so that

Gσ(iωn) = Gσ0 (iωn)−
1

β

(
Gσ0 (iωn)

)2〈∑
kl

eiωn(τk−τl)
(
Mσ

)
kl

〉
MC
. (39)

We note that because the Weiss Green function has the high-frequency behavior G0(iωn) ∼
1/iωn, the measured impurity Green function automatically inherits the correct high-frequency
tail.

8Comparison of this equation with the Dyson equation G = G0 + G0 ? Σ ? G (where the ? symbol denotes a
convolution in imaginary time) shows that his procedure amounts to measuring −Σ ? G.
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3.4 Multi-orbital and cluster impurity problems

The generalization of the weak-coupling method to impurity clusters is straightforward. All we
have to do is to add a site index to the interaction vertices (or auxiliary Ising spin variables) and
sample the vertices (auxiliary spins) on a family of nsites imaginary-time intervals.
General four-Fermion terms as in Eq. (2) are, at least in principle, also easily dealt with. We
simply expand the partition function in powers of the interactions Uabcd. The trace over the
impurity and bath degrees of freedom again yields a determinant of a matrix whose order equals
the total perturbation order. In general there is a sign problem. To reduce the sign problem, it is
advantageous to introduce auxiliary fields α and replace

1

2

∑
abcd

Uabcd d†ad
†
bdcdd → −

1

2

∑
abcd

Uabcd
(
d†adc−αac

)(
d†bdd−αbd

)
,

with an appropriate shift in the quadratic part of the Hamiltonian. However, in general, it is
not possible to completely eliminate the sign problem by a suitable choice of α parameters.
Furthermore, since the number of interaction terms grows like O(n4

orbitals), the computational
cost rapidly escalates. In practice, the approach discussed in the following section is a more
suitable approach for single-site multi-orbital impurity problems with general interactions.

4 Hybridization-expansion approach

While the Monte Carlo weights in the weak-coupling method are expressed in terms of the
Weiss Green function G0, the hybridization-expansion method, which is in many ways com-
plementary to the weak-coupling approach, naturally involves the hybridization function ∆. It
follows from Eq. (13) that the Weiss Green function G0 and hybridization function∆ contain the
same information, and the DMFT procedure sketched in Sec. 1.2 could be just as well written
as a self-consistency loop fixing the hybridization function ∆.
The hybridization-expansion approach [9] is based on an expansion of the partition function
in powers of the impurity-bath hybridization term. Here, we decompose the Hamiltonian
as H2 = Hmix and H1 = H − H2 = Hµ + HU + Hbath. Since H2 ≡ Hd†

2 + Hd
2 =∑

pσ Vpσ d
†
σcpσ +

∑
pσ V

∗
pσ c
†
pσdσ has two terms, corresponding to electrons hopping from the

bath to the impurity and from the impurity back to the bath, only even perturbation orders
contribute to Eq. (20). Furthermore, at perturbation order 2n, only the (2n)!/(n!)2 terms cor-
responding to n creation operators d† and n annihilation operators d contribute. We therefore
write the partition function as a sum over configurations {τ1, . . . , τn; τ ′1, . . . , τ ′n} that are collec-
tions of imaginary-time points corresponding to these n annihilation and n creation operators:

Z =
∞∑
n=0

∫ β

0

dτ1 · · ·
∫ β

τn−1

dτn

∫ β

0

dτ ′1 · · ·
∫ β

τ ′n−1

dτ ′n Tr
(
e−βH1T Hd

2 (τn)H
d†

2 (τ ′n) · · ·Hd
2 (τ1)H

d†

2 (τ ′1)
)
.

(40)
Since the imaginary-time evolution operator e−τH1 does not rotate the spin in the case of the
Anderson impurity model, the configurations must contain an equal number of creation and
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annihilation operators for each spin. Taking this additional constraint into account and using
the explicit expressions for Hd

2 and Hd†
2 , we find

Z = Zbath

∑
{nσ}

∏
σ

∫ β

0

dτσ1 · · ·
∫ β

τσnσ−1

dτσnσ

∫ β

0

dτ ′σ1 . . .

∫ β

τ ′σnσ−1

dτ ′σnσ

× Trd
(
e−βHlocT

∏
σ

dσ(τ
σ
nσ)d

†
σ(τ
′σ
nσ) . . . dσ(τ

σ
1 )d

†
σ(τ
′σ
1 )
)

× 1

Zbath

Trc
(
e−βHbathT

∏
σ

∑
p1...pnσ

∑
p′1...p

′
nσ

V ∗p1σVp′1σ · · ·V
∗
pnσσ

Vp′nσσ

c†pnσσ(τ
σ
nσ)cp′nσσ(τ

′σ
nσ) . . . c

†
p1σ

(τσ1 )cp′1σ(τ
′σ
1 )
)
,

where to separate the d and c operators we used the fact that H1 does not mix the impurity and
the bath. The local Hamiltonian Hloc is defined in Eq. (5) and Zbath = Trc e−βHbath .
Introducing the β-antiperiodic hybridization function (12), which in the time-domain reads

∆σ(τ) =
∑
p

|Vpσ|2
eεpβ + 1

{
−e−εp(τ−β) 0 < τ < β

e−εpτ −β < τ < 0
,

the trace over the bath states can be expressed as

1

Zbath

Trc
(
e−βHbathT

∏
σ

∑
p1...pnσ

∑
p′1...p

′
nσ

V ∗p1σVp′1σ · · ·V
∗
pnσσ

Vp′nσσ

c†pnσσ(τ
σ
nσ)cp′nσσ(τ

′σ
nσ) · · · c†p1σ(τσ1 )cp′1σ(τ

′σ
1 )
)
=
∏
σ

detM−1
σ ,

where M−1
σ is the (nσ×nσ) matrix with elements(

M−1
σ

)
ij
= ∆σ(τ ′i

σ−τσj ).

In the hybridization expansion approach, the configuration space consists of all sequences C =

{τ ↑1 , . . . , τ ↑n↑ ; τ
′↑
1 , . . . , τ

′↑
n↑
|τ ↓1 , . . . , τ ↓n↓ ; τ

′↓
1 , . . . , τ

′↓
n↓
} of n↑ creation and annihilation operators for

spin up (n↑ = 0, 1, . . .) and n↓ creation and annihilation operators for spin down (n↓ = 0, 1, . . .).
The weight of such a configuration is

wC = ZbathTrd
(
e−βHlocT

∏
σ

dσ(τ
σ
nσ)d

†
σ(τ
′σ
nσ) · · · dσ(τσ1 )d†σ(τ ′σ1 )

)∏
σ

detM−1
σ (dτ)2nσ . (41)

The trace factor represents the contribution of the impurity, which fluctuates between different
quantum states as electrons hop in and out. The determinants sum up all bath evolutions which
are compatible with the given sequence of transitions.
To evaluate the trace factor, we may for example use the eigenbasis of Hloc. In this basis, the
imaginary-time evolution operator e−τHloc is diagonal while the operators dσ and d†σ produce
transitions between eigenstates with amplitude±1. Because the time evolution does not flip the
electron spin, the creation and annihilation operators for a given spin alternate. This observation
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lmax

Fig. 3: Local update in the segment picture. The two segment configurations correspond to
spin up and down electrons. Each segment depicts a time interval in which an electron of the
corresponding spin resides on the impurity. The segment end points are the locations of the
operators d† (full circles) and d (empty circles). We increase the perturbation order by adding
a segment or anti-segment of random length for random spin and decrease it by removing a
randomly chosen segment or anti-segment.

allows us to separate the operators for spin up from those for spin down and to depict the time
evolution by a collection of segments with each segment representing an imaginary-time interval
in which an electron of spin up or down resides on the impurity (Fig. 3). We call an unoccupied
time-interval between two segments an “anti-segment”.
At each time, the eigenstate of the impurity follows immediately from the segment representa-
tion, and the trace factor becomes

Trd
(
e−βHlocT

∏
σ

dσ(τ
σ
nσ)d

†
σ(τ
′σ
nσ) · · · dσ(τσ1 )d†σ(τ ′σ1 )

)
= S exp

(
µ(l↑+l↓)− Uloverlap

)
, (42)

with S being a permutation sign, lσ the total “length” of the segments for spin σ, and loverlap the
total length of the overlap between spin-up and spin-down segments. The lower panel of Fig. 3
shows a configuration with two segments for spin up and one segment for spin down (note the
periodic boundary conditions). The time intervals where segments overlap, indicated by gray
rectangles, correspond to a doubly occupied impurity and cost a repulsion energy U.

4.1 Sampling

For ergodicity, it is sufficient to insert and remove pairs of creation and annihilation operators
(segments or anti-segments) for spin up and down. One possible strategy for inserting a segment
is the following: We select a random time in [0, β) for the creation operator. If it falls on an
existing segment, the impurity is already occupied and the move is rejected. If it falls on an
empty space, we compute lmax, the length from this selected time to the next segment (in the
direction of increasing τ , taking into account the periodic boundary conditions).9 Then we

9If there are no segments for the given spin, lmax = β.
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choose the position of the new annihilation operator randomly in this interval of length lmax

(Fig. 3). If in the inverse procedure we propose to remove a randomly chosen segment for this
spin, then the proposal probabilities for the insertion and removal are

pprop(nσ → nσ+1) =
dτ

β

dτ

lmax

, pprop(nσ+1→ nσ) =
1

nσ + 1
.

The acceptance probability for the insertion of a segment becomes pacc(nσ → nσ+1) = min
(
1,

Rinsert(nσ → nσ+1)
)
, with

Rinsert(nσ → nσ+1) =
βlmax

nσ + 1
eµlnew−Uδloverlap

det
(
M

(nσ+1)
σ

)−1
det
(
M

(nσ)
σ

)−1 , (43)

while the acceptance probability for a removal is obtained from

Rremove(nσ+1→ nσ) = 1/Rinsert(nσ → nσ+1). (44)

Here, lnew is the length of the new segment, and δloverlap is the change in the overlap (see Fig. 3).
We compute the ratio of determinants using the fast update formulas discussed in Section 3.2.

4.2 Measurement of the Green function

The strategy is to create configurations which contribute to the Green function measurement by
decoupling the bath from a given pair of creation and annihilation operators in C. We start by
expressing the expectation value for the Green function as

G(τ) = − 1

Z

∑
C

w
d(τ)d†(0)
C = − 1

Z

∑
C

w
(τ,0)
C

w
d(τ)d†(0)
C

w
(τ,0)
C

,

where wd(τ)d
†(0)

C denotes the weight of the configuration C with an additional operator d†(0) and
d(τ) in the trace factor and w(τ,0)

C denotes the complete weight corresponding to the enlarged
operator sequence (including enlarged hybridization determinants). Since the trace factors of
both weights are identical, up to a permutation sign (−1)i+j ,

w
d(τ)d†(0)
C

w
(τ,0)
C

=
(−1)i+j det

(
MC

)−1
det
(
M

(τ,0)
C

)−1 =
(
M

(τ,0)
C

)
ji
,



5.16 Philipp Werner

with i and j denoting the row and column corresponding to the additional operators d† and d in
the enlarged

(
M

(τ,0)
C

)−1. Hence, the measurement formula for the Green function becomes10

G(τ) = − 1

Z

∑
C

w
(τ,0)
C

(
M

(τ,0)
C

)
ji
= − 1

Z

∑
C̃

wC̃ ñ
2δ(τñ−τ)δ(τ ′ñ−0)

(
MC̃

)
ññ

= − 1

Z

∑
C̃

wC̃ ñ
2 1

β
δ(τ, τñ−τ ′ñ)

(
MC̃

)
ññ
,

with δ(τ, τ ′) = δ(τ−τ ′) for τ ′ > 0, and δ(τ, τ ′) = −δ(τ−τ ′−β) for τ ′ < 0. In the first step, we
went from a sum over configurations C with n creation and annihilation operators in addition
to d(τ) and d†(0) to a sum over configurations C̃ with ñ = n+1 operator pairs, while in the last
step, we used the translational invariance and the β-anti-periodicity of the Green function. We
finally replace the factor ñ2 (which comes from the 1/(n!)2 factor in the Monte Carlo weights
without time ordering) by a sum over all pairs i, j of creation and annihilation operators, to
obtain the measurement formula G(τ) = − 1

Z

∑
C̃ wC̃

∑
ij

1
β
δ(τ, τj−τ ′i)

(
MC̃

)
ji

, or

G(τ) =

〈
−
∑
ij

1

β
δ(τ, τi−τ ′j)Mij

〉
MC
. (45)

Fourier transformation of Eq. (45) yields the measurement formula

G(iωn) =

〈
−
∑
ij

1

β
eiωn(τi−τ

′
j)Mij

〉
MC

(46)

for the Fourier coefficients of the Green function. Note that in contrast to the weak-coupling
approach, where we measure the Green function as aO(1/(iωn)2) correction to the Weiss Green
function, Eq. (46) does not automatically yield the correct high frequency tail.
An elegant way to suppress the noise in G(iωn) at large ωn and to obtain a compact represen-
tation of the Green function is to measure the expansion coefficients in a basis of orthogonal

10For the purpose of this derivation, it is convenient to use configurations C and C̃ without time ordering, that
is, we write the Green function as

G(τ) =− Zbath

Z

∑
n

1

n!2

∫ β

0

dτ1 · · · dτn
∫ β

0

dτ ′1 · · · dτ ′n

× Trd
(
e−βHlocT d(τ)d†(0)d(τn)d†(τ ′n) · · · d(τ1)d†(τ ′1)

)
det
(
M (τ,0)

)−1(
M (τ,0)

)
n+1,n+1

=− Zbath

Z

∑
n

(n+1)2(
(n+1)!

)2 ∫ β

0

dτ1 · · · dτn+1

∫ β

0

dτ ′1 · · · dτ ′n+1δ(τn+1−τ)δ(τ ′n+1−0)

× Trd
(
e−βHlocT d(τn+1)d

†(τ ′n+1)d(τn)d
†(τ ′n)d(τ1)d

†(τ ′1)
)
det
(
M (τ,0)

)−1(
M (τ,0)

)
n+1,n+1

=− Zbath

Z

∑
ñ

ñ2

(ñ!)2

∫ β

0

dτ1 · · · dτñ
∫ β

0

dτ ′1 · · · dτ ′ñδ(τñ−τ)δ(τ ′ñ−0)

× Trd
(
e−βHlocT d(τñ)d†(τ ′ñ) · · · d(τ1)d†(τ ′1)

)
det
(
M (ñ)

)−1(
M (ñ)

)
ññ
.
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polynomials [10]. A suitable choice are the Legendre polynomials Pl(x) defined on x ∈ [−1, 1]
through the recursion relation

P0(x) = 1,

P1(x) = x,

(l+1)Pl+1(x) = (2l+1)xPl(x)− lPl−1(x).

The Pl furthermore satisfy
∫ 1

−1 dxPk(x)Pl(x) = 2
2l+1

δkl. Defining x(τ) = 2τ/β−1, one can
thus express the Green function on the interval τ ∈ [0, β] as

G(τ) =
∑
l≥0

√
2l + 1

β
Pl
(
x(τ)

)
Gl, (47)

Gl =
√
2l + 1

∫ β

0

dτPl
(
x(τ)

)
G(τ). (48)

The advantage of the Legendre representation over the Matsubara representation is a much faster
decay of the expansion coefficients with increasing order. The Matsubara Fourier transform
requires anti-periodization of the Green function with discontinuities at τ = mβ, which leads
to slowly decaying Matsubara coefficients (G(iωn) ∼ 1/iωn for large ωn). On the other hand,
the Legendre basis represents the smooth function G(τ) on the interval [0, β]. In practice, 30 to
50 Legendre coefficients are enough to reproduce the Green function with high precision and
neglecting the higher orders acts as a convenient noise filter.
From Eqs. (45) and (48) it follows that

Gl =

〈
−
∑
ij

√
2l + 1

β
P̃l(τi−τ ′j)Mij

〉
MC
, (49)

with P̃l(τ) = Pl
(
x(τ)

)
for τ > 0 and P̃l(τ) = −Pl

(
x(τ+β)

)
for τ < 0.

The Matsubara coefficients are obtained from the Legendre coefficients asG(iωn) =
∑

l≥0 TnlGl,
with the unitary transformation Tnl given by Tnl = (−1)nil+1

√
2l + 1jl(

1
2
βωn), which involves

the spherical Bessel functions jl(z). In the limit n→∞, Tnl decays ∼ 1/(iωn) for n even and
∼ 1/(iωn)

2 for n odd.
An even more compact representation of Green functions can be obtained with the so-called
intermediate representation introduced in Ref. [11].

4.3 Generalizations – Matrix and Krylov formalisms
4.3.1 Matrix formalism

It is obvious from the above derivation that the hybridization-expansion formalism is applicable
to general classes of impurity models [12]. Because we compute the trace factor in the weight
(41) exactly, Hloc can contain arbitrary local interactions (for example, spin-exchange terms
in multi-orbital models), degrees of freedom (for example, spins in Kondo-lattice models) or
constraints (for example, ‘no double occupancy’ in the t-J model).
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For multi-orbital impurity models with Hloc diagonal in the occupation number basis, such as
models with density-density interactions, the segment formalism illustrated in Fig. 3 is still ap-
plicable, but there is now a collection of segments for each flavor α (orbital, spin, etc.). The
trace factor can again be computed from the length of the segments (the chemical potential con-
tribution) and the overlaps between segments of different flavor (the interaction contribution).
This allows a very efficient simulation of models with 5, 7, and in principle even more orbitals,
despite the fact that the corresponding Hilbert spaces (45 = 1024 for 5 orbitals, 47 = 16384 for
7 orbitals) are quite large.
If Hloc is not diagonal in the occupation number basis defined by the d†α, the calculation of

Trd
(
e−βHlocT

∏
α

dα(τ
α
nα) d

†
α(τ
′α
nα) · · · dσ(τα1 ) d†α(τ ′1

α
)
)

(50)

becomes rather involved and for a model with a large Hilbert space also computationally ex-
pensive. An obvious idea is to evaluate the trace in the eigenbasis where the imaginary-time
evolution operators e−Hlocτ become diagonal. On the other hand, the operators dα and d†α,
which are simple and sparse in the occupation number basis, become complicated matrices in
the eigenbasis. The evaluation of the trace factor in the eigenbasis thus involves the multiplica-
tion of matrices whose size scales as the dimension of the Hilbert space of the local problem.
Since the dimension of this Hilbert space grows exponentially with the number of flavors, the
calculation of the trace factor becomes the computational bottleneck of the simulation, and the
matrix formalism is therefore restricted to a relatively small number of flavors.
It is important to identify and use conserved quantum numbers [13]. Typically, these are particle
number for spin up and spin down and momentum. If we group the eigenstates ofHloc according
to these quantum numbers, the operator matrices acquire a sparse block structure. For example,
the operator d†↑,q connects states corresponding to the quantum numbers m = {n↑, n↓, k, . . .} to
those withm′ = {n↑+1, n↓, k+q, . . .} (if they exist). Checking the compatibility of the operator
sequence with the different starting blocks allows us to identify the blocks which contribute to
the trace without performing any expensive matrix-matrix multiplications.
Let us take as a simple example a two-orbital model with conserved quantum numbers n↑ and
n↓. The operator sequence d†↑(τ4) d

†
↑(τ3) d↑(τ2) d↑(τ1) (with τ1 < τ2 < τ3 < τ4) is compatible

with the starting blocks {n↑ = 2;n↓ = 0, 1, 2}, since the quantum numbers evolve as

{n↑ = 2;n↓} →
d↑
{n↑ = 1;n↓} →

d↑
{n↑ = 0;n↓} →

d†↑

{n↑ = 1;n↓} →
d†↑

{n↑ = 2;n↓},

whereas the blocks {n↑ = 0, 1;n↓ = 0, 1, 2} do not contribute to the weight, since, for example,

{n↑ = 1;n↓} →
d↑
{n↑ = 0;n↓} →

d↑
∅ .

Having identified the contributing blocks, the trace calculation reduces to a block matrix multi-
plication of the form∑

contributing
m

Trm
(
· · ·
(
O
)
m′′m′

(
e−(τ

′−τ)Hloc
)
m′

(
O
)
m′m

(
e−τHloc

)
m

)
, (51)
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where O is either a creation or annihilation operator, m denotes the index of the matrix block,
and the sum runs over those starting sectors which are compatible with the operator sequence.
Using the block structure imposed by the conserved quantum numbers, it is possible to effi-
ciently simulate 3-orbital models or 4-site clusters. However, since the matrix blocks are dense
and the largest blocks grow exponentially with system size, the simulation of 5-orbital models
already becomes quite expensive and the simulation of 7-orbital models with 5, 6 or 7 electrons
is doable only if we truncate the size of the blocks.
In fact, one should distinguish two types of truncations:

1. Restriction of the trace
∑

contributing m Trm(. . .) to those quantum number sectors or states
which give the dominant contribution,

2. Reduction of the size of the operator blocks
(
O
)
m′m′′

by eliminating high-energy states.

Truncations of type (1) have little effect at low enough temperature, because they restrict the
possible states only at a single point on the imaginary-time interval. Truncations of the type (2)
are more problematic and possibly lead to systematic errors which are difficult to estimate and
control when the system size is large.
Accumulating a histogram of the states or quantum number sectors visited during the sampling
can be very instructive. For example, in the study of correlated materials with multiple partially
filled orbitals, interesting questions are the typical valence or the dominant spin state, and the
importance of fluctuations to other charge and spin states. Dynamical mean-field theory allows
us to address these issues by adopting a real-space representation of the solid as a collection of
atoms and treating the local fluctuations on a given site through the effective impurity model
construction. The strong-coupling solver, which treats the local part of the impurity problem
exactly, is ideally suited for such an analysis.

4.3.2 Krylov formalism

An alternative strategy [14] to evaluate the trace factor (50) is to

1. Adopt the occupation number basis in which we can easily apply the dα and d†α operator
matrices to any state and in which we can exploit the sparse nature of Hloc during the
imaginary-time evolutions,

2. Approximate the trace by a sum over the lowest energy states, that is, by a truncation of
type (1) described in the previous subsection.

Instead of evaluating the matrix corresponding to the product of operators, we propagate each
retained state in the trace through the sequence of time-evolution, creation and annihilation op-
erators. This computation only involves matrix-vector multiplications of the type dα|v〉, d†α|v〉,
and Hloc|v〉 with sparse operators dα, d†α and Hloc and is thus possible for systems for which
the multiplication of dense matrix blocks becomes prohibitively expensive. Furthermore, the
approach does not require any approximation of type (2), so all excited states remain accessi-
ble at intermediate τ . While the sparsity of Hloc depends on the number of interaction terms,
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this number grows at most proportionally to the number of orbitals squared. In contrast, the
dimension of the matrix grows exponentially with the number of orbitals.
The expensive step is the calculation of the time evolution from one operator to the next. We
evaluate the matrix exponentials applied to a vector, exp(−τHloc)|v〉, by iteratively constructing
the Krylov space

Kp(|v〉) = span{|v〉, Hloc|v〉, H2
loc|v〉, . . . , Hp

loc|v〉}
and by approximating the full matrix exponential by the matrix exponential of the Hamiltonian
projected onto Kp(|v〉). The iteration number p is determined by tracking the convergence of
exp(−τHloc)|v〉 and stopping the calculation if the difference between iteration p and p+1 drops
below some cutoff value. The number of iterations depends on the time interval τ , but typically,
convergence occurs for very small iteration numbers p� Ndim, with Ndim the dimension of the
Hilbert space.
In the limit where the dimension of the local Hilbert space Ndim is large, the Krylov approach
is more efficient than an implementation based on a matrix representation of the operators dα,
d†α and an evaluation of the trace of the matrix product. If the Monte Carlo configuration has
n creation and n annihilation operators and we perform the trace over Ntr ≤ Ndim states, the
Krylov calculation of the trace scales as

O
(
NtrNdim2n(1+〈p〉)

)
,

where the first term comes from the application of the creation and annihilation operators and
the second term, proportional to the average dimension 〈p〉 of the Krylov space, from the ap-
plication of the time-evolution operators. If we retain all the states in the trace calculation,
Ntr = Ndim, and the trace calculation scales as N2

dim. If we restrict the trace to a small number
of low-energy states, then Ntr is O(1) and the trace computation becomes linear in Ndim. This
scaling should be compared with a computational effort of O(2nN3

dim) for the evaluation of the
trace based on matrix multiplications (without truncation of the matrix blocks).11

While in theory the Krylov space approach is the method of choice due to its superior Ndim

scaling, in practice the precise numbers of Ntr, 〈p〉, and Ndim determine which one of the two
approaches performs better for a given problem. Experience shows that for five orbital problems
the Krylov approach becomes superior to the matrix method.

5 Scaling of the algorithms

In the weak-coupling and hybridization-expansion algorithms, the average expansion orders
have a simple physical interpretation: In a DMFT calculation, they yield highly accurate mea-
surements for the potential and kinetic energy.
Let us first consider the weak-coupling algorithm, where after the introduction of auxiliary fields
(Eqs. (22) and (23)) and the shifting of the chemical potential one obtains H = H1 +H2, with

11In the truncated trace approach, it is important to measure the various local observables at τ = 1
2β where they

are least affected by the truncation at τ = 0 and τ = β. Also, it is important not to destroy the multiplet structure
when truncating the trace.
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H1 = Hµ +
1
2
U(n↑+n↓) + Hbath and H2 = Un↑n↓ − 1

2
U(n↑+n↓).12 It follows from Eq. (20)

that

〈−H2〉 =
1

β

∫ β

0

dτ
〈
−H2(τ)

〉
=

1

β

1

Z

∞∑
n=0

n+1

(n+1)!

∫ β

0

dτ

∫ β

0

dτ1 · · ·
∫ β

0

dτnTr
(
e−βH1T (−H2(τ))(−H2(τn)) · · · (−H2(τ1))

)
=

1

β

1

Z

∑
C

nCwC =
1

β
〈n〉, (52)

and therefore the average perturbation order 〈n〉 is related to the potential energy by

〈n〉weak-coupling = −βU〈n↑n↓〉+ 1
2
βU〈n↑+n↓〉 = −βEpot +

1
2
βU〈n↑+n↓〉. (53)

We learn from this formula that the average perturbation order is roughly proportional to the
inverse temperature β and the interaction strength U.
In the hybridization-expansion case, the average perturbation order is proportional to the kinetic
energy. In single-site DMFT, we can express the kinetic energy

Ekin =
∑
kσ

εkGkσ(0
−)

in terms of the Green function and hybridization function:13

Ekin =
∑
σ

∫ β

0

dτ Gσ(τ)∆
σ(−τ).

12For simplicity, we have chosen δ = 0.
13The first step in the derivation of this formula is to switch to the Fourier representation:

Ekin =
∑
kσ

εkGkσ(0
−) =

∑
kσ

εk
1

β

∑
n

e−iωn0
−
Gkσ(iωn) =

∑
kσ

εk
1

β

∑
n

eiωn0
+ 1

iωn+µ−εk −Σσ(iωn)
.

Introducing the density of states D(ε), we can then write

Ekin =
∑
σ

1

β

∑
n

eiωn0
+

∫
dε

ε

iωn+µ−ε−Σσ(iωn)
D(ε)

=
∑
σ

1

β

∑
n

eiωn0
+

∫
dε
−
(
iωn+µ−ε−Σσ(iωn)

)
+
(
iωn+µ−Σσ(iωn)

)
iωn+µ−ε−Σσ(iωn)

D(ε)

=
∑
σ

1

β

∑
n

eiωn0
+
(
− 1 +

(
iωn+µ−Σσ(iωn)

)
Gσloc(iωn)

)
,

with Gloc the local lattice Green function, which after convergence of the DMFT calculation is identical to the
impurity Green function G. The latter is related to the hybridization function by G = (iωn+µ − Σ − ∆)−1.
Hence, we obtain

Ekin =
∑
σ

1

β

∑
n

eiωn0
+

Gσ(iωn)∆
σ(iωn) =

∑
σ

∫
dτ Gσ(τ)∆

σ(−τ).
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Figure 8.14 Average perturbation order for the weak-coupling and strong
coupling (hybridization expansion) algorithms. These results correspond
to the DMFT solution of the one-band Hubbard model with semi-circular
density of states of bandwidth 4 and temperature T = 1/30. The bath is
therefore different for each data point. (Figure adapted from (Gull et al.,
2007).)

to 100 sites (Fuchs et al., 2011), at least in parameter regimes where there is

no serious sign problem. The strong-coupling approach, on the other hand, is

useful in particular for the study of (single-site) multi-orbital problems with

complicated local interactions. Such problems typically have to be solved

in single-site DMFT studies of strongly correlated materials, or in realistic

simulations of transition metal impurities (Surer et al., 2012).

Solver Scaling Use

Weak-coupling β3 L3 Impurity clusters with density-
density interaction

Hybridization expansion β3 L Single site multi-orbital models
(segment formalism) with density-density interaction

Hybridization expansion β exp(L) Single site multi-orbital models
(matrix/Krylov formalism) with general Uijkl

Figure 8.15 Scaling of the different impurity solvers with inverse tempera-
ture β and system size L. In the case of the segment algorithm, we assume
that the calculation of the determinant ratios dominates the overlap calcu-
lations. In the matrix or Krylov case, we assume that the trace calculation
dominates the calculation of the determinant ratios.

<latexit sha1_base64="euYjsY1RKFJB1mQdvFzLXAwxH/g=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cWTFtoQ9lsJ+3azSbsboRS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCoqZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0N/NbT6g0T+SDGacYxHQgecQZNVZq+L1yxa26c5BV4uWkAjnqvfJXt5+wLEZpmKBadzw3NcGEKsOZwGmpm2lMKRvRAXYslTRGHUzmh07JmVX6JEqULWnIXP09MaGx1uM4tJ0xNUO97M3E/7xOZqKbYMJlmhmUbLEoygQxCZl9TfpcITNibAllittbCRtSRZmx2ZRsCN7yy6ukeVH1rqpe47JSu83jKMIJnMI5eHANNbiHOvjAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHsyWM3w==</latexit>

U

<latexit sha1_base64="9+bpVqde+zmug+2eaUZCY9qvZeI=">AAACEnicbVC7SgNBFJ31GeMramkzGARtwq6IWgZtLCOYB2RDmJ3cJENmZ5eZu5Kw5Bts/BUbC0Vsrez8G2eTFJp4YOBwzrncuSeIpTDout/O0vLK6tp6biO/ubW9s1vY26+ZKNEcqjySkW4EzIAUCqooUEIj1sDCQEI9GNxkfv0BtBGRusdRDK2Q9ZToCs7QSu3CqY8wxBSGMVNZiEa6A5qOqS+Z6kmgivp6wtqFoltyJ6CLxJuRIpmh0i58+Z2IJyEo5JIZ0/TcGFsp0yi4hHHeTwzEjA9YD5qWKhaCaaWTk8b02Cod2o20fQrpRP09kbLQmFEY2GTIsG/mvUz8z2sm2L1qpULFCYLi00XdRFKMaNYP7QgNHOXIEsa1sH+lvM8042hbzNsSvPmTF0ntrORdlLy782L5elZHjhySI3JCPHJJyuSWVEiVcPJInskreXOenBfn3fmYRpec2cwB+QPn8weXJp4H</latexit> ex
p
an

si
o
n

or
d
er

hn
i

Fig. 4: Average perturbation order for the weak-coupling and hybridization-expansion algo-
rithms. These results correspond to the DMFT solution of the one-band Hubbard model with
semi-circular density of states of bandwidth 4 and temperature T = 1/30 [15]. The bath is
therefore different for each data point.

Substituting the strong-coupling measurement formula (45) forG into this expression, one finds

Ekin =
∑
σ

∫ β

0

dτ

〈
−
∑
ij

1

β
δ(τ, τi−τ ′j)

(
Mσ

)
ij

〉
MC
∆σ(−τ)

= −
∑
σ

〈
1

β

∑
ij

(
Mσ

)
ij
∆σ(τ ′j−τi)

〉
MC
.

Now we use that
(
Mσ

)
ij

= (−1)i+j detM−1
σ [j, i]/ detM−1

σ , where M−1
σ [j, i] denotes the hy-

bridization matrix with row j and column i removed. Hence, the sum∑
j

(−1)i+j detM−1
σ [j, i]∆σ(τ ′j−τi) = detM−1

σ

appearing in the numerator is nothing but the expansion of the determinant of the hybridization
matrix along column i. The expression for the kinetic energy thus simplifies to

Ekin = −
∑
σ

〈
1

β

∑
i

detM−1
σ

detM−1
σ

〉
MC

= − 1

β

∑
σ

〈nσ〉 , (54)

and the average total perturbation order 〈n〉 of the Monte Carlo configuration is related to the
kinetic energy by

〈n〉hybridization-expansion = −βEkin.

While the average expansion order in both the weak-coupling and hybridization-expansion
methods scales as β, the scaling of the expansion order with the interaction strength is very
different. In the weak-coupling approach it grows roughly proportional to U, while in the
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Solver Scaling Use

Weak-coupling β3 L3 Impurity clusters
with density-density interaction

Hybridization expansion
(segment formalism)

β3 L Single-site multi-orbital models
with density-density interaction

Hybridization expansion
(matrix/Krylov formalism)

β eL Single-site multi-orbital models
with general Uijkl

Table 1: Scaling of the different impurity solvers with inverse temperature β and system size L.
In the case of the segment algorithm, we assume that the calculation of the determinant ratios
dominates the overlap calculations. In the matrix or Krylov case, we assume that the trace
calculation dominates the calculation of the determinant ratios.

hybridization-expansion approach, it decreases with increasing U (Fig. 4). In the case of the
Anderson impurity model, this behavior leads to a significant computational speed-up for the
hybridization-expansion approach in the intermediate- and large-U regime. Since local updates
are O(n2), a full sweep (update of all vertices in a configuration) is order O(n3).
For impurity clusters, or models with complicated interaction terms, which require the matrix
or Krylov formalisms discussed in Section 4.3, the hybridization-expansion method scales ex-
ponentially with system size, and we can only apply it to relatively small systems. Here, the
weak-coupling approach, if applicable, can be the method of choice. Table 1 gives a summary of
the different scalings (assuming a diagonal hybridization) and indicates which solver is appro-
priate for which type of problem. The weak-coupling solvers are mainly used in cluster DMFT
calculations of the Hubbard model, where the polynomial scaling allows to treat clusters of up
to 100 sites [16], at least in parameter regimes where there is no serious sign problem. The
strong-coupling approach, on the other hand, is useful in particular for the study of (single-site)
multi-orbital problems with complicated local interactions. Such problems typically have to be
solved in single-site DMFT studies of strongly correlated materials, or in realistic simulations
of transition metal impurities [17].

6 Electron-boson systems

6.1 Local phonons

In this section, we consider a quantum impurity model in which dispersionless phonons of
frequency ω0 couple to the electron density on the impurity site. The local term of the Anderson-
Holstein impurity Hamiltonian H = Hloc +Hmix +Hbath is

Hloc = −µ(n↑+n↓) + Un↑n↓ + g
(
n↑+n↓−1

)(
b† + b

)
+ ω0 b

†b. (55)

Here, b and b† denote the phonon annihilation and creation operators. An impurity model of
this type has to be solved in single-site DMFT simulations of the Holstein-Hubbard model.
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The bosonic sector of the Hilbert space ofHloc contains an infinite number of states. Hamiltonian-
based impurity solvers truncate the Hilbert space to a finite number of phonon states, but treat-
ing even a truncated space may be computationally expensive. An attractive feature of the
action-based continuous-time Monte Carlo formalism is that the phonons are integrated out,
which both in the weak-coupling and the hybridization-expansion algorithms allows to treat the
bosonic contribution in an elegant and efficient way.
We only discuss here the hybridization-expansion approach [18] which is based on a canonical
transformation [19] called the Lang-Firsov transformation. This transformation decouples the
electrons and phonons in the local Hamiltonian and applies to the physically relevant situation
where the phonons couple to the total charge on the impurity atom. In this particular case, the
electron-phonon coupling can be treated at essentially no additional computation cost.
At expansion order nσ for spin σ, the nσ! diagrams corresponding to a given time sequence
of fermionic creation and annihilation operators can be summed up into a determinant of a
matrix M−1

σ , as discussed in Sec. 4, so that the weight of the Monte Carlo configuration can be
expressed as

w({Oi(τi)}) = Trc
〈
T e−

∫ β
0 Hloc(τ)O2n(τ2n) · · ·O1(τ1)

〉
b
dτ1 · · · dτ2n

∏
σ

(detM−1
σ )sσ, (56)

where the Oi(τi) denote the (time-ordered) creation or annihilation operators and sσ is 1 (−1) if
the spin-σ operator with the lowest time argument is a creation (annihilation) operator. To de-
couple the electrons and phonons by a Lang-Firsov transformation, we rewrite the local Hamil-
tonian (55) as

Hloc = −µ(n↑+n↓) + Un↑n↓ +
√
2g(n↑+n↓−1)X +

ω0

2

(
X2 + P 2

)
. (57)

Here the phonon coordinate X and momentum P , satisfying [P,X] = i, are related to the
phonon creation and annihilation operators by X = (b† + b)/

√
2 and P = i(b† − b)/

√
2. We

decouple the boson and fermion operators in Hloc by shifting X by

X0 = (
√
2g/ω0)(n↑+n↓−1) (58)

using the unitary transformation eiPX0 . The transformed Hamiltonian H̃loc = eiPX0Hloce
−iPX0

becomes
H̃loc = −µ̃(ñ↑+ñ↓) + Ũ ñ↑ñ↓ +

ω0

2

(
X2 + P 2

)
.

The first two terms of H̃loc correspond to the local terms of the Anderson impurity model with
modified chemical potential µ̃ and interaction strength Ũ, where

µ̃ = µ− g2/ω0, (59)

Ũ = U − 2g2/ω0. (60)

The impurity electron creation and annihilation operators are transformed to polaron operators,

d̃†σ = eiPX0d†σe
−iPX0 = e

g
ω0

(b†−b)
d†σ,

d̃σ = eiPX0dσe
−iPX0 = e

− g
ω0

(b†−b)
dσ.
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Fig. 5: Illustration of an order n = 3 hybridization-expansion diagram for the Anderson-
Holstein impurity model. Empty and full circles represent hybridization events. Dashed lines
indicate interactions K(τ) connecting all pairs of hybridization events. We only show the lines
attached to the red operator.

After the transformation, the phonon expectation value 〈· · · 〉b becomes the product of a term
involving electron operators, which is analogous to that computed for the Anderson impurity
model without phonons, and a phonon term which is the expectation value of a product of
exponentials of boson operators. The total weight of a configuration thus has the form

w
(
{Oi(τi)}

)
= wb

(
{Oi(τi)}

)
w̃AIM

(
{Oi(τi)}

)
.

Here, w̃AIM is the weight of a corresponding configuration in the Anderson impurity model with
parameters modified according to Eqs. (59) and (60), while the phonon contribution is

wb
(
{Oi(τi)}

)
=
〈
es2nA(τ2n) es2n−1A(τ2n−1) · · · es1A(τ1)

〉
b

with 0 ≤ τ1 < τ2 < . . . < τ2n < β, and si = 1 or (−1) if the i th operator is a creation
or annihilation operator. The operator in the exponent is A(τ) = g

ω0

(
eω0τb† − e−ω0τb

)
. The

expectation value is to be taken in the thermal state of free bosons, and with the disentangling

of operators eX+Y = eXeY e−
1
2
[X,Y ] one finds esA(τ) = e

− g2

2ω20 e
s g
ω0
eω0τ b†

e
−s g

ω0
e−ω0τ b

, which leads
to the expression

wb
(
{Oi(τi)}

)
= e

−n g
2

ω20 e
−

∑
2n≥i>j≥1

sisjg
2

ω20
e−ω0(τi−τj)

〈
e
∑
j sj

g
ω0
eω0τj b†

e
−

∑
j sj

g
ω0
e−ω0τj b

〉
b
.

Using
〈
eub
†
evb
〉
b
= euv/(e

βω0−1) to evaluate the thermal expectation value, we finally obtain

wb
(
{Oi(τi)}

)
= exp

(
− g2/ω2

0

eβω0−1
(
n
(
eβω0+1

)
+
∑

2n≥i>j≥1

sisj
(
eω0(β−(τi−τj))+eω0(τi−τj)

)))
. (61)

This phonon contribution can be interpreted as originating from an interaction K(τ−τ ′) be-
tween all pairs of operators (see Fig. 5 and Ref. [20]) of the form (0 ≤ τ ≤ β)

K(τ) = − g
2

ω2
0

cosh(ω0(τ−β/2))− cosh(ω0β/2)

sinh(ω0β/2)
, (62)
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ωω00

Ubare

Uscr

Re U(ω)

ωω00

Im U(ω)

FIG. 4: Retarded interaction corresponding to the Holstein-Hubbard model with on-site interac-

tion U = Ubare, bosonic frequency !0 and electron-boson coupling g. The di↵erence between bare

and screened interaction is � = 2g2/!0.

at ! = 0.

While the DMFT approximation simplifies the problem considerably, by mapping the

Holstein-Hubbard lattice model onto an auxiliary single-site impurity model, this e↵ective

model is still a complicated interacting many-body system. The electron-boson coupling

introduces additional energy scales, besides the bandwidth and Kondo scale of the Ander-

son impurity model, namely the boson frequency !0 and the e↵ective coupling strength

� = 2g2/!0. (In the high-frequency limit, the Holstein-Hubbard model simplifies to the

Hubbard model with interaction Uscr = U � �.) Even in the DMFT approximation, and in

the absence of long-range order, the Holstein-Hubbard model features a rich phase diagram

with metallic, Mott insulating and bipolaronic insulating phases (Sec. III B 4) [77–81]. An-

tiferromagnetic, charge-ordered, superconducting and supersolid phases can also be found

[82–84] if symmetry breaking is allowed. In the following, we will discuss e�cient, yet ac-

curate numerical approaches for solving the Holstein-Hubbard impurity problem, and also

show how these techniques can be generalized to models with a coupling to a continuum of

bosonic modes (or arbitrary retarded interactions). In fact, in the context of DMFT based ab

initio simulations of correlated materials, the numerical challenge of treating dynamically

screened interactions has been a major bottleneck which has hampered the implementa-

tion of advanced LDA+DMFT or GW+DMFT schemes for many years. The techniques

21

Fig. 6: Frequency-dependent interaction U(ω) corresponding to the Anderson-Holstein impu-
rity model with interaction U = Ubare, bosonic frequency ω0 and electron-boson coupling g. The
difference between the bare interaction Ubare and the screened interaction Uscr is 2g2/ω0 [21].

keeping the sign factors si associated with creation/annihilation operators. The inclusion of
phonons is thus possible without any truncation and with a negligible extra computational cost,
since the computational bottleneck is the update of the determinants of hybridization functions,
and not the evaluation of the nonlocal interaction between operator pairs. The phonon coupling
has little effect on the average perturbation order, except very close to a bipolaronic phase.

6.2 Frequency-dependent interactions

The Anderson-Holstein impurity model corresponds to the frequency-dependent interaction
U(ω) sketched in Fig. 6. In the high-frequency limit, the real part of this interaction reaches
Ubare = U , while the static value corresponds to the screened interaction Uscr = Ũ defined in
Eq. (60). The imaginary part of this frequency-dependent interaction consists of δ-functions
at ω = ±ω0, with weight ∓g2π [21]. An arbitrary U(ω) can thus be thought of as arising
from a Holstein-type coupling to a continuum of bosonic modes with energies ω and coupling
strengths gω given by g2ω = −ImU(ω)/π. According to Eq. (62), each boson contributes an
effective “interaction” sisjK(τi− τj) = − g2ω

ω2

cosh(ω(β/2−(τi−τj))−cosh(βω/2)
sinh(βω/2)

between impurity cre-
ation or annihilation operators at imaginary times τi and τj . Hence, the hybridization-expansion
Monte Carlo simulation for a model with general U(ω) proceeds exactly as in the case of the
Anderson-Holstein impurity model, but with the K-function (62) replaced by [20]

K(τ) =

∫ ∞
0

dω
ImU(ω)
πω2

cosh
(
ω(β/2−τ)

)
− cosh

(
βω/2

)
sinh

(
βω/2

) (63)

and the shifted interaction and chemical potential (Eqs. (59) and (60)) given by

µ̃ = µ+

∫ ∞
0

dω
ImU(ω)
πω

, (64)

Ũ = U + 2

∫ ∞
0

dω
ImU(ω)
πω

= Uscr. (65)

The last identity follows from the Kramers-Kronig relation and the anti-symmetry of ImU(ω).
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6.3 Boson distribution function

To measure the boson distribution function p(x) =
〈
δ(x−X)

〉
MC, we calculate the expectation

values
〈
cos(αX)

〉
MC for different α. In order to derive the measurement formula, let us first

discuss the measurement of 〈eiαX〉MC. This measurement formula is obtained by inserting the
operator eiαX at τ = 0 into the expression (56), which defines

wX
(
{Oi(τi)}

)
= Trc

〈
Tτe

−
∫ β
0 Hloc(τ)O2n(τ2n) . . . O1(τ1)e

iαX
〉
b
dτ1 . . . dτ2n

∏
σ

(detM−1
σ )sσ.

During the Monte Carlo sampling, we then measure the ratio wX
(
{Oi(τi)}

)
/w
(
{Oi(τi)}

)
.

Since the additional eiαX operator only modifies the bosonic factor, this amounts to measur-
ing the ratio wXb

(
{Oi(τi)}

)
/wb
(
{Oi(τi)}

)
, where wXb

(
{Oi(τi)}

)
is the bosonic weight factor

obtained with the additional operator eiαX at τ = 0. This ratio can be expressed as

wXb
(
{Oi(τi)}

)
wb
(
{Oi(τi)}

) =exp

(
−α

2

4

eβω0+1

eβω0−1

)
× exp

(
−iαX0(τ=0)− i

eβω0−1
∑
j

sj
g

ω0

α√
2

(
eω0(β−τi) − eω0τi

))
. (66)

Note that because of the Lang-Firsov shift, this expression depends on X0(τ =0), with X0

defined in Eq. (58), and hence on the occupation of the impurity at τ = 0 in the measured
configuration. Since the first factor is independent of the Monte Carlo configuration, the mea-
surement formula for

〈
cos(αX)

〉
MC becomes

〈
cos(αX)

〉
MC =exp

(
−α

2

4

eβω0+1

eβω0−1

)
(67)

×
〈
cos
(
α
√
2
g

ω0

(
n↑(τ=0)+n↓(τ=0)−1

)
+

1

eβω0−1
∑
j

sj
g

ω0

α√
2

(
eω0(β−τi) − eω0τi

))〉
MC
.

In the Monte Carlo simulation p̃(α) =
〈
cos(αX)

〉
MC is measured on a fine α-grid, which then

allows to compute the boson distribution function as

p(x) =
1

2π

∫
dα p̃(α) cos(αx). (68)
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Contents

1 Setting the stage 3
1.1 Analytic continuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Analytic properties of the integral equations . . . . . . . . . . . . . . . . . . . 6
1.3 Preparing the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Optimization methods 9
2.1 Least squares and singular values . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Non-negative least-squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Linear regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Maximum entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Average spectrum method 20

4 Conclusions 24

A Technical appendices 25
A.1 Blocking method for correlated data . . . . . . . . . . . . . . . . . . . . . . . 25
A.2 Non-negative least-squares algorithm (NNLS) . . . . . . . . . . . . . . . . . . 27
A.3 Shannon entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
A.4 Sampling from a truncated normal distribution . . . . . . . . . . . . . . . . . . 32



6.2 Erik Koch

The analytic continuation of Monte Carlo data may appear as an exercise in achieving the un-
achievable. To understand why, let us consider the example of a fermionic finite-temperature
Matsubara Green function G(τ). For imaginary times τ ∈ [0, β] it is related to the spectral
function ρ(ω) by the integral equation

G(τ) = − 1

2π

∫ ∞
−∞

e−ωτ

1 + e−βω
ρ(ω) dω .

While calculating G(τ) from ρ(ω) is a straightforward integral, the inverse problem is hard.
This is not because we have to solve a Fredholm equation of the first kind, the difficulty rather
arises from the remarkable insensitivity of the imaginary-time data on changes in the spectral
function. To illustrate this, we write the spectral function as a sum of delta-peaks wi δ(ω−εi),
for which the imaginary-time Green function becomes a linear combination of exponentials

G(τ) = − 1

2π

∑
i

wi
(
1−nFD(εi)

)
e−εiτ = − 1

2π

∑
i

wi nFD(εi) e+εi(β−τ),

where we have introduced the Fermi-Dirac distribution nFD(ε) = 1/
(
e+βε+1

)
. While a peak at

zero energy simply contributes a constant toG(τ), the contribution of peaks at large frequencies,
|ε| � 0, is only noticeable close to τ = 0 or β, while inside the interval (0, β) it becomes
exponentially small. To reconstruct the spectral function reliably over the entire ω-range, we
thus need to know G(τ) very accurately very close to the boundaries of the interval (0, β).
Numerical simulations can give, however, only a finite number of data points,G(τj). Obviously,
this does not provide enough information to reconstruct a continuous spectral function: we
expect that there are many different spectral functions ρ(ω) that reproduce a given set of data
points {G(τj)}. Such a problem without a well-defined solution is called ill posed [1]. If we
insist on obtaining a unique result, we need to add constraints, e.g., by including additional
information about what kind of solution we consider reasonable. In addition, Monte Carlo data
are noisy. When reconstructing the spectral function, we thus need to take the accuracy of the
data into account and quantify how reliable the result is, given the noise in the input. Both types
of information, the estimate of the reliability of the data and our expectations about a reasonable
solution of the inverse problem, can be handled using Bayesian reasoning [2].
In the following we will introduce the analytic properties that allow the continuation of Green
and correlation functions. We then describe how to quantify the statistical errors in the numer-
ical data and to set up the inverse problem. In the main part we use this to give an overview
of methods to solve the inverse problem. The most straightforward approach simply performs
a least-squares fit to the data points. We explain why this approach is ill posed and how it fails
spectacularly. We then discuss the idea of regularization by introducing assumptions about a
reasonable solution. This makes the problem well posed, but dependent on prior information.
The effect of the prior information included in the regularizer can be quantified using Bayesian
techniques. We discuss how they are used to argue for the different flavors of the Maximum
Entropy method. Finally we introduce the average spectrum method which tries to avoid in-
troducing prior information by calculating ρ(ω) as a functional integral over the space of all
possible spectral functions.
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1 Setting the stage

1.1 Analytic continuation

A system at finite temperature with time-independent Hamiltonian H is described as an ensem-
ble of eigenstates, H|n〉 = En|n〉, weighted by their Boltzmann factor. The expectation value
of an operator A is thus given by

〈A〉 =

∑
n e
−βEn〈n|A|n〉∑
n e
−βEn

=
1

Z
Tr
(
e−βHA

)
. (1)

For a canonical ensemble the trace is over the N -electron Hilbert space. For a grand-canonical
ensemble we get the same expression when measuring energies relative to the chemical poten-
tial, i.e., choosing µ = 0, and taking the trace over the entire Fock space.
Time correlation functions can be calculated using the Heisenberg picture〈
A(t0+t)B(t0)

〉
=

1

Z
Tr e−βH eiH(t0+t)Ae−iH(t0+t) eiHt0Be−iHt0 =

〈
A(t)B

〉
=
〈
AB(−t)

〉
,

(2)
where the t0-independence follows from the cyclic property of the trace TrABC = TrCAB.
Monte Carlo techniques are ideal to evaluate the high-dimensional sums needed to calculate
such traces [3]. But since the time-evolution leads to complex coefficients, Monte Carlo sam-
pling will have to fight with a serious phase-problem. This can be avoided using a Wick rotation,
i.e., working in imaginary time. For this we need to analytically continue (2). This is straight-
forward: simply replace t in the analytic expression by the complex variable ζ = t−iτ and
determine for what values of ζ the result is well defined. This is most easily done using the
spectral representation, i.e., evaluating the trace in the basis of eigenfunctions〈
A(t−iτ)B

〉
=

1

Z
Tr e(it+τ−β)HA e−(it+τ)HB =

1

Z

∑
n,m

e(it+τ−β)En e−(it+τ)Em〈n|A|m〉〈m|B|n〉.

(3)
For systems with a finite number of states the sum is always analytic, while for systems whose
spectrum is not bounded from above, we need β ≥ τ ≥ 0 to maintain absolute convergence.
Thus (2) can be analytically continued to a stripe below the real axis

{
ζ ∈ C

∣∣−β ≤ Im ζ ≤ 0
}

.
We can then use quantum Monte Carlo to sample the function CAB(τ) :=

〈
A(−iτ)B

〉
for

τ ∈ [0, β]. The analytic continuation back to the real axis is a bit less obvious, since QMC
only gives us the function values, i.e., the left hand side of (3) for t = 0, but not the explicit
functional form on the right hand side, for which we would have to know all eigenenergies
and matrix elements. We can, however, define a spectral function that neatly contains all the
required information by taking the Fourier transform∫ ∞

−∞
dt eiωt

〈
A(t)B

〉
=

2π

Z

∑
n,m

e−βEn〈n|A|m〉〈m|B|n〉 δ
(
ω − (Em−En)

)
=: ρAB(ω) (4)

in terms of which we can write (3) as〈
A(t−iτ)B

〉
=

1

2π

∫ ∞
−∞

dω e−(it+τ)ωρAB(ω) . (5)
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For the special case t = 0 this gives us an integral equation directly relating ρAB(ω) to CAB(τ)

CAB(τ) =
1

2π

∫ ∞
−∞

dω e−ωτρAB(ω) , (6)

which is, however, not suited for practical calculations since the integral kernel, exp(−ωτ),
diverges for ω → −∞. We can get around this problem by modifying the kernel, dividing it by
a function that makes it finite, and correspondingly multiplying the spectral function to leave
the integral unchanged

C(τ) =
1

2π

∫ ∞
−∞

dω
e−ωτ

µ(ω)
µ(ω)ρAB(ω)︸ ︷︷ ︸

=:ρ̃(ω)

. (7)

A suitable kernel modification would be µ(ω) = 1 ± e−βω, which makes the kernel finite for
ω → −∞ as long as τ ≤ β, while keeping it finite for ω → +∞. To analytically continue
CAB(τ) = 〈A(−iτ)B〉 to the real axis we then solve the integral equation (with finite kernel)

CAB(τ) =
1

2π

∫ ∞
−∞

dω
e−ωτ

1± e−βω
ρ̃±AB(ω) (8)

for ρ̃±AB(ω) and use ρAB(ω) = ρ̃±AB(ω)/(1±e−βω) in (5) to calculate the analytical continuation
on the real axis. For the plus sign 1/(1±e−βω) is related to the Fermi-Dirac function nFD(−ω) =

1−nFD(ω), while for minus to the Bose-Einstein function −nBE(−ω) = nBE(ω)−1.
It is reasonable to expect that ρ̃±AB(ω) is a spectral function in its own right. Reordering the
spectral representation (4), we can write it as

ρ̃±AB(ω) = ρAB(ω)± ρAB(ω) e−βω

= ρAB(ω)± 2π

Z

∑
n,m

e−βEn〈n|A|m〉〈m|B|n〉 δ
(
ω − (Em−En)

)
e−β(Em−En)

= ρAB(ω)± ρBA(−ω) . (9)

Comparing with (3) and (4) we see that ρ̃±AB(ω) is the spectral function of

iG±AB(t) :=
〈
A(t)B

〉
±
〈
B(−t)A

〉
=
〈
A(t)B

〉
±
〈
BA(t)

〉
=
〈
[A(t), B]±

〉
, (10)

which, for t > 0, is the retarded correlation function GR±
AB(t) = Θ(t)G±AB(t), with Θ the step

function, Θ(t>0) = 1 and Θ(t<0) = 0. As discussed above, the first term can be analytically
continued to

{
ζ ∈ C

∣∣−β ≤ Im ζ ≤ 0
}

, while the second term can be continued to the stripe of
width β above the real axis. It is thus natural to define the Matsubara function

−GM±
AB (τ) :=

〈
T ±τ A(−iτ)B(0)

〉
(11)

with the imaginary-time ordering T ±τ A(−iτ)B(0) = Θ(τ)A(−iτ)B(0)∓Θ(−τ)B(0)A(−iτ)

taking care of selecting the appropriate analytic term for the given τ . This introduces a discon-
tinuity at τ = 0

GM±
AB (0+)−GM±

AB (0−) = −
〈
[A, B]±

〉
. (12)
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From the cyclic property of the trace in (3), it follows that the Matsubara functions for positive
and negative τ are related (anti)symmetrically, i.e. for τ ∈ (0, β)

GM±
AB (β − τ) = −

〈
A(−i(β−τ))B

〉
= −

〈
B(−iτ)A

〉
= −

〈
BA( iτ)

〉
= ∓GM±

AB (−τ). (13)

For τ ∈ (0, β] we obviously have (remember the sign introduced in (11))GM±
AB (τ) = −CAB(τ),

so that from (8) we obtain

GM±
AB (τ) = − 1

2π

∫ ∞
−∞

dω
e−ωτ

1± e−βω
ρ̃±AB(ω) for τ ∈ [0, β]. (14)

It is convenient to choose the sign in the kernel modification to obtain a simple relation for the
sum rule, which directly follows from the spectral representation, using |n〉〈n| = 1

1

2π

∫ ∞
−∞

dω ρ̃±AB(ω) =
〈
[A, B]±

〉
. (15)

For observables and bosonic operators we thus choose the commutator, while for fermionic
Green functions it is more convenient to choose the anticommutator.
For the special case B = A† we find

ρ̃±
AA†

(ω) =
2π

Z

∑
n,m

(
e−βEn ± e−βEm

) ∣∣〈n|A|m〉∣∣2 δ(ω − (Em−En)
)
, (16)

which is obviously non-negative for the fermionic case, for the bosonic sign choice it is non-
negative for ω = (Em−En) > 0, non-positive for ω < 0, and vanishes at least linearly at ω = 0.
We can thus define a non-negative function ρ̃−AB(ω)/ω which is regular at ω = 0

lim
ω→0

ρ̃−AB(ω)

ω
=

2πβ

Z

∑
n,m

e−βEn
∣∣〈n|A|m〉∣∣2 δ(En−Em) (17)

so that we can rewrite (14) with non-negative functions as

GM+
AA†

(τ) = − 1

2π

∫ ∞
−∞

dω
e−ωτ

1 + e−βω
ρ̃+
AA†

(ω) (18)

GM−
AA†

(τ) = − 1

2π

∫ ∞
−∞

dω
ω e−ωτ

1− e−βω
ρ̃−
AA†

(ω)

ω
, (19)

which, when A is an annihilator, applies to the diagonal elements of Green functions.
When A is an observable, we see from (9) that ρ̃−AA(ω) = −ρ̃−AA(−ω), so that we can restrict
the integral to ω > 0

GM−
AA (τ) = − 1

2π

∫ ∞
0

dω
ω
(
e−ωτ + e−ω(β−τ)

)
1− e−βω

ρ̃−AA(ω)

ω
when A hermitian. (20)

We could actually cancel the factor ω in the integrand since ρ̃−AA(ω ≥ 0) is non-negative by
itself, but when calculating susceptibilities it is common to keep it, since it shows the behavior
for ω → 0, (17), more clearly.
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1.2 Analytic properties of the integral equations

We can gain some insight into the integral equations (18) and (19) by realizing that they are
intimately related to the Euler and Bernoulli polynomials [4]. Introducing the reduced variables
x = βω and y = τ/β ∈ [0, 1] and the functions f(x) = ρ̃±(x/β)/β (scaled to conserve the
sum rule) and g(y) = GM±(βy) we obtain, for the fermionic case

g(y) = − 1

2π

∫ ∞
−∞

dx
e−xy

1 + e−x
f(x) , (21)

from which we see that, for fixed kernel, the spectral function is spread out over an ever wider
range as we go to lower temperatures. The scaled kernel of this equation is essentially the
generating function of the Euler polynomials En(s) on s ∈ [0, 1], which are defined by

2est

et + 1
=
∞∑
n=0

En(s)
tn

n!
. (22)

With s = τ/β and t = −βω we find from (18)

GM+(τ) = − 1

4π

∞∑
n=0

En(τ/β)
(−β)n

n!

∫ ∞
−∞

dω ωn ρ̃+(ω) (23)

that the fermionic Matsubara function is a linear combination of Euler polynomials, where the
expansion coefficients of En(τ/β) is proportional to the n-th moment of the spectral function.
Since the Euler polynomials are not orthogonal, to determine the moments of ρ̃ from GM+(τ),
we first have to find the dual functions En(s) with

∫ 1

0
dsEn(s)Em(s) = δn,m. Integrating them

with the generating function (22) we obtain∫ 1

0

dsEn(s) est =
tn

n!

et + 1

2
, (24)

which is solved by

En(s) =
(−1)n

2 n!

(
δ(n)(s−1) + δ(n)(s)

)
, (25)

where δ(n)(s−a) is the n-th derivative of the delta function at s = a (to make the evaluation for
a = 0 and 1 unique, we consider the limit from inside the interval of integration). Integration
by parts then produces (−1)n times the n-th derivative of the rest of the integrand at a. Using
this in (23) and rewriting the Matsubara function at β as that at 0−, eq. (13), we find that the
discontinuity in the n-th derivative of the Matsubara function is proportional to the n-th moment
of the spectral function

dnGM+(β)

d τn
+
dnGM+(0)

d τn
=
dnGM+(0+)

d τn
− d

nGM+(0−)

d τn
= −(−1)n

2π

∫ ∞
−∞

dω ωn ρ̃+(ω) . (26)

The higher moments contain the information about the spectral function at large frequencies.
Extracting the derivatives from Monte Carlo data for G(τ) is difficult. Instead, they can be
sampled directly: For τ > 0 we have, (11),

−GM+(τ) =
〈
A(−iτ)B

〉
=

1

Z
Tr e−βHeτHAe−τHB . (27)
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Fig. 1: Dependence of the scaled Legendre kernel (2l+1) i
(1)
l (x/2)/cosh(x/2) on the order l.

For l = 0, Gl contains information about the spectral function close to the Fermi level, while
for increasing l it probes ever larger frequencies. As the Legendre polynomials themselves, the
kernel is even/odd for even/odd l.

Taking the derivative with respect to τ brings down the Hamiltonian to the left and the right of
A, producing 〈[H, A(−iτ)]B〉. Repeated derivatives produce repeated commutators defined by
[H; A]n :=

[
H, [H; A]n−1

]
and [H; A]0 := A as in the Baker-Campbell-Hausdorff formula.

The moments can then be determined directly by sampling the expectation values〈[
[H; A]n, B

]〉
= −(−1)n

2π

∫ ∞
−∞

dω ωn ρ̃+(ω) . (28)

Working with the Euler polynomials can become cumbersome due to their lack of orthogonality.
This inconvenience can be overcome by expressing them in terms of orthogonal polynomials,
e.g., shifted Legendre polynomials Pl(2y−1). When the Matsubara function is expanded as [5]

GM+(τ) =
∞∑
l=0

√
2l+1

β
Gl Pl(2τ/β − 1) with Gl=

√
2l+1

∫ β

0

dτ Pl(2τ/β − 1)GM+(τ)

the expansion coefficients are related to the spectral function via (18) by

Gl = (−1)l+1
√

2l+1
β

4π

∫ ∞
−∞

dω
i
(1)
l (βω/2)

cosh(βω/2)
ρ̃(ω) , (29)

where i
(1)
l (x) are the modified spherical Bessel functions of first kind. As shown in Fig. 1, for

increasing l the integral kernel probes spectral features at higher and higher frequencies. From
the derivatives of the recursion relation (2l+1)Pl(x) = P ′l+1(x) − P ′l−1(x) and (26) we find
that the n-th moment of the spectral function is given by a sum over all even or odd Legendre
coefficients, starting at l = n

(−1)n+1 2

n!

∞∑
k=0

√
4k + 2n+ 1

β2k+n+1

(
2(k+n)

)
!(

2(k−n)
)
!
G2k+n =

1

2π

∫ ∞
−∞

dω ωn ρ̃+(ω) . (30)

For bosonic Matsubara functions we can obtain similar results using the Bernoulli polynomials
Bn(s) whose generating function is directly related to the bosonic kernel.
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1.3 Preparing the data

Certainly the most important aspect of preparing Monte Carlo data for analytic continuation
is the decision what data to sample. As we have seen, the information about spectral features
further away from the chemical potential is concentrated in the Matsubara function extremely
close to τ = 0 and β. Reconstructing the spectral function from data given on a uniform τ -grid,
we can therefore only expect to get reasonable results close to the chemical potential. Using, on
the other hand, the derivatives of the Matsubara function at τ = 0 and β gives us the moments
of the spectral function, which, as we know, e.g., form the Lanczos method [6], accurately
characterize the spectral function over the entire frequency range using just a few tens of the
lowest moments.
The second concern is to properly characterize the statistical errors in the Monte Carlo data.
Considering the integral equation

g(y) =

∫
K(y, x) f(x) dx , (31)

the actual numerical data is not given as the function g(y) but as vectors of M discrete data
points g = (g1, . . . , gM)† representing g(y). The mean over K independent samples is then

ḡ =
1

K

K∑
k=1

gk (32)

with its statistical uncertainty being characterized by the M×M covariance matrix

C =
1

K(K−1)

K∑
k=1

(
gk − ḡ

)(
gk − ḡ

)†
. (33)

By the central limit theorem the probability density of measuring ḡ given the covariance matrix
C instead of the exact result gexact is then

p(ḡ| gexact,C) =
1

(2π)M/2 detC
e−(ḡ−gexact)†C−1(ḡ−gexact)/2. (34)

This probability will play a central role in the reconstruction of the spectral function represent-
ing gexact. It is, therefore, crucial to have an accurate estimate of C. Rewriting it as

C =
1

K(K−1)

∑
k

(gk − ḡ)(gk − ḡ)† =
1

K(K−1)

∑
k

gk g
†
k −

1

K−1
ḡ ḡ†

and realizing that g g† is the (scaled) projector onto g, we see that the covariance matrix is a
linear combination of K projectors to one-dimensional subspaces. We therefore need K > M

independent samples gk in (33) to have a chance of obtaining a non-singular covariance ma-
trix. Thus, reducing the discretization error requires taking more samples. The easiest way for
obtaining independent samples are independent Monte Carlo runs, e.g., on a parallel computer.
If we do not have enough CPUs available, we need to construct independent samples from a
sequential run. This can be done, e.g., using the blocking technique described in appendix, A.1.
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For the numerical solution of the integral equation (31) we also have to discretize f(x) into a
vector f = (f1, . . . , fN)†, e.g., by representing it as a piecewise constant function of value fn
on interval n. The integral equation then becomes a simple linear equation g = Kf , where the
kernel matrix is obtained, e.g., from the Riemann sum [7]

g(ym) =
∑
n

K(ym, xn)wn f(xn) , (35)

with wn the width of interval n or, when the functions are expanded in an orthonormal set of
functions |ψm〉 like in the Legendre expansion of the Green function, it is given by

gm =
∑
n

∫
dy

∫
dxψm(y)K(y, x)ϕn(x) fn =

∑
n

〈ψm|K|ϕn〉 fn . (36)

Assuming f is the exact model, i.e., it gives the exact data,Kf = gexact, it follows from (34)

p(ḡ|f ,C) ∝ e−(ḡ−Kf)†C−1(ḡ−Kf)/2 (37)

Factorizing the inverse covariance matrix, C−1 = T †T , e.g., by Cholesky decomposition, we
can absorb the explicit dependence on C by introducing g̃ := T ḡ and K̃ := TK(

ḡ −Kf
)†
C−1

(
ḡ −Kf

)
=
(
g̃ − T̃ f

)†(
g̃ − T̃ f

)
=
∥∥g̃ − T̃ f∥∥2

. (38)

The covariance of the transformed data g̃ is then the unit matrix, i.e. the transformation produces
uncorrelated data point g̃n that all have the same (unit) errorbar.

2 Optimization methods

After discretization of model f and data g and transformation to g̃, analytic continuation is
reduced to solving the linear system

g̃ = K̃f . (39)

Nothing could be easier than that! When the number of data points M we are given equals the
number of points N at which we want to know the model, the solution is unique, f = K̃−1g̃,
as long as the kernel is not singular. When M > N the model is overdetermined so that in
general there will be no solution. Normally, however, we want to know the model at many more
positions than we are given data points, M < N so that the solution is underdetermined. A
natural choice is then the f that gives the best fit to the data.

2.1 Least squares and singular values

When we ask for a best-fit, we first have to define what we mean by that. Least-squares methods
define “best” in terms of the Euclidian norm: minimize χ2(f) := ‖g̃ − T̃ f‖2. We can justify
this choice using Bayesian reasoning: As we have noted in (37), the probability of measuring
g̃ when the true model is f is given by p(g̃|f) = (2π)−M/2 exp(−χ2(f)/2). We can invert
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this relation using Bayes’ theorem [2], p(B|A) p(A) = p(A,B) = p(A|B) p(B), stating that
the probability of outcome A and B can be written as the probability of B given A times the
probability of A, or, equivalently, as the probability of A given B times that of B. For the
relation between model and data this implies

p(f | g̃) =
p(g̃|f) p(f)

p(g̃)
. (40)

The most probable model f given g̃ thus maximizes p(g̃|f) p(f). In the absence of any further
information about possible models it is reasonable to assume that p(f) is the same for all f , i.e.,
to use an “uninformative prior”. A model that maximizes p(f | g̃) is then one that maximizes
exp

(
−χ2(f)/2

)
. It is called a “maximum likelihood estimator” and gives a best fit in the least-

squares sense. Since the rank of the kernel matrix, rankK ≤ min(N,M), for M < N the
least-squares solution will not be unique: We can add any vector that is mapped byK into zero,
without changing the fit. The least-squares problem is thus ill-posed. The usual way of making
the solution unique is to ask in addition that fLS has vanishing overlap with any vector that is
mapped to zero, i.e., fLS is orthogonal to the null space of K̃.
A convenient tool for the theoretical analyzing least-squares problems is the singular value
decomposition (SVD) of the matrix K̃ = UDV †, where U is a unitary M×M matrix whose
column vectors |um〉 define an orthonormal basis in data space and V likewise is a unitary
N×N matrix with columns |vn〉 spanning the space of models, while D is a diagonal M×N
matrix with diagonal elements d1 ≥ d2 ≥ . . . ≥ dmin(N,M) ≥ 0. For the underdetermined case,
M < N , the singular value decomposition can be pictured as

K̃ =
U D

V † .

For the least-squares solution it is convenient to define the reduced singular value decomposi-
tion, where the null space of K̃ is dropped in V , pictorially,

K̃ = U D̂ V̂ † .

The singular value decomposition provides a spectral representation of the kernel

K̃ =

min(M,N)∑
i=1

|ui〉 di 〈vi| (41)

which allows us to write the residue vector for M < N as

|g̃〉 − K̃|f〉 = |g̃〉 −
∑
i

|ui〉 di 〈vi|f〉 =
∑
i

|ui〉
(
〈ui|g̃〉 − di〈vi|f〉

)
(42)

so that the least-squares solution (for which the residue vanishes when dM > 0) is

|fLS〉 =
∑
i

〈ui|g̃〉
di

|vi〉 or, equivalently, fLS = V̂ D̂−1U †g̃ . (43)
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Fig. 2: Least-squares solution for the analytical continuation of a fermionic imaginary-time
Green function. The exact data (bottom left) is constructed from a simple model spectral func-
tion consisting of three Lorenz peaks (top left). We add noise of amplitude 10−8 to the data
(bottom right). The least-squares solution given the noisy data is shown in the top right panel.
It varies over ten orders of magnitude showing no resemblance at all to the original model.

As simple and elegantly the least-squares solution can be constructed, as useless it is for the
analytic continuation problem. This is illustrated in Fig. 2, showing that fLS, despite giving a
perfect fit to the data and, in particular, fulfilling the sum rule for

∑
n fn, is completely domi-

nated by numerical noise. What is the reason for this catastrophic failure? Making the noise in
the data explicit, g̃ = g̃exact +∆g̃ we see that

|fLS〉 = |fexact〉+
∑ 〈ui|∆g̃〉

di
|vi〉 . (44)

When the kernel has close to vanishing singular values, the noise component is divided by a
number close to numerical accuracy. This is, in fact, what we are seeing in Fig. 2: dividing
noise of order 10−8 by the numerical epsilon of double precision numbers (of order 10−16),
we would expect the least-squares solution to vary over about eight orders of magnitude. We
can verify this picture more quantitatively by looking at the singular values of the kernel matrix,
shown in Fig. 3. The exponential decay of the singular values seen in this example actually is the
hallmark of an ill-conditioned problem. It is a consequence of the orthogonality of the modes
|vi〉: With increasing i they develop more and more nodes. Integrating over these oscillating
modes with the positive fermionic Green function kernel means that the integral will decrease
with the number of nodes. Once the singular value reaches machine precision, the singular
modes become numerically degenerate. These modes contribute negligibly to the fit of the data,
but cause the catastrophic numerical instability of the least-squares result.
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Fig. 3: Singular values of the kernel matrix used in Fig. 2 on a logarithmic scale. The singular
values decay exponentially until leveling off at a value determined by the numerical accuracy of
the calculation. The insets show some of the singular modes |vi〉. With increasing mode index i,
i.e., decreasing singular value, they have an increasing number of nodes. Once the singular
value reaches the numerical accuracy, the singular modes become numerically degenerate so
that the SVD routine returns arbitrary linear combinations as exemplified here for |v80〉.

2.2 Non-negative least-squares

When motivating the least-squares approach using Bayesian reasoning, (40), one assumption
was that we have no knowledge whatsoever about the possible models. When we are interested,
e.g., in a diagonal spectral function, this is not quite true: We actually do know that f cannot
be negative, cf. (18). To incorporate this information, the prior probability p(f) should, in
fact, vanish when f has a component fn < 0. In other words, we really should maximize
the likelihood over non-negative models only: maxf≥0 exp(−χ2(f)). This approach is called
non-negative least squares fitting (NNLS). A practical algorithm is discussed in A.2. It will, in
general, not give a perfect fit, χ2(fNNLS) > 0, but what is not fitted is the part of the data that is
incompatible with a non-negative model, i.e., pure noise.
As shown in Fig. 4, using non-negative least squares gives a dramatic improvement over the
least-squares solution. Just incorporating the information about the non-negativity of the model
reduces the oscillations in the result by nine orders of magnitude, bringing it into a reasonable
range. This is because the amplitude of oscillating modes is now strongly limited by non-
negativity. In fact, the constraints give the modes with small singular value or in the null space
an important role: All modes except the first have nodes, so they can often not be included in the
solution with their optimal value (43) without violating the constraint. Since the contribution of
the modes with tiny singular value to the fit is tiny, they are free to arrange such that the modes
with larger di can move closer to their optimum. Thus in NNLS the behavior of all modes is
coupled, making the fit much more robust. Moreover, the non-negativity constraint makes the
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Fig. 4: Non-negative least-squares solution of the same problem as in Fig. 2. Using our knowl-
edge about the non-negativity of the spectral function gives a dramatic improvement, bringing
the solution form a scale of the order of ±1010 to a positive function with peaks of the order of
102 so that the original model shown on the left can actually also be seen in the plot on the right
(dashed line). While the NNLS solution does show some resemblance to the original function it
is far to spiky, even in the present case of exceedingly small noise (∼ 10−8) in the data.

problem well posed, i.e., giving a unique solution. Still, the spiky NNLS solutions indicate that
we are still overfitting the noise in the data and this problem becomes stronger when considering
data with noise levels larger than the ∼ 10−8 used for the example.
While the least-squares approaches do take information about the covariance of the data into
account, via the modification of the kernel from K to K̃, so that the data points that are given
with higher accuracy have more weight, the results are completely independent of the absolute
scale ofC: Multiplying it by a scalar σ2 simply rescales all singular values of K̃ by 1/σ, which
is compensated but the same rescaling of g̃, leaving the solution unchanged. Thus the least-
squares type solutions completely neglect the information about the overall noise in the data.
This problem can be addressed when we include our intuition that the “true” solution should
show some degree of smoothness. We then have to introduce a measure of smoothness, which
puts an absolute scale in the fitting problem. This is the idea behind regularization approaches.

2.3 Linear regularization

To understand the failure of the least-squares methods better, we expand the noisy data and the
fit in their respective singular modes |um〉 and |vn〉. For the example of Fig. 2 this is shown
in Fig. 5. It shows that, initially, the expansion parameters of g decrease somewhat faster with
the mode index i than the singular values. Consequently the expansion of the least-squares
solution also decrease with i. But once the 〈ui|g〉 reach the level of the noise in the data,
here σ = 10−8, at i ≈ 30, the expansion coefficients of the data remain constant while the
singular values decrease further, leading to exponentially increasing contributions of the highly
oscillating modes with large i that render the least-squares solution useless. The situation is
quite similar for the non-negative least squares solution. The main difference being that the
contributions of the modes with small or vanishing singular value are bounded |〈vn|fNNLS〉| . 1

by the non-negativity combined with the sum-rule for the model.
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Fig. 5: Picard plot for the example of Fig. 2. Since the model is symmetric, the expansion coef-
ficients for the odd modes should vanish. For noisy data, instead of vanishing, the coefficients
of odd modes are at the noise level. The even coefficients initially decay somewhat faster than
the singular values so that the corresponding coefficients of the least-squares solution decrease
with i. Once the 〈ui|g〉 have decreased to the noise level, here 10−8, they remain at that level
while the singular values decrease further. This leads to exponentially increasing contributions
of the corresponding modes to the least-squares solution.

By maximizing the likelihood e−χ
2(f)/2, with or without non-negativity constraint, we appar-

ently overfit the noise that becomes most visible in the modes for which the singular value
is below their contribution to the (noisy) data. The assumption behind this is that the exact
solution cannot be dominated by the highly oscillating modes with vanishing singular value,
i.e., that 〈ui|gexact〉/di, for large i decreases with the mode index. This is called the Picard
condition. When it is not fulfilled, the reconstruction of the exact model is hopeless, since the
relevant information is contained in vanishingly small coefficients 〈ui|gexact〉 that will be com-
pletely masked by the noise, cf. (44). When the exact model is not highly oscillating, the Picard
condition holds and we have a chance of reconstructing the model from noisy data.
When the Picard condition is fulfilled we can get rid of a large part of the noise by suppressing
the contribution of modes with singular value below the noise level in the data. This amounts
to a least-squares fit with a truncated singular value decomposition, where the singular values
beyond a limiting index are set to zero, di>itrunc := 0.
A somewhat more refined method is to continuously switch off the small singular modes. This is
called Tikhonov regularization. Introducing a regularization parameter α, the Tikhonov solution
is given by

fT(α) =
M∑
i=1

di
d2
i + α2

〈ui|g̃〉, (45)

which in the limit α→ 0 becomes the least-squares solution (43), while for α→∞ the solution
vanishes. For finite regularization parameter, modes with large singular value di � α are
hardly affected, while the contribution of small singular values to fT(α) vanishes. To employ
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Fig. 6: Non-negative Tikhonov regularization for the example of Fig. 2, but with noise level
increased from 10−8 to 10−4. The insets show the solutions fT(α) at selected values of α. The
dotted line shows the exact model for comparison. For small α the method overfits the noise,
leading to strongly oscillating solutions, while the quality of the fit changes little. For large α
the method underfits the data, leading to a rapid increase in χ2(fT(α) and a loss of structure
in the reconstructed models. The solid line indicates the expected noise in the data, χ2 = M ,
relevant for the discrepancy principle.

Tikhonov regularization for non-negative models we need to formulate it as an optimization
problem. Expanding in singular modes and completing the square, it can be written as

‖K̃f − g̃‖2+α2‖f‖2 =
M∑
i=1

(
〈ui|g̃〉 − di〈vi|f〉

)2
+ α2

N∑
n=1

〈vi|f〉2 (46)

=
M∑
i=1

α2〈ui|g̃〉
d2
i + α2

+

(
di〈ui|g̃〉√
d2
i + α2

+
√
d2
i +α2〈vi|f〉

)2+ α2

N∑
i=M+1

〈vi|f〉2

which attains its minimum
∑

i α
2〈ui|g̃〉/(d2

i +α2) for the unique solution (45). In Bayesian
terms, (40), Tikhonov regularization chooses p(f) ∝ e−α

2‖f‖2/2 as prior probability.
Alternatively, we can express Tikhonov regularization as a least-squares problem with an ex-
panded kernel and data as

min
f

(
‖K̃f − g̃‖2 + α2‖f‖2

)
= min

f

∥∥∥∥∥
(
K̃

α1N

)
f −

(
g̃

0N

)∥∥∥∥∥
2

. (47)

Performing the minimization over all models gives Tikhonov regularization, restricting the op-
timization to f ≥ 0 defines the non-negative Tikhonov regularization method.
The crucial question is how to choose the regularization parameter α. Fig. 6 shows the results of
non-negative Tikhonov regularization for the example of Fig. 2 increasing, however, the noise
level from 10−8 to 10−4 to make the problem not too easy. For small α the solutions show
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strong oscillations, while the mean-square misfit, χ2, increases only little with α. For large α
the solution becomes featureless except for the peak at the Fermi level, which is already present
in the leading singular mode, cf. Fig. 3, while χ2(fT(α)) rapidly gets worse. A compromise
between overfitting of the noise in the data and smoothness of the model should be reached
when α is chosen such that the deviation from the optimum fit χ2(fT(α)) = ‖g̃ − K̃fT(α)‖2

equals the noise expected in M data points g̃m with unit covariance: χ2 = M . This criterion for
choosing the regularization parameter is called the discrepancy principle [8]. We can formulate
it as a constrained optimization problem with α−2 playing the role of the Lagrange parameter:

min
f
‖f‖2 +

1

α2

(∥∥g̃ − K̃f∥∥2 −M
)

(48)

has the same variational equation as (46).
The regularization parameter α is the crucial ingredient of any regularization approach. Its role
is to strike a balance between fitting the noisy data and keeping the solution smooth in some
sense. While it is clear that with increasingly accurate data the chosen α should get smaller,
there is no unique procedure for actually determining its value. The discrepancy principle is just
one very reasonable way of choosing α but there is a plethora of other approaches, see [8] for a
first overview. Likewise, the choice of the regularizer is not unique. Instead of ‖f‖2 = 〈f |1|f〉
we could choose any positive semidefinite N×N matrix M and use 〈f |M |f〉 ≥ 0 instead.
An obvious choice follows when we remember that f is the discretized version of the model
function f(x). As in (35), assuming a uniform x-grid, we can then write

1

N
‖f‖2 =

1

N

N∑
n=1

|fn|2 ≈
∫
dx |f(x)|2. (49)

Changing the integration variable from x to z, the integral and its Riemann sum in the new
coordinates becomes∫

dx |f(x)|2 =

∫
dz

dx

dz

∣∣f(x(z)
)∣∣2 ≈ 1

N

N∑
n=1

dx(zn)

dz

∣∣f(x(zn)
)∣∣2 (50)

so that Tikhonov regularization, M = 1, on the old grid becomes regularization on the z-grid
with a diagonal matrixM that contains the Jacobian factors Mnn = dx(zn)

dz
on the diagonal.

Alternative choices ofM impose smoothness by implementing finite-difference versions of the
first or higher derivatives, choosing, e.g.,

N−1∑
n=1

|fn − fn+1|2 = 〈f |



1 −1 0 0 · · · 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0
...

...
0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 −1

0 0 0 0 · · · 0 0 −1 1


|f〉. (51)
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A regularizer that penalizes the k-th derivative does not have full rank. For, e.g., the first deriva-
tive matrix in (51), all constant models give zero. In practice there is, however, no problem
since the information about the low moments of the model are usually well contained in the
modes with the largest singular values.
Going back to the Tikhonov regularizer, we might wonder why it actually has the effect of
smoothing the solution. After all, ‖f‖2 =

∑
n |fn|2 is local, i.e., does not depend on the change

in neighboring values. So if we permuted the coordinate values {1, . . . , N} in an arbitrary
way, the value of ‖f‖2 would remain unchanged. The main reason why the identity regularizer
M = 1 leads to smooth models is that it reduces the effect of modes with small singular value.
As we have seen in Fig. 3 these modes are highly oscillatory, while the modes that are least
affected are the ones with few nodes that are relatively smooth. Still, even the leading mode
is not entirely featureless. While a simple first derivative regularizer like (51) would reduce
the contribution of such a mode, that is usually strongly supported by the data, Tikhonov will
leave it largely unaffected. In that sense, Tikhonov regularization respects the variations in the
important modes. To emulate this with a derivative regularizer would require to laboriously
taylor anM suitable for every specific kernel K̃.
There is also a second aspect. As we noted above, fT(α→∞) = 0. When we impose a sum
rule, however, we force the solution to be finite and find from

min
f

(∑
n

f 2
n + λ0

(
1−

∑
n

fn

))
(52)

that the Tikhonov regularizer prefers a flat solution, fn = 1/N , or, in the case of a general
diagonal matrix, fn ∝ 1/Mnn. These are the models resulting in the absence of data, i.e., for
diverging variance resulting in vanishing K̃ and g̃, except for the 0-th moment sum-rule. They
are called the default model of the regularizer.
We are, of course, not limited to bilinear regularizers of the type 〈f |M |f〉. An important non-
linear regularizer is the entropy of the model. It is the basis of the maximum entropy approach.

2.4 Maximum entropy

Maximum entropy methods differ from Tikhonov-type regularization in the assumptions they
make about the solutions. While Tikhonov is based on the Picard condition giving preference
to the modes with large singular value, maximum entropy favors models that contain as little
information as possible. This is measured by the information entropy, see A.3 for details. Using
the generalized entropy (89)

H(f ;ρ) = −
∑
n

(
fn ln

fn
ρn
− fn + ρn

)
(53)

as regularizer that should be maximized, we have to solve the non-linear optimization problem

min
f

(
χ2(f)/2− αH(f ;ρ)

)
, (54)
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where we use α instead of α2 as in (46) to conform with the conventions used, e.g., in [9].
A convenient property of the non-linear entropy regularizer is that it automatically ensures the
positivity of the solution since the gradient

− ∂H(f ;ρ)

∂fn
= ln

fn
ρn

(55)

diverges for fn → 0 while the gradient of the fit function

∂ 1
2
χ2(f)

∂fn
=

∂

∂fn

1

2

∑
m

(
g̃m −

∑
n′

K̃mn′fn′
)2

= −
∑
m

K̃†nm

(
g̃m −

∑
n′

K̃mn′fn′
)

(56)

is always finite, so that any solution of the variational equations fn has the same sign as ρn.
Since it is easy to also calculate the Hessians

∂2 1
2
χ2(f)

∂fn′∂fn
=
∑
m

K̃†nmK̃mn′ and − ∂2H(f ;ρ)

∂fn′∂fn
=

1

fn
δnn′ (57)

it is straightforward to solve the non-linear minimization problem using, e.g., the Levenberg-
Marquardt method. The only slight complication being that finite steps in the iteration might
change the sign of some component fn.
In the absence of data, minimizing (54), i.e, setting (55) to zero, we find f = ρ. Thus ρ is
the default model and, as in (88) or (50) it can be related to the choice of the grid. Even when
we have decided on a default model, we still have to determine the value of the regularization
parameter. Choosing it according to the discrepancy principle is called historic MaxEnt [9].
Other flavors of the maximum entropy method determine the regularization parameter using
Bayesian methods. For this we write the entropy regularizer as a prior probability

p(f |ρ, α) ∝ e+αH(f ;ρ) (58)

so that the minimization (54) becomes equal to maximizing the posterior probability, cf. (40),

p(f |g̃,ρ, α) =
p(g̃ |f ,ρ, α) p(f |ρ, α)

p(g̃)
∝ e−χ

2(f)/2+αH(f ;ρ) , (59)

where we have used that the QMC data g̃ is actually independent of our choice of regulariza-
tion parameter and default model. The Bayesian approach to determining the regularization
parameter uses the posterior probability of α

p(α |g̃,ρ) =

∫ ∏
n

dfn√
fn

p(f , α |g̃,ρ) =

∫ ∏
n

2d
√
fn

p(f |g̃,ρ, α) p(g̃,ρ, α)

p(g̃,ρ)
(60)

obtained from marginalizing out f , i.e., integrating over the space of models f . The peculiar
choice of the integration measure, 2d

√
fn, is discussed in [9]. It naturally appears in the ex-

pression for the entropy when using Stirling’s approximation to one order higher than in the
derivation given in A.3, which rather suggests that the factor 1/

√
fn should be considered part

of the entropic prior and not the integration measure.
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For historic MaxEnt it was not necessary to know the normalized probabilities (58) and (59).
When, however, we want to compare the probabilities of different renormalization parameters,
we need to determine the normalization of the distributions that depend on α by, again, inte-
grating over f

Zχ2(g̃) =

∞∫
−∞

∏
n

dfn e−χ
2(f) = (2π)M/2 (61)

ZH(ρ, α) :=

∫ ∏
n

dfn
e+αH(f ,ρ)∏
n′

√
fn′

(62)

Since the likelihood is a Gaussian, the integral is straightforward, cf. (34). The normalization
of the entropic prior is more difficult. In MaxEnt such functional integrals are approximated by
Gaussian integrals obtained from expanding the exponent to second order about its maximum.
As already discussed above, the entropy term is maximized when the model equals the default
model. The second-order expansion (57) is thus given by the diagonal matrix −δnn′/ρn, i.e.,
the entropy becomes just a Tikhonov regularizer with general diagonal matrix. Also expanding
1/
√
fn ≈

(
1−(fn−ρn)/2ρn

)
/
√
ρn, the normalization of the entropy prior thus is approximated

by that of the simple Tikhonov prior without non-negativity constraint [9]

ZH(ρ, α) ≈
∏
n

∞∫
−∞

dfn
e−

α(fn−ρn)2

2ρn

√
ρn

(
1− fn − ρn

2ρn

)
=

(
2π

α

)N/2
. (63)

To calculate p(α |g̃,ρ), (60), we still have to choose a prior probability p(g̃,ρ, α). From the
discrepancy principle it seems reasonable that it should be independent of the data normalized
to have a unit covariance matrix. If we also assume that α is independent of the default model,
we only have to choose p(α). Assuming that the prior is scale invariant

p(α) dα
!

= p(sα) d(sα) (64)

one obtains the Jeffreys prior p(α) ∝ 1/α [2], which might not be the most appropriate choice,
since the scale of the regularization parameter is fixed by the noise in the data, which we know.
Using all this for calculating the posterior probability of the renormalization parameter, there
are two different flavors of how α enters the analytical continuation: Historic MaxEnt chooses
the α that maximizes p(α |g̃,ρ) to determine fhistoric = f(αmax). Bryan’s method no longer
insists on picking a specific value of α. The approach rather determines the model as the average
over all regularization parameters, weighted with their posterior probability

fBryan =

∫ ∞
0

dα f(α) p(α |g̃, ρ) . (65)

It might seem that the MaxEnt approaches could be improved by actually performing the in-
tegrals over model space exactly rather than using simple Gaussian approximations that even
violate the non-negativity of the models, which is one of the precious priors that we are sure
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of. But doing these integrals is fiendishly hard. A second drawback of MaxEnt, or rather of
all regularization approaches, is the need to deal with a regularization parameter, introducing
the need for making assumptions about its behavior, its prior probability and the like, for which
there is no apparent solution. If only we could efficiently integrate over model space there might
be a way of eliminating all these complication arising from the need to regularize. Instead of
looking for a solution that maximizes some posterior probability, we could ask for the average
over all possible models, weighted with their likelihood. This approach which is free of explicit
regularization parameters is the average spectrum method.

3 Average spectrum method

The average spectrum methods is an appealing alternative to the optimization approaches. It
was probably first proposed by White [10] and reinvented several times after. The basic idea
is of striking elegance: The spectral function is obtained as the average over all physically
admissible functions, weighted by how well they fit the data

fASM(x) :=(2π)−M/2

∫
f(x)≥0

Df f(x) e−χ
2[f ]/2. (66)

Due to the ill-conditioning of the inverse problem there are very many functions that differ
drastically but essentially fit the data equally well. Taking the average, we can thus expect that
the spectral features not supported by the data will be smoothed out, providing a regularization
without the need for explicit parameters. So far the practical application of this conceptually
appealing approach has, however, been hampered by the immense computational cost of nu-
merically implementing the functional integration.
It is worth emphasisizing that the non-negativity constraint is essential. An unconstrained in-
tegration over the Gaussian in (66) actually produces a least-squares solution. Since the width
of the likelihood increases with the inverse of the singular value this would, of course, be nu-
merically very inefficient, and since the width diverges for the modes in the null space of the
kernel, their contribution will never converge to a definite value, reflecting that the problem is
underdetermined.
When we discretize the model function f(x) as discussed in Sec. 1.3, the functional integral
becomes

fASM ∝
N∏
n=1

∫ ∞
0

dfn f e−χ
2(f)/2, (67)

where the N -dimensional integral can be evaluated by Monte Carlo techniques. The most
straightforward approach is to perform a random walk in the space of non-negative vectors f ,
updating a single component, fn → f ′n, at a time. Detailed balance is fulfilled when we sample
the new component f ′n for the conditional distribution ∝ e−χ

2(f ;f ′n)/2 with

χ2(f ; f ′n) :=
∥∥ g̃ − K̃f + K̃nfn︸ ︷︷ ︸

=:g̃n

−K̃nf
′
n

∥∥2
= K̃†nK̃n

(
f ′n − K̃†n g̃n/K̃†nK̃n

)2

, (68)
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where K̃n is the n-th column of K̃. We thus have to sample f ′n from a univariate Gaussian of
width σ = 1/‖K̃n‖ centered at µ = K̃†n g̃n/‖K̃n‖2 and truncated to the non-negative values
f ′n ∈ [0,∞). This can be done very efficiently, e.g., as described in A.4.
Still, sampling components can be very slow because the width of the Gaussian (68) is, in
general set by the inverse of the largest singular value, i.e., the random walk performs only
exceedingly small steps. This is even more evident when sampling spectral functions, where
we cannot change just a single fn without violating the sum-rule (15). A way around is to
introduce global moves along the principal axes of χ2, i.e., along the singular modes.
Transforming to the new bases h := U †g̃ in data and e := V †f in model space diagonalizes

χ2(f) =
∥∥U †g̃ −DV †f∥∥2

=
M∑
i=1

(hi − diei)2 (69)

so that in the new basis the integral (67) factorizes into Gaussian integrals

eASM
i ∝

∫
f≥0

dei ei e
−(hi−diei)2/2. (70)

Without non-negativity constraint the integrals would be independent and result in a least-
squares solution. With the constraint they are coupled via their range of integration. Updating
modes ei → e′i is restricted by the condition f ′ = f + (e′i−ei)Vi ≥ 0, where Vi is the i-th
column vector of V . This is equivalent to e′i ≥ ei−fn/Vni for Vni > 0 and correspondingly for
Vni < 0 so that e′i is constrained to

max

{
fn
Vni

∣∣∣∣Vni < 0

}
≤ ei − e′i ≤ min

{
fn
Vni

∣∣∣∣Vni > 0

}
. (71)

Sampling modes is usually much more efficient than sampling components: For modes with
large singular value the Gaussian is narrow so that the random walk quickly jumps close to
the optimal value hi/di and then takes small steps around there. For modes with small or
zero singular value the distribution is very broad so that the random walk can take large steps,
allowing for an efficient sampling. Still, sampling may become inefficient when non-negativity
restricts a mode to a very narrow interval. This will happen when f has regions where it
becomes very small, e.g., in the tail of the spectral function. Then the scale for the step size is
not given by the singular value but rather by the width of the interval (71). Also this problem
can be overcome by using a real space renormalization group technique, introducing blocks
of varying size in which modes are sampled. This way the method can interpolate efficiently
between sampling components, i.e., blocks of size 1, and sampling modes, i.e., blocks of sizeN .
Details of the method and its performance are given in [11, 12].
Using this approach, we find that the results of the average spectrum method actually depend
on the choice of the discretization (67). This is not a problem of the particular method, but a
general feature of the functional integral and would also affect, e.g., MaxEnt were it to do the
normalization and marginalization integrals exactly, see e.g. Sec. 6.2 of [2]. We find that the
choice of the coordinates for the discretization grid plays the role of a default model, while the
number of grid points N acts as a regularization parameter.
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fit histogram: reliable results

result for N>8 independent of N: 
default model consistent with data

too few points: 

bad numerics

Fig. 7: Average spectrum method on a Gaussian grid determined from NNLS for an optical
conductivity reconstructed from Matsubara data [11]. The resulting spectral shown below are
rather insensitive to the choice of the regularization parameter, the number of grid points N ,
except for N = 8 where the coarse grid leads to discretization errors when evaluating the
Fredholm integral. The exact model is shown as the dashed line for comparison. The top panel
shows the histograms of χ taken during the Monte Carlo sampling of the functional integral.
The small variations in the histograms indicate a robust choice of the grid.

The reason for this is that the notion of sampling uniformly, i.e., with a flat prior, is tied to the
choice of a specific grid. This is most easily understood when we consider what happens when
we double the number of grid points. On the original grid we sample f ∈ [0,∞). On the denser
grid we represent f over the large interval by two values f̂1 and f̂2 over intervals of half the
width, so that f = f̂1 + f̂2. If we sample the f̂i ∈ [0,∞) with a flat prior, p(f̂i) = const., this
implies a probability distribution for f

p(f) =

∫ ∞
0

df̂1 p(f̂1)

∫ ∞
0

df̂2 p(f̂2) δ
(
f̂1+f̂2−f

)
∝
∫ f

0

df̂1 = f (72)

which is not flat. Properly defining the flat prior as p(f̂i) = limλ→∞ e−f̂i/λ/λ, p(f) becomes a
gamma distribution. More generally, we find that sampling with a flat distribution on a particular
grid defines a measure for the functional integral (66) represented by a gamma process [11].
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fit histogram: unreliable results

too few points: 

bad numerics

result for N>8 shift with N: 
default model not consistent with data

Fig. 8: Average spectrum method on a Lorentzian grid of the same width as the Gaussian in
Fig. 7. The resulting spectral functions shown below are now quite sensitive to the choice of
the regularization parameter, the number of grid points N . In the top panel we see from the
histograms of χ that the fit sizeably deteriorates with increasing N , indicating problems with
the choice of the grid.

Still, we can give a practical recipe for determining the regularization parameters and checking
the quality of the results. To find the grid type (default model), we use non-negative least-
squares to determine the width of the spectrum. This implies a Gaussian grid of particular width.
We then vary the number of grid points to check how the results change with increasing N.
When N is too small, the result will be inaccurate because of discretization errors in evaluating
the integral (31) entering χ2. When N becomes to large there is a rapidly increasing number
of vectors f that, despite having a small weight e−χ

2(f)/2, contribute to the average due to their
sheer number. In between there will be a region, where the results are fairly independent of the
actual choice of N. This is shown in Fig. 7. When the grid is not chosen well, as in Fig. 8,
where the grid uses a Lorentzian density of the same width as the Gaussian in the previous
figure, results vary strongly with N.
This approach gives already reliable and robust results. When we have to deal with particu-
larly difficult cases, we can use Bayesian techniques to make the method even more robust by
sampling over different grids, albeit at an increased computational cost [11].
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4 Conclusions

As for so many problems, there is no magic solution to the problem of analytic continuation.
Any method can only reconstruct what is in the data and must substitute missing information
ideally by exact prior knowledge or, otherwise, by mere assumptions about the solution. The
most important aspect of analytic continuation is thus encountered already before the solution of
the inverse problem is even started. Depending on what features of the model we are interested
in, we have to decide where to measure the data. If we want, e.g., to reconstruct the spectral
function far from the Fermi level, it does not help to just have highly accurate values for the
Green function when they are not close enough to τ = 0 or β to give information about the
discontinuity in its derivatives.
Moreover, it is deceiving to just look at the single result returned by a regularization approach.
There is not “the” solution, rather every method produces an expected solution with its uncer-
tainty quantified by a non-intuitive N×N covariance matrix. This is, however, rarely analyzed
because it is hard to calculate and difficult to interpret. Still, there are approaches to estimate
the error in observables derived by integrating over the spectrum. They are nicely discussed
in [9] and should be used wherever possible.
We have presented the approaches to the analytic continuation problem in the order of increas-
ing sophistication and accuracy — and numerical cost. The analysis of QMC data should ide-
ally follow this progression until the desired information about the spectral function has been
reliably obtained. A Picard plot will give a first impression of how much information is actu-
ally contained in the data and what can be expected from a straightforward linear regulariza-
tion. Despite the uncontrolled approximations in the practical flavors of MaxEnt, the approach
has developed into the standard approach for analytical continuation. The average spectrum
method, that is now numerically competitive, provides an appealing alternative since it makes
all assumptions via the choice of the discretization explicit, while being numerically exact.
The most important lesson is that results of analytic continuation must not be overinterpreted.
When the results depend on the details of the method, they rather reflect the choices made by
the approach than the data. Thus before interpreting details of the spectral function, we have
to make sure that they are robust under (reasonable) variations in the regularization parameters.
The discrepancy principle and the fit histogram are practical methods for doing this.
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A Technical appendices

A.1 Blocking method for correlated data

Let us assume we have an ergodic Markov chain Monte Carlo method, e.g., using Metropolis
sampling, that generates a set of K data points m1, . . . ,mK drawn from a probability distribu-
tion p(m) dm and we are interested in the mean value µ =

∫
dmp(m)m. The obvious estimate

for µ is the average m̄ =
∑K

k=1 mk/K. It will, of course, be different for different Monte Carlo
runs, but, by the central limit theorem, for large K the averages m̄ of different runs will tend to
be distributed as a Gaussian centered at µ with variance

σ2(m̄) = 〈m̄2〉 − 〈m̄〉2 =
1

K2

K∑
k,l=0

(
〈mkml〉 − 〈mk〉〈ml〉

)
, (73)

where 〈 · 〉 is the average over all possible Monte Carlo runs producing K data points. How can
we estimate σ2(m̄) from the simulation data of a single run? Splitting the double sum

σ2(m̄) =
1

K

1

K

K∑
k=1

(
〈m2

k〉 − µ2
)

︸ ︷︷ ︸
=〈m2〉−µ2=:s0

+
1

K2

∑
k 6=l

(
〈mkml〉 − µ2

)
(74)

we see that for uncorrelated data, 〈mkml〉 = 〈mk〉〈ml〉 for k 6= l, the variance is given by
s0/K. But in general, samples obtained from Markov chain Monte Carlo will be positively
correlated, so that σ2(m̄) ≥ s0/K. We can eliminate this correlation using an elegant renor-
malization group technique [13]. For this we consider the transformation of the original data
set m1, . . . ,mK of K samples (assuming K is even) into half as many data points, obtained by
averaging

m̂k̂ :=
m2k̂−1 +m2k̂

2
. (75)

Obviously, the average of the new data points
∑K/2

k̂=1
m̂k̂/(K/2) is still m̄ and thus must have

the same distribution as the averages of the original data. Consequently, σ2(m̄) must remain in-
variant under the blocking transformation (75). Looking at the uncorrelated part of the variance
for the blocked data m̂k̂ and remembering that the ensemble average 〈m2

k〉 is independent of k,
we see that

ŝ0 =
1

K/2

K/2∑
k̂=1

(
〈m2

2k̂−1
+ 2m2k̂−1m2k̂ +m2

2k̂
〉

4
− µ2

)
=
s0

2
+

1

2K/2

K/2∑
k̂=1

(
〈m2k̂−1m2k̂〉 − µ

2
)

(76)
contains part of the correlations not contained in s0. Therefore ŝ0/(K/2) ≥ s0/K. Under
repeated blocking transformations the uncorrelated part of the variance will thus increase. When
it reaches a plateau, i.e., a fixed-point under the blocking transformation, it becomes equal to
σ2(m̄) and the blocked data has become uncorrelated.
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Fig. 9: Estimate of the standard deviation of the average of correlated data obtained with the
blocking method. Initially the variance is severely underestimated but the estimate increases
with each blocking step until a plateau is reached, at which point the blocked data has become
uncorrelated. By that time the distribution of the m̂k̂ has become Gaussian of width ĉ0, as shown
in the insets. Eventually the number of blocked samples, K̂ = K/2n, become so small that the
estimates become unreliable.

We can try to estimate the ensemble average s0 from the data from one specific simulation run
as
∑K

k=1(m2
k − m̄2)/K. Taking the ensemble average and comparing to s0

1

K

K∑
k=1

(
〈m2

k〉 − 〈m̄2〉
)

=
1

K

K∑
k=1

((
〈m2

k〉−〈m̄〉2
)
−
(
〈m̄2〉−〈m̄〉2

))
= s0

(
1− 1

K

)
we find that the unbiased estimator actually is

s0 ≈ c0 :=
1

K−1

K∑
k=1

(
m2
k − m̄2

)
⇒ σ2(m̄) ≈ 1

K(K−1)

K∑
k=1

(
m2
k − m̄2

)
. (77)

In an actual implementation of the blocking method, we repeatedly block the data and calculate
the corresponding estimator of the uncorrelated variance ŝ0/K̂. An example is shown in Fig. 9.
As expected, ĉ0/K̂ increases with each blocking step until it reaches a plateau. There the
blocked data m̂k̂ are uncorrelated and, by the central limit theorem, approach Gaussian variables
of variance σ2(m̂) = K̂σ2(m̄). For such variables the variance of the variance σ2(m̄) is given
by 〈(ĉ0/K̂)2〉 − 〈ĉ0/K̂〉2 = 2σ4(m̄)/(K̂−1), which provides us with the errorbars. Since the
number of blocked data points is halved in each step, eventually the blocked sample becomes
very small and ĉ0/K̂ starts to fluctuate, also indicated by rapidly increasing errorbars. We
can then identify the plateau by checking when ŝ0/K̂ does not change between blocking steps
within its error bar.
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A.2 Non-negative least-squares algorithm (NNLS)

The model f fitting a given data vector g best in the least-squares sense minimizes the norm of
the residual vector χ2(f) = ‖Kf − g‖2. At the minimum fLS the gradient w vanishes

wn(fLS) :=
1

2

∂ χ2(f)

∂fn

∣∣∣∣
LS

= Re
(
K†(KfLS−g)

)
n

= 0 ∀n . (78)

Since χ2 is a non-negative quadratic form in f stationary points must be minima

χ2(fLS+δ) = χ2(fLS) + 2δTw(fLS) + ‖Kδ‖2 ≥ χ2(fLS) . (79)

The least-squares fit can be found from the singular value decomposition (SVD)K† = V DU †

fLS = V D−1U †g , (80)

where the diagonal matrix D has dimension K = rank(K) while the matrix U is M×K and
V is N×K-dimensional. In terms of the SVD the gradient (78) is given by

w(f) = ReV D(DV Tf −U †g) . (81)

This way of calculating the gradient is numerically more stable than calculating it directly in
terms ofK. It also immediately shows that the gradient vanishes for fLS.
Finding the best fit, min‖Kf − g‖2, under the constraint f ≥ 0 (non-negative least-squares,
NNLS) is more complicated. When all components of the unconstrained solution are non-
negative, (fLS)n ≥ 0, it is obviously also the solution of the constrained problem. When there
are components (fLS)n < 0 we might expect that the constrained fit assumes its minimum on
the boundary, (fNNLS)n = 0, where the gradient is positive wn > 0. These are the Karush-
Kuhn-Tucker conditions [14]:

fn > 0 and wn = 0 or fn = 0 and wn ≥ 0 . (82)

We distinguish the two cases by defining the two sets P = {n| fn > 0} and Z = {n| fn = 0}
which partition the set of indices, P ∪ Z = {1, . . . , N}.
When fKT fulfills the Karush-Kuhn-Tucker conditions, it minimizes χ2(f) on f ≥ 0. To see
this we consider a vector fKT + δ with δz ≥ 0 so that fKT + δ ≥ 0. Then

χ2(fKT+δ) = χ2(fKT) + 2δTw(fKT) + ‖Kδ‖2 ≥ χ2(fKT) (83)

since δTw =
∑

n δnwn =
∑

n∈P δnwn+
∑

n∈Z δnwn ≥ 0, where the first sum vanishes because
of the gradient, while in the second sum both factors in each term are non-negative. Conversely,
when fNNLS solves the non-negative least-squares problem it must fulfill the Karush-Kuhn-
Tucker condition, otherwise an infinitesimal change (respecting non-negativity) of a component
violating it could lower χ2. Thus, to solve the NNLS problem we just have to find a vector that
fulfills the Karush-Kuhn-Tucker conditions. For this we can simply go through all possible
partitionings of the indices {1, . . . , N} = P ∪ Z . For a given partitioning we determine the
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least-squares solution on the indices in P , i.e., we minimize ‖KPPf − g‖2, where PP is the
projector to the space spanned by the components in P . This makes sure that the gradients for
these components vanish, wp = 0, while fz = 0. If also fp ≥ 0 for all p ∈ P and wz ≥ 0 for
all z ∈ Z , we have found the NNLS solution, otherwise we try the next partitioning. The only
problem is that there are 2N partitionings of the N indices (each index can be either in P or Z).

A practical algorithm [14] considers possible partitionings in a much more efficient way. We
start from some partition for which fP > 0 and wP = 0, e.g., an empty positive set, P = {}
and f{} = 0. Given a set P and the corresponding fP for which the Karush-Kuhn-Tucker
condition is not yet fulfilled, we add the component i with the most negative gradient. Least-
squares fitting on the expanded set P ′=P ∪ {i} will produce an improved fit χ2(fP ′)<χ

2(fP):
because of the negative gradient, the new component will not stay at zero but rather take a
positive value. In case fP ′ ≥ 0, we calculate the new gradient. If it is non-negative, we have
found the Karush-Kuhn-Tucker solution, otherwise we repeat the procedure. Each iteration will
produce a non-negative solution with improved fit, so that we will converge to the minimum of
χ2(f) under the constraint f ≥ 0.

In general, however, the least squares solution fP ′ will have negative components. In this case,
we can find a mixing with the previous fit fα = (1−α)fP+αfP ′ with α ∈ (0, 1), that brings the
most negative component of fP ′ to zero. Since χ2(fα) ≤ (1−α)χ2(fP ′) + αχ2(fP) < χ2(fP)

the fit will still be improved. We remove the components where fα vanishes from P ′ and
perform a least-squares fit on the new set, repeating the procedure until we get a non-negative
least squares solution. This must happen after a finite number of iterations, since in each step at
least one element is removed from the positive set while the resulting fα ≥ 0 keeps improving
the fit χ2(fα) < χ2(fP). Thus we can continue the outer loop with fα, calculating the new
gradient and adding the component where it is most negative to the positive set.

Since each step produces a f ≥ 0 with improved fit, the algorithm does not visit any partitioning
twice and will thus always converge. At worst it may take 2N steps, but in practice the down-hill
search produces a solution after trying less than hundred partitionings. Numerically, the most
delicate part is the calculation of the gradient, which should be stabilized using a factorization
of the kernel. Obviously, checking the Karush-Kuhn-Tucker condition for the gradient must
take the numerical accuracy into account. Moreover, the implementation may not converge,
when, after adding the component with the most negative gradient, the least-squares fit gives
that component a negative value. This can only happen as a consequence of numerical errors.
In this case we rather include the component with the second most negative gradient in P .

Note that the non-negative least squares solution fNNLS is unique, unlike the least-squares so-
lution (80), to which we can add any multiple of a vector with zero singular value without
changing the fit. While the least-squares problem is thus ill-posed when there are vectors that
do not contribute to the fit, these vectors play a crucial role in non-negative least squares fitting:
They take values such that the modes that are important for the fit can approach their optimal
value as closely as possible without violating the constraint. Thus NNLS is well posed.
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1: function NNLS(K, g)
2: f ← 0
3: Z ← {1, . . . , N} . below we use the abbreviation P = {1, . . . , N} \ Z
4: loop
5: w ←K†(Kf − g) . for robust calculation use, e.g., SVD
6: if w[Z] ≥ 0 then return f
7: end if
8: i← argmin(w[Z]) . find component with most negative gradient
9: Z ← Z \ {i}

10: loop
11: f ′ ← LS(KPf , g) . LS solution on components P
12: . fi > 0, if not: numerical error in gradient! Do not pick i again this round
13: if f ′[P ] > 0 then
14: f ← f ′

15: break
16: end if
17: α← min

{
fi

fi−f ′i

∣∣∣ i ∈ P ∧ f ′i ≥ 0
}

18: f ← (1− α)f + αf ′ . now f ≥ 0 and fi = 0 for i = argmin
19: P ← P \ {i|fi = 0}
20: end loop
21: end loop
22: end function

Fig. 10: Function that returns the non-negative least-squares solution f ≥ 0 of g = Kf .

A.3 Shannon entropy

When developing The Mathematical Theory of Communication, Claude Shannon introduced the
bit as the amount of information needed to decide between two equally probable events [15].
Receiving an unlikely (surprising) message should convey more information than receiving a
likely one, and the information contained in two independent messages should be the sum of
the information carried by each individually. These axioms lead to − log2 pi as the information
contained in receiving a message of probability pi. Summing over a set ofM possible messages
of probabilities pi and weighting the information contained in them by their probability defines
the average information or entropy of an information source

H({pi}) = −
∑

pi log2 pi . (84)

It gives a lower limit to the number of bits needed for encoding the N messages. The maximum
number of bits, log2N, is needed when we know least about which message to expect, i.e.,
when all probabilities are the same. In the opposite limit, when one of the messages is certain,
we need not encode it at all. Thus the entropy of an information source measures our ignorance
before receiving one of the possible messages.
Changing the base of the logarithm, logb(x) = log2(x)/ log2(b), for b > 1 simply multiplies
the entropy by a positive constant, i.e., changes the units in which we measure information. For
convenience, we use the natural logarithm, ln, working in natural units, 1 nat ≈ 1.44 bits.
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An alternative derivation [2] of (84) starts by considering microstates representing the probabil-
ities as pi = ni/M by placing N (distinguishable) objects into M bins. Since we can place any
of theN objects into any of theM bins, there areMN such states. The number of different ways
of placing the objects into bins and obtaining the same set of {ni}, i.e., the same macrostate,
is also easily determined: We can pick any n1 of the N objects and put them into the first bin.
Then we can pick any n2 of the remaining N − n1 objects and put them into the second bin.
The probability of realizing a macrostate {n1, . . . , nM} is thus

1

MN

(
N

n1

)(
N−n1

n2

)(
N−n1−n2

n3

)
· · ·
(
nM
nM

)
=

1

MN

N !

n1!n2! · · ·nM !
.

Taking the logarithm and using the Stirling approximation lnn! ≈ n lnn− n we find

−N lnM +N lnN −N −
M∑
i=1

(
ni lnni − ni

)
= N

(
ln

1

M
−
∑
i

pi ln pi

)
,

which is proportional to the H({pi}) minus the entropy of a flat distribution {1/M}.
Subtracting the entropy of the flat distribution becomes crucial when taking the limit of a con-
tinuous probability distribution: encoding an infinite number of messages will, in general, take
an infinite number of bits. Subtracting − log 1/M keeps the limit M → ∞ finite. To see this,
we discretize a continuous distribution p(x) on an equidistant grid of M points, pi = p(xi)∆x

with ∆x = (xmax−xmin)/M = (
∫
dx)/M , and take the limit of the Riemann sum

−
M∑
i=1

pi ln

(
pi

1/M

)
= −

M∑
i=1

∆xp(xi) ln

(
p(xi)∆x

1/M

)
→ −

∫
dx p(x) ln

(
p(x)

1/
∫
dx

)
.

This defines the entropy of a distribution p(x)

H[p] = −
∫
dx p(x) ln

(
p(x)

1/
∫
dx

)
. (85)

We can find the p(x) that maximizes this functional from the variational principle. Remember-
ing that the functional derivatives are defined by the expansion

H[p+δp] = H[p] +

∫
dx

δH[p]

δp(x)
δp(x) +

1

2

∫
dx dx′

δ2H[p]

δp(x′)δp(x)
δp(x′) δp(x) +O3(δp)

we read off the first variation from

H[p+δp] = −
∫
dx (p+ δp)

(
ln(p+ δp)︸ ︷︷ ︸

=ln p+ln(1+ δp
p

)=ln p+ δp
p

+O2

+ ln
∫
dx
)

= H[p]−
∫
dx

(
1 + ln

p(x)

1/
∫
dx

)
︸ ︷︷ ︸

=− δH[p]
δp(x)

δp+O2,

where we have used ln(1+x) = x−x2/2+· · · ). In second order we find δ2H[p]/δp(x′) δp(x) =

−2δ(x−x′)/p(x) ≤ 0 so that the stationary points are maxima. Imposing normalization of the
0-th moment via a Lagrange parameter, the variational equation becomes

0 =
δ

δp(x)
H[p] + λ0

(
1−
∫
dx p(x)

)
= −1− ln p(x)− ln

∫
dx− λ0
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which is solved by the constant distribution, where λ0 = −1 is fixed by normalization

p(x) =
1∫
dx

e−(1+λ0) =
1∫
dx

. (86)

Inserting into (85) we find H[1/
∫
dx] = 0, as it must by construction.

Likewise, we can ask which distribution maximizes the entropy, when we know in addition its
first moment µ =

∫
dx x p(x). The variational equation then contains two Lagrange parameters

0 =
δ

δp(x)
H[p] + λ0

(
1−
∫
dx p(x)

)
+ λ1

(
µ−

∫
dx x p(x)

)
= −1− ln

p(x)

1
∫
dx
− λ0 − λ1 x

and we obtain a Boltzmann distribution

pµ(x) =
1∫
dx

e−(1+λ0+λ1x), (87)

where λ0 and λ1 are fixed by solving the system
∫
dx pµ(x) = 1 and

∫
dx x pµ(x) = µ. Likewise,

when we also know the variance of p(x), maximizing the entropy results in a Gaussian.
Given the entropy functional, it is natural to ask what happens under a change of variable.
Remembering that density functions transform as p(x) dx = p(z) dz, we find

H[p] = −
∫
dx

dz
dz p(z)

dz

dx
ln

(
p(z) dz

dx

1/
∫
dx

)
= −

∫
dz p(z) ln

(
p(z)

ρ(z)

)
,

where we introduced ρ(z) dz = dx/
∫
dx. It reflects how the intervals on x change under the

under transformation to z. When we define ρ(x) = 1/
∫
dx, we see that the form of the entropy

functional is invariant under coordinate transformations

H[p | ρ] = −
∫
dx p(x) ln

p(x)

ρ(x)
. (88)

This is the relative entropy or Kullback-Leibler divergence. From lnx ≤ x−1 it follows that
H[p] ≤ 0. By construction, the maximum is attained for p(x) = ρ(x). The relative entropy
describes the average information contained in the distribution p(x) when what we expected was
the distribution ρ(x). The prior ρ(x) plays the role of a density of states: from the functional
derivative of the relative entropy δH[p]/δp(x) = −1− ln(p(x)/ρ(x)) we see that the solutions
of the variational equations for p(x) derived above become proportional to ρ(x).
For convenience we might want to allow non-normalized densities of states ρ̃(x) and corre-
spondingly drop the normalization constraint for p̃(x). If we write [16]

H̃[p̃ | ρ̃] =

∫
dx

(
p̃(x)− ρ̃(x)− p̃(x) ln

p̃(x)

ρ̃(x)

)
(89)

we obtain from the variational equation δH̃/δp̃ = 0 (without normalization constraint) the
solution p̃(x) = ρ̃(x) with H̃[ρ̃ | ρ̃] = 0 as for (88).
We note that a flat prior ρ(x) = const. is bound to the choice of variable: Given any ρ(z) we
can always transform to x(z) ∝

∫ z
ρ(z′) dz′ to obtain ρ(x) = ρ(z) dz/dx = const., where x

must be restricted to a finite interval to be normalizable.
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A.4 Sampling from a truncated normal distribution

It is straightforward to generate a random variable x with a normal probability distribution

pn(x) =
1√
2π

e−x
2/2 (90)

using, e.g., the Box-Muller method [17]. When taking a constraint into account, we need,
however, variables with a normal distribution restricted to some interval, x ∈ [a, b].
x ≥ a: When x is restricted to be larger than some value a, a straightforward approach is to
sample normally distributed values x until we find an x > a. The probability for finding such
an x is, on average, just the integral over the Gaussian

P̄n(a) =

∫ ∞
a

dx pu(x) = I(a) . (91)

This is easily written in terms of the complementary error function erfc(z) = 2/
√
π
∫∞
z
dt e−t

2 .
For a > 0

I(a ≥ 0) =
1

2
erfc(a/

√
2) , (92)

while for a < 0

I(a ≤ 0) = 1− I(−a) . (93)

The average acceptance probability (91) is shown in figure 11. For a to the left of the peak of
the normal distribution it is very likely that a proposed random variable x is larger than a and
thus is accepted. For a > 0 this probability is, however, rapidly decreasing to zero, meaning
that we would have to propose very many normally distributed variables x until we find one that
is larger than a. This is very inefficient, so for a > 0 we need a better approach. Following [18],
we generate random variables x ≥ a with an exponential probability distribution

pexp(x) = α e−α(x−a) . (94)

These are easily obtained as x = a − ln(u/α)/α from uniformly distributed random numbers
u ∈ [0, 1). To transform these exponentially distributed random numbers x ≥ a into the de-
sired normally distributed random numbers we use the rejection method [17], accepting x with
probability proportional to the ratio pn(x)/pexp(x) of the desired and the proposed probability
distribution functions. To obtain a probability, we introduce a prefactor to make sure that for no
x ≥ a the ratio exceed one. Completing the square in the exponential we find

pacc(x;A) =
1

A

e−x
2/2

e−α(x−a)
=

1

A
e−(x−α)2/2︸ ︷︷ ︸

≤1

eα
2/2−αa !

≤ 1 . (95)

For x ≥ a the choice A = eα
2/2−αa maximizes the acceptance probability, which becomes

pacc(x) = e−(x−α)2/2 . (96)
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Fig. 11: Efficiency of the methods for sampling from a normally distributed variable x restricted
to the interval [a,∞): For a < 0 the average acceptance probability for an unrestricted nor-
mally distributed random variable (P̄n(a), full line) is larger than 1/2, while for a > 0 it
rapidly approaches zero. For positive a we therefore propose exponentially distributed random
numbers (P̄exp(a ≥ 0), dotted line), for which the average acceptance probability is at least√
π/2e ≈ 0.76.

The corresponding average acceptance probability is then the integral of the product of the
probability for proposing a value x times the probability for accepting it

P̄exp(a ≥ 0) =

∫ ∞
a

dx pexp(x) pacc(x) =
√

2π α e−α
2/2+αa I(a) (97)

In this expression α is still a free parameter, which we choose to maximize the average accep-
tance. Solving the variational equation we obtain

α =
a+
√
a2 + 4

2
. (98)

We note that for a ≥ 0, P̄exp(a) has the same form as (91), differing, however, by a prefactor
γexp =

√
2π α e−α

2/2+αa which grows faster than the complementary error function decays.
Therefore, as can be seen from Fig. 11, for a > 0 this method is dramatically more efficient
than sampling from an unbounded uniform distribution. Thus for a < 0 we choose the method
with γn = 1, while for a ≥ 0 we choose γexp, obtaining an average acceptance probability
P̄γ(a) = γ(a) I(a).
x ≥ b: When we need to sample a normal variable constrained from above we can use the
same methods as above, sampling −x ≥ −b, with average acceptance probability P̄γ(−b).
a ≤ x ≤ b: When the random variable is constrained to a finite interval, an obvious approach
is to first sample an x ∈ [a,∞) and to accept it if x ≤ b. The average acceptance probability is
then P̄γ(a) for proposing an x ∈ [a,∞), times

∫ b
a
dx pn(x)/

∫∞
a
dx pn(x) for accepting it, i.e.,

P̄γ(a, b) = γ
(
I(a)− I(b)

)
. (99)
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For large intervals this will be an efficient approach, while for narrow intervals the acceptance
will go to zero. In this case it becomes more efficient to propose x uniformly distributed on
[a, b] and accept them with probability

pacc = e−(x2−m2)/2 , (100)

wherem is the coordinate at which the normal distribution assumes its maximum value on [a, b],
ensuring that pacc ≤ 1. When 0 ∈ [a, b] then m = 0, otherwise m = min(|a|, |b|). The average
acceptance probability for this approach is

P̄u(a, b) =

∫ b

a

dx
1

b− a
e−(x2−m2)/2 =

em
2/2

b− a
√

2π
(
I(a)− I(b)

)
. (101)

Again, (101) differs from (99) only by its prefactor γu, which increases as the width of the
interval b− a becomes smaller.
For a given interval [a, b] we then choose the most efficient method:

• a < 0 < b: Since a < 0 we have to choose between normal sampling with γn = 1 and
uniform sampling with γu =

√
2π/(b − a). For γn = γu both methods have the same

average acceptance probability. Solving this gives us the critical width w0 =
√

2π. For
intervals b−a < w0 we thus use uniform sampling with γu, otherwise γn. The worst case
is P̄γ=1(0, w0) = I(0)− I(w0) = erf(

√
π)/2 ≈ 0.49.

• 0 < a < b: Since a > 0 we choose between exponential sampling with γexp =√
2π α e−α

2/2+αa and γu =
√

2π ea
2/2/(b − a). Solving γexp = γu gives the critical

width w>(a) = e(α−a)2/2/α. For intervals b − a < w>(a) we use uniform sampling
with γu, otherwise γexp. The worst case is P̄γ(0, w>(0)) = γexp

(
I(0) − I(

√
e)
)

=√
π/2e erf(

√
e/2) ≈ 0.68.

• a < b < 0: We sample −x in the interval from −b to −a as described above.

Overall, we can thus sample from a truncated normal distribution with an average acceptance
larger than erf(

√
π)/2 ≈ 0.49.

The generalization to sampling from a Gaussian distribution exp(−(x−µ)2/2σ2)/
√

2πσ of
variance σ centered at µ restricted to x ∈ [a, b] is then straightforward: use x=σx̃+µ, where x̃ is
sampled, as described above, from a normal distribution (90) on the interval [(a−µ)/σ, (b−µ)/σ].
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[4] A. Erdélyi (ed.): Higher Transcendental Functions (McGraw-Hill, New York, 1953)

[5] L. Boehnke, H. Hafermann, M. Ferrero, F. Lechermann, and O. Parcollet,
Phys. Rev. B 84, 075145 (2011)

[6] E. Koch: The Lanczos Method in E. Pavarini, E. Koch, D. Vollhardt, A. Lichtenstein (eds.):
The LDA+DMFT approach to strongly correlated materials
Modeling and Simulation Vol. 1 (Forschungszentrum Jülich, 2011)
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7.2 Alexander Lichtenstein

1 DFT and DMFT: Role of reference systems

In this lecture we give an introduction to the theoretical description of interacting electron sys-
tem based on non-perturbative, strong-coupling expansions around optimal reference systems.
The Density Functional Theory (DFT) and its Local Density Approximation (LDA) based on
the simplest reference system related to the homogeneous electron gas with constant external
potential with the same Coulomb electron-electron interactions (see Fig. 1). Such a reference
system can be solved via the numerically exact diffusion Quantum Monte Carlo scheme for the
ground state energy as function of electron density [1]. On other hand, the Dynamical Mean-
Field Theory (DMFT) for strongly interacting fermionic systems is based on the strong coupling
expansion around an effective impurity reference system (Fig. 1). This scheme become exact in
the limit of infinite lattice dimension (z →∞) [2].
For finite lattice dimension we can start from the DMFT reference system and use analytical per-
turbation theory for non-local correlation effects. The frequency dependent effective impurity
DMFT problem can nowadays be efficiently solved within the continuous-time Quantum Monte
Carlo (ct-QMC) scheme [3]. Therefore the perturbation theory needs to be formulated in the
action path integral formalism. We give a brief introduction to the path integral over fermionic
Grassmann fields and formulate a general scheme for the expansion around the DMFT solution
using a special dual space transformation. We discuss here a general way to include nonlocal
correlations beyond DMFT [4] which based on the dual-fermion path-integral formalism [5].
Consider the noninteracting, “kinetic” part Ht of the Hubbard model first [6]. This is fixed
by specifying the hopping-matrix elements tij between sites i and j. In the absence of the
local Hubbard-interaction term, Ht is easily diagonalized. For a Hubbard model on a lattice,
diagonalization is achieved by Fourier transformation of hopping parameters to k-space, and
one has the normal “band structure”. For a single orbital model it is particularly simple: εk = tk
with band width W. If, on the other hand, only the local part of the Hamiltonian is kept, i.e.,
the Hubbard interaction HU with interaction strength U and the local term of Ht fixed by the
on-site energy ε0, the diagonalization of the Hamiltonian is trivial again and reduces to the
diagonalization of a single “Hubbard atom”.
The great success of the DMFT approach is related with the interpolation between these two
limits [7]. For the half-filled Hubbard model on the infinite-dimension Bethe lattice at half-
filling the DMFT gives the exact description of the Mott-transition [8] between the weak-
coupling (U/W� 1) metallic state and the strong-coupling (U/W �1) insulating paramag-
netic state [9]. In a nutshell, DMFT maps the correlated Hubbard lattice problem onto the
self-consistent solution of an effective Anderson impurity problem with a single interacting
Hubbard atom (interaction strength U ) in a non-interacting fermionic bath (which mimics the
rest of the crystal).
Now we can think how to incorporate nonlocal correlations beyond the DMFT: since the Hub-
bard and the Anderson-impurity model share the same interaction part, one can think of the
Hubbard model as the impurity model plus a residual term ∝ (tk−∆ν) and treat this perturba-
tively. Since this term is frequency dependent we need a novel perturbation theory based on the
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Fig. 1: Schematic representation of reference systems in many-body approaches to lattice-
fermion models: (i) Density-functional theory (DFT) with the interacting homogeneous elec-
tron gas as a reference system, defined by a constant external potential µ. (ii) Dynamical mean-
field theory (DMFT) with an effective impurity problem as a reference system, defined by a
fermionic bath, specified by a hybridization function ∆. (iii) GW+DMFT with correlated atom
in a fermionic (∆) and a bosonic bath (Λ) due to effects of the frequency-dependent screening
of long-range Coulomb (V ) interactions.

action formalism. One may view this idea as a generalization of the Kohn-Sham idea in density
functional theory (DFT) [10, 11] of an optimal reference system, but with a crucial difference.
Here, not an interacting homogeneous electron gas, but an effective impurity model, tailored to
the problem of strong correlations, serves as the reference system, see Fig. 1. Since at the zeroth
order of this perturbative expansion, i.e., on the level of the DMFT problem, we already have an
interacting problem and since the perturbation is momentum and frequency dependent, one is
forced to replace the Hamiltonians by actions within the path-integral formalism. Note that the
fermion path integral can also be used to formulate the DMFT itself [7,13]. Now, the separation
of the local and nonlocal terms is achieved by a Hubbard-Stratonovich transformation applied
to the single-particle (tk − ∆ν)-term [5]. This provides us with a new action. Moreover, it is
formally possible to integrate out the original local degrees of freedom and in this way gener-
ate an effective action in the transformed, so-called dual-fermion representation [5]. Note that
integrating out the local degrees of freedom is not only a formal step but can be achieved in
practice, by solving the impurity problem within the numerically exact ct-QMC method.

The dual action consists of a bare dual propagator (non-local part of the DMFT Green function)
G̃0

k,ν and a local but frequency-dependent effective potential related to scattering processes of
two, three, and more dual particles on the impurity site. The simplest two-particle dual potential
coincides with the fully connected part of the screened impurity interaction vertex γωνν′ , which
can be calculated with the impurity ct-QMC solver as a function of bosonic (ω) and fermionic
(ν, ν ′) Matsubara frequencies. Normally, correlations between three particles on the DMFT
impurity site are much weaker than two-particle correlations and can be ignored. The same ap-
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plies to higher-order terms. One can think of the dual-fermion formalism as an expansion in the
order of local multi-particle correlation functions. This means that “bare” interactions between
dual fermions are related with the connected part of the screened impurity vertex. Standard di-
agrammatic techniques can be applied for calculations of the bold dual propagator G̃k,ν , which
allows to obtain the nonlocal self-energy for the original fermions [5] and to describe nonlocal
correlations beyond the DMFT.

The dual-fermion approach is not necessarily bound to a specific starting point. However, the
DMFT starting point is very efficient. Namely, it corresponds to the elimination of all local
diagrams for any n-particle correlation of dual fermions when using the DMFT self-consistency
equation, Eq. (46). In the dual space, this simply reduces to

∑
k G̃

0
k,ν = 0 and means that, on

average over the whole Brillouin zone, ∆ν optimally approximates the electron spectrum εk,
including its local correlation effects. Therefore, the noninteracting dual fermions correspond to
strongly correlated DMFT quasiparticles, and the remaining nonlocal effects can be quite small
and reasonably described by perturbative summations of dual diagrams. This also explains the
notion “dual fermions”.

2 Functional approach

We introduce a general functional approach which will cover the DFT, Dynamical Mean Field
Theory (DMFT) and Baym-Kadanoff (BK) theories [12, 13]. Let us start from the full many–
body Hamiltonian describing electrons moving in the periodic external potential of ions V (r)

with the chemical potential µ and interacting via Coulomb law: U(r−r′) = 1/|r−r′|. We use
the atomic units ~=m= e= 1. In the field-operator representation, the Hamiltonian has the
form

H=
∑
σ

∫
dr ψ̂†σ(r)

(
−∇

2

2
+V (r)−µ

)
ψ̂σ(r)+

1

2

∑
σσ′

∫
dr

∫
dr′ψ̂†σ(r)ψ̂†σ′(r

′)U(r−r′) ψ̂σ′(r′)ψ̂σ(r)

(1)

We can always use the single-particle orthonormal basis set in solids ϕn(r) for example Wannier
orbitals with full set of quantum numbers, e.g., site, orbital and spin index: k = (i,m, σ) and
expand the fields in creation and annihilation operators

ψ̂(r) =
∑
n

ϕn(r) ĉn ψ̂†(r) =
∑
n

ϕ∗n(r) ĉ†n. (2)

Going from fermionic operators to the Grassmann variables {c∗k, ck}we can write the functional
integral representation for partition function of the many-body Hamiltonian in the imaginary
time domain using the Euclidean action S

Z =

∫
D[c∗, c] e−S , S =

∑
12

c∗1(∂τ + t12)c2 +
1

2

∑
1234

c∗1c
∗
2 U1234 c4c3, (3)
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where the one- and two-electron matrix elements are defined as

t12 =

∫
drϕ∗1(r)

(
−1

2
∇2 + V (r)− µ

)
ϕ2(r) (4)

U1234 =

∫
dr

∫
dr′ ϕ∗1(r)ϕ

∗
2(r
′)U(r−r′)ϕ3(r)ϕ4(r

′).

and we use the following short definition of the sum:∑
1

· · · ≡
∑
im

∫
dτ · · · (5)

The one-electron Green function defined via a simplest non-zero correlation function for fermions
[14] can be written in the path-integral formalism [15–17] as

G12 = −
〈
c1c
∗
2

〉
S

= − 1

Z

∫
D[c∗, c] c1c

∗
2 exp(−S). (6)

The Baym-Kadanoff functional [12] gives the one–particle Green function and the total free
energy at its stationary point. In order to construct the exact functional of the Green function
(Baym-Kadanoff) we modify the action by introducing the source term J

S[J ] = S +
∑
12

c∗1J12 c2. (7)

The partition function Z, or equivalently the free energy of the system F, becomes a functional
of the auxiliary source field

Z[J ] = e−F [J ] =

∫
D[c∗, c] e−S

′[J ]. (8)

Variation of this source function gives all correlation functions, for example the Green function

G12 =
δF [J ]

δJ21

∣∣∣∣
J=0

. (9)

The Baym-Kadanoff functional Γ is obtained by the Legendre transform from variable J to G

Γ [G] = F [J ]− Tr JG, (10)

This is a non-trivial step and uses the possibility of inverting the Eq. (9) for arbitrary J and find
J = J(G) which may be multivalued for strongly correlated systems [18].
We can use the standard decomposition of the free energy functional Γ into the single particle
part and the correlated part

Γ [G] = Tr lnG− TrΣG+ Φ[G], (11)

were Σ is single particle self-energy and Φ[G] is a correlated part of the Baym-Kadanoff func-
tional and is equal to the sum of all two-particle irreducible diagrams. At the stationary point
this functional gives the free energy of the system. In practice, Φ[G] is not known for interact-
ing electron systems, which is similar to the problem in the density functional theory. There
is a formal expression for the “exchange-correlation” part of this functional via all connecting
two-particle diagrams [13, 19, 20].



7.6 Alexander Lichtenstein

3 Density Functional Theory

The general functional approach reduces to density-functional theory, if one only uses the diag-
onal part in space-time of the Green function, which corresponds to the one-electron density

n(1) = G12 δ12 = 〈c∗1c1〉S, (12)

Consider a general interacting Hamiltonian with “λ-scaled” interaction

Ĥ = T̂ + λÛ, (13)

which depends on the coupling constant λ as a parameter. The same is true for the effective
action functional [20]

Γ = Γ [n, λ] . (14)

Clearly n, λ are to be considered as two independent variables. Note, however, that this does
not prevent the exact expectation value ng from depending on λ: this dependence is fixed by the
variational principle (

δΓ [n, λ]

δn

)
ng

= 0. (15)

The functional Γ [n, λ] is defined as

Γ [n, λ] = F [J, λ]− J (1)n (1) , (16)

where J is a functional of n and λ. This functional dependence is provided by the equation

δF [J, λ]

δJ (1)
= n (1) .

We can find a formally exact expression for the Γ [n] functional within the inversion method
[19]. Let us expand all the quantities in Eqn (16) in terms of λ;

J [n, λ] = J0 [n] + λJ1 [n] + λ2J2 [n] + . . . ,

F [J, λ] = F0 [J ] + λF1 [J ] + λ2F2 [J ] + . . . , (17)

Γ [n, λ] = Γ0 [n] + λΓ1 [n] + λ2Γ2 [n] + . . . .

Comparison of the two sides in Eqn (16) for different orders of λ,∑
λiΓi [n] =

∑
λiFi

(∑
λkJk[n]

)
−
∑

λiJi (1)n (1) , (18)

leads to the formally exact expression for Γi [n] ,

Γi [n] = Fi [J0] +
i∑

k=1

δFi−k [J0]

δJ0 (1)
Jk (1)− Ji (1)n (1)

+
i∑

m=2

1

m!

k1+...+km≤i∑
k1,...,km≥1

δmFi−(k1+...+km) [J0]

δJ0 (1) . . . δJ0 (m)
Jk1 (1) · · · Jkm (m) .
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The functionals
{
Fi [J0]

}
and their derivatives are assumed to be known and obtained via a

standard many-body Quantum Monte Carlo scheme. Since n and λ are considered to be inde-
pendent, the functionals Ji [n] can be obtained using,

δΓi [n]

δn (1)
= −Ji (1) . (19)

Of special importance for the DFT scheme is the zero-th order term

Γ0 [n] = F0 [J0]− J0 (1)n (1) . (20)

Using Eqn (19)

−J0 (1) =
δF0 [J0]

δJ0 (1′)

δJ0 (1′)

δn (1)
− J0 (1)− n (1′)

δJ0 (1′)

δn (1)
⇒
(
δF0 [J0]

δJ0 (1′)
−n (1′)

)
δJ0 (1′)

δn (1)
= 0.

Strict convexity of Γ0 [n] prohibits (δJ0 (1′) /δn (1)) from having zero eigenvalues. Thus we
obtain that J0 obeys the equation:

n (1) =
δF0 [J0]

δJ0 (1)
. (21)

Hence J0 is determined as a potential which generates the expectation value n in the nonin-
teracting (λ = 0) system. Notice that the same exact notion appears in the Kohn-Sham for-
malism [11]. We refer to this noninteracting system as Kohn-Sham (KS) system and J0 as
Kohn-Sham potential.
The Kohn–Sham potential for interacting system VKS = Vext + VH + Vxc plays the role of the
“constrained fields” Ji. Here Vext is am external potential and VH the Hartree potential. In
principle, the exchange-correlation potential Vxc is known only for the homogeneous electron
gas, therefore in all practical applications one uses a so-called local density approximation to
DFT. In this case the DFT functional is defined in the following way

FDFT[n] = T0[n] + Vext[n] + VH [n] + Vxc[n] (22)

where T0 is the kinetic energy of the non-interacting systems. Finally, if we define the total
electron density and exchange density as

n(r) =
∑
k

ϕ∗k(r)ϕk(r) and n(r, r′) =
∑
k

ϕ∗k(r)ϕk(r
′) (23)

the DFT approach can be formulated as

T0[n] + Vext[n] =
∑
k

∫
drϕ∗k(r)

(
−1

2
52 + Vext(r)− µ

)
ϕk(r) (24)

VH [n] =
1

2

∫
drn(r)U(r−r′)n(r′) (25)

Vxc[n] = −1

2

∫
drn(r, r′)U(r−r′)n(r′, r) +

∞∑
i=2

Γi [n] (26)
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U
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m m´

Umm´

Fig. 2: Generic Hubbard lattice for correlated lattice fermions with the local Coulomb interac-
tion U and hopping parameters t: m can label different orbitals or lattice sites.

and the local density approximation (LDA) to the DFT reads

Vxc[n] =

∫
drn(r) εxc

(
n(r)

)
(27)

where εxc(n) is exchange correlation density for homogeneous electron Coulomb gas which can
be calculated with the QMC scheme [1].
In the DFT scheme we lose information about the non-equal time Green function, which gives
the single particle excitation spectrum as well as the k-dependence of the spectral function, and
restrict ourself to only the ground-state energy of the many-electron system. Moreover, we lose
information about all collective excitations in solids, such as plasmons or magnons, which can
be obtained from the generalized susceptibility.
One of the most successful approaches to correlated materials is based on the combination of
the DFT scheme with a Dynamical Mean Field Theory (DMFT) for strongly interacting d- or
f -electrosn in the crystal. In the DMFT scheme one can obtain the numerically exact solution
for the correlated part of the local functional. In the following section we discuss the general
strong-coupling perturbation theory based on so-called dual fermion (DF) transformations [5]
in the path integral formalism, which allows us to introduce the DMFT scheme as zero-order
DF-expansion and shows a perturbative way to go beyond the DMFT approximations.

4 Dual Fermion approach with a general reference system

We start with a general lattice fermion model with the local Hubbard-like interaction vertex U.
Generalization to the multi-orbital case is straightforward [21]. All equations will be written
in matrix form, giving an idea of how to rewrite the dual fermion (DF) formula to the multi-
orbital or multi-site case. The general strategy is related with the formally exact separation of
the local and non-local correlation effects. We introduce auxiliary dual fermionic fields which
will couple local correlated impurities or clusters back to the original lattice [5].
Using the path-integral formalism (Appendix A) the partition function of a general fermionic
lattice system (Fig. 2) can be written in the following form as a functional integral over Grass-
mann variables [c∗, c]

Z =

∫
D[c∗, c] exp

(
−SL[c∗, c]

)
. (28)
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U
D

Fig. 3: Schematic view on the real-space DMFT reference system.

The original lattice action of interacting lattice fermions, similar to Eq. (3), can be written in
Matsubara space as a sum of the lattice one-electron contributions with the Fourier transformed
hopping tk (or energy spectrum in the single-orbital case) and the local interaction part U

SL[c∗, c] = −
∑
kνσ

c∗kνσ
(
iν+µ−tk

)
ckνσ +

∑
i

∫ β

0

dτ U n∗iτ↑niτ↓ . (29)

In the following, ν = (2n+1)π/β, (ω = 2nπ/β), n = 0,±1, . . . are the fermionic (bosonic)
Matsubara frequencies, β is the inverse temperature, τ ∈ [0, β) the imaginary time, and µ the
chemical potential. The index i labels the lattice sites, m refers to different orbitals, σ is the
spin projection and the k-vectors are quasimomenta. In order to keep the notation simple, it is
useful to introduce the combined index |1〉 ≡ |i,m, σ, τ〉 and assume summation over repeated
indices. Translational invariance is assumed for simplicity in the following, although a real
space formulation is straightforward. The local part of the action, SU , may contain any type of
local multi orbital interaction.
In order to formulate an expansion around the best possible reference action, Fig. 3, a quan-
tum impurity (cluster) problem is introduced by a general frequency-dependent hybridization
function ∆ν and the same local interaction

S∆[c∗i , ci] = −
∑
ν ,σ

c∗iνσ
(
iν+µ−∆ν

)
ciνσ +

∑
ν

Un∗iν↑niν↓ , (30)

where∆ν is the effective hybridization matrix describing the coupling of the impurity to an aux-
iliary fermionic bath. The main motivation for rewriting the lattice action in terms of a quantum
impurity model is that such a reference system can be solved numerically exactly for an arbi-
trary hybridization function using ct-QMC methods [3]. Using the locality of the hybridization
function ∆ν , the lattice action Eq. (29) can be rewritten exactly in terms of individual impurity
models and the effective one-electron coupling ∆ν−tk between different impurities, Fig. 4,

SL[c∗, c] =
∑
i

S∆[c∗i , ci]−
∑
kνσ

c∗kνσ
(
∆ν−tk

)
ckνσ . (31)

We will find the condition for the optimal choice of the hybridization function later. Although
we can solve the individual impurity model exactly, the effect of spatial correlations due to
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Fig. 4: Schematic view on the non-local DF perturbation beyond a DMFT solution.

the second term in Eq. (31) is very hard to treat, even perturbatively, since the impurity ac-
tion is non-Gaussian and one cannot use of the Wick theorem. The main idea of the dual
fermion transformation is the change of variables from strongly correlated fermions (c∗, c) to
weakly correlated “dual” Grassmann fields (d∗, d) in the path-integral representation for the
partition function of Eq. (3), followed by a simple perturbation treatment. The new variables
were introduced through the following Hubbard-Stratonovich(HS)-transformation with the ma-
trix ∆̃kν = ∆ν−tk in real space

ec
∗
1 ∆̃12 c2 = det ∆̃

∫
D [d∗, d] e−d

∗
1∆̃
−1
12 d2−d∗1c1−c∗1d1 . (32)

We can immediately seen that using this HS-transformation we “localize” the [c∗i , cj] fermions:
while on the left-hand side they are still “hopping” through the lattice, on the right-hand side
they are localized on one site [c∗i , ci].
With this reference system the lattice partition function becomes

Z

Zd
=

∫
D[c∗, c, d∗, d] exp

(
−S[c∗, c, d∗, d]

)
(33)

with Zd = det ∆̃. The lattice action transforms to

S[c∗, c, d∗, d] =
∑
i

Si∆ +
∑
k,ν,σ

d∗kνσ
(
∆ν−tk

)−1
dkνσ . (34)

Hence the coupling between sites is transferred to a local coupling to the auxiliary fermions

Si∆[c∗i , ci, d
∗
i , di] = S∆[c∗i , ci] +

∑
ν,σ

(
d∗iνσ ciνσ + c∗iνσ diνσ

)
(35)

For the last term we use the invariance of the trace so that the sum over all states labeled by k

could be replaced by the equivalent summation over all sites by a change of basis in the second
term. The crucial point is that the coupling to the auxiliary fermions is purely local and Si∆
decomposes into a sum of local terms. The lattice fermions can therefore be integrated out from
Si∆ for each site i separately. This completes the change of variables

1

Z∆

∫
D[c∗, c] exp

(
−Si∆[, c∗i , ci, d

∗
i di]
)

= exp
(
−
∑
ν σ

d∗iνσ gνdiνσ − Vi[d∗i di]
)
, (36)
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where Z∆ is the partition function of the impurity action Eq. (30) and gν is the exact impurity
Green function

g12 = −〈c1c∗2〉∆ =
1

Z∆

∫
D[c∗, c] c1c

∗
2 e
−S∆[c∗,c]. (37)

The above equation may be viewed as the defining equation for the dual potential V [d∗, d]. The
choice of matrices in Eq. (32) ensures a particularly simple form of this potential. An explicit
expression is found by expanding both sides of Eq. (36) and equating the resulting expressions
order by order. Formally this can be done up to all orders and in this sense the transformation
to the dual fermions is exact. For most applications, the dual potential is approximated by the
first non-trivial interaction vertex

V [d∗, d] =
1

4

∑
1234

γ1234 d
∗
1d
∗
2d4d3 , (38)

where for the local vertex the combined index 1 ≡ {mνσ} comprises orbital degrees of freedom
(or cluster sites), frequency, and spin. γ is the exact, fully antisymmetric, reducible two-particle
vertex of the local quantum impurity problem. With the present choice of normalization in the
HS-transformation we did not “amputate” the impurity “legs” or g12 Greens function which will
be a very useful choice for ct-QMC calculations of the local vertex for multi-orbital case. It is
given then by the connected part of the local two-particle correlations function

γ1234 = χ1234 − χ0
1234 (39)

with the two-particle Green function of the local impurity (reference system) being defined as

χ1234 = 〈c1c2c∗3c∗4〉∆ =
1

Z∆

∫
D[c∗, c] c1c2c

∗
3c
∗
4 e
−S∆[c∗,c] . (40)

The disconnected part of a generalized susceptibility reads

χ0
1234 = g14g23 − g13g24 . (41)

The single- and two-particle Green functions can be calculated using the ct-QMC Monte Carlo
algorithms [3]. After integrating-out the lattice fermions, the dual action depends on the new
variables only and for the one-orbital paramagnetic case reads

S̃[d∗, d] = −
∑
k νσ

d∗kνσ G̃
−1
0kν dkνσ +

∑
i

Vi[d
∗
i , di] (42)

while the bare dual Green function is has the form

G̃0
kν =

((
tk−∆ν

)−1 − gν)−1. (43)

This formula involves only the local Green function gν of the impurity model. It is important to
note, that the HS-transformation to dual fermion variables, allows us to “perform the analytical
amputation” of impurity “legs” which causes enormous problems in the multi-orbital ct-QMC
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Fig. 5: Schematic representation of a plaquette cluster-reference system for the square lattice.

formalism. Transformation to the original DF-normalization where both dualGd and real Green
function have the same dimension unit reads

Gd = g G̃ g = GDMFT − g GDMFT =
(
gν+∆ν−tk

)−1
. (44)

The Dual Fermion transformation allows us to use arbitrary reference systems and transform
the strongly correlated lattice fermion problem to an effective action of weakly coupled dual
quasiparticles. This is related with the fact that the bare dual Green function Eq. (44) related
with the small non-local part of the DMFT lattice Green function and the main two-particle
part of the bare interaction among dual fermions Eq. (38) is exactly equal to the fully screened
impurity vertex of the reference system. The rest of the dual fermion problem is related with an
optimal perturbation scheme for such an effective action Eq. (42).

5 Perturbation in Dual Space

For general multi-orbital multi-site dual fermion perturbation technique from arbitrary reference
system (Fig. 5) we use the particle-hole notation for the local vertex and write the exact spin
and imaginary time structure of the generalized connected susceptibility [5, 22]

γσσ
′

1234(τ1, τ2, τ3, τ4) = −
〈
c1σc

∗
2σc3σ′c

∗
4σ′

〉
∆

+ gσ12g
σ′

34 − gσ14gσ32 δσσ′ .

Then the bare vertex of dual-fermion perturbation is related with the full impurity vertex, which
in Matsubara space depends on two fermionic (ν, ν ′) and one bosonic (ω) frequencies. We also
symmetrized vertex for charge density d- and spin s-channels

γ
d/m
1234(ν, ν

′, ω) = γ↑↑1234(ν, ν
′, ω)± γ↑↓1234(ν, ν ′, ω).

Now we can write the first-order, local in site (i) DF-correction to the dual self-energy (Fig.6):

Σ̃
(1)i
12 (ν) =

∑
ν′,3,4

γd1234(ν, ν
′, 0)G̃ii

43(ν
′). (45)
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Fig. 6: Feynman diagram for the 1-st order (a) and the 2-nd order (b) of dual fermion pertur-
bation for the self-energy Σ̃: a line represents the non-local G̃43 and a box is the local γ1234.

We now can use the freedom to chose the hybridization function ∆ν in order to eliminate the
main first-oder dual fermion correction Eq. (45) and all other local DF-diagram. Since the
vertex function γ1234 is purely local, it is enough to ensure that the local part of dual Green
function vanishes G̃loc = 0. This condition is exactly equivalent to the DMFT self-consistent
condition for the hybridization function ∆ν (Fig.7)

∑
k

(
g−1ν +∆ν − tk

)−1
= gν . (46)

The effective impurity model Eq. (30), which is fully determined by the local hybridization
function ∆ν on fermionic Matsubara frequencies iνn is solved using the numerically exact ct-
QMC scheme [3] and the exact local Green function gν is obtained. The self-consistent DMFT
condition for the hybridization function equates the local part of the lattice Green function with
that of the impurity, which shows that DMFT minimizes, in a local sense, the distance |tk−∆ν |.
It worthwhile to point here that the “free” or non-interacting dual fermions are equivalent to the
full solution of the DMFT problem, This is why dual fermions are only “weakly interacting” so
that this perturbation scheme can be very efficient, provided a good reference system.

S S S

S

S

S

SS

U
U

D( ’)t-t

tt’

ImpurityLattice

Mapping

Fig. 7: Schematic representation of the DMFT reference system for correlated lattice models.
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The second-order Feynman diagram for DF-perturbation (Fig.6) in real space (Rij) has density-
and spin-channel contributions with corresponding constants (cd = −1/4 and cm = −3/4)

Σ̃
(2)ij
12 (ν) =

∑
ν′ω

∑
3−8

∑
α=d,m

cαγ
α,i
1345(ν, ν

′, ω) G̃ij
36(ν+ω) G̃ji

74(ν
′+ω) G̃ij

58(ν
′) γα,j8762(ν

′, ν, ω) .

Using the exact relation between dual Green function and real Green function [5,22], we can ex-
press the total lattice self-energy as the sum of the reference contribution Σ0 (e.g. the impurity)
and corrections Σ ′ which related with the dual self-energy Σ̃

Σkν = Σ0
ν +Σ ′kν

Σ ′kν = g−1ν −
(
gν+Σ̃kν

)−1
.

We pointe out that this expression is related with the exact transformation between dual- and
real-spaces [4] which has general consequences for similar combinations including strong-
coupling techniques, like DMFT or DF.
What is much more important for numerical calculations is that, starting from the full DF-Green
function: G̃−1kν = G̃−10kν−Σ̃kν and the exact relation between dual and real Green function [5,22],
we can find an expression for the lattice Green function including only the reference impurity
Green function and the dual self-energy [4]

Gkν =
((
gν+Σ̃kν

)−1 − ∆̃kν

)−1
(47)

This formula is perfectly suitable for ct-QMC calculations for realistic multi-orbital correlated
matter, where from noisy Monte-Carlo data one only needs local one- and two-particle Green
functions, without knowledge of a local self-energy and an “amputated” vertex function.
In principle, one can go beyond second order perturbation theory and include dual ladder dia-
grams [22], dual parquet diagrams [23] or even try to sum up all dual diagrams with two-particle
vertex γ1234 stochastically, using a diagrammatic Monte Carlo in dual space [24, 25]. We also
can make the diagrammatic series self-consistent, using the “bold” line and update the bare dual
Green function with the dual self-energy. Finally, one can also “upgrade” the reference system,
which is not anymore “best” for dual fermion theory, but only for the DMFT approach with
non-interacting dual fermions.
As numerical example of the DF-perturbation, we discuss a simple, but non-trivial case of
a half-field Hubbard model in the strong-coupling case U =W = 8t (t= 1, U is equal to the
bandwidth W = 8t) and the temperature β = 5. We use a free periodic plaquette as a reference
system and perform second-order DF-perturbation. We use exact-diagonalization solver and the
Padé analytical continuation to the real axes [7]. Results of the second-order DF superpertur-
bation are shown on Fig. 8 together with numerical exact lattice Monte Carlo results and exact
diagonalization of a 4×4 periodic cluster. The DOS for the second order dual fermion plaque-
tte perturbations are in a good agreements with the two numerically exact schemes, ED and
DQMC. The DF theory reproduces the so-called four-peak structure of the half-filled Hubbard
model, which is a standard feature of lattice QMC calculations [26].
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Fig. 8: Density of states for the half-filled Hubbard model with U = W = 8t in the second-
order DF approximation (DF2) in comparison to ED results for a 4×4 cluster and lattice QMC
simulation of a 10×10 system.

6 LDA+DMFT scheme for real materials

In order to investigate real correlated systems with the local DMFT scheme we need to have an
efficient scheme of partitioning the space and orbital degrees of freedom. For example in the
high-temperature superconducting oxide YBa2Cu3O7 the strongly correlated electrons are the
Cu 3d’s, and moreover there is only one per non-equivalent copper dx2−y2 band which crosses
the Fermi level with strong many-body fluctuations. Just a few percent of the total number of
electronic states need to be included in the DMFT calculations. Therefore the simplest realistic
correlated scheme would be a DFT+DMFT approach [27, 28] with partitioning of the orbital
space to the normal band electrons |K〉 described by the DFT Bloch basis and the correlated
local orbitals |L〉 described by some optimal Wannier basis (see Fig. 9 for an illustration).
The treatment of correlated electron systems requires the calculation of Green functions and hy-
bridization functions in terms of local orbitals. This is readily achieved when using a basis set,
which is localized in real space, such as linear (or N -th order) muffin-tin orbitals (NMTO) [29],
plane-waves [30], Gaussian basis sets [31], or a projector scheme [32]. However, many imple-
mentations of density functional theory use a delocalized plane-wave basis set. This has the
advantage, that the basis set is simple, universal, and its convergence is controlled in principle
by a single parameter, the energy cutoff. The projector augmented wave method (PAW) [33],
being a representative of a plane-wave based methods, can be used as a simple example of the
general projection scheme from the Bloch to the local basis: 〈K|L〉 (Fig. 9).
Following the general projection scheme of Ref. [32,31], the desired quantity for an implemen-
tation of the DFT+DMFT method is a projection PC =

∑
L |L〉 〈L| of the full DFT Kohn-Sham

Green function GKS(ω) on a set of localized orbitals
{
|L〉
}

GC(ω) = PC GKS(ω)P C. (48)
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Fig. 9: Schematic representation of the projection scheme from the Bloch basis to a local Wan-
nier correlated subset.

The subspace C = span
({
|L〉
})

is usually called the correlated subspace. It is the subspace
of orbitals in which many-body fluctuations play a major role and where the DMFT corrections
to the DFT will be considered. In plane-wave based calculations, GKS(ω) in Matsubara space
is available in terms of an almost complete set of Bloch states |K〉 that are eigenstates of the
Kohn-Sham Hamiltonian HKS |K〉 = εK |K〉

GKS(ω) =
∑
K

|K〉 〈K|
iω + µ− εK

. (49)

Inserting equation (49) into (48) shows that one needs to evaluate projections of type 〈L|K〉
in order to access the matrix elements GCLL′(ω) of the local Green function. In most cases the
correlated orbitals are d or f orbitals, which, to a good approximation, are localized inside the
PAW augmentation spheres. For |L〉 within these spheres and given the PAW decomposition of
a Bloch state |K〉 [33] one obtains

〈L|K〉 =
∑
i

〈L|ϕi〉〈p̃i|K̃〉. (50)

The index i of the augmentation functions |ϕi〉 includes site s, angular momentum l and m, as
well as an index ν labeling the radial function: i = (s, l,m, ν), while the |p̃i〉 are projectors of
the PAW scheme.
In the described projections scheme the |L〉〈L|matrices are not properly normalized for two rea-
sons: (1) the Bloch basis is incomplete since only a limited number of Bloch bands is included
and (2) the PAW augmentation functions are in general not orthonormal. The simplest way is to
orthonormalized the projection matrices by the following Wannier type construction: By defini-
tion, the localized states |L〉 are labeled by site and angular momentum indices: L = (s, l,m).
We split the site index s = R+T such that R labels the position within the unit cell and T is
the Bravais lattice vector of the unit cell in which s is located. This allows us to construct the
Bloch transform of the localized states,

|Lk〉 =
∑
T

eikT |LT〉 , (51)
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where k is from the first Brillouin zone and |LT〉 ≡ |L〉 = |s, l,m〉. The sum in equation
(51) runs over the Bravais lattice. Labeling the Bloch states |K〉 = |k, n〉 by their crystal
momentum, k, and band index, n, we normalize our projection matrices PCLn(k) = 〈Lk|k, n〉
using the overlap operator

OLL′(k) =
∑
n

PCLn(k)P∗CL′n(k) (52)

in
P̄CLn(k) =

∑
L′

O
−1/2
LL′ (k)P CL′n(k). (53)

These orthonormalized projection matrices are calculated once at the beginning of any calcula-
tion and can then be used to obtain the local Green function of the correlated orbitals from the
full Bloch Green function GB

nn′

GCLL′(ω) =
∑
k,nn′

P̄CLn(k)GB
nn′(k, ω) P̄∗CL′n′(k).

Similarly the hybridization function, ∆(ω), is available. It is related to the local Green function
by

G−1(ω) = iω − εd −∆(ω), (54)

where εd is the static crystal field. Equation (54) is a matrix equation with G, ∆, and εd being
(dim C)× (dim C) matrices, in general. To separate the hybridization from the static DFT
crystal field, we numerically evaluate the limit ω →∞, where ω−G−1(ω)→ εd.
In a DFT+DMFT calculation the projection matrices P̄CLn(k) are used for up- and downfold-
ing quantities like the Green function and the self energy in the course of the iterative DMFT
procedure in exactly the same way as shown for the local Green function above. For example,
the self energy obtained by an impurity solver for the effective impurity model ΣCLL′(ω) can be
upfolded to the Bloch basis as

ΣB
nn′(k, ω) =

∑
LL′

P
∗C
Ln(k) ΣCLL′(ω) P

C
L′n′(k).

Since the self energy in DMFT is a purely local quantity, the index k on ΣB
nn′(k, ω) reflects

the momentum dependence brought about by the projection matrices. The presented projection
scheme allows for the inclusion of both correlated and uncorrelated states in the procedure.
Therefore, information about the interplay of correlated orbitals with their uncorrelated ligands
can be obtained.
Figure 10 shows that the DFT+DMFT calculation commences with the solution of the Kohn-
Sham equations of DFT. In a second step the projection onto the correlated subset is computed.
The Kohn-Sham Green function is then computed and used as an initial guess for the mean-field
G of the DMFT cycle, which consists of the usual steps detailed before. In usual applications,
the DFT+DMFT loop will stop after DMFT self-consistency is obtained. It has, however, re-
cently become possible to continue the cycle supplying the DFT code with an altered charge
density that includes correlation effects. In such a unified approach, changes in the charge
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Fig. 10: Illustration of the DFT+DMFT procedure. As a first step, the Kohn-Sham (KS) equa-
tions, determining the Kohn-Sham potential and thus the Hamiltonian, are solved. Secondly, the
KS Green function and from it the starting value for the bath Green function G is constructed
and passed on to the DMFT loop, which consists of the usual steps described before. A potential
self-consistency over the charge density is also indicated [31].

density induced by correlations can be studied [31, 34]. It allows furthermore for the accurate
calculation of total energies, that allow the determination of crystal structures and other coupled
electronic and structural effects. We will briefly sketch here the most important elements of the
charge self-consistent implementation of DFT+DMFT following Ref. [31].

As example, we show a realistic DFT+DMFT calculation of ferromagnetic spectral function
for Fe and Ni at T = 380 K in Fig. 11 [35], in comparison with experimental ARPES spectra
for Fe [36] and Ni [37]. For the DFT part the VASP code with theWannier projector scheme
was used [32] and for DMFT impurity solver numerical exact ct-QMC was used [3]. One can
see a good agreement for renormalization of the band dispersion near the Fermi level for Ni,
but some discrepancy for Fe (specially in P -H-Γ direction). This indicates that one needs
to include non-local self-energy effects in Fe beyond the DMFT, such as in the multi-orbital
DF-scheme.

We do not discuss the problem of “double counting” in the LDA+DMFT formalism: since
any DFT approximation includes average of Coulomb interactions, one should subtract these
from the DMFT part. In practice it is very hard to fulfill, since we do not know this part
analytically and normally we chose the double counting correction from the LDA+U scheme
as a static version of LDA+DMFT [27, 28]. The main problem is related with the fact that both
DFT and DMFT are non-perturbative, strong-coupling theories which need to be “aligned” on
some reference level, like the chemical potential. One can try to search for this “reference
level” as a free parameter [38] and compare the resulting spectral function of the LDA+DMFT
with experimental photoemission spectrum. Another possibility is to start from an analytical
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Fig. 11: Momentum resolved spectral function for ferromagnetic Fe and Ni obtained by
LDA+DMFT for T=380 K in comparison with photoemission data (dots) [35].

many-body scheme like GW and design a GW+DMFT approach where one knows the local
correlated part analytically [39]. If we would like to incorporate non-local self-energy effects
beyond the DMFT, then such a simple “double counting” schemes may not work any more and
more elaborat dual fermion/boson schemes should be considered. There is also the complicated
problem of estimating the effective local Coulomb matrix elements in the Wannier basis used in
LDA+DMFT. One of the most accurate schemes is related with a constrained RPA scheme [40].
We can mention a recent discussion of the cRPA scheme for strongly correlated insulators [41].
One of the recent accurate charge self-consistent LDA+DMFT software packages is based on
combination of Quantum ESPRESSO (DFT), Wannier90 (Projectors), and TRIQS (ct-QMC) [42].

7 Conclusions

We have discussed the path integral expansion for general reference systems which help to un-
derstand the DFT scheme and the correlated DMFT approach for interacting lattice fermions
and their combination for realistic systems. The transformation to dual variables allowed to
go beyond the local DMFT approximation for lattice self-energy. The accurate multi-orbital
DFT+DMFT scheme for strongly correlated transition metals and rare earth systems can de-
scribed the spin, orbital and charge fluctuations in the d- or f -shell which play the crucial role
in photoemission spectra, as well as magnetic and optical excitations. The numerically exact ct-
QMC solution of the quantum impurity problem gives an effective local exchange-correlation
functional for given correlated materials in a specific external hybridization. The accurate com-
bination of the DMFT scheme with first-principle DFT approaches gives a very useful tool for
the investigation of correlated electronic materials.
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A Path integrals for fermions

We first introduce a formalism of the path integral over fermionic fields [15]. Let us consider a
simple case of a single quantum state |i〉 occupied by fermionic particles [16]. Due to the Pauli
principle the many-body Hilbert space is spanned by only two orthonormal states |0〉 and |1〉.
In the second quantization scheme for fermions with annihilation ĉi and creation ĉ†i operators
with anticommutation relations

{
ĉi, ĉ

†
j

}
= δij we have the following simple rules

ĉi |1〉 = |0〉 ĉi |0〉 = 0 and ĉ†i |0〉 = |1〉 ĉ†i |1〉 = 0 . (55)

Moreover, the density operator and the Pauli principle have the form

ĉ†i ĉi |n〉 = ni |n〉 and ĉ2i = (ĉ†i )
2 = 0 .

The central object here are the so-called fermionic coherent states |c〉, which are eigenstates of
annihilation operator ĉi with eigenvalue ci

ĉi |c〉 = ci |c〉 . (56)

It is worthwhile to note that such a left-eigenbasis has only annihilation operators, due to the
fact that they are bounded from the below and one can rewrite one of equations from Eq. (55)
in the following “eigenvalue” form

ĉi |0〉 = 0 |0〉 .

Due to the anti-commutation relations for the fermionic operators the eigenvalues of coherent
states ci are so-called Grassmann numbers with the multiplication rules [17]

cicj = −cjci and c2i = 0 . (57)

It is convenient to assume that the Grassmann numbers also anti-commute with the fermionic
operators {

c, ĉ} = {c, ĉ†
}

= 0 .

An arbitrary function of one Grassmann variable can be represented by only the first two Taylor
coefficients

f(c) = f0 + f1c . (58)

One can prove the following general many-body representation of coherent states

|c〉 = e−
∑
i ciĉ

†
i |0〉 . (59)

Let us show this for the simple case of one fermionic state

ĉ |c〉 = ĉ
(
1− cĉ†

)
|0〉 = ĉ

(
|0〉 − c |1〉

)
= −ĉc |1〉 = c |0〉 = c |c〉 . (60)

One can also define a “left” coherent state 〈c| as the left-eigenstates of creation operators ĉ†i

〈c| ĉ†i = 〈c| c∗i .
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Note that the new eigenvalue c∗i is just another Grassmann number, not the complex conjugate
of ci. The left coherent state can be obtained similar to Eq. (59)

〈c| = 〈0| e−
∑
i ĉic

∗
i .

A general function of two Grassmann variables can, analogously to Eq. (58), be represented by
only four Taylor coefficients

f(c∗, c) = f00 + f10c
∗ + f01c+ f11c

∗c . (61)

Using this expansion we can define a derivative of Grassmann variables in the natural way

∂ci
∂cj

= δij .

One needs to be careful with the “right order” of such a derivative and remember the anti-
commutation rules, i.e.,

∂

∂c2
c1c2 = −c1 .

For the case of the general two-variable function in Eq. (61) we have

∂

∂c∗
∂

∂c
f(c∗, c) =

∂

∂c∗
(
f01 − f11c∗

)
= −f11 = − ∂

∂c

∂

∂c∗
f(c∗, c).

One also needs a formal definition of the integration over Grassmann variables, and the natural
way consists of the following rules [17]∫

1 dc = 0 and
∫
c dc = 1 ,

which just shows that the integration over a Grassmann variable is equivalent to differentiation∫
· · · dc→ ∂

∂c
· · ·

The coherent states are not orthonormal and the overlap of any two such states is equal to

〈c|c〉 = e
∑
i c
∗
i ci

which is easy to see for the case of one particle

〈c|c〉 =
(
〈0| − 〈1| c∗

)(
|0〉 − c |1〉

)
= 1 + c∗c = ec

∗c.

An important property of coherent states is the resolution of unity∫
dc∗
∫
dc e−

∑
i c
∗
i ci |c〉〈c| = 1̂ =

∫∫
dc∗dc

|c〉 〈c|
〈c|c〉

.

For simplicity we demonstrate this relation only for one fermion state∫∫
dc∗dc e−c

∗c |c〉〈c| =
∫∫

dc∗dc
(
1− c∗c

)(
|0〉 − c |1〉

)(
〈0| − 〈1| c∗

)
= −

∫∫
dc∗dc c∗c

(
|0〉〈0|+ |1〉〈1|

)
=
∑
n

|n〉〈n| = 1̂ .



7.22 Alexander Lichtenstein

Matrix elements of normally ordered operators are very easy to calculate in the coherent basis
by operating with ĉ† on the states to the right and ĉ to the left:

〈c∗| Ĥ(ĉ†, ĉ) |c〉 = H(c∗, c) 〈c∗|c〉 . = H(c∗, c) e
∑
i c
∗
i ci (62)

Within the manifold of coherent states we can map the fermionic operators to the Grassmann
variables (ĉ†i , ĉi)→ (c∗i , ci).
Finally, we prove the so-called “trace-formula” for arbitrary fermionic operators in normal order
(in one-fermion notation)

Tr Ô =
∑
n=0,1

〈n| Ô |n〉 =
∑
n=0,1

∫∫
dc∗dc e−c

∗c 〈n| c〉〈c| Ô |n〉 =

=

∫∫
dc∗dc e−c

∗c
∑
n=0,1

〈−c| Ô |n〉〈n| c〉 =

∫∫
dc∗dc e−c

∗c 〈−c| Ô |c〉 .

The fermionic ”minus” sign in the left coherent states come from the commutation of the (c∗)
and (c) coherent state in such a transformation: 〈n|c〉 〈c|n〉 = 〈−c|n〉 〈n|c〉. One has to use the
standard Grassmann rules: c∗i cj = −cjc∗i and |−c〉 = |0〉+ c |1〉.
We are ready now to write the partition function for the grand-canonical quantum ensemble with
H = Ĥ−µN̂ and inverse temperature β. One has to use the N -slices Trotter decomposition
for the partition function in [0, β) with imaginary time τn = n∆τ = nβ/N (n = 1, ..., N ), and
insert N times the resolution of unity as follows

Z = Tr e−βH =

∫∫
dc∗dc e−c

∗c
〈
−c
∣∣e−βH∣∣c〉

=

∫
ΠN
n=1dc

∗
ndcn e

−
∑
n c
∗
ncn 〈cN | e−∆τH |cN−1〉 〈cN−1| e−∆τH |cN−2〉 ... 〈c1| e−∆τH |c0〉

=

∫
ΠN
n=1dc

∗
ndcn e

−∆τ
∑N
n=1

(
c∗n(cn−cn−1)/∆τ+H(c∗n,cn−1)

)
In the continuum limit (N →∞)

∆τ

N∑
n=1

· · · →
∫ β

0

dτ · · · , cn−cn−1
∆τ

→ ∂τ and ΠN−1
n=0 dc

∗
ndcn → D [c∗, c]

with antiperiodic boundary conditions for fermionic Grassmann variables in imaginary time
c(τ) and c∗(τ)

c(β) = −c(0), c∗(β) = −c∗(0)

we end up in the standard path-integral formulation of the partition function

Z =

∫
D [c∗, c] e−

∫ β
0 dτ
(
c∗(τ)∂τ c(τ)+H(c∗(τ),c(τ))

)
. (63)

It is useful to mention the general form of the Gaussian path-integral for a non-interacting
“quadratic” fermionic action, which is equivalent to the Hubbard-Stratonovich transformation
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used in the dual-fermion derivation Eq. (32). For an arbitrary matrixMij and Grassmann vectors
J∗i and Ji one can calculate analytically the following integral

Z0 [J∗, J ] =

∫
D [c∗c] e−

∑N
i,j=1 c

∗
iMijcj−

∑N
i=1(c∗i Ji+J∗i ci) = detM e

∑N
i,j=1 J

∗
i (M

−1)ijJj . (64)

To prove this relation one needs to first change variables in order to eliminate J∗i and Ji and
expand the exponential function (only the N -th oder is non-zero)

e−
∑N
i,j=1 c

∗
iMijcj =

1

N !

(
−

N∑
i,j=1

c∗iMijcj

)N
.

Finally, different permutations of c∗i and cj and integration over Grassmann variables will give
detM . As a small exercise we will check such integrals for the first two many-particle dimen-
sions. For N=1 it is trivial∫

D [c∗c] e−c
∗
1M11c1 =

∫
D [c∗c]

(
− c∗1M11c1

)
= M11 = detM

and for N=2 we have∫
D [c∗c] e−c

∗
1M11c1−c∗1M12c1−c∗2M21c1−c∗2M22c2 =

=
1

2!

∫
D [c∗c]

(
−c∗1M11c1−c∗1M12c1−c∗2M21c1−c∗2M22c2

)2
= M11M22−M12M21 = detM.

For a change of variables in the path integral one uses the following transformation with unit
Jacobian: c→ c+M−1J and

c∗Mc+ c∗J + J∗c =
(
c∗ + J∗M−1)M (

c+M−1J
)
− J∗M−1J .

Using the Gaussian path-integral it is very easy to calculate any correlation function for a non-
interaction action (Wick-theorem)

〈
cic
∗
j

〉
0

= − 1

Z0

δ2Z0 [J∗, J ]

δJ∗i δJj

∣∣∣∣
J=0

= M−1
ij〈

cicjc
∗
kc
∗
l

〉
0

=
1

Z0

δ4Z0 [J∗, J ]

δJ∗i δJ
∗
j δJlδJk

∣∣∣∣
J=0

= M−1
il M

−1
jk −M

−1
ik M

−1
jl .

Corresponding bosonic path-integrals can be formulated in a similar way with complex vari-
ables and periodic boundary conditions on imaginary time. The Gaussian path-integral over
bosonic fields is equal to inverse of the M -matrix determinant [15].
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1 Introduction: the many-body problem

The electronic many-body problem, in the non-relativistic limit and in the Born-Oppenheimer
approximation, is described by the Hamiltonian

Ĥe = −1

2

∑

i

∇2
i −

∑

i

∑

α

Zα
|ri−Rα|

+
∑

i>j

1

|ri−rj|
+
∑

α>α′

ZαZα′

|Rα−Rα′|
, (1)

where {ri} are electron coordinates, {Rα} nuclear coordinates and Zα the nuclear charges.
Using a complete one-electron basis, for example the basis {ϕa(r)}, where {a} are the quantum
numbers, we can write this Hamiltonian in second quantization as

Ĥe = −
∑

ab

tabc
†
acb

︸ ︷︷ ︸
Ĥ0

+
1

2

∑

aa′bb′

Uaa′bb′ c
†
ac
†
a′cb′cb

︸ ︷︷ ︸
ĤU

.

Here the hopping integrals are given by

tab = −
∫
dr ϕa(r)

(
−1

2
∇2−

∑

α

Zα
|r−Rα|

︸ ︷︷ ︸
ven(r)

)
ϕb(r),

while the elements of the Coulomb tensor are

Uaa′bb′ =

∫
dr2

∫
dr2 ϕa(r1)ϕa′(r2)

1

|r1−r2|
ϕb′(r2)ϕb(r1).

In principle, all complete one-electron bases are equivalent. In practice, since, in the general
case, we cannot solve the N -electron problem exactly, some bases are better than others. One
possible choice for the basis are the Kohn-Sham orbitals,

{
ϕKS
a (r)

}
, obtained, e.g., in the local

density approximation (LDA).1 In this case, it is useful to replace the electron-nuclei interaction
ven(r) with the DFT potential vR(r), which includes in addition the Hartree term vH(r) and the
(approximate) exchange-correlation potential vxc(r)

vR(r) = ven(r) +

∫
dr′

n(r′)

|r−r′|︸ ︷︷ ︸
vH(r)

+ vxc(r),

so that

t̃ab = −
∫
dr ϕKS

a (r)

(
−1

2
∇2 + vR(r)

)
ϕKS
b (r). (2)

To avoid double counting (DC), we have however to subtract from ĤU the term ĤDC, which
describes the Coulomb terms already included in the hopping integrals

Ĥe = −
∑

ab

t̃ab c
†
acb

︸ ︷︷ ︸
Ĥ0=ĤLDA

e

+
1

2

∑

aba′b′

Ũaa′bb′ c
†
ac
†
a′cb′cb − ĤDC

︸ ︷︷ ︸
∆ĤU

.

1For the purpose of many-body calculations the differences between LDA, GGA, or their plain extensions are
in practice negligible; for simplicity, in the rest of the lecture, we thus adopt LDA as representative functional.
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For weakly-correlated systems, in the Kohn-Sham basis, the effects included in ∆ĤU can, in
first approximation, either be neglected or treated as a perturbation. This implies that ĤLDA

e ∼
Ĥeff , where Ĥeff is the effective model which provides a good description of the system (at least)
at low energy, and which describes emergent effective “elementary particles” and their interac-
tions. Hypothetically, one could imagine that Ĥeff is obtained via a canonical transformation,
so that Ĥeff ∼ Ŝ−1Ĥe Ŝ, although the exact form of the operator Ŝ is unknown.
A defining feature of strong-correlation effects is that they cannot be described via a single-
electron Hamiltonian. An effective model Ĥeff of form ĤLDA

e does not capture the Mott metal-
insulator transition, no matter what the specific values of the parameters t̃ab are.2 Thus for
strongly-correlated materials the low-energy effective model must be different. The canonical
Hamiltonian used to describe the Mott transition is the Hubbard model

Ĥ = −
∑

σ

∑

ii′

ti,i
′
c†iσci′σ + U

∑

i

n̂i↑n̂i↓, (3)

which includes, in addition to a single-electron term, the on-site Coulomb repulsion. This model
captures the essence of the Mott transition. At half filling, for U=0 it describes a paramagnetic
metal, and for ti,i′(1−δi,i′)=0 an insulating set of paramagnetic atoms. Unfortunately, differ-
ently from Hamiltonians of type ĤLDA

e , Hubbard-like models cannot be solved exactly in the
general case. Remarkably, till 30 years ago, no method for describing the complete phase dia-
gram of (3) in a single coherent framework, including the paramagnetic insulating phase, was
actually known. This changed between 1989 and 1992, when the dynamical mean-field the-
ory (DMFT) was developed [1–4]. The key idea of DMFT consists in mapping the Hubbard
model onto a self-consistent auxiliary quantum-impurity problem, which can be solved exactly.
The mapping is based on the local dynamical self-energy approximation, very good for realistic
three-dimensional lattices—and becoming exact in the infinite coordination limit [1, 2].
DMFT was initially applied only to simple cases, due to limitations in model building, computa-
tional power, and numerical methods for solving the auxiliary impurity problem (the quantum-
impurity solvers). In the last twenty years remarkable progress lifted many of these limitations.
First, reliable schemes to build realistic low-energy materials-specific Hubbard-like models
have been devised, in particular using Kohn-Sham localized Wannier functions. This is as-
tonishing, given that we do not know the exact operator Ŝ which gives the effective low-energy
Hamiltonian, and thus a truly systematic derivation is not possible. Second, key advances in
quantum-impurity solvers and increasingly more powerful supercomputers made it possible to
study always more complex many-body Hamiltonians. The approach which emerged, con-
sisting in solving, within DMFT, materials-specific many-body Hamiltonians constructed via
LDA, is known as the LDA+DMFT method [5–7]. This technique (and its extensions) is now
the state-of-the-art for describing strongly-correlated materials. In this lecture I will outline the
basic ideas on which the method is based, its successes and its limitations. This manuscript
extends the one of last year’s school—in which more details on the model building aspects can
be found—to the calculation of linear response functions.

2One can obtain an insulator by reducing the symmetry, e.g, by increasing the size of the primitive cell. This
Slater-type insulator has however different properties than a Mott-type insulator.
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2 From DMFT to LDA+DMFT

In this section we introduce the basics of dynamical mean-field theory. We start from a case
for which we can perform analytic calculations, the two-site Hubbard Hamiltonian. This is a
toy model, useful to illustrate how the method works, but for which, as we will see, DMFT is
not a good approximation. Indeed, the Hubbard dimer is the worst case for DMFT, since the
coordination number is the lowest possible. Next we extend the formalism to the one-band and
then to the multi-orbital Hubbard Hamiltonian. For three-dimensional lattices the coordination
number is typically large and thus DMFT is an excellent approximation. Finally, we summarize
the modern schemes to construct materials-specific many-body models. They are based on
Kohn-Sham Wannier orbitals, calculated, e.g, using the LDA functional. The solution of such
models via DMFT defines the LDA+DMFT method.

2.1 DMFT for a toy model: The Hubbard dimer

The two-site Hubbard model is given by

Ĥ = εd
∑

iσ

n̂iσ − t
∑

σ

(
c†1σc2σ + c†2σc1σ

)
+ U

∑

i

n̂i↑n̂i↓, (4)

with i = 1, 2. The ground state for N = 2 electrons (half filling) is the singlet3

|G〉H =
a2(t, U)√

2

(
c†1↑c

†
2↓ − c†1↓c†2↑

)
|0〉+

a1(t, U)√
2

(
c†1↑c

†
1↓ + c†2↑c

†
2↓

)
|0〉 (5)

with

a2
1(t, U) =

1

∆(t, U)

∆(t, U)− U
2

, a2
2(t, U) =

4t2

∆(t, U)

2

∆(t, U)− U , (6)

and

∆(t, U) =
√
U2 + 16t2. (7)

The energy of this state is

E0(2) = 2εd +
1

2

(
U −∆(t, U)

)
. (8)

In the T → 0 limit, using the Lehmann representation (see Appendix B), one can show that the
local Matsubara Green function for spin σ takes then the form

Gσ
i,i(iνn) =

w+(t, U)

iνn −
(
E0(2)− εd+t−µ︸ ︷︷ ︸
E0(2)−E−(1)−µ

) +
w−(t, U)

iνn −
(
−E0(2) + U+3εd+t−µ︸ ︷︷ ︸

E+(3)−E0(2)−µ

)

+
w−(t, U)

iνn −
(
E0(2)− εd−t−µ︸ ︷︷ ︸
E0(2)−E+(1)−µ

) +
w+(t, U)

iνn −
(
−E0(2) + U+3εd−t−µ︸ ︷︷ ︸

E−(3)−E0(2)−µ

) , (9)

3Eigenstates and eigenvalues of the Hubbard dimer for arbitrary filling can be found in Appendix A.
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where νn = π(2n+1)/β are fermionic Matsubara frequencies and µ = εd+U/2 is the chemical
potential. The weights are

w±(t, U) =
1

4

(
1± w(t, U)

)
, with w(t, U) = 2a1(t, U)a2(t, U) =

4t

∆(t, U)
. (10)

The local Green function can be rewritten as the average of the Green function for the bonding
(k = 0) and the anti-bonding state (k = π), i.e.,

Gσ
i,i(iνn) =

1

2

(
1

iνn + µ− εd + t−Σσ(0; iνn)︸ ︷︷ ︸
Gσ(0;iνn)

+
1

iνn + µ− εd − t−Σσ(π; iνn)︸ ︷︷ ︸
Gσ(π;iνn)

)
. (11)

The self-energy is given by

Σσ(k; iνn) =
U

2
+
U2

4

1

iνn + µ− εd − U
2
−eik 3t

. (12)

The self-energies Σσ(0; iνn) and Σσ(π; iνn) differ due to the phase eik = ±1 in their denomi-
nators. The local self-energy is, by definition, the average of the two

Σσ
l (iνn) =

1

2

(
Σσ(π; iνn)+Σσ(0; iνn)

)
=
U

2
+

U2

4

iνn + µ− εd − U
2(

iνn + µ− εd − U
2

)2 − (3t)2

=
U

2
+

U2

4

iνn
(iνn)2 − (3t)2

. (13)

The difference

∆Σσ
l (iνn) =

1

2

(
Σσ(π; iνn)−Σσ(0; iνn)

)
= − U2

4

3t
(
iνn + µ− εd − U

2

)2 − (3t)2

= − U2

4

3t

(iνn)2 − (3t)2
, (14)

thus measures the importance of non-local effects; it would be zero if the self-energy was inde-
pendent of k. Next we define the hybridization function

F σ(iνn) =

(
t+∆Σσ

l (iνn)
)2

iνn + µ− εd −Σσ
l (iνn)

(15)

which for U=0 becomes

F σ
0 (iνn) =

t2

iνn
. (16)

By using these definitions, we can rewrite the local Green function as

Gσ
i,i(iνn) =

1

iνn + µ− εd − F σ(iνn)−Σσ
l (iνn)

. (17)
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Fig. 1: Hubbard dimer: Imaginary (left) and real (right) part of the retarded Green function,
obtained setting iνn → ω+ iδ (analytic continuation) in Eq. (9). Red lines: k = 0 contribution.
Blue lines: k = π contribution. Dashed lines: Poles of the retarded Green function. Parame-
ters: t = 1, U = 4. The weight of the poles yielding the smaller peaks, w−(t, U), defined in
Eq. (10), goes to zero for U → 0. In the atomic limit, instead, all four poles have the same
weight; the energies of the two positive (negative) poles become identical, however.

The associated retarded Green function, obtained via analytic continuation (iνn → ω+ iδ),
is shown in Fig. 1. It is important to point out that, as one may see from the formulas just
discussed, the local Green function and the local self-energy satisfy the local Dyson equation

Σσ
l (iνn) =

1

Gσ
i,i(iνn)

− 1

Gσ
i,i(iνn)

, (18)

where Gσ
i,i(iνn) is given by

Gσ
i,i(iνn) =

1

iνn + µ− εd − F σ(iνn)
. (19)

Thus, one could think of mapping the Hubbard dimer into an auxiliary quantum-impurity model,
chosen such that, within certain approximations, the impurity Green function is as close as
possible to the local Green function of the original problem. How can we do this? Let us adopt
as auxiliary model the Anderson molecule

ĤA = εs
∑

σ

n̂sσ − t
∑

σ

(
c†dσcsσ + c†sσcdσ

)
+ εd

∑

σ

n̂dσ + Un̂d↑n̂d↓ , (20)

where s labels the uncorrelated bath site and d the correlated quantum-impurity site. The first
constraint would be that Hamiltonian (20) has a ground state with the same occupations of the
2-site Hubbard model, i.e., at half filling, nd = ns = 1. Such a self-consistency condition is
satisfied if εs = µ = εd +U/2. This can be understood by comparing the Hamiltonian matrices
of the two models in the Hilbert space with N = 2 electrons. To this end, we first order the
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two-electron states of the Hubbard dimer as

|1〉 = c†1↑c
†
2↑|0〉, |4〉 = 1√

2
(c†1↑c

†
2↓ − c†1↓c†2↑)|0〉,

|2〉 = c†1↓c
†
2↓|0〉, |5〉 = c†1↑c

†
1↓|0〉,

|3〉 = 1√
2
(c†1↑c

†
2↓ + c†1↓c

†
2↑)|0〉, |6〉 = c†2↑c

†
2↓|0〉.

(21)

In this basis the Hamiltonian of the Hubbard dimer has the matrix form

Ĥ2(εd, U, t) =




2εd 0 0 0 0 0

0 2εd 0 0 0 0

0 0 2εd 0 0 0

0 0 0 2εd −
√

2t −
√

2t

0 0 0 −
√

2t 2εd+U 0

0 0 0 −
√

2t 0 2εd+U




. (22)

The ground state, the singlet given in Eq. (5), can be obtained by diagonalizing the lower
3×3 block. For the Anderson molecule, ordering the basis in the same way (1 → d, 2 → s),
this Hamiltonian becomes

ĤA
2 (εd, U, t; εs) =




εd+εs 0 0 0 0 0

0 εd+εs 0 0 0 0

0 0 εd+εs 0 0 0

0 0 0 εd+εs −
√

2t −
√

2t

0 0 0 −
√

2t 2εd+U 0

0 0 0 −
√

2t 0 2εs




. (23)

Comparing the lower 3×3 block of ĤA
2 (εd, U, t; εs) with the corresponding block of Ĥ2(εd, U, t)

we can see that, unless εs = µ = εd + U/2, the two doubly occupied states |5〉 and |6〉 have
different energies and thus the two sites i = 1, 2 are differently occupied in the ground state.
By setting εs = µ we find that

ĤA
2 (εd, U, t;µ) = Ĥ2(εd+

U
4
, U

2
, t). (24)

TheN = 2 ground state of ĤA
2 (εd, U, t;µ) has thus the form of the ground-state for the Hubbard

dimer

|G〉A =
a2(t, U/2)√

2

(
c†d↑c

†
s↓ − c†d↓c†s↑

)
|0〉+

a1(t, U/2)√
2

(
c†d↑c

†
d↓ + c†s↑c

†
s↓

)
|0〉, (25)

and the condition ns =nd = 1 is satisfied. Since εs 6= εd, however, the eigenstates of ĤA for
one electron (N = 1) or one hole (N = 3) are not the bonding and antibonding states of the
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Hubbard dimer.4 The impurity Green function is then given by

Gσ
d,d(iνn) =

1

4

(
1 + w′(t, U)

iνn − (E0(2)− E−(1)− µ)
+

1− w′(t, U)

iνn − (E+(3)− E0(2)− µ)

1− w′(t, U)

iνn − (E0(2)− E+(1)− µ)
+

1 + w′(t, U)

iνn − (E−(3)− E0(2)− µ)

)
, (26)

where

E0(2)− E±(1)− µ = −
(
E±(3)− E0(2)− µ

)
= −1

4

(
2∆(t, U/2)±∆(t, U)

)
(27)

and

w′(t, U) =
1

2

32t2 − U2

∆(t, U)∆(t, U/2)
. (28)

After some rearrangement we obtain a much simpler expression

Gσ
d,d(iνn) =

1

iνn + µ− εd −Fσ0 (iνn)−Σσ
A(iνn)

. (29)

The impurity self-energy equals the local self-energy of the Hubbard dimer

Σσ
A(iνn) =

U

2
+
U2

4

iνn
(iνn)2 − (3t)2

, (30)

as one may see comparing it to equation (13). The hybridization function is given by

Fσ0 (iνn) =
t2

iνn
, (31)

as for the non-interacting Hubbard dimer, Eq. (16). For U = 0, Gσ
d,d(iνn) equals the non-

interacting impurity Green function

G0σ
d,d(iνn) =

1

iνn + µ− εd −Fσ0 (iνn)
. (32)

The impurity Green function thus satisfies the impurity Dyson equation

Σσ
A(iνn) =

1

G0σ
d,d(iνn)

− 1

Gσ
d,d(iνn)

. (33)

In Fig. 2 we show the retarded impurity Green function of the Anderson molecule (orange, right
panels) and the retarded local Green function of the 2-site Hubbard model, both in the local self-
energy approximation (blue, right panels) and exact (blue, left panels). Comparing left and right
panels we can see that setting ∆Σσ

l (ω) = 0 yields large errors. The right panels demonstrate,
however, that the spectral function of the Hubbard dimer with ∆Σσ

l (ω) = 0 is quite similar
to the one of the Anderson molecule. The small remaining deviations come from the fact that,

4The complete list of eigenvalues and eigenvectors of the Anderson molecule for εs = εd + U/2 and arbitrary
electron number N can be found in Appendix A.
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Fig. 2: Retarded Green function of the Hubbard dimer (t = 1, U = 4) and of the Anderson
molecule (εs = εd +U/2) in the zero temperature limit. Left panels: Hubbard dimer, exact
Green function. Right panels, blue: Hubbard dimer in the local self-energy approximation, i.e.,
with ∆Σσ

l (ω) = 0. Right panels, orange: Anderson molecule. Dashed lines: Poles for the
Hubbard dimer (left) or the Anderson molecule (right).

for the Hubbard dimer, in the impurity Dyson equation, the non-interacting impurity Green
function is replaced by Gσ

i,i(iνn) in the local self-energy approximation, i.e., by the bath Green
function

Gσi,i(iνn) =
1

iνn + µ− εd −Fσl (iνn)
, (34)

where

Fσl (iνn) =
t2

iνn + µ− εd −Σσ
A(iνn)

. (35)

We are now in the position of explaining how DMFT works for the Hamiltonian of the Hubbard
dimer, choosing the Anderson molecule Hamiltonian (20) as the auxiliary quantum-impurity
model. The procedure can be split in the following steps

1. Build the initial quantum impurity model with G0σ
d,d(iνn) = G0σ

i,i (iνn). The initial bath is
thus defined by energy εs = εd and hopping t.

2. Calculate the local Green function Gσ
d,d(iνn) for the auxiliary model.
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3. Use the local Dyson equation to calculate the impurity self-energy

Σσ
A(iνn) =

1

G0σ
d,d(iνn)

− 1

Gσ
d,d(iνn)

.

4. Calculate the local Green function of the Hubbard dimer setting the self-energy equal to
the one of the quantum-impurity model

Gσ
i,i(iνn) ∼ 1

2

(
1

iνn + µ− εd + t−Σσ
A(iνn)

+
1

iνn + µ− εd − t−Σσ
A(iνn)

)
.

5. Calculate a new bath Green function Gσi,i(iνn) from the local Dyson equation

Gσi,i(iνn) =
1

Σσ
A(iνn) + 1/Gσ

i,i(iνn)
.

6. Build a new G0σ
d,d(iνn) from Gσi,i(iνn).

7. Restart from the second step.

8. Iterate till self-consistency, i.e., here till nσd = nσi and Σσ
A(iνn) does not change any more.

The Anderson molecule satisfies the self-consistency requirements for εs = µ. The remaining
difference between Gσ

d,d(iνn), the impurity Green function, and Gσ
i,i(iνn), the local Green func-

tion of the Hubbard dimer in the local self-energy approximation, arises from the difference in
the associated hybridization functions

∆Fl(iνn) = Fσl (iνn)−Fσ0 (iνn) = t2p2

(
− 2

iνn
+

1

iνn− εa
+

1

iνn+ εa

)
, (36)

where p2 = U2/8ε2
a and εa =

√
9t2 +U2/4. The error made is small, however, as shown in the

right panels of Fig. 2. To further improve we would have to modify the auxiliary model adding
more bath sites. Staying with the Anderson molecule, in Fig. 3 we compare in more detail its
spectral function with the exact spectral function of the Hubbard dimer. The figure emphasizes
several important conclusions. The top right panel reminds us that DMFT is not a good approx-
imation for molecular complexes with two (or few) correlated sites. This is because in such
systems the coordination number is the lowest possible, the worst case for dynamical mean-
field theory. In three-dimensional crystals, instead, the coordination number is typically large
enough to make dynamical mean-field theory an excellent approximation. The bottom left panel
of Fig. 3 shows that, in the local-self-energy approximation, the agreement between Anderson
and Hubbard Green functions remains very good for any U value. This indicates that when
the local-self-energy approximation works well, as in the case of three-dimensional crystals, it
can be successfully used to study the behavior of a given system as a function of U. Leaving
for a moment DMFT aside, the two bottom panels of Fig. 3 show that the evolution with U is
different for the impurity Green function of the Anderson molecule and the exact local Green
function of the Hubbard dimer. Anticipating the discussion of later sections, if we compare to
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Fig. 3: Imaginary part of the retarded Green function of the Anderson molecule (orange) and
Hubbard dimer (blue) in the zero temperature limit. In the bottom left panel the local self-energy
approximation is adopted for the Hubbard dimer; in all other cases the exact Green function of
the Hubbard dimer is shown. Parameters: t = 1, εs = µ. Top: U = 0 (left) and U = 4t (right).
Bottom: Evolution with increasing U from 0 to 4t in equal steps.

the spectral function of the actual lattice Hubbard model, we could say that the Hubbard dimer
captures well the evolution of the Hubbard bands and the gap in the large-U limit. On the other
hand, the Anderson molecule partially captures the behavior of the central “quasi-particle” or
“Kondo” peak, although the Kondo effect itself is unrealistically described; as a matter of fact,
the Kondo energy gain (the “Kondo temperature”) is perturbative (∝ t2/U ) in the case of the
Anderson molecule, while it is exponentially small for a Kondo impurity in a metallic bath.
Going back to DMFT, this also points to the possible shortcomings of calculations in which
the quantum-impurity model for the lattice Hubbard model is solved via exact diagonalization,
however using a single bath site or very few; this might perhaps be sufficient in the large-gap
limit,5 but is bound to eventually fail approaching the metallic regime. Indeed, this failure is
one of the reasons why the solution of the Kondo problem required the development of—at the
time new—non-perturbative techniques such as the numerical renormalization group.

5For a discussion of bath parametrization in exact diagonalization and the actual convergence with the number
of bath sites for the lattice Hubbard model see Ref. [8].
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2.2 Non-local Coulomb interaction

In Sec. 2.1 we have seen that the local Coulomb interaction gives rise, alone, to non-local self-
energy terms, which can be very important. What is, instead, the effect of the non-local part
of the Coulomb interaction? For a Hubbard dimer, extending the Coulomb interaction to first
neighbors leads to the Hamiltonian

Ĥ =εd
∑

iσ

n̂iσ − t
∑

σ

(
c†1σc2σ + c†2σc1σ

)
+ U

∑

i=1,2

n̂i↑n̂i↓

+
∑

σσ′

(
V−2JV−JV δσσ′

)
n̂1σn̂2σ′ − JV

∑

i6=i′

(
c†i↑ci↓c

†
i′↓ci′↑ + c†i′↑c

†
i′↓ci↑ci↓

)
, (37)

where the parameters in the last two terms are the intersite direct (V ) and exchange (JV )
Coulomb interaction. For two electrons the Hamiltonian, in a matrix form, becomes

ĤNL
2 =




2εd+V−3JV 0 0 0 0 0

0 2εd+V−3JV 0 0 0 0

0 0 2εd+V−3JV 0 0 0

0 0 0 2εd+V−JV −
√

2t −
√

2t

0 0 0 −
√

2t 2εd+U −JV
0 0 0 −

√
2t −JV 2εd+U




,

where the basis is defined in Eq. (21). In the atomic (t = 0) limit, the triplet states, |1〉, |2〉 and
|3〉, have lower energy than the singlet states, |4〉, |5〉 and |6〉, as one can see by comparing the
diagonal elements of the upper and lower 3×3 block of the matrix ĤNL

2 here above. This is due
to the fact that JV is positive (ferromagnetic) and V < U. The triplet can remain the ground
multiplet even for finite t. If, however, JV is sufficiently small, the ground state is a singlet,
as in the case V=JV =0. Setting for simplicity JV = 0, we notice that ĤNL

2 = Ĥ2(ε′d, U
′, t),

where the right-hand-side term is the N= 2-electron Hamiltonian of the JV =V= 0 Hubbard
dimer, Eq. (22), with parameters ε′d = εd +V/2 and U ′=U−V. The N= 2 ground state is thus
still given by Eq. (5), provided that we replace U with U ′ in the coefficients. Eventually, in the
limiting case U=V, ĤNL

2 equals the corresponding Hamiltonian of an effective non-correlated
dimer, Ĥ2(ε′d, 0, t). What happens away from half filling? For N= 1 electrons, eigenvectors
and eigenvalues are the same as in the V= 0 case; for N= 3 electrons all energies are shifted
by 2V. Summarizing, we can obtain the Green function for V 6= 0 from Eq. (9) setting

E±(N=1, U ;V ) = E±(N=1, U ; 0) = εd ± t

E±(N=3, U ;V ) = E±(N=3, U ; 0) + 2V = 3εd ± t+ U + 2V

E0(N=2, U ;V ) = E0(N=2, U−V ; 0) + V = E0(2, U−V ) + V

µ(U ;V ) = µ(U) + V = µ+ V

w±(t, U ;V ) = w±(t, U−V ; 0).
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Fig. 4: Imaginary part of the retarded Green function of the Hubbard dimer in the zero tem-
perature limit (U=4, t=1), increasing the intersite Coulomb repulsion V from 0 to V=U=4 in
equal steps; we have set JV = 0. The dark blue line corresponds to V = 0.

Thus we have, recalling that U ′ = U−V,

Gσ
i,i(iνn) =

w+(t, U ′)

iνn−
(
E ′0(2)−1

2
V−εd+t−µ′

)+
w−(t, U ′)

iνn−
(
−E ′0(2)+U ′+1

2
V+3εd+t−µ′

)

+
w−(t, U ′)

iνn−
(
E ′0(2)−1

2
V−εd−t−µ′

)+
w+(t, U ′)

iνn−
(
−E ′0(2)+U ′+1

2
V+3εd−t−µ′

) , (38)

where we set µ′ = µ−V/2 = εd+U
′/2 and E ′0(2) = E0(2, U ′). The associated spectral

function is shown in Fig. 4. The figure illustrates that increasing V from 0 to U makes the
spectra progressively closer to the one of a non-correlated system. Eventually, for U=V, only
two poles contribute, since w−(t, U ′) = 0. In this limit, the spectral function is identical to
the one of the non-interacting Hubbard dimer, however with an enhanced effective hopping,
t −→ t+ V/2. We can thus say that, in first approximation, the (positive) intersite coupling V
effectively reduces the strength of correlations in the Hubbard dimer. In conclusion, the case
of the Hubbard dimer explains why strong-correlation effects typically appear when the local
term of the electron-electron repulsion dominates, i.e., when it is much larger than long-range
terms. A hypothetical system in which the Coulomb interaction strength is independent on
the distance between sites (for the dimer, U=V ) is likely to be already well described via
an effective weakly correlated model. Of course, in real materials, the effects of long-range
Coulomb repulsion can be much more complicated than in the two-site model just discussed,
but the general considerations made here remain true even in realistic cases.
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2.3 Quantum-impurity solvers: Continuous-time quantum Monte Carlo

For the case of the Anderson molecule exact diagonalization is the simplest quantum-impurity
solver and the one that provides most insights. Methods based on Quantum Monte Carlo (QMC)
sampling are often, however, the only option for realistic multi-orbital and/or multi-site models.
Thus, here we explain how to obtain the impurity Green function of the Anderson molecule via
hybridization-expansion continuous-time QMC [9], a very successful QMC-based quantum-
impurity solver. In this approach, the first step consists in splitting the Hamiltonian into bath
(Ĥbath), hybridization (Ĥhyb), and local (Ĥloc) terms

ĤA = εs
∑

σ

n̂sσ

︸ ︷︷ ︸
Ĥbath

−t
∑

σ

(
c†dσcsσ + c†sσcdσ

)

︸ ︷︷ ︸
Ĥhyb

+ εd
∑

σ

n̂dσ + Un̂d↑n̂d↓

︸ ︷︷ ︸
Ĥloc

. (39)

Next, we write the partition function Z as a perturbation series in the hybridization. To this end,
we define Ĥ0 = Ĥbath + Ĥloc and rewrite the partition function as

Z =Tr
(
e−β(Ĥ0−µN̂)V̂ (β)

)
(40)

where the operator V̂ (β) is given by

V̂ (β) = eβ(Ĥ0−µN̂) e−β(Ĥ0+Ĥhyb−µN̂)=
∑

m

∫ β

0

dτ1 · · ·
∫ β

τm−1

dτm

︸ ︷︷ ︸∫
dτm

(−1)m
∏1

l=m
Ĥhyb(τl)

︸ ︷︷ ︸
Ôm(τ )

, (41)

and

Ĥhyb(τl) = eτl(Ĥ0−µN̂) Ĥhyb e
−τl(Ĥ0−µN̂) = −t

∑

σ

(
c†dσl(τl)csσl(τl) + c†sσl(τl)cdσl(τl)

)
. (42)

In this expansion, the only terms that contribute to the trace are even order ones (m = 2k) and
they are products of impurity (d) and bath (s) creator-annihilator pairs. We can thus rewrite

∫
dτ 2k −→

∫
dτ k

∫
dτ̄ k and Ô2k(τ ) −→

∑

σ,σ̄

Ô2k
σ,σ̄(τ , τ̄ ) (43)

where

Ô2k
σ,σ̄(τ , τ̄ ) = (t)2k

k∏

i=1

(
c†dσ̄i(τ̄i)csσ̄i(τ̄i)c

†
sσi

(τi)cdσi(τi)
)
. (44)

The vector σ = (σ1, σ2, ..., σk) gives the spins {σi} associated with the k impurity annihilators
at imaginary times {τi}, while σ̄ = (σ̄1, σ̄2, ..., σ̄k) gives the spins {σ̄i} associated with the
k impurity creators at imaginary times {τ̄i}. It follows that the local and bath traces can be
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decoupled and the partition function can be rewritten as

Z

Zbath

=
∑

k

∫
dτ k

∫
dτ̄ k

∑

σ,σ̄

dkσ̄,σ(τ , τ̄ ) tkσ,σ̄(τ , τ̄ ) (45)

dkσ̄,σ(τ , τ̄ ) =
t2k

Zbath

Trbath

(
e−β(Ĥbath−µN̂s)T ∏1

i=kc
†
sσi

(τi)csσ̄i(τ̄i)
)

(46)

tkσ,σ̄(τ , τ̄ ) = Trloc

(
e−β(Ĥloc−µN̂d)T ∏1

i=kcdσi(τi)c
†
dσ̄i

(τ̄i)
)
, (47)

where Zbath = 1 + 2e−β(εs−µ) + e−2β(εs−µ) and

cdσ(τ) = eτ(Ĥloc−µN̂d)cdσe
−τ(Ĥloc−µN̂d), csσ(τ) = eτ(Ĥbath−µN̂s)csσe

−τ(Ĥbath−µN̂s).

The trace involving only bath operators is simple to calculate, since Ĥbath describes an inde-
pendent-electron problem for which Wick’s theorem holds. It is given by the determinant

dkσ̄,σ(τ , τ̄ ) = det
(
Fkσ̄,σ(τ , τ̄ )

)
(48)

of the k×k non-interacting hybridization-function matrix, with elements
(
Fkσ̄,σ(τ , τ̄ )

)
i′,i

= F 0
σ̄i′ ,σi

(τ̄i′−τi), (49)

where

F 0
σ̄,σ(τ) = δσ̄,σ

t2

1 + e−β(εs−µ)
×
{
−e−τ(εs−µ) τ > 0,

+e−(β+τ)(εs−µ) τ < 0.
(50)

This is the imaginary time Fourier transform of the hybridization function introduced previously

F 0
σ̄,σ(iνn) =

t2

iνn − (εs−µ)
δσ̄,σ. (51)

The calculation of the local trace is in general more complicated. In the case discussed here,
the Hamiltonian does not flip spins. Thus only terms with an equal number of creation and
annihilation operators per spin contribute to the local trace, and we can express the partition
function in expansion orders per spin, kσ. This yields [10]

Z

Zbath

=

(∏

σ

∞∑

kσ=0

∫
dτ kσσ

∫
dτ̄ kσσ

)
dkσ̄,σ(τ , τ̄ )tkσ,σ̄(τ , τ̄ ), (52)

where the vectors σ = (σ↑,σ↓) and σ̄ = (σ̄↑, σ̄↓) have (k↑, k↓) components, and for each kσ
component σi = σ̄i = σ. Thus

tkσ,σ̄(τ , τ̄ ) = Trloc

(
e−β(Ĥloc−µN̂d) T

∏
σ

∏1

i=kσ
cdσ(τσi)c

†
dσ(τ̄σ̄i)

)
. (53)

The latter can be calculated analytically. To do this, first we parametrize all configurations for a
given spin via a timeline [0, β) plus a number of creator/annihilator pairs which define segments
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Fig. 5: Representative configurations contributing to the local trace at zeroth, first and second
order. The timelines for spin up are red and those for spin down are blue. The filled circles
correspond to the insertion of a creator (time τ1), and the empty circles to the insertion of an
annihilator (time τ2). Dotted lines represent the vacuum state for a given spin, full lines the
occupied state. The grey boxes indicate the regions in which l↑,↓ 6= 0.

on the timeline. At zeroth order two possible configurations exist per spin, an empty timeline,
which corresponds to the vacuum state |0〉, and a full timeline, which corresponds to the state
c†dσ|0〉. A given configuration yields, at order k = k↑ + k↓

tkσ,σ̄(τ , τ̄ ) =

(∏

σ

skσσ

)
e−

∑
σσ′ ((εd−µ)δσσ′+

U
2

(1−δσ,σ′ ))lσ,σ′ , (54)

where lσ,σ′ is the length of the overlap of the τ segments for spins σ and σ′, respectively, while
sσ = sign(τσ1−τ̄σ1) is the fermionic sign. Possible configurations at order k = 0, 1, 2 are
shown in Fig. 5. At order k = 0, summing up the contribution of the four configurations shown
in Fig. 5 yields the local partition function Zloc = 1 + 2e−β(εd−µ) + e−β(2(εd−µ)+U). Order k = 1

is already more complicated. Setting εs = µ as in the self-consistent solution, the contribution
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to the bath trace in this case is

d1
σ̄σ(τ1, τ2) = F 0

σ̄σ(τ1, τ2) = −t
2

2
δσ,σ̄ sign(τ1−τ2). (55)

The local trace at the same order is instead given by

t1σσ̄(τ2, τ1) = Trloc

(
e−β(Ĥloc−µN̂d)T cdσ(τ2)c†dσ(τ1)

)
. (56)

We can now calculate the contribution at half filling of the four k = 1 configurations shown in
Fig. 5. In the case k↑ = 1 and k↓ = 0 we have, going from left to right in each row

t1↑↑(τ2, τ1) =





+e−(τ2−τ1)(εd−µ) = +e+τ21U/2

−e−(β−(τ1−τ2))(εd−µ) = −e(β+τ21)U/2

−e−β(2(εd−µ)+U)+(τ1−τ2)(εd−µ+U) = −e−τ21U/2

+e−(τ2−τ1)(εd−µ+U)−β(εd−µ) = +e(β−τ21)U/2

(57)

where τ21 = τ2 − τ1 and µ = εd + U/2. Similar results can be obtained for k↑ = 0 and k↓ = 1.
Summing up all terms up to order one we find

Z

Zbath

∼Zloc +
∑

σ

∫ β

0

dτ2

∫ β

0

dτ1 d
1
σσ(τ1, τ2) t1σσ(τ2, τ1)

∼Zloc

(
1− β 1− eβU2

1 + e
βU
2

2t2

U

)
. (58)

The exact formula of the partition function can be obtained from the eigenvalues and eigenvec-
tors in Appendix A

Z

Zbath

= Zloc

3(1 + e
βU
2 ) + e

βU
4

(
4e−

β∆(t,U)
4 + 4e+

β∆(t,U)
4 + e+

β∆(t,U/2)
2 + e−

β∆(t,U/2)
2

)

8
(
1 + e

βU
2

) . (59)

Its Taylor expansion in powers of t/U yields, at second order, the expression above. Going
back to Eq. (56), one can observe that, for k = 1, the local trace is proportional to the lo-
cal Green function, Gσ

d,d(τ). Indeed, Gσ
d,d(τ) can be calculated using the configurations just

described—provided that we start from k = 1 and we divide by the hybridization function.
More specifically, for k = 1 and τ > 0 we have

Gσ
d,d(τ) ∼ − 1

β

∫ β

0

∫ β

0

dτ2dτ1 d
1
σσ(τ1, τ2)t1σσ(τ2, τ1)︸ ︷︷ ︸

w1

δ
(
τ − (τ2−τ1)

) 1

F 0
σσ(τ1−τ2)

. (60)

We are now ready to generalize to arbitrary order. Taking all k values into account, the partition
function can be expressed as the sum over all configurations {c}, i.e., in short

Z =
∑

c

wc =
∑

c

|wc| sign wc. (61)
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In a compact form, we can write wc = dτc dc tc where dτc =
∏

σ

∏kσ
i dτσidτ̄σ̄i , and dc and tc

are the bath and local traces for the configuration c. This expression of the partition function
shows that we can interpret |wc| as the sampling weight of configuration c. A generic observable
Ô can then be obtained as the Monte Carlo average on a finite number of configurations Nc

〈Ô〉 =

∑
c〈Ô〉c|wc| sign wc∑
c |wc| sign wc

=

∑
c sign wc〈Ô〉c |wc|/

∑
c |wc|∑

c sign wc |wc|/
∑

c |wc|
≈

1
Nc

∑Nc
c 〈Ô 〉c sign wc

1
Nc

∑
c sign wc

. (62)

The term 1
Nc

∑
c sign wc in the denominator is the average fermionic sign. When this is small,

much longer runs are required to obtain data of the same quality; eventually the computational
time can become so long that the calculation is unfeasible—in these cases we have a sign prob-
lem. In practice, the QMC simulation starts from a random configuration c. Next we propose
an update c→ c′. Within the Metropolis-Hastings algorithm, the acceptance ratio is

Rc→c′ = min

(
1,
pc′→c
pc→c′

|wc′|
|wc|

)
, (63)

where pc→c′ is the proposal probability for the update c → c′. In the approach described here,
known as segment solver, the basic updates are addition and removal of segments, antisegments
(segments winding over the borders of the timeline, see Fig. 5), or complete lines. As example,
let us consider the insertion of a segment for spin σ. A segment is made by a creator and an
annihilator. The creator is inserted at time τin; the move is rejected if τin is in a region where
a segment exists. If created, the segment can have at most length lmax, given by the distance
between τin and the time at which the next creator is, hence

pc→c′ =
dτ̄

β

dτ

lmax

. (64)

The proposal probability of the reverse move (removing a segment) is instead given by the
inverse of the number of existing segments

pc′→c =
1

kσ + 1
. (65)

The acceptance ratio for the insertion of a segment becomes then

Rc→c′ = min

(
1,
βlmax
kσ+1

∣∣∣∣
dc′

dc

tc′

tc

∣∣∣∣
)
. (66)

For the impurity Green function, here the most important observable, the direct average yields

〈Ô〉c = 〈Gσ
d,d〉c =

∑

σ′

kσ∑

i=1

kσ∑

j=1

∆(τ, τσ′j−τ̄σ′j)
(
Mk′σ

)
σ′j,σ′i

δσ,σσ′jδσ,σ̄σ′i (67)

where Mk =
(
Fk
)−1 is the inverse of the hybridization matrix and

∆(τ, τ ′) = − 1

β

{
δ(τ − τ ′) τ ′ > 0

−δ(τ − (τ ′+β)) τ ′ < 0
. (68)

One can verify that at order k = 1 this indeed returns Eq. (60).
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2.4 DMFT for the single- and multi-orbital Hubbard model

The Hubbard Hamiltonian (3) is in principle the simplest model for the description of the Mott
metal-insulator transition. In the tight-binding approximation it becomes

Ĥ = εd
∑

σi

n̂iσ − t
∑

σ〈ii′〉

c†iσci′σ + U
∑

i

n̂i↑n̂i↓, (69)

where 〈ii′〉 is a sum over first neighbors. As discussed in the introduction, for U = 0, at
half-filling, this Hamiltonian describes a metallic band. For t = 0 it describes an insulating
collection of disconnected atoms. Somewhere in-between, at a critical value of t/U, a metal
to insulator transition must occur. In this section we will discuss the DMFT solution of (69)
and the picture of the metal-insulator transition emerging from it. The first step consists in
mapping the original many-body Hamiltonian into an effective quantum-impurity model, such
as the Anderson Hamiltonian

ĤA =
∑

kσ

εskn̂kσ

︸ ︷︷ ︸
Ĥbath

+
∑

kσ

(
V s
k c
†
kσcdσ + h.c.

)

︸ ︷︷ ︸
Ĥhyb

+ εd
∑

σ

n̂dσ + Un̂d↑n̂d↓

︸ ︷︷ ︸
Ĥimp

. (70)

In this model the on-site Coulomb repulsion U appears only in the impurity Hamiltonian, Ĥimp,
while the terms Ĥbath and Ĥhyb, describe, respectively, the bath and the bath-impurity hybridiza-
tion. In the next step, the quantum-impurity model is solved. Differently from the case of the
Anderson molecule, this cannot be done analytically. It requires non-perturbative numerical
methods, such as exact diagonalization, the numerical renormalization group, density-matrix
renormalization group or QMC. Here we describe the DMFT self-consistency loop for a QMC
quantum-impurity solver. Solving the quantum-impurity model yields the impurity Green func-
tion Gσ

d,d(iνn). From the impurity Dyson equation we can calculate the impurity self-energy

Σσ
A(iνn) =

(
G0σ
d,d(iνn)

)−1 −
(
Gσ
d,d(iνn)

)−1
. (71)

Next, we adopt the local self-energy approximation, i.e., we assume that the self-energy of the
Hubbard model equals the impurity self-energy. Then, the local Green function is given by

Gσ
ic,ic(iνn) =

1

Nk

∑

k

1

iνn + µ− εk −Σσ
A(iνn)

, (72)

where Nk is the number of k points. The local Dyson equation is used once more, this time
to calculate the bath Green function Gσ(iνn), which in turn defines a new quantum-impurity
model. This procedure is repeated until self-consistency is reached, i.e., the number of electrons
is correct and the self-energy does not change anymore (within a given numerical accuracy). In
this situation we have

Gσ
ic,ic(iνn) ∼ Gσ

d,d(iνn). (73)
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Fig. 6: The metal-insulator transition in ferromagnetic Hartree-Fock. The calculation is for a
square lattice tight-binding model with dispersion εk = −2t(cos kx + cos ky).

It is important to underline that self-consistency is key to the success of DMFT in describing the
metal-to-insulator transition. This can, perhaps, be best understood looking once more at the
effects of self-consistency in a simpler approach, the static mean-field Hartree-Fock method.6

If we chose the same primitive cell as in DMFT, the Hartree-Fock self-energy matrix is

Σσ
i,i′(iνn) = U

(
n

2
− sσm

)
δi,i′ , (74)

where sσ = +1 for spin up and sσ = −1 for spin down and m = m+ = (n↑−n↓)/2, with
nσ = niσ. The approximation is then identical to replacing the Hubbard Hamiltonian with

ĤHF =
∑

kσ

(
εk + U

(
1

2
− sσm

))
n̂kσ. (75)

This shows that heff = 2Um plays the role of an effective magnetic field (Weiss field). The
self-consistency criterion is

n̄σ = n̄iσ = 〈n̂iσ〉HF , (76)

where the expectation value 〈n̂iσ〉HF is calculated using the Hamiltonian ĤHF, which in turn
depends on n̄σ via m. This gives the self-consistency equation

m =
1

2

1

Nk

∑

kσ

σe−β(εk+U( 1
2
−sσm)−µ)

1 + e−β(εk+U( 1
2
−sσm)−µ)

. (77)

If we set m = 0 the equation is satisfied; for such a trivial solution the static mean-field cor-
rection in Eq. (75) merely redefines the chemical potential and has therefore no effect. For
sufficiently large U, however, a non-trivial solution (m 6= 0) can be found. If m 6= 0 the spin up
and spin down bands split, and eventually a gap can open. This is shown in Fig. 6. The static
mean-field correction in Eq. (75) equals the contribution of the Hartree diagram to the self-
energy, Σσ

H(iνn) = Un̄−σ. In many-body perturbation theory, however, n̄σ = 1/2, i.e., m = 0.
6Keeping in mind that many self-consistent solutions obtained with the Hartree-Fock method are spurious.
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Fig. 7: VOMoO4: LDA+DMFT spectral function at finite temperature for 0 ≤ U ≤ 4. Energies
are in eV and spectral functions in states/spin/eV. The calculations have been done using a
continuous-time hybridization-expansion QMC solver [10]. A detailed LDA+DMFT study of
the electronic and magnetic properties VOMoO4 can be found in Ref. [11].

In the self-consistent static mean-field approximation, instead, m can differ from zero, and a
phenomenon not described by the mere Hartree diagram can be captured, ferromagnetism in a
correlated metal. If the band splitting, given by heff=2Um, is larger than the bandwidth, the
system can even become an insulator.
In DMFT the role of the Weiss mean field is played by the bath Green function Gσi,i(iνn). The
emerging picture of the Mott transition is described in Fig. 7 for a representative single-band
material. In the U = 0 limit, the spectral function A0(ω) is metallic at half filling (top left
panel). For finite U, if we set Σσ

A(ω) = 0 as initial guess, the DMFT self-consistency loop
starts with A(ω) = A0(ω). For small U/t, the converged spectral function A(ω) is still similar
to A0(ω). This can be seen comparing the U = 0.5 and U = 0 panels in Fig. 7. Further
increasing U/t, sizable spectral weight is transferred from the zero-energy quasi-particle peak
to the lower (LH) and upper (UH) Hubbard bands, centered at ω ∼ ±U/2. This can be observed
in the U = 1 panel of Fig. 7. The system is still metallic, but with strongly renormalized masses
and short lifetimes, reflected in the narrow quasi-particle (QP) peak. Finally, for U larger than
a critical value (U ≥ 1.5 in the figure) a gap opens and the system becomes a Mott insulator.
When this happens the self-energy diverges at low frequency, where

Σσ
A(ω + i0+) ∼ U

2
+
U2

4

a(t, U)

ω + i0+
. (78)

In the large U/t limit the gap increases linearly with the Coulomb repulsion, i.e., Eg(1) ∼
U −W, where W is the bandwidth.
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The single-band Hubbard model describes the essence of the metal-insulator transition. In order
to understand this phenomenon in materials, however, we have to study multi-orbital Hubbard-
like Hamiltonians. These have the form

Ĥ = Ĥ0 + ĤU

Ĥ0 = −
∑

ii′

∑

σ

∑

mm′

ti,i
′

mσ,m′σ′ c
†
imσci′m′σ′

ĤU =
1

2

∑

i

∑

σσ′

∑

mm′

∑

pp′

Umpm′p′ c
†
imσc

†
ipσ′cip′σ′cim′σ,

where m,m′ and p, p′ are different orbitals and the Coulomb tensor is local. The DMFT ap-
proach can be extended to solve models of this type, mapping them to multi-orbital quantum-
impurity models. The main changes with respect to the formalism introduced in the previous
section are then the following

εk → (Hk)mσ,m′σ′ (iνn+µ)→ (iνn+µ) 1̂mσ,m′σ′

ti,i
′ → ti,i

′

mσ,m′σ′ εd → εi,i
′

mσ,m′σ′ = −ti,imσ,m′σ′

where 1̂ is the identity matrix. As a consequence, the local Green function, the bath Green
function, the hybridization function and the self-energy also become matrices

Gσ(iνn)→ Gσ,σ′m,m′(iνn) Gσ(iνn)→ Gσ,σ′

m,m′(iνn) Σσ(iνn)→ Σσ,σ′

m,m′(iνn).

The corresponding generalization of the self-consistency loop is shown schematically in Fig. 8.
Although the extension of DMFT to Hubbard models with many orbitals might appear straight-
forward, in practice it is not. The bottleneck is the solution of the generalized multi-orbital
quantum-impurity problem. The most flexible solvers available so far are all based on QMC.
Despite being flexible, QMC-based approaches have limitations. These can be classified in
two types. First, with increasing the number of degrees of freedom, calculations become very
quickly computationally too expensive—how quickly depends on the specific QMC algorithm
used and the actual implementation. Thus, going beyond a rather small number of orbitals and
reaching the zero-temperature limit is unfeasible in practice. The second type of limitation is
more severe. Increasing the number of degrees of freedom leads, eventually, to the infamous
sign problem; when this happens, QMC calculations cannot be performed at all. In order to
deal with limitations of the first type, it is crucial to restrict QMC calculations to the essential
degrees of freedom; furthermore, we should exploit symmetries, develop fast algorithms and
use the power of massively parallel supercomputers to reduce the actual computational time.
For the second type of problems not a lot can be done; nevertheless, it has been shown that a
severe sign problem might appear earlier with some basis choices than with others [10]. Al-
though eventually we cannot escape it, this suggests that the model set up can be used as a tool
to expand the moderate sign-problem zone. For what concerns symmetries, in the paramagnetic
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Fig. 8: LDA+DMFT self-consistency loop. The one-electron Hamiltonian is built in the basis
of Bloch states obtained from localized Wannier functions, for example in the local-density
approximation (LDA); this givesHLDA

k . The set {ic} labels the equivalent correlated sites inside
the unit cell. The local Green-function matrix is at first calculated using an initial guess for the
self-energy matrix. The bath Green-function matrix is then obtained via the Dyson equation
and used to construct an effective quantum-impurity model. The latter is solved via a quantum-
impurity solver, here quantum Monte Carlo (QMC). This yields the impurity Green-function
matrix. Through the Dyson equation the self-energy is then obtained, and the procedure is
repeated until self-consistency is reached.

case and in absence of spin-orbit interaction or external fields, an obvious symmetry to exploit
is the rotational invariance of spins, from which follows

Xσ,σ′

m,m′(iνn) = δσ,σ′ Xm,m′(iνn),

where X = G, G,Σ. In addition, if we use a basis of real functions, the local Green-function
matrices are real and symmetric in imaginary time τ , hence

Xσ,σ′

m,m′(iνn) = δσ,σ′ Xm,m′(iνn) = δσ,σ′ Xm′,m(iνn).

Finally, often the unit cell contains several equivalent correlated sites, indicated as {ic} in Fig. 8.
In order to avoid expensive cluster calculations, we can use space-group symmetries to construct
the matrices G, G,Σ at a given site i′c from the corresponding matrices at an equivalent site, e.g.,
ic = 1. Space-group symmetries also tell us if some matrix elements are zero. For example, for
a model with only t2g (or only eg) states, in cubic symmetry, in the paramagnetic case and in
absence of spin-orbit interaction or external fields, we have

Xσ,σ′

m,m′(iνn) = δσ,σ′ Xm,m(iνn) δm,m′ .
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2.5 LDA+DMFT: Model building

The state-of-the art approach for building realistic Hubbard-like models relies on constructing,
for a given system, materials-specific Kohn-Sham Wannier functions ϕKS

imσ(r). These can be
obtained via electronic structure calculations based on density-functional theory [5–7], e.g., in
the LDA approximation.7 After we have built the complete one-electron basis, the first steps
in model-building are those already described in the introduction. We recall here the essential
points and then discuss the next stage. The many-body Hamiltonian can be expressed as Ĥ =

Ĥ0 + ĤU − ĤDC, with

Ĥ0 = ĤLDA = −
∑

σ

∑

ii′

∑

mm′

ti,i
′

m,m′c
†
imσci′m′σ,

ĤU =
1

2

∑

ii′jj′

∑

σσ′

∑

mm′pp′

U iji′j′

mp m′p′c
†
imσc

†
jpσ′cj′p′σ′ci′m′σ.

The double-counting correction ĤDC arises from the fact that the hopping integrals are cal-
culated replacing the electron-nuclei interaction ven(r) with the self-consistent DFT reference
potential

vR(r) = ven(r) +

∫
dr′

1

|r−r′|︸ ︷︷ ︸
vH(r)

+ vxc(r),

which includes the long-range Hartree term vH(r) and the exchange-correlation contribution
vxc(r). We thus have to subtract from ĤU the effects already included in Ĥ0

ĤU → ∆ĤU = ĤU − ĤDC.

Unfortunately we do not know which important correlation effects are indeed included in Ĥ0 via
vR(r), and therefore the exact expression of ∆ĤU is also unknown. The remarkable successes
of the LDA suggest, however, that in many materials the LDA is overall a good approximation,
and therefore, in those systems at least, the term ∆ĤU can be completely neglected. What
about strongly-correlated materials? Even in correlated systems, most likely the LDA works
rather well for the delocalized electrons or in describing the average or the long-range Coulomb
effects. Thus one can think of separating the electrons into uncorrelated and correlated; only
for the latter we do take the correction ∆ĤU into account explicitly, assuming furthermore that
∆ĤU is local or almost local [5], since we know that it is the local term which is responsible
for most non-trivial many-body effects. Typically, correlated electrons are those that partially
retain their atomic character, e.g., those that originate from localized d and f shells; for conve-
nience, here we assume that in a given system they stem from a single atomic shell l (e.g., d for

7Using GGA or similar functionals in place of LDA yields minor differences in the many-body Hamiltonian;
instead, using LDA+U or similar approximations yields Hartree-Fock-like effects that would have to be subtracted
via the double-counting correction.
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transition-metal oxides or f for heavy-fermion systems) and label their states with the atomic
quantum numbers l and m = −l, . . . , l of that shell. Thus

U iji′j′

mpm′p′ ∼
{
U l
mpm′p′ iji′j′ = iiii ∧ mp,m′p′ ∈ l

0 iji′j′ 6= iiii ∨ mp,m′p′ /∈ l.

Within this approximation ∆ĤU is replaced by ∆Ĥ l
U = Ĥ l

U − Ĥ l
DC, where Ĥ l

DC is, e.g., given
by the static mean-field contribution of Ĥ l

U . There is a drawback in this procedure, however.
By splitting electrons into correlated and uncorrelated we implicitly assume that the main ef-
fect of the latter is the renormalization or screening of parameters for the former, in particular
of the Coulomb interaction. The computation of screening effects remains, unfortunately, a
challenge. The calculation of exact screening would require the solution of the original many-
body problem, taking all degrees of freedom into account, an impossible task. Commonly-
used approximate schemes are the constrained LDA approximation (cLDA) and the constrained
random-phase approximation (RPA) [5–7]. Both methods give reasonable estimates of screened
Coulomb parameters for DMFT calculations. Typically cRPA calculations include more screen-
ing channels and are performed for less localized bases than cLDA calculations; thus cRPA
parameters turn out to be often smaller than cLDA ones. To some extent, the difference can be
taken as an estimate of the error bar.
After we have selected the electrons for which we think it is necessary to include explicitly the
Hubbard correction, we have to build the final Hamiltonian for DMFT calculations. To this end,
it is often convenient to integrate out or downfold, in part or completely, the weakly correlated
states. There are different degrees of downfolding. The two opposite extreme limits are (i) no
downfolding, i.e., keep explicitly in the Hamiltonian all weakly-correlated states (ii) massive
downfolding, i.e., downfold all weakly correlated states. If we perform massive downfolding,
e.g., downfold to the d (or eg or t2g) bands at the Fermi level, the Hamiltonian relevant for
DMFT takes a simpler form. The LDA part is limited to the selected orbitals or bands, which,
in the ideal case, are decoupled from the rest

ĤLDA = −
∑

σ

∑

ii′

∑

mαm
′
α

ti,i
′

mα,m
′
α
c†imασ ci′m′ασ.

The local screened Coulomb interaction for this set of orbitals is the on-site tensor

Ĥ l
U =

1

2

∑

i

∑

σσ′

∑

mαm′α

∑

mβm
′
β

Umαmβm′αm′β c
†
imασ

c†imβσ′cim′βσ′
cim′ασ.

It is important to point out that the level of downfolding does not modify the hardness of the
quantum-impurity problem. If, for example, in studying a transition-metal oxide, we plan to
treat only 3d bands as correlated, it does not matter if we perform calculations with a Hamilto-
nian containing also, e.g., O p states, or we rather downfold all states but the 3d and work with
a set of Wannier basis spanning the 3d-like bands only. The number of correlated orbitals in the
quantum-impurity problem is the same.8

8The choice might influence how severe the QMC sign problem is, however.
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Fig. 9: NMTO Wannier-like orbitals for t2g states in LaTiO3 obtained via massive downfolding
to the t2g bands. The t2g-like orbitals have O p tails at the neighboring O sites reflecting the
distortions of the lattice. The figure has been taken from Ref. [12].

One advantage of massive downfolding is that the double-counting correction typically becomes
a shift of the chemical potential, and it is therefore not necessary to calculate it explicitly. A
second important advantage is that the interpretation of the final results is simpler. Instead, a
disadvantage is that the basis functions are less localized, and therefore the approximation of
the Coulomb interaction to a local operator might be less justified, and in some cases it might be
necessary to include non-local Coulomb terms. The effect of downfolding on the localization of
Wannier functions is illustrated for example in Fig. 9. Finally, another disadvantage of massive
downfolding is that the energy window in which the model is valid is more narrow.

All advantages and disadvantages considered, what is then the best way of performing DMFT
calculations? There is no universal answer to this question; it depends on the problem we are
trying to solve and the system we are studying. Independently of the degree of downfolding
we choose, it is important to point out that a clear advantage of Wannier functions in gen-
eral is that they carry information about the lattice, bonding, chemistry, and distortions. This
can be seen once more in Fig. 9, where orbitals are tilted and deformed by the actual struc-
ture and chemistry of the compound. Indeed, one might naively think of using a “universal”
basis, for example atomic functions, the same for all systems, and thus calculating the hop-
ping integrals using simply the electron-nuclear interaction ven(r). Besides the complications
arising from the lack of orthogonality, such a basis has no built-in materials-specific informa-
tion, except lattice positions. It is therefore a worse starting point for describing the electronic
structure, even in the absence of correlations: larger basis sets are required to reach the same
accuracy. From the point of view of LDA+DMFT, an advantage of an universal basis would
be that it is free from double-counting corrections; on the other hand, however, exactly because
we do not use the LDA potential and LDA orbitals to calculate the hopping integrals, we also
cannot count on the successes of LDA in the description of average and long-range Coulomb
effects. The hopping integrals would not even include the long-range Hartree term. For these
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reasons ab-initio Wannier functions remain so far the basis of choice. They can be built via the
N th-Order Muffin-Tin Orbital (NMTO) method [12], the maximal-localization scheme [13],
or projectors. Fig. 9 shows examples of NMTO-based Wannier functions. No matter what
construction procedure is used, a common characteristic of ab-initio Wannier functions is that
they are site-centered and localized.9 A question naturally arises: How crucial is it to use lo-
calized functions as one-electron basis? This is an important point, since we have seen that
strong-correlation effects arise in systems in which the on-site Coulomb interaction is much
larger than longer-range terms. Let us consider therefore two opposite extreme limits. The
first is the case in which the basis functions are independent of the lattice position (i.e., they
are totally delocalized). For such a basis choice the Coulomb interaction parameters would
be the same for every pair of lattice sites, no matter how distant. Thus a Hubbard-like model
would be hard to justify. In the second extreme case, we adopt a hypothetical basis so localized
that ψimσ(r)ψi′m′σ′(r) ∼ δi,i′ δ(r−Ti). Even for such a basis choice, the unscreened Coulomb
interaction is not local, but given by

U iji′j′

mp m′p′ ∝
δi,i′δj,j′

|Ti−Tj|
,

hence it decays slowly with distance, although the (divergent) on-site term dominates. More
generally, we can conclude that by increasing the localization of the basis we enhance the im-
portance of the on-site Coulomb repulsion with respect to long-range terms; this better justifies
Hubbard-like models—although we have to remember that most of the long-range part of the
Coulomb interaction is in any case subtracted via the double-counting correction ĤDC. The
extreme case of the δ(r−Ti) functions also illustrates, however, how far we can go. A major
problem with the extremely localized basis discussed above is that it would make it impossible
to properly describe bonding, since the hopping integrals would be zero. Although such a basis
is, of course, never used to build many-body models, there is a tempting approximation that
has similar flaws. If one uses DFT-based electronic-structure techniques that tile the space in
interstitial and non-overlapping atomic spheres (e.g., the LAPW method), it is tempting to use
as basis for correlated electrons the atomic functions defined inside the atomic spheres. These
functions are, by construction, much more localized than Wannier orbitals (even when no down-
folding is performed in the Wannier construction). However, they do not form a complete basis
set in the space of square-integrable functions. This is obvious because such a basis does not
even span the LDA bands; to reproduce the bands we need, in addition, functions defined in
the interstitial region. This is illustrated in Fig. 10 for a simple example of two quantum well
potentials.10 We therefore cannot use it to write the many-body Hamiltonian in the usual form,
Ĥ0 + ĤU . In conclusion, a basis which, as ab-initio Wannier functions, is complete and indeed
spans the bands, is better justified, although we somewhat lose in localization.

9Differences in localizations between the various construction procedures are actually small for the purpose of
many-body calculations, provided that the same bands are spanned in the same way.

10Another, but less severe, problem of atomic sphere truncations is that the results will depend on the sphere
size, in particular when atomic spheres are small.



8.28 Eva Pavarini

Fig. 10: The problem of two quantum wells. The figure shows (schematically) for each well
the wavefunction of a bound state. If we consider only the part of the wavefunction inside its
own well (red in the figure), the differential overlap (and hence the hopping integral) between
functions centered on different wells would be zero.

3 Linear response functions

Linear response functions are key to understanding many experimental results. In this section
we explain how to calculate them within the LDA+DMFT approach. First we introduce the
generalized susceptibility, which yields the linear response to a given external perturbation.
Next we present the method used to calculate it and discuss the approximations adopted. Last
we analyze in detail the case of the magnetic susceptibility for the one-band Hubbard model.

3.1 Definitions

Let us start by introducing the site susceptibility in imaginary time. This is given by

χP̂ i
ν
Ôi
′
ν′

(τ ) =
〈
T ∆P̂ i

ν(τ1, τ2)∆Ôi′

ν′(τ3, τ4)
〉

0
, (79)

where τ = (τ1, τ2, τ3, τ4) and T is the time-ordering operator. The site-dependent operators are
defined via the equations

P̂ i
ν(τ1, τ2) =

∑

α

pνα c
†
iα′(τ2)ciα(τ1), ∆P̂ i

ν(τ1, τ2) = P̂ i
ν(τ1, τ2)−

〈
P̂ i
ν(τ1, τ2)

〉

Ôi′

ν′(τ3, τ4) =
∑

γ

oν
′

γ c†i′γ′(τ4)ci′γ(τ3), ∆Ôi′

ν′(τ3, τ4) = Ôi′

ν′(τ3, τ4)−
〈
Ôi′

ν′(τ3, τ4)
〉
.

The labels α = (α, α′), γ = (γ, γ′) are collective flavors. For the multi-band Hubbard model
they may include spin (σ) and orbital (m) quantum number, plus a fractional lattice vector
identifying a correlated basis atom in the unit cell (ic). The weight factors oνα and pν′γ , in general
complex numbers, identify the type of response. We can then rewrite Eq. (79) as

χP̂ i
ν
Ôi
′
ν′

(τ ) =
∑

αγ

pναo
ν′

γ χiα,i′γ(τ ),

with

χiα,i′γ(τ ) =
〈
T ciα(τ1)c†iα′(τ2)ci′γ(τ3)c†i′γ′(τ4)

〉
−Giα,iα′(τ1, τ2)Gi′γ,i′γ′(τ3, τ4). (80)
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Fig. 11: Diagram contributing to the linear susceptibility for a non-interacting system. The red
lines indicates that the creator/annihilator is originally from the operator P̂ν′ and the green lines
indicate that the creator/annihilator is from the operator Ôν . The corresponding frequencies
and momenta are explicitly assigned.

Performing the Fourier transform from imaginary time to Matsubara frequencies we obtain

χiα,i′γ(ν) =
1

16

∫∫∫∫
dτ eiν·τχiα,i′γ(τ ), (81)

where ν = (ν1,−ν2, ν3,−ν4). Due to the conservation of energy, only three of the four νi
frequencies are independent. Hence, for convenience we set ν1 = νn, ν2 = νn+ωm, ν3 =

νn′+ωm, and ν4 = νn′ . Next we perform the Fourier transform from site to momentum space.
Due to the conservation of lattice momentum, only three of the four ki-vectors are independent.
After redefining k1 = k, k2 = k+q, k3 = k′+q and k4 = k′, we find the expression

χP̂ν Ôν′ (q;ν) =
∑

αγ

pναo
ν′

γ

∑

ii′

ei(Ti−Ti′ )·qχiα,i′γ(ν) =
∑

αγ

pναo
ν′

γ

1

N2
k

∑

kk′

[χ(q; iωm)]kνnα,k′νn′γ

︸ ︷︷ ︸
[χ(q;ωm)]νnα,νn′γ

.

In this expression, by summing over k and k′ we obtained [χ(q;ωm)]νnα,νn′γ . The physical
linear response function is given by the sum over the fermionic Matsubara frequencies

χP̂ν Ôν′ (q; iωm) =
∑

αγ

pναo
ν′

γ

1

β2

∑

nn′

[
χ(q;ωm)

]
νnα,νn′γ︸ ︷︷ ︸

[χ(q;ωm)]α,γ

. (82)

In this lecture we will consider the example of the magnetic susceptibility. In this case the
operators P̂ i

ν and Ôi′

ν′ are the three components of the magnetization operator. In the single-
orbital limit (α = α′ = σ and γ = γ′ = σ′), we thus have, e.g.,

ozα = −gµB〈σ|σ̂z|σ〉, pzα = −gµB〈σ′|σ̂z|σ′〉.
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Fig. 12: Diagrammatic representation of the Bethe-Salpeter equation for the linear susceptibil-
ity. The red lines indicate a creator/annihilator stemming from the operator P̂ν and the green
lines from the operator Ôν′ . The box labeled with Γ is the vertex function, the one labeled with
χ the full susceptibility, and χ0 is the pair-bubble term.

3.2 DMFT and the Bethe-Salpeter equation

The linear response functions for the multi-band Hubbard model Ĥ0 + ĤU can be in principle
obtained via standard many-body perturbation theory, i.e., using the Coulomb interaction U as
the expansion parameter. In this approach the expansion point is the linear response function
for the non-interacting Hamiltonian Ĥ0. This term, due to Wick’s theorem, can be written as
follows
[
χ0(q; iωm)

]
νnα,νn′γ

=
1

N2
k

∑

kk′

[
− βNkGkαγ′(iνn)Gk′+qα′γ(iνn′+iωm) δn,n′δk,k′

]

︸ ︷︷ ︸[
χ0(q;iωm)

]
kνnα,k′νn′γ

. (83)

The associated Feynman diagram is shown in Fig. 11, and we will refer to it as the bubble term.
Once we switch on the Coulomb interaction, many-body perturbation theory leads to the Bethe-
Salpeter equation, pictorially shown in Fig. 12. The susceptibility can then be expressed via the
relation
[
χ(q; iωm)

]
νnα,νn′γ

=
1

N2
k

∑

kk′

[
χ0(q; iωm)+

1

N2
k

χ0(q; iωm)Γ (q; iωm)χ(q; iωm)
]
kνnα,νn′k

′γ
.

Replacing recursively χ(q; iωm) one obtains an infinite series in the vertex Γ (q; iωm), which
plays the role of the self-energy in the Dyson equation.
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Green Function Susceptibility

local self-energy approximation local vertex approximation

local Dyson equation local Bethe-Salpeter equation

k-dependent Dyson equation matrix q-dependent Bethe-Salpeter equation matrix

G(k; i⌫n) = G0(k; i⌫n) + G0(k; i⌫n)⌃(k; i⌫n)G(k; i⌫n)

G(i⌫n) = G0(i⌫n) + G0(i⌫n)⌃(i⌫n)G(i⌫n)

� (q; i!m) ! � (i!m)

�(q; i!m) = �0(q; i!m) + �0(q; i!m)� (q; i!m)�(q; i!m)

�(i!m) = �0(i!m) + �0(i!m)� (i!m)�(i!m)

⌃(k; i⌫n) ! ⌃(i⌫n)

Fig. 13: Analogies between the calculation of the Green function G(k; iνn) in the local-self-
energy approximation (left) and the calculation of the response function χ(q; iωm) in the local
vertex approximation (right). Each term in the general Bethe-Salpeter equation can be viewed
as a square matrix of dimension NkNnNα, where Nk is the number of k points, Nn the number
of fermionic Matsubara frequencies, Nα the number of flavors.

Instead of expanding around the non-interacting limit, for correlated systems it is more con-
venient to construct a diagrammatic series starting from the bubble term calculated using the
DMFT Green functions, i.e., replacing G −→ G in Eq. (83). The result is

[χ0(q; iωm)]νnα,νn′γ = −βδnn′
1

Nk

∑

k

Gαγ′(k; iνn)Gα′γ(k+q; iνn+iωm). (84)

If we follow this approach, the unknown vertex Γ (q; iωm) in the Bethe-Salpeter equation differs
from the one obtained in standard many-body perturbation theory. In order to calculate it we
adopt two approximations. The first is that the vertex is approximately local. In the infinite
dimension limit it has been shown that the vertex can be replaced by a local [4, 14] quantity,
Γ (iωm). Assuming that, in the spirit of the dynamical mean-field approximation, for a real
3-dimensional system we can do the same, we thus set

Γ (q; iωm) −→ Γ (iωm). (85)

Thus, dropping for simplicity the flavor indices, after performing the k sums, the Bethe-Salpeter
equation becomes

χ(q; iωm) = χ0(q; iωm) + χ0(q; iωm)Γ (iωm)χ(q; iωm). (86)

By solving it we find, formally

χ−1(q; iωm) = χ−1
0 (q; iωm)− Γ (iωm). (87)
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Fig. 14: VOMoO4: Static magnetic susceptibility χ(q; 0)/χA(0) in the qx, qy plane for repre-
sentative qz values, T ∼ 380 K and U = 5 eV. The normalization χA(0) ∼ µ2

eff/kBT is the
atomic susceptibility in the large βU limit. Top panels: Γ = 0. Bottom panels: Γ 6= 0. Special
points: Γ1 = (2π, 0), X= (π, 0) and M= (π, π). Rearranged from Ref. [11].

Next we assume that Γ (iωm) equals the vertex for the quantum impurity. We define χ(iωm)

the impurity susceptibility obtained via the quantum-impurity solver in the final iteration of the
DMFT self-consistency loop, and χ0(iωm) the average of Eq. (84) over momenta

χ0(iωm) =
1

Nq

∑

q

χ0(q; iωm). (88)

The local vertex Γ (iωm) is then obtained by solving a local Bethe-Salpeter equation

Γ (iωm) = χ−1
0 (iωm)− χ−1(iωm). (89)

Replacing Γ (iωm) into Eq. (87) finally yields the q-dependent susceptibility. It has to be no-
ticed that, although the two equations (87) and (89) look innocent, solving them numerically is
a delicate task because the local susceptibility is in general not diagonal in n, n′ and does not
decay very fast with the frequencies. There are, however, various ways to reduce the compu-
tational costs, e.g., via extrapolations [11] or using compact representations based on auxiliary
polynomials [15, 16]. The method just illustrated for the calculation of linear response func-
tions in the local vertex approximation bears resemblance with the approach adopted for the
calculation of the Green functions in the local self-energy approximation. These analogies are
schematically pointed out in Fig. 13. Instead, in Fig. 14 we show as an example the case of
the static magnetic susceptibility for a one-band system, the S=1/2 frustrated Mott insulator
VOMoO4. The figure shows both the bubble term χ0(q; iωm) (top panels) and the full suscep-
tibility χ(q; iωm) (bottom panels). The two differ sizably in absolute value. In addition, as we
will discuss later, the χ0(q; iωm) term alone is very weakly dependent on the temperature. The
expected Curie-Weiss-like behavior is only recovered when Γ (iωm) is taken into account.
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3.3 The local susceptibility: Legendre representation

The core of the approach described in the previous section is the calculation of the local sus-
ceptibility tensor, χαααγγγ(τττ). In DMFT all local observables 〈Ô〉 are obtained via the quantum-
impurity solver, for example the continuous-time hybridization expansion QMC technique pre-
sented in Section 2.3. Susceptibilities, however, require sizably longer computational time than
Green-function matrices. Thus, instead of calculating directly χαααγγγ(τττ), it is convenient to express
the tensor elements in a basis of orthogonal functions fml (τ), chosen such that the representation
is as compact as possible. A successful choice [15, 16] is

fml (τ) = e−iϕm(τ)

{ √
2l+1 pl(x(τ)), τ > 0

−(−1)m
√

2l+1 pl(x(τ+β)), τ < 0

where pl(x(τ)) is a Legendre polynomial of degree l, with x(τ) = 2τ/β − 1; here the factor
(−1)m in the second row ensures anti-periodicity for all values of m, which is the index for
the bosonic Matsubara frequency ωm. Via the orthogonality properties of the polynomials we
obtain

χαααγγγ(iωm) =
1

β2

∑

ll′

f−ml (0+) χl,l
′

αααγγγ(iωm) f−ml′ (0+). (90)

The expansion coefficients in Eq. (90) take the form

χl,l
′

αααγγγ(iωm) =

∫ β

0

dτ23

∫ β

0

dτ12

∫ β

0

dτ34 e
−iωmτ23fml (τ12)χαα

′

γγ′ (τ14, τ24, τ34, 0)fml′ (τ34), (91)

where τij = τi−τj , with τ14 = τ12+τ23+τ34, and τ24 = τ23+τ34. The phase defining the gauge
is ϕm(τ) = ωmτ/2 and does not depend on l. As we have seen, in quantum Monte Carlo the
observables are obtained as the average over the visited configurations c. Splitting (91) into two
terms [16] we have

〈
χl,l

′

αααγγγ(iωm)
〉
c

=
〈
Cl,l′αααγγγ (iωm)

〉
c
− βδm,0

〈
Gl
ααα

〉
c

〈
Gl′

γγγ

〉
c
.

The first term can be expressed as

〈
C l,l′

αααγγγ (iωm)
〉
c
=

1

β

NB∑

bb′dd′

kb,kd∑

i,j

kb′ ,kd′∑

i′,j′

fml (τdj−τ̄bi)fml′ (τd′j′−τ̄b′i′)cdb,d
′b′

ji,j′i′ (iωm)δααα,(αdj ,ᾱbi)δγγγ,(αd′j′ ,ᾱb′i′ )

where

cdb,d
′b′

ji,j′i′ (iωm) =
(
wdbjiw

d′b′

j′i′ − wd
′b
j′iw

db′

ji′

)
e−iωm(τ̄bi−τd′j′ ).

Here the imaginary times τbi and τ̄bi all vary in the interval [0, β). The letters b and d label the
NB flavors decoupled by symmetry, e.g., {↑, ↓}. Finally, wdbji = δb,dMkb

bj,bi, where the matrix
Mkb = [Fkb0 ]−1 is the inverse of the hybridization function matrix Fkb0 for expansion order kb.
The Green functions in the second term are instead given by

〈
Gl
ααα

〉
c

= − 1

β

NB∑

b

kb∑

ij

f 0
l (τbj−τ̄bi)wbbji δααα,(αbj ,ᾱbi).
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3.4 Magnetic susceptibility for the single-band Hubbard model

The magnetic susceptibility is the linear response to an external magnetic field applied along a
direction, here defined as ẑ. The associated site susceptibility is

χi,i
′

zz (τ ) =
〈
T M̂ i

z(τ)M̂ i′

z (0)
〉

0
−
〈
M̂ i

z

〉
0

〈
M̂ i′

z

〉
0
,

where M̂ i
z = −gµBŜiz is the magnetization for lattice site i. Its Fourier transform is

χzz(q; iωm) =
∑

ii′

eiq·(Ti−Ti′ )
∫
dτ eiωmτχi,i

′

zz (τ)

=
〈
M̂z(q;ωm)M̂z(−q; 0)

〉
0
−
〈
M̂z(q)

〉
0

〈
M̂z(−q)

〉
0
, (92)

where ωm is a bosonic Matsubara frequency. In this section we will discuss the example of
the single-band Hubbard model on a hypercubic lattice and at half filling. Furthermore, unless
differently specified, we will adopt the tight-binding dispersion

εk = −2t
d∑

n=1

cos kda, (93)

where d = 1, 2, 3 is the dimension and a the length of the unit vectors defining the lattice. For
a single-band model the magnetization operator can be expressed in the Bloch basis as

M̂z(q) = −gµB
2

∑

k

∑

σ

sσc
†
k+qσckσ, (94)

where sσ = 1 for σ = ↑ and sσ = −1 for σ = ↓ . To obtain the magnetic response function we
thus have to calculate the imaginary-time tensor with elements

[
χ(q; τ )

]
kσ,k′σ′

=
〈
T ckσ(τ1)c†k+qσ(τ2)ck′+qσ′(τ3)c†k′σ′(τ4)

〉
0

(95)

−
〈
T ckσ(τ1)c†k+qσ(τ2)

〉
0

〈
T ck′+qσ′(τ3)c†k′σ′(τ4)

〉
0
.

The associated imaginary-time magnetic susceptibility is then given by

χzz(q; τ ) = (gµB)2 1

4

∑

σσ′

sσsσ′
1

β

1

N2
k

∑

kk′

[χ(q; τ )]kσ,k′σ′

︸ ︷︷ ︸
χσσσ′σ′ (q;τ )

. (96)

After we Fourier transform with respect to imaginary time and sum over the fermionic Matsub-
ara frequencies, we have

χzz(q; iωm) = (gµB)2 1

4

∑

σσ′

sσsσ′
1

β2

∑

nn′

χn,n
′

σσσ′σ′(q; iωm), (97)

where

χn,n
′

σσσ′σ′(q; iωm) =
1

16

∫∫∫∫
dτ eiν·τχσσσ′σ′(q; τ ). (98)

For ωn = 0 we obtain the static response function.
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Fig. 15: The ratio χ0(q; 0)/χ0(0; 0) in the x-y plane for a hypercubic lattice with t = 0.4 eV
(T ∼ 230 K) at half filling. From left to right: one, two, and three dimensions.

3.4.1 Non-interacting limit

In the non-interacting limit we can use Wick’s theorem to simplify Eq. (95). It follows that the
elements of the two-particle Green function tensor vanish if k 6= k′. Thus Eq. (96) becomes

χzz(q; τ ) = −(gµB)2 1

4

1

β

1

Nk

∑

k

∑

σ

Gkσ(τ14)Gk+qσ(−τ23).

For the frequency-dependent magnetic susceptibility Eq. (97) we have instead

χzz(q; iωm) = (gµB)2 1

4

1

β2

∑

nn′

∑

σ

χn,n
′

σσσσ(q; iωm),

where
∑

σ

χn,n
′

σσσσ(q; iωm) = − β

Nk

∑

k

∑

σ

Gkσ(iνn)Gk+qσ(iνn+iωm) δn,n′ . (99)

The actual dynamical susceptibility is then given by

χzz(q; iωm) = − (gµB)2 1

4

1

Nk

∑

k

∑

σ

nσ(εk+q)− nσ(εk)

εk+q − εk + iωm
,

where nσ(x) = nF (x) is the Fermi distribution function. Figure 15 shows the static spin suscep-
tibility for a d-dimensional hypercubic lattice. For T → 0, it diverges at the antiferromagnetic
vector qC , which in two dimension is the M point. Indeed, since εk+qC = −εk (perfect nesting)
we have

χ0(qC ; 0) ∝ 1

4

∫ εF

−∞
dε
ρ(ε)

ε
.
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Fig. 16: Effect of ρ(εF ) on the temperature dependence of χR = χP (T )/χP (0) for a hypercubic
lattice with t = 0.4 eV and at half filling. Up to ∼ 1000 K only the logarithmic Van-Hove
singularity (two-dimensional case) yields a sizable effect.

In the q → 0 and T → 0 limit, setting ωm = 0 we recover the Pauli susceptibility

χzz(0; 0) =
1

4
(gµB)2 ρ(εF ),

ρ(εF ) = −
∑

σ

1

Nk

∑

k

dnσ(εk)

dεk

∣∣∣∣
T=0

.

Fig. 16 shows that, assuming the dispersion given in Eq. (93), the Pauli susceptibility is weakly
temperature dependent in three dimensions, but not when a van-Hove singularity is close to the
Fermi level, as it happens for the d = 2 case.

3.4.2 Small U/t limit: Hartree Fock approximation and Stoner model

In the small U/t limit one can expand around the non-interacting susceptibility and treat the
effect of Coulomb repulsion in the static mean-field or Hartree-Fock approximation. We have
previously seen (Section 2.4 and Fig. 6) that in the ferromagnetic case this means that the
band for spin up and spin down electrons acquire different energy. The energy splitting equals
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the one obtained in the presence of an effective magnetic field heff = 2mU, where m is the
magnetization. We can generalize this result to a magnetic structure characterized by a vector
q; in this case we have heff(q) = 2m(q)U, where m(q) is the associated order parameter. The
associated static magnetic response function is thus

χ(q; 0) =
χ0(q; 0)

1− Γχ0(q; 0)
, (100)

where Γ=2U. This is a simplified version of the Bethe-Salpeter equation obtained in stan-
dard many-body perturbation theory, with, however, a first-order frequency- and momentum-
independent vertex. In the case of a hypercubic lattice with dispersion (93) the susceptibility
χ0(q; 0) is larger at the nesting vector; this favors instabilities towards antiferromagnetism.

3.4.3 Atomic limit

Let us now consider the opposite extreme, the atomic limit. First we adopt a simple approach.
Since all atoms are decoupled, only on-site terms i = i′ contribute. We then can calculate the
right-hand side of Eq. (92) by summing up the contributions of the four atomic states, |0〉, c†↑|0〉,
c†↓|0〉, c†↑c†↓|0〉, obtaining at half filling

χzz(q; iωm) = (gµB)2 1

4kBT

eβU/2

1 + eβU/2
δωm,0. (101)

The same expression can be derived following the general procedure outlined in the previ-
ous pages, i.e., starting from the two-particle Green function tensor χσσσ′σ′(q; τ), defined in
Eq. (96). In the atomic limit, it is convenient to work in real space, since

χσσσ′σ′(q; τ ) =
1

β

∑

i

χiσσ,iσ′σ′(τ ).

Thanks to the symmetries of the tensor in imaginary time, it is sufficient to calculate χiσσ,iσ′σ′(τ )

for positive times 0 < τj4 < β, where τj4 = τj−τ4 with j = 1, 2, 3. Due to the time ordering
operator we have, however, to consider separately six different imaginary-time sectors. In the
Appendix one can find a list of all these sectors and their contributions. For simplicity, we
discuss here explicitly only the case τ14 > τ24 > τ34 > 0 and label the corresponding τττ -vector
as τ+. Calculating the trace we obtain

χiσσ,iσ′σ′(τ
+) =

eτ12U/2+τ34U/2 + δσσ′e
(β−τ12)U/2−τ34U/2

2(1 + eβU/2)
−Gσ

i,i(τ12)Gσ′

i,i(τ34).

The mean-field terms Gσ
i,i(τ12)Gσ′

i,i(τ34) cancel out in the actual magnetic linear response func-
tion, so here we do not give their form explicitly and we will neglect them in the rest of the
calculations. For a single atom, the contribution of the τ+ sector to the imaginary-time mag-
netic susceptibility is

χzz(τ
+) = (gµB)2 1

4

1

β

∑

σσ′

sσsσ′χiσσ,iσ′σ′(τ
+) =

(gµB)2

4β

1

(1 + eβU/2)
e(β−τ12−τ34)U/2.
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Summing up the contributions of all imaginary-time sectors and performing the Fourier trans-
form we obtain χn,n

′

σσσ′σ′(iωn), defined in Eq. (98). For U 6= 0 this tensor is non-diagonal in the
fermionic Matsubara frequencies. For ωn = 0 we have [11]

∑

σσ′

σσ′ χn,n
′

iσσ,iσ′σ′(0) =Mn′
dMn

dy
+Mn

dMn′

dy
− βn(y)

[
δn,n′ + δn,−n′

]
dMn

dy
+ βn(−y)MnMn′

−1

y

{
Mn′ − β

[
n(y)δn,−n′ − n(−y)δn,n′

]}
Mn (102)

where

Mn =
1

iνn − y
− 1

iνn + y
. (103)

We can now calculate the magnetic susceptibility via Eq. (97), recovering the expected result,
Eq. (101). The resulting atomic magnetic susceptibility is thus proportional to 1/kBT, i.e., has
a Curie-like behavior; furthermore it is zero at finite frequency. The temperature dependence
can be remarkably different from the U = 0 limit. Indeed, if the density of states is flat around
the Fermi level, as it is often the case in three-dimensional lattices, the non-interacting Pauli
susceptibility χzz(0; 0) is weakly temperature dependent. As we have seen, a strong temperature
dependence can be found, however, if, e.g., a logarithmic van-Hove singularity is at the Fermi
level, as in the case of the square lattice at half filling shown in Fig. 16.

3.4.4 DMFT: χ0(q;ω) and the Bethe-Salpeter equation

In order to calculate the magnetic susceptibility with DMFT we need, first of all, χ0(q;ω), the
bubble term calculated from the DMFT Green functions. We consider here the small t/U or
Mott insulating regime. In this case we can derive an approximate local self-energy starting
from the atomic limit. The t=0 local Green function is

Gσ
i,i(iνn) =

1

iνn + µ− εd −Σσ
l (iνn)

,

where the local self-energy is given by

Σσ
l (iνn) =

U

2
+
U2

4

1

iνn + µ− εd − U
2

, (104)

and µ = εd + U
2

. In the Mott insulating regime we can assume that the local self-energy has
the same form (104), with U2/4 replaced by a quantity which plays the role of a dimensionless
order parameter [17] for the insulating phase

1

rU

4

U2
=

∫ +∞

−∞
dε

ρ(ε)

ε2
. (105)

Here ρ(ε) is the density of states per spin. The integral in Eq. (105) diverges in the metallic
phase. The Green function can then be rewritten as
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Fig. 17: Graphical solution of the equation ω− εk = Σσ
l (ω) yielding the poles E+

k and E−k of
the Green function defined in Eq. (106).

Gσ(k; iνn) =
1

iνn −Σσ
l (iνn)− εk

=
1

E+
k−E−k

[
E+
k

iνn − E+
k

− E−k
iνn − E−k

]
(106)

where E+
k and E−k are the two roots of the equation ω −Σσ

l (ω)− εk = 0,

E±k =
1

2
εk ±

1

2

√
ε2
k + rU U2.

By performing the Matsubara sums, one finds

χ0
zz(q; 0) = (gµB)2 1

4

∑

σ

1

β2

∑

n

χn,nσσσσ(0)

= (gµB)2 1

2

1

Nk

∑

k

[
−I++

k,q − I−−k,q︸ ︷︷ ︸
Ak,q

+ I+−
k,q + I−+

k,q︸ ︷︷ ︸
Bk,q

,
]

where, setting α = ± and γ = ±,

Iαγk,q =
Eα
k E

γ
k+q(

E+
k − E−k

)(
E+
k+q − E−k+q

) n(Eα
k )− n(Eγ

k+q)

Eα
k − Eγ

k+q

.

In the q → 0 limit

Ak,0 = β

[
(E+

k )2

ε2
k + rU U2

n(E+
k )
(
1− n(E+

k )
)

+
(E−k )2

ε2
k + rU U2

n(E−k )
(
1− n(E−k )

)]

Bk,0 =
rU U

2

2(ε2
k + rU U2)3/2

(
n(E−k )− n(E+

k )
)
.

In the large βU limit, the Ak,0 term, proportional to the density of states at the Fermi level,
vanishes exponentially; the Bk,0 term yields the dominant contribution. Hence

χ0
zz(0; 0) ∼ (gµB)2 1

4

1

Nk

∑

k

rU U
2

(ε2
k+rU U2)3/2

∼ (gµB)2 1

4
√
rU U

[
1− 3

2

1

Nk

∑

k

ε2
k

rU U2
+ . . .

]
.
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Fig. 18: VOMoO4: The Curie-Weiss behavior of the uniform magnetic susceptibility at half
filling, obtained with the LDA+DMFT approach. Rearranged from Ref. [11].

The right-hand side is equal to the atomic term χ0
zz(0) minus a correction of order t2/U3. As

we can see, χ0
zz(0; 0) is small and weakly dependent on the temperature. Here for simplic-

ity we will discuss only the case of the two-dimensional square lattice at half filling. In the
Mott-insulating regime, due to the superexchange interaction, this model exhibits an antiferro-
magnetic instability at qC = (π/a, π/a, 0). Let us then calculate χ0

zz(qC ; 0) and compare it
with χ0

zz(0; 0). Since, as we have seen, εk+qC = −εk, we find

Ak,qC =
1

2

rU U
2

ε2
k + rU U2

n(E+
k−εk)− n(E+

k )

εk

Bk,qC =
1

2

ε2
k

ε2
k + rU U2

n(E+
k−εk)− n(E+

k )

εk
− 1

2

1√
ε2
k + rU U2

(
n(E+

k )− n(E−k )
)
,

and therefore

χ0(qC ; 0) ∼ (gµB)2 1

4
√
rUU

(
1− 1

2

1

Nk

∑

k

ε2
k

rUU2

)
.

Thus χ0(q; 0) is indeed larger at q = qC than at q = 0; it is however weakly temperature
dependent and does not exhibit Curie-Weiss instabilities. The calculation presented above can
be generalized to any q vector [11], obtaining the expression

χ0(q; 0) ∼ (gµB)2 1

4
√
rUU

(
1− 1

2

J0√
rUU

− 1

4

Jq√
rUU

)
, (107)

where Jq = J
(

cos qx + cos qy
)
, and the super-exchange coupling is J = 4t2/U. For the next

step we need to calculate the local vertex. This requires, as we have seen, the solution of the
self-consistent quantum-impurity model via the quantum-impurity solver. Here, for the purpose
of illustrating how the approach works, we approximate the local susceptibility with the atomic
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susceptibility in the large βU limit. Furthermore we work with the susceptibilities obtained
after the Matsubara sums have been performed. Thus

χ0
zz(0) ∼ (gµB)2 1

4
√
rUU

, χzz(0) ∼ 1

4kBT
.

The local vertex is then approximately given by

Γ ∼ 1

χ0
zz(0)

− 1

χzz(0)
∼ 1

(gµB)2

[
4
√
rUU

(
1 +

1

2

J0√
rUU

)
− 4kBT

]
.

The last step consists in solving the Bethe-Salpeter equation

χzz(q; 0) =
1

(χ0
zz(q; 0))−1 − Γ ∼

(gµB)2

4

1

kBT + Jq/4
=

(gµB)2

4kB

1

T−Tq
.

This shows that including the local vertex correction we recover the Curie-Weiss behavior, as
expected for a system described by local spins coupled by a Heisenberg-like exchange; we
also correctly find the antiferromagnetic instability, since qC is the vector for which the critical
temperature Tq is the largest. In conclusion, we have seen that Γ (iωm) is essential to properly
describe the magnetic response function of strongly-correlated systems. This can be seen in
Fig. 14 for the Mott insulator VOMoO4. In the figure we can compare the very weak linear
magnetic response χ0(q; 0) (upper panels) with the LDA+DMFT result χ(q; 0) (lower panels).
The latter is not only strongly enhanced with respect to χ0(q; 0), but also exhibits the expected
Curie-Weiss like behavior, as can be seen in Fig. 18 for q = 0.

3.4.5 DMFT: Static and dynamical susceptibility below the critical temperature

In this section we will discuss the magnetic response in the anti-ferromagnetic phase, i.e., for
T � TN , where TN is the transition temperature in DMFT. We will consider as representative
case the single-band Hubbard model on a square lattice with dispersion

εk = −2t(cos kx + cos ky)︸ ︷︷ ︸
αk

+ 4t′ cos kx cos ky︸ ︷︷ ︸
γk

+ . . . . (108)

a model typically adopted for describing the Cu 3d x2−y2 states at the Fermi level in high-
temperature superconducting cuprates. We consider again the half-filled case in the small t/U
and t′/U limit, yielding an insulating ground state. The DMFT results presented for this model
are from Ref. [19], where more details can be found. In the paramagnetic phase, the static
susceptibility exhibits a Curie-Weiss behavior, for the same reasons we discussed in the previous
section. This can be seen in Fig. 19.
In the antiferromagnetic phase, the square lattice can be divided into two sublattices, A and B,
describing sites with opposite magnetic moment, m (sub-lattice A) and−m (sub-lattice B); the
unit cell contains ns=2 Cu atoms, labeled with ic = 1, 2. In this case the local self-energy can
be approximated by the site-dependent static Hartree-Fock term

Σσ
ic,i′c

(iνn) ≈
(
−µ+ (−1)ic−1sσmU

)
δic,i′c . (109)
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Fig. 19: Static inverse transverse and longitudinal susceptibility χ(q; 0) as a function of tem-
perature. Triangles: Γ and M point. Gray pentagons: X point. Black circles: local (L)
susceptibility. Rearranged from Ref. [19].

For a given spin we can thus write the associated ns×ns Green function matrix as

Gσ(k; iνn) ≈ 1

Dk(iνn)

(
iνn−γk−sσmU αke

−ikxa

αke
ikxa iνn−γk+sσmU

)
, (110)

where Dk(iνn)=(iνn − γk)2−α2
k−(mU)2. The elements of Gσ(k; iνn) can be re-expressed as

Gσ
ic,i′c

(k; iνn) =
∑

p=±

w
ici′c
σkp

iνn − Ep
k

, (111)

where the poles corresponds to the Hartree-Fock energiesE±k = γk±
√
α2
k+(mU)2 = γk±∆αk,

shown in Fig. 20 for γk = 0. The weights are

w11
σkp =

1

2

(
1−p sσmU√

α2
k + (mU)2

)
= w22

−σkp, (112)

w12
σkp =

p

2

αk√
α2
k + (mU)2

e−ik·(T1−T2) =
[
w21
σkp

]∗
. (113)

Performing the Matsubara sum

χ
0;ici′c
σσ′σ′σ(q; iωm)=− 1

βNk

∑

kn

Gσ
ic,i′c

(k; iνn)Gσ′

i′c,ic
(k+q; iνn+iωm) (114)

≈ 1

Nk

∑

k

∑

pp′

w
ici′c
σkpw

i′cic
σ′k+qp′ Ipp

′

k,q(iωm), (115)
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Fig. 20: The metal-insulator transition in anti-ferromagnetic Hartree-Fock. The calculation is
for a square lattice tight-binding model with dispersion εk = −2t(cos kx + cos ky).

with

Ipp′k,q(iωm) =−
nF (Ep

k)− nF (Ep′

k+q)

iωm + Ep
k − Ep′

k+q

. (116)

Below the critical temperature we have to distinguish two types (T ) of response. Assuming that
the ordered magnetic moments are along ẑ, a magnetic field parallel to ẑ yields the longitudinal
(T = ‖ ) linear response, and one perpendicular to ẑ the transverse (T =⊥) linear susceptibility.
They can be expressed in a compact way as

χT0 (q; iωm) =
(gµB)2

4

∑

σσ′

1

2

∑

ici′c

fTσσ′ χ
0;ici′c
σσ′σ′σ(q; iωm)eiq·(Tic−Ti′c ) (117)

≈(gµB)2

4

1

Nk

∑

k

∑

pp′

vT ,pp
′

k,q Ipp
′

k,q(iωm) (118)

where f ‖σσ′ = δσ,σ′ and f⊥σσ′ = δσ,−σ′ , while

vT,pp
′

k,q =
1

2

∑

σσ′

∑

ici′c

w
ici′c
σkpw

i′cic
σ′k+qp′f

T
σσ′e

iϕ
ici
′
c

q (119)

=
1

2

(
1+pp′

αkαk+q + fTσσ′sσsσ′(mU)2

∆αk∆αk+q

)
. (120)

We note that v‖,ppk,0 =1 and v‖,p−pk,0 =0, while v⊥,p−pk,M = 1 and v‖,ppk,M = 0. For simplicity in the
discussion that follows we set t′ = 0. In the low-temperature limit only the terms with p = −p′
contribute. For t� U we have

χT0 (q; iωm) ≈(gµB)2

4

1

Nk

∑

k

vT,+−k,q

(
1

iωm + U
− 1

iωm − U

)
. (121)

Here we can see that the excitation energies are of order U, and not of the order of the superex-
change couplings as we would expect for the Hubbard model.
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Rearranged from Ref. [19].

In order to recover the correct behavior we have to solve the Bethe-Salpeter equation. To this
end we have first to return to the site-dependent tensor, since we have to invert the associated
ns×ns matrices. Using the transverse susceptibility as representative case, the relevant matrix
elements in the ordered phase are

χ
0;ici′c
σ−σ−σσ(q; iωm) ≈

(
− a

ici′c
σ (q)

iωn − U
+
a
ici′c
−σ (q)

iωn + U

)
e−iq·(Tic−Ti′c ), (122)

where

aici
′
c

σ (q) =
1

Nk

∑

k

∑

pp′

w
ici′c
σkpw

i′cic
−σk+qp′δp,+δp,−. (123)

In the t� U limit, at linear order in J1/U we have

a11
σ (q) = a22

−σ(q) ≈ 1

4
(1−sσ)2 + sσ(1−sσ)

J1

U
, (124)

a12
σ (q) = a21

−σ(q) ≈ −J1

U
fq, (125)

where fq = (cos qx + cos qy)/2. The ic=i′c elements are therefore independent on q at order
J1/U. By inverting the susceptibility matrix with the elements defined above we thus obtain, at
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sufficiently low frequency

[
1

χ0(q; iωm)
− 1

χ0(iωm)

]ici′c

σ−σ−σσ
≈ 2J1fq(1−δici′c)e

−iq·(Tic−Ti′c ) (126)

By adding to this the inverse of the local susceptibility matrix

χ
ici′c
σ−σ−σσ(iωm) ≈

(
− a

ici′c
σ

iωn − 2J1

+
a
ici′c
−σ

iωn + 2J1

)
δic,i′c

with aici
′
c

σ = 1
Nq

∑
q a

ici′c
σ (q). Inverting again, we finally obtain

χ⊥(q; iωm) =
(gµB)2

4

∑

σ

1

2

∑

ici′c

χ
ici′c
σ−σ−σσ(q; iωm)eiq·(Tic−Ti′c ) (127)

≈(gµB)2 J1(1−fq)
ω2
m + 4J2

1 (1−f 2
q )
, (128)

which is the expected behavior for a Heisenberg antiferromagnet. The result of actual DMFT
calculations is shown in Fig. 19 and Fig. 21. More details can be found in Ref. [19].

4 Conclusion

The LDA+DMFT approach and its extension has proved very successful for describing corre-
lated materials. It has shown us that materials details do matter, contrarily to what often was
assumed in the past; for example a crystal field much smaller than the bandwidth can favor the
Mott metal-insulator transition [18]. The method is becoming progressively more and more
versatile. It is now possible, e.g., to study multi-orbital Hubbard-like models including the
full Coulomb vertex and the spin-orbit interaction. Successful extension schemes, e.g., clus-
ter methods, account, at least in part, for the q-dependence of the self-energy. In this lecture,
we have seen how to use the LDA+DMFT approach to calculate not only Green and spectral
functions but also linear-response functions. In the scheme presented, the local susceptibil-
ity is obtained via the quantum-impurity solver at the end of the self-consistency loop; the
q-dependent susceptibility is, instead, calculated solving in addition the Bethe-Salpeter equa-
tion in the local-vertex approximation. As representative case we have studied the magnetic
susceptibility of the one-band Hubbard model at half filling. The extension of the LDA+DMFT
approach to the calculation of generalized susceptibilities makes it possible to put the method
and the approximations adopted to more stringent tests. This is key for further advancing the
theoretical tools for the description of strong correlation effects in real materials.
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Appendix

A Eigenstates of Hubbard dimer and Anderson molecule

The Hamiltonian of the Hubbard dimer is given by

Ĥ = εd
∑

σ

∑

i=1,2

n̂iσ − t
∑

σ

(
c†1σc2σ + c†2σc1σ

)
+ U

∑

i=1,2

n̂i↑n̂i↓.

It commutes with the number of electron operator N̂ , with the total spin Ŝ and with Ŝz. Thus
we can express the many-body states in the atomic limit as

|N,S, Sz〉 N S E(N,S)

|0, 0, 0〉 = |0〉 0 0 0

|1, 1/2, σ〉1 = c†1σ|0〉 1 1/2 εd

|1, 1/2, σ〉2 = c†2σ|0〉 1 1/2 εd

|2, 1, 1〉 = c†2↑c
†
1↑|0〉 2 1 2εd

|2, 1,−1〉 = c†2↓c
†
1↓|0〉 2 1 2εd

|2, 1, 0〉 = 1√
2

(
c†1↑c

†
2↓ + c†1↓c

†
2↑

)
|0〉 2 1 2εd

|2, 0, 0〉0 = 1√
2

(
c†1↑c

†
2↓ − c†1↓c†2↑

)
|0〉 2 0 2εd

|2, 0, 0〉1 = c†1↑c
†
1↓|0〉 2 0 2εd + U

|2, 0, 0〉2 = c†2↑c
†
2↓|0〉 2 0 2εd + U

|3, 1/2, σ〉1 = c†1σc
†
2↑c
†
2↓|0〉 3 1/2 3εd + U

|3, 1/2, σ〉2 = c†2σc
†
1↑c
†
1↓|0〉 3 1/2 3εd + U

|4, 0, 0〉 = c†1↑c
†
1↓c
†
2↑c
†
2↓|0〉 4 0 4εd + 2U

Let us order the N = 1 states as in the table above, first the spin up and then spin down block.
For finite t the Hamiltonian matrix for N = 1 electrons takes then the form

Ĥ1 =




εd −t 0 0

−t εd 0 0

0 0 εd −t
0 0 −t εd



.
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This matrix can be easily diagonalized and yields the bonding (−) and antibonding (+) states

|1, S, Sz〉α Eα(1, S) dα(1, S)

|1, 1/2, σ〉+ = 1√
2

(
|1, 1/2, σ〉1 − |1, 1/2, σ〉2

)
εd+t 2

|1, 1/2, σ〉− = 1√
2

(
|1, 1/2, σ〉1 + |1, 1/2, σ〉2

)
εd−t 2

where dα(N) is the spin degeneracy of the α manifold.
For N = 2 electrons (half filling), the hopping integrals only couple the three S = 0 states, and
therefore the Hamiltonian matrix is given by

Ĥ2 =




2εd 0 0 0 0 0

0 2εd 0 0 0 0

0 0 2εd 0 0 0

0 0 0 2εd −
√

2t −
√

2t

0 0 0 −
√

2t 2εd + U 0

0 0 0 −
√

2t 0 2εd + U




.

The eigenvalues and the corresponding eigenvectors are

|2, S, Sz〉α Eα(2, S) dα(2, S)

|2, 0, 0〉+ = a1|2, 0, 0〉0 − a2√
2

(
|2, 0, 0〉1 + |2, 0, 0〉2

)
2εd + 1

2

(
U+∆(t, U)

)
1

|2, 0, 0〉o = 1√
2

(
|2, 0, 0〉1 − |2, 0, 0〉2

)
2εd + U 1

|2, 1,m〉o = |2, 1,m〉 2εd 3

|2, 0, 0〉− = a2|2, 0, 0〉0 + a1√
2

(
|2, 0, 0〉1 + |2, 0, 0〉2

)
2εd + 1

2

(
U−∆(t, U)

)
1

where

∆(t, U) =
√
U2 + 16t2,

and

a2
1 = a2

1(t, U) =
1

∆(t, U)

∆(t, U)− U
2

a2
2 = a2

2(t, U) =
4t2

∆(t, U)

2

(∆(t, U)− U)
,

so that a1a2 = 2t/∆(t, U). For U = 0 we have a1 = a2 = 1/
√

2, and the two states |2, 0, 0〉−
and |2, 0, 0〉+ become, respectively, the state with two electrons in the bonding orbital and the
state with two electrons in the antibonding orbital; they have energy E±(2, 0) = 2εd ± 2t; the
remaining states have energy 2εd and are non-bonding. For t > 0, the ground state is unique
and it is always the singlet |2, 0, 0〉−; in the large U limit its energy is

E−(2, 0) ∼ 2εd − 4t2/U.
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In this limit the energy difference between the first excited state, a triplet state, and the singlet
ground state is thus equal to the Heisenberg antiferromagnetic coupling

Eo(2, 1)− E−(2, 0) ∼ 4t2/U = Γ.

Finally, for N = 3 electrons, eigenstates and eigenvectors are

|3, S, Sz〉α Eα(3) dα(3, S)

|3, 1/2, σ〉+ = 1√
2

(
|1, 1/2, σ〉1 + |1, 1/2, σ〉2

)
3εd + U + t 2

|3, 1/2, σ〉− = 1√
2

(
|1, 1/2, σ〉1 − |1, 1/2, σ〉2

)
3εd + U − t 2

If we exchange holes and electrons, the N = 3 case is identical to the N = 1 electron case.
This is due to the particle-hole symmetry of the model.

The Hamiltonian of the Anderson molecule is given by

Ĥ = εs
∑

σ

n̂2σ − t
∑

σ

(
c†1σc2σ + c†2σc1σ

)
+ εd

∑

σ

n̂1σ + Un̂1↑n̂1↓.

In the atomic limit, its eigenstates states can be classified as

|N,S, Sz〉 N S E(N,S)

|0, 0, 0〉 = |0〉 0 0 0

|1, 1/2, σ〉1 = c†1σ|0〉 1 1/2 εd

|1, 1/2, σ〉2 = c†2σ|0〉 1 1/2 εs

|2, 1, 1〉 = c†2↑c
†
1↑|0〉 2 1 εd + εs

|2, 1,−1〉 = c†2↓c
†
1↓|0〉 2 1 εd + εs

|2, 1, 0〉 = 1√
2

(
c†1↑c

†
2↓ + c†1↓c

†
2↑

)
|0〉 2 1 εd + εs

|2, 0, 0〉0 = 1√
2

(
c†1↑c

†
2↓ − c†1↓c†2↑

)
|0〉 2 0 εd + εs

|2, 0, 0〉1 = c†1↑c
†
1↓|0〉 2 0 2εd + U

|2, 0, 0〉2 = c†2↑c
†
2↓|0〉 2 0 2εs

|3, 1/2, σ〉1 = c†1σc
†
2↑c
†
2↓|0〉 3 1/2 εd + 2εs

|3, 1/2, σ〉2 = c†2σc
†
1↑c
†
1↓|0〉 3 1/2 2εd + εs + U

|4, 0, 0〉 = c†1↑c
†
1↓c
†
2↑c
†
2↓|0〉 4 0 2εd + 2εs + U
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For N = 1 electrons the Hamiltonian can be written in the matrix form

Ĥ1 =




εd −t 0 0
−t εs 0 0
0 0 εd −t
0 0 −t εs


 .

The eigenstates are thus

|1, S, Sz〉α Eα(1, S) dα(1, S)

|1, 1/2, σ〉+ = α1|1, 1/2, σ〉1 − α2|1, 1/2, σ〉2 1
2

(
εd + εs +

√
(εd−εs)2 + 4t2

)
2

|1, 1/2, σ〉− = α2|1, 1/2, σ〉1 + α1|1, 1/2, σ〉2 1
2

(
εd + εs −

√
(εd−εs)2 + 4t2

)
2

where dα(N) is the spin degeneracy of the α manifold. For εs = εd + U/2 the eigenvalues are

E±(1, S) = εd +
1

4

(
U ±∆(t, U)

)
,

while the coefficients are α1 = a1(t, U) and α2 = a2(t, U).

For N=2 electrons, the hopping integrals only couple the S=0 states. The Hamiltonian is

Ĥ2 =




εd+εs 0 0 0 0 0

0 εd+εs 0 0 0 0

0 0 εd+εs 0 0 0

0 0 0 εd+εs −
√

2t −
√

2t

0 0 0 −
√

2t 2εd+U 0

0 0 0 −
√

2t 0 2εs




For εs = εd + U/2 the eigenvalues and the corresponding eigenvectors are

|2, S, Sz〉α Eα(2, S) dα(2, S)

|2, 0, 0〉+ = b1|2, 0, 0〉0 − b2√
2

(
|2, 0, 0〉1 + |2, 0, 0〉2

)
2εd + U

2
+ 1

4

(
U+2∆(t, U

2
)
)

1

|2, 0, 0〉o = 1√
2

(
|2, 0, 0〉1 − |2, 0, 0〉2

)
2εd + U 1

|2, 1,m〉o = |2, 1,m〉 2εd + U
2

3

|2, 0, 0〉− = b2|2, 0, 0〉0 + b1√
2

(
|2, 0, 0〉1 + |2, 0, 0〉2

)
2εd + U

2
+ 1

4

(
U−2∆(t, U

2
)
)

1

where b1 = a1(t, U/2) and b2 = a2(t, U/2). These states have the same form as in the case
of the Hubbard dimer; the ground state energy and the weight of doubly occupied states in
|2, 0, 0〉− differ, however. Finally, for N = 3 electrons, the eigenstates are

|3, S, Sz〉α Eα(3, S) dα(3, S)

|3, 1/2, σ〉+ = α2|1, 1/2, σ〉1 + α1|1, 1/2, σ〉2 3εd + U + 1
4

(
U+∆(t, U)

)
2

|3, 1/2, σ〉− = α1|1, 1/2, σ〉1 − α2|1, 1/2, σ〉2 3εd + U + 1
4

(
U−∆(t, U)

)
2
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B Lehmann representation of the local Green function

For a single-orbital model, the local Matsubara Green function for a given site i is defined as

Gσ
i,i(iνn) = −

∫ β

0

dτeiνnτ
〈
T ciσ(τ)c†iσ(0)

〉
,

where T is the time-ordering operator, β = 1/kBT, and νn a fermionic Matsubara frequency.
Let us assume we know all eigenstates |Nl〉 and their energy El(N), for arbitrary number of
electrons N. Thus, formally

Gσ
i,i(iνn) =− 1

Z

∑

Nl

∫ β

0

dτeiνnτe−∆El(N)β
〈
Nl

∣∣ciσ(τ)c†iσ(0)
∣∣Nl

〉
,

where Z =
∑

Nl e
−∆El(N)β is the partition function, ∆El(N) = El(N) − µN with µ the

chemical potential, and c†iσ(0) = c†iσ. We now insert a complete set of states, obtaining

Gσ
i,i(iνn) =− 1

Z

∑

ll′NN ′

∫ β

0

dτeiνnτe−∆El(N)β
〈
Nl

∣∣ciσ(τ)|N ′l′
〉〈
N ′l′
∣∣c†iσ
∣∣Nl

〉

=− 1

Z

∑

ll′NN ′

∫ β

0

dτe−∆El(N)βe(iνn+∆El(N)−∆El′ (N ′))τ
∣∣〈N ′l′|c†iσ|Nl〉

∣∣2

=
1

Z

∑

ll′NN ′

e−∆El′ (N
′)β + e−∆El(N)β

iνn +∆El(N)−∆El′(N ′)
∣∣〈N ′l′ |c†iσ|Nl〉

∣∣2.

Due to the weight
∣∣〈N ′l′ |c†iσ(0)|Nl〉

∣∣2 only the terms for whichN ′ = N+1 contribute. Thus, after
exchanging the labels l′N ′ ↔ lN in the first addend, we obtain the Lehmann representation

Gσ
i,i(iνn)=

∑

ll′N

e−β∆El(N)

Z

( ∣∣〈(N−1)l′ |ciσ|Nl〉
∣∣2

iνn −∆El(N)+∆El′(N−1)
+

∣∣〈(N+1)l′ |c†iσ|Nl〉
∣∣2

iνn −∆El′(N+1)+∆El(N)

)
.

Let us consider as example the atomic limit of the Hubbard model at half filling. In this case
all sites are decoupled; there are four eigenstates per site, the vacuum |0〉, with ∆E(0) = 0, the
doublet |1σ〉 = c†iσ|0〉, with ∆Eσ(1) = −U/2, and the doubly-occupied singlet |2〉 = c†i↑c

†
i↓|0〉,

with ∆E(2) = 0. Furthermore, Z = 2(1 + eβU/2) and

∣∣〈(N−1)l′ |ciσ|Nl〉
∣∣2=

{
1 if |Nl〉=|2〉 ∨ |1σ〉
0 otherwise

∣∣〈(N+1)l′|c†iσ|Nl〉
∣∣2=

{
1 if |Nl〉=|0〉 ∨ |1−σ〉
0 otherwise

Thus, after summing up the four non-zero contributions, we find

Gσ
i,i(νn) =

1

2

(
1

iνn + U/2
+

1

iνn − U/2

)
.
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C Atomic magnetic susceptibility

Let us consider an idealized single-level atom described by the Hamiltonian

Ĥ = εd
(
n̂↑ + n̂↓

)
+ Un↑n↓.

The eigenstates of this system, |ΨNi 〉, as well as their expectation values at half filling are

|ΨNi 〉 N ∆Ei =
〈
ΨNi
∣∣Ĥ − µN̂

∣∣ΨNi
〉

|0〉 0 0

c†σ|0〉 1 −U
2

c†↑c
†
↓|0〉 2 0

The magnetic susceptibility in Matsubara space is given by

[
χzz(iωm)

]
nn′

= β
1

4
(gµB)2

∑

P

sign(P )fP

fP (iωP1 , iωP2 , iωP3) =

∫ β

0

dτ14

∫ τ14

0

dτ24

∫ τ24

0

dτ34 e
iωP1τ14+iωP2τ24+iωP3τ34fP (τ14, τ24, τ34)

where P = A,B, . . . are the six possible permutations of the indices (123) and

fP (τ14, τ24, τ34) =
1

Z

∑

σσ′

σσ′Tr e−β(Ĥ−µN̂)
[
ôP1(τ14)ôP2(τ24)ôP3(τ34)c†σ′

]

=
1

Z

∑

σσ′

σσ′
∑

ijkl

e−β∆Ei〈i|ôP1|j〉〈j|ôP2|k〉〈k|ôP3|l〉〈l|c†σ′ |i〉

×
[
e∆Eijτ14+∆Ejkτ24+∆Eklτ34

]
,

where ∆Eij = ∆Ei −∆Ej . For the identity permutation the operators are ôP1 = cσ, ôP2 = c†σ,
and ôP3 = cσ′ and the frequencies are ω1 = νn, ω2 = −ωm−νn, ω3 = ωm+νn′ . This expression
can be used to calculate the magnetic susceptibility of any one-band system whose eigenvalues
and eigenvectors are known, e.g., via exact diagonalization. In the case of our idealized atom

fE(τ14, τ24, τ34) =
1

(1 + eβU/2)
eβU/2 e−(τ12+τ34)U/2 =

1

(1 + eβU/2)
gE(τ14, τ24, τ34).

The frequencies and functions fP (τ14, τ24, τ34) for all permutations are given in the table below

ωP1 ωP2 ωP3 gP (τ14, τ24, τ34) sign(P )

E(123) νn −ωm−νn ωm+νn′ eβU/2 e−(τ12+τ34)U/2 +

A(231) −ωm−νn ωm+νn′ νn eβU/2 e−(τ12+τ34)U/2 +

B(312) ωm+νn′ νn −ωm−νn −e+(τ12+τ34)U/2 +

C(213) −ωm−νn νn ωm+νn′ −eβU/2e−(τ12+τ34)U/2 −
D(132) νn ωm+νn′ −ωm−νn e+(τ12+τ34)U/2 −
F (321) ωm+νn′ −ωm−νn νn e+(τ12+τ34)U/2 −



8.52 Eva Pavarini

The missing ingredient is the integral

IP (x,−x, x;iωP1 , iωP2 , iωP3) =

∫ β

0

dτ14

∫ τ14

0

dτ24

∫ τ24

0

dτ34 e
iωP1τ14+iωP2τ24+iωP3τ34ex(τ14−τ24+τ34)

= +

∫ β

0

dτ14

∫ τ14

0

dτ

∫ τ14−τ

0

dτ ′ e(iωP1+iωP2+iωP3+x)τ14−i(ωP2+ωP3 )τe−(iωP3+x)τ ′

= +
1

iωP3 + x

1

−iωP2 + x

[
1

iωP1 + x

1

n(x)
+ βδωP1+ωP2

]

+
1

iωP3 + x

1− δωP2+ωP3

i(ωP2 + ωP3)

[
1

iωP1 + x
− 1

i(ωP1 + ωP2 + ωP3) + x

]
1

n(x)

+ δωP2+ωP3

1

iωP3 + x

{[
1

(iωP1 + x)

]2
1

n(x)
− β

[
1

(iωP1 + x)

]
1− n(x)

n(x)

}
.

where x = ±U/2, depending on the permutation. Summing up all terms we obtain the final
expression for ωm = 0. Setting y = U/2 we have in total [11]

∑

σσ′

σσ′ χn,n
′

iσσ,iσ′σ′(0) =Mn′
dMn

dy
+Mn

dMn′

dy
− βn(y)

[
δn,n′ + δn,−n′

]
dMn

dy
+ βn(−y)MnMn′

−1

y

{
Mn′ − β

[
n(y)δn,−n′ − n(−y)δn,n′

]}
Mn (129)

where

Mn =
1

iνn − y
− 1

iνn + y
. (130)

The finite frequency term (not given here) vanishes once we sum over n, n′.
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1 Introduction

The physics of transition-metal (TM) oxides is an ongoing highlight topic in condensed matter
research, with its origins dating back to the earliest days of the quantum description of the solid
state. The phenomenology spans from the various manifestations of basic electronic structure
theory, i.e., conventional metallicity and band-insulating regimes, to the peculiar realizations
of strong correlation mechanisms, as exemplified by, e.g., intriguing magnetic orderings and
the discovery of unconventional superconducting phases. Beyond nature’s original conception,
the last 20-30 years witnessed an enormous boost in the fabrication of TM oxides, resulting
in the nearly free design of nano-architectural combinations of individual oxide compounds
(e.g. [1–4]).

This engineering path becomes especially interesting based on the fact that deviations from the
conventional band-theory picture of weakly-interacting lattice electrons are most often encoun-
tered in bulk oxides with partially-filled TM(d) shells. Therefore by heterostructuring these
materials, a unique playground for investigating, tailoring and eventually designing correlation
effects may be opened. The challenges appear twofold in this context. First, known bulk-oxide
correlation phenomena are transferred into the heterostructure environment and become tunable
by various means. This, e.g., applies to magnetic, superconducting or further transport proper-
ties. Second, by interfacing different electronic bulk phases, new interface phases may emerge,
possibly even without a distinct bulk analogon. A rather strict, obvious separation between
these both research directions is albeit delicate.

In the first challenge, the proximity to an interface can enable, e.g., different structural/geo-
metrical relaxations/constraints, symmetry breakings due to layering (cf. Fig. 1) or polarization
effects because of a heterostructure-adapted electric field. Already a lot of work has been per-
formed in this context and Refs. [5–7] may serve as overviews. For a concrete example, the
physics of doped Mott insulators is a key research field in strongly correlated condensed matter.
Bulk doping however poses many difficulties in view of a well-defined theoretical description.
Most importantly, the intertwining with disorder mechanisms in the electronic and structural
sector often hinders a straightforward modelling. Those problems may be overcome in Mott-
oxide heterostructures, since electron-, hole-, or structural (i.e. effects only due to the different
ion size of the valence-identical dopant) doping can nowadays be realized by respective doping
layers. In this respect, the correlated doping physics becomes accessible in a well-defined man-
ner by model-Hamiltonian and/or first-principles techniques. In general, accompanied by this
progress, the examination of the influence of defects in strongly correlated materials has gained
renewed interest, being explored by considering the detailed defect chemistry together with a
state-of-the-art treatment of electronic correlations.

The second challenge is even more demanding and highlight examples in this regard might
be provided by the physics of conducting quasi-two-dimensional electron interface systems
(2DES) emerging in oxide heterostructures consisting of bulk band insulators. But the clarifica-
tion of the uniqueness of such engineered electron phases beyond respective bulk counterparts
is still a matter of frontline research. Furthermore, topological nontrivial electronic states are
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Fig. 1: Principle issue of symmetry breaking induced by an interface between to oxide materials
joint in an heterostructure architecture, leading to layer-dependent electronic self-energies Σij .

surely also to be considered in the oxide-heterostructure context, but the explicit interplay be-
tween topology and electronic correlations is still largely uncharted territory. In the following,
these latter material possibilities will not be covered, but the interested reader finds ideas on this
in a recent review [8].
The present brief overview on the first-principles many-body description of oxide heterostruc-
tures focusses on the applicative physics aspect, and is not intended to provide a thorough
introduction to the DFT+DMFT formalism. The interested reader in view of this main theoret-
ical/methodological aspect is referred to other chapters within the extended series of the Jülich
School. We here provide only a very short summary on the key features of the DFT+DMFT
framework in section 2. The sections 3, 4 and 5 deal with different applications and the specific
physics of selected oxide heterostructure problems. Since the existing general theoretical work
in this field is rather extensive, the given short review cannot provide a comprehensive and de-
tailed survey. Instead, focus is here mainly on the corresponding work, directly associated with
the author.

2 DFT+DMFT in a nutshell

The electronic density functional theory marks one cornerstone in condensed matter research,
and will remain a key step in the atomistic investigation of matter. In essence, the problem of
interacting electrons is mapped within DFT onto the problem of noninteracting particles within
a complicated effective potential. In the present context it is vital to note that although DFT rep-
resents in principle a complete many-body account of interacting electrons, the most common
Kohn-Sham representation based on the local-density or generalized-gradient approximations
(i.e. LDA or GGA) brand this method as an effective single-particle approach. For condensed
matter problems, it therefore describes electrons via band-theory arguments, and the original
many-body effects due to the mutual Coulomb repulsion between electrons are cast into the
aforementioned effective single-particle potential.
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Fig. 2: Sketch of the DMFT mapping of an interacting lattice problem (left) onto a problem of an
impurity within an energy-dependent bath (right), assuming a sole onsite Coulomb interaction
U, and hopping t between neighboring sites.

Dynamical mean-field theory [9, 10] can be seen as the quantum many-body scheme for corre-
lated electrons with the best compromise between generality, accuracy and performance. No-
tably, also DMFT describes a mapping, i.e., from the problem of interacting lattice electrons
onto the problem of a quantum impurity embedded within a self-consistent energy-dependent
bath, as sketched for the Hubbard model in Fig. 2.
For chemical potential µ, and Hamiltonian H(k) at wave vector k, the one-particle Green func-
tion reads

G(k, iωn) =
(
iωn + µ−H(k)−Σ(k, iωn)

)−1
, (1)

where ωn := (2n+1)πT are fermionic Matsubara frequencies employed to emphasize the treat-
ment at finite temperature. The analytical continuation to real frequencies ω in actual calcu-
lations may, e.g., be performed via the maximum entropy method (see e.g. [11, 12] for more
details).
The local Green function is approximated in DMFT with the help of a k-independent impurity
self-energy Σimp(iωn), i.e.,

GDMFT
loc (iωn) =

∑
k

(
iωn + µ−H(k)−Σimp(iωn)

)−1
, (2)

and the corresponding impurity problem reads

Σimp(iωn) = G0(iωn)−1 −Gimp(iωn)−1. (3)

The so-called Weiss field G0(iωn) is a unique function of the local Hamiltonian (expressed
within a localized basis) and the DMFT self-consistency condition implies Gimp = GDMFT

loc .
The calculational loop is depicted in the ’DMFT loop’ box of Fig. 3. Quantum-impurity solvers
based, e.g., on quantum Monte Carlo, Exact Diagonalization, etc. yield the solution. For more
details we refer to [12] for an early review. Note that local-interaction diagrams are included
to all orders in this non-perturbative theory. The vital energy dependence of the Weiss field
ensures the qualitatively correct description of low-energy quasiparticle (QP) features as well
as high-energy incoherent (Hubbard) excitations.
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Fig. 3: State-of-the-art charge self-consistent DFT+DMFT loop (after [21]). The calculation
usually starts from a self-consistent Kohn-Sham solution. The correlated subspace is defined
and the initial Weiss field G0 constructed. Afterwards, a single (or more) DMFT step is per-
formed. The obtained self-energies are upfolded and an updated charge density n(r) is com-
puted. A new charge density implies a new Kohn-Sham potential, and a single new Kohn-Sham
step is performed, therefrom a new Weiss field is generated, etc..

In the hybrid scheme of DFT+DMFT [13, 14], the many-body part incorporates a Hubbard-
model(-like) picturing of a suitably chosen correlated subspace [15, 16]. This correlated sub-
space is understood as a quantum-numbered real-space region where correlated electrons tend to
reside. The key interfacing blocks of the complete DFT+DMFT self-consistency cycle [17–20]
(cf. Fig. 3) are marked by the downfolding of the full-problem Bloch space to the correlated
subspace, and the upfolding of the DMFT self-energy back to the original space. The main
corresponding formulas for sites R, local orbitals mm′ and band indices νν ′, read

GR,imp
mm′ (iωn) =

∑
k,(νν′)∈W

P̄R
mν(k)Gbloch

νν′ (k, iωn) P̄R∗
ν′m′(k) , (4)

∆Σbloch
νν′ (k, iωn) =

∑
R,mm′

P̄R∗
νm (k)∆ΣR,imp

mm′ (iωn) P̄R
m′ν′(k) , (5)

with P̄ denoting the normalized projection between Bloch space and correlated subspace [15].
The object∆Σbloch

νν′ describes the k-dependent self-energy in Bloch space after double-counting
correction (which takes care of the fact that some correlations are already handled on the DFT
level). Note that there is a choice for the rangeW of included Kohn-Sham bands in the down-
folding. In the upfolding operation, the charge density will also be affected by correlation
effects, i.e.,

ρ(r) =
∑
k,νν′

〈r|Ψkν〉
(
f(ε̃kν) δνν′ +∆Nνν′(k)

)
〈Ψkν′ |r〉 , (6)

where Ψ denotes Kohn-Sham states, f the associated Fermi function and ∆N is the DMFT
self-energy correction term [21, 15]. Note finally that this first-principles many-body scheme
works, at heart, at finite temperature T. Electron states are therefore subject to the full thermal
impact, beyond sole occupational Fermi-function modification.
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In oxide heterostructures, as in various other multi-atom unit-cell problems, the correlated sub-
space invokes not only a single lattice site. In the case of symmetry-equivalent sites, the self-
energy is determined for a representative site and transferred to the remaining sites via proper
symmetry relations. A different impurity problem is defined for each symmetry-inequivalent
site j through [22]

G(j)0 (iωn)−1 = G(j)(iωn)−1 +Σ
(j)
imp(iωn) , (7)

and the coupling is realized via the DFT+DMFT self-consistency condition invoking the com-
putation of the complete lattice Green function.
If not otherwise stated, the materials investigations discussed in sections 3, 4 and 5 involving the
author were performed using charge-selfconsistent DFT+DMFT based on a mixed-basis pseu-
dopotential code [23] and hybridization-expansion continuous-time quantum Monte Carlo [24]
in the TRIQS package [25] as an impurity solver. For more technical details on the implemen-
tation the reader is referred to Ref. [20].

3 Band-insulator/band-insulator heterostructure

An emerging metallic two-dimensional electron system (2DES) at the n-type interface be-
tween band-insulating LaAlO3 (LAO) and SrTiO3 (STO) discovered by Ohtomo and Hwang [2]
marks one of the most appreciated discoveries in the oxide-heterostructure context. A polar-
catastrophe mechanism [26] is believed to be dominantly at the root of the 2DES establish-
ment. In terms of electronic correlations, this and related interface systems between band
insulators [27] appear quite subtle since the basic constituents do not already host strongly
correlated electrons in partially-filled d- or f -states. However, the follow-up experimental stud-
ies revealed, e.g., the possibility for superconductivity [28] as well as magnetic order [29] in
the LAO/STO interface, which may be fingerprints for the relevance of electronic correlations.
Furthermore, defect-related physics is believed to be important in these interfaces, which can
directly induce local-based self-energy effects beyond the effective single-particle realm.

3.1 LaAlO3/SrTiO3: defect-free interface

Interface metallicity is easily achieved within DFT for the stoichiometric defect-free (DF)
LAO/STO (see Fig. 4b,c). Two electrons occupy the dominant Ti(3d) low-energy manifold,
matching the number for the polar-catastrophe avoidance, which predicts Ti3.5+O4−

2 at the in-
terface [26]. Figure 4b shows that the electrons which form the 2DES are confined to the STO
part, with dominant localization near Ti(12), i.e., directly at the boundary towards the LAO part.
There, the major orbital Ti(3d) character is of dxy kind.
Note that although there is an apparent effect of larger onsite Hubbard interactions on the quasi-
particle formation/shape as visualized in Fig. 4d, sizable spectral-weight transfer to higher en-
ergies far from the Fermi level remains absent in the DF case. This is understandable from the
highly fractional filling of the interface Ti-dxy orbitals. Note also that in either case, DFT or
DFT+DMFT level, the DF system remains far from a ferromagnetic (FM) instability.
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Fig. 4: Influence of oxygen vacancies in the LAO/STO interface based on DFT+DMFT cal-
culations for a dense-defect scenario (after [30]). (a) 80-atom superlattice, La (brown), Al
(dark green), Sr (green), Ti (blue), O (red), OV (violet). (b) DFT valence charge density of the
occupied low-energy manifold in the DF structure. (c) Total spectral function, left: larger win-
dow, right: smaller window. Top: defect-free paramagnetic (DF-PM), middle: vacancy-hosting
paramagnetic (VH-PM) and bottom: vacancy-hosting ferromagnetic (VH-PM). (d) Local spec-
tral function for selected effective Ti(3d) states, vertical ordering as in (c). (e) spin contrast of
the k-dependent spectral function A(k, ω) in the ferromagnetic phase. (f) FM Fermi surface.

3.2 LaAlO3/SrTiO3: oxygen-deficient interface

While the clean interface hosts the polar-catastrophe scenario but lacks strong (local) electron
correlation effects, things change when allowing for defects at or near the interface. For in-
stance, relevant local correlations are evident from the co-appearance of oxygen vacancies and
ferromagnetism in LAO/STO [31]. Point defects are in fact an important ingredient of the in-
terface physics between band-insulating systems. In this regard, oxygen vacancies (OVs) so far
appear to have the major impact [32]. In a DFT+DMFT study of the LAO/STO interface [30]
it is shown that stable ferromagnetic order builds up on both, OVs and electronic correlations.
While Ti-3d(t2g) orbitals dominate the states directly above the STO gap, an oxygen vacancy
leads to an in-gap state of Ti-3d(eg) kind, here termed ẽg. In a minimal model, the correlated
electronic structure at the interface may be described by the interplay between ẽg and an in-plane
xy orbital from the t2g threefold (see Fig. 4). A reduced Hubbard U = 2.5 eV and Hund’s ex-
change JH = 0.5 eV is appropriate to elucidate this physics in the smaller correlated subspace.
Note that a dense-defect scenario is assumed in that superlattice assessment, i.e., there is an OV
at every other O site in the interface TiO2 plane. Still, an in-gap ẽg-like state at εIG ∼ −1.2 eV
is well reproduced in agreement with experiment [33]. This finding was also verified by even
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xy
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(a)
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Fig. 5: Influence of oxygen vacancies in the LAO/STO interface (after [35]). (a) Model set-
ting: 10×10 square lattice, two orbitals per site, oxygen degrees of freedom are integrated out,
nearest-neighbor hopping t = 0.2 eV. A crystal-field splitting ∆ = 0.3 eV between ẽg and xy
is applied, if an OV is located nearby. (b) Top: color-coded ordered local magnetic moments
on the lattice for selected OV concentration. Bottom: lattice net moment per site for different
Hund’s exchange JH. (c) Orbital-resolved magnetic moment, averaged per site.

larger supercell calculations [34]. Close to an oxygen vacancy, the formal oxdiation state of
titanium is close to Ti3+, i.e., locally a 3d1 occupation is realized by the appearance of defects.
But the emergent spin polarization in the given dense-defect limit in not of purely local kind,
it develops substantial dispersive behavior in reciprocal space (cf. Fig. 4d,e). In general, these
defect-based studies show that strong electron correlations, describable within DFT+DMFT,
may be introduced also in band-band insulator architectures of oxide heterostructures.
Approaching significantly lower OV concentrations in a first-principles manner asks for the han-
dling of much larger supercells. Due to the numerical heaviness of DFT+DMFT, this is yet not
easily achievable. Therefore instead, a model-Hamiltonian approach equipped with the relevant
ingredients from the dense-defect limit, appears more adequate. Figure 5 displays the setting
and some main results of such an ansatz [35]. A two-orbital ẽg-xy Hubbard model is solved on
a 10×10 square lattice resembling the TiO2 interface plane. The efficient rotational-invariant
slave boson (RISB) scheme [36, 37], employing a self-energy which has a linear-in-frequency
term and a static contribution, is put into practice for a simplified treatment of the correlation
problem. Focussing on the magnetic order, it can be shown that there are three regimes with
growing number of OVs. At very small concentration, a Ruderman-Kittel-Kasuya-Yoshida
(RKKY) coupling leads to FM order, whereas at larger concentration a double-exchange mech-
anism dominates a different FM phase. In-between local antiferromagnetic (AFM) pairs (or, in
an advanced self-energy modeling, possibly cluster singlets) result in a nearly absent net mag-
netic moment. This intricate and highly nontrivial OV-dependent magnetic exchange is in line
with experimental findings of a strongly probe-dependent magnetic response.
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Fig. 6: Influence of a double vacancy in the SrTiO3 (001) surface (after [38]). (a) 180-atom su-
percell with a TiO2-terminated surface layer of STO: Sr (green), Ti (blue), O (red), OV (violet).
(b) Bond charge density ntotal(r)−natomic(r): top view (left), side view (right). (c) Spectral-
weight comparison of the summed Ti(t2g,eg) (top) and of the dominant Ti-based effective orbital
between DFT(GGA) (left) and DFT+DMFT (right). The ϕ(1)

DV Wannier-like orbital is an effec-
tive inplane eg orbital located on the Ti site between the OVs. (d) Low-energy spectral-weight
comparison of the Ti(3d) states.

3.3 Oxygen-deficient SrTiO3 surface

In parallel to the STO-based heterostructure investigations, studying the SrTiO3 surface at-
tracted significant attention. Interface and surface properties of a chosen oxide are often related
and the comparison between both planar-extended defects to the bulk enables a better under-
standing of emergent phenomena. A 2DES was initially also found on the oxygen-deficient
(001) surface [39, 40] and soon after also confirmed for other cleavage planes, e.g., in (111)
direction [41]. As a difference to the LAO/STO interface, the defect-free STO surface is be-
lieved to be insulating. Due to a missing interface-driven polar-catastrophe mechanism, again
defects such as OVs are essential to metallize the surface. Similar to the interface spectrum, an
in-gap state at a very similar position, i.e.∼−1.3 eV, has been detected on the STO surface early
on [42]. Recent DFT+DMFT considerations of the STO(001) surface with OVs indeed verified
this in-gap state [38], which is again dominantly formed by Ti-3d(eg) weight. (cf. Fig 6). Fur-
thermore, the low-energy structure dominated by Ti-3d(t2g) states is also in accordance with
experiment. A double-vacancy defect provided the best matching with experiment, however
only two distinct vacancy configuration were examined because of the large numerical effort
within DFT+DMFT. Nonetheless, the spectral separation of eg at high energy and t2g is a clear
generic feature of the study. Note that conventional DFT is not sufficient to provide this orbital
separation (cf. Fig. 6c,d).
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Fig. 7: Spectral information for a LaTiO3/SrTiO3 superlattice with 4 SrO and 4 LaO layers
(after [43]). Left: total spectrum, right: closer to Fermi level.

4 Mott-insulator/band-insulator heterostructure

4.1 LaTiO3/SrTiO3

Oxide heterostructures composed of a Mott insulator and a band insulator have also been stud-
ied early on, initially via experimental work on the LaTiO3/SrTiO3 (LTO/STO) interface [44].
Contrary to the previous combination of pure band insulators, the Mott-insulating part of course
injects the correlated electron problem into the heterostructure architecture right from the start.
While STO is an ideal cubic perovskite at ambient temperature, LTO marks a distorted per-
ovskite with orthorhombic crystal symmetry. Initial model-Hamiltonian Hartree-Fock studies
of a Hubbard-model application to such an interface yielded an intricate phase diagram with the
number of La-layers and Hubbard U [45]. Simplified realistic DMFT for LTO/STO [46] em-
phasized the structural orthorhombic-versus-tetragonal aspect of the LTO part. Transport within
a Mott-band insulator heterostructure has also been studied again within a model-Hamiltonian
approach [47].

A superlattice DFT+DMFT investigation of LTO/STO [43] revealed the realistic competition of
both insulating systems stacked along the c-axis, giving rise to a metallic interface state. The
correlated subspace can be chosen to be spanned by Ti-3d(t2g) states, i.e., consists locally of
three correlated orbitals. A Hubbard U = 5 eV and Hund’s exchange JH = 0.7 eV is applied
in that subspace. Orbital-dependent charge transfers lead to a strong Ti-3d(xy), i.e., inplane
electronic polarization in the interface TiO2 layer. Surely, on the STO side the Ti4+ oxidation
state with nominal 3d0 occupation is quickly reached, while on the LTO side the Ti3+-3d1

establishes and a sizably lower Hubbard band at ∼−1.1 eV is identified in the spectral function
(see also Fig. 7). In those calculations, the lattice constant was fixed to the cubic STO value,
but local structural relaxations on the DFT level were allowed. It is to be noted that the lattice
degrees of freedom are an important aspect in oxide heterostructures. Simplified DFT+DMFT
bulk-like studies revealed, e.g., the impact of strain on the Mott-insulating state of LaTiO3 [48]
and LaVO3 [49].



Oxide Heterostructures 9.11

(a)

(b)
✲� ✲✁ ✵ ✁ � ✸

✇ ✥✂✄☎

✵

✺✵

✁✵✵

❆

✆✝
✞✟
✠
✡

●●☛

❚☞✌✍✎✏

❚☞✑✒✓✏

❚☞✒✔✏

❚☞✕✎✏

✲✵✖✁ ✵ ✵✖✁

✇ ✥✂✄☎

✵

�✺

✺✵
❙✗✘✙❙✚✛✜✘

✢

(c)

|1>
|2>

|3>

-2 0 2 4

ω (eV)

-2 0 2 4-2 0 2 4
0

1

2
0

1

2
0

1

2

A
 (

1
/e

V
) 0

1

2
0

1

2 Ti1

Ti2

Ti3

Ti4

Ti5

T=145K T=290KT=48K

(d)
✵ ✶✵✵ ✷✵✵ ✸✵✵

❚ �✁✂

✵

✵✄✷

✵✄☎

✵✄✆

✵✄✝

✶✄✵

❜
✞
✥
✟

✠✡

❩

(e)
✵ ✵�✁ ✶�✵ ✶�✁ ✷�✵

✇
♥

✥✂✄☎

✲✶�✁

✲✶�✵

✲✵�✁

✵

■✆

❙
✝✞
✟
✠

✵ ✵�✷ ✵�✡

✲✶�✵

✲✵�✁

✵

⑤☛☞
⑤✌☞
⑤✍☞

❚✎✏✑✏

❚✎✒✑✏

❛❂✓✔✕✖

❛❂✓✔✗✘

❛❂✓✔✕✕

❛❂✓✔✗✙

Fig. 8: Paramagnetic DFT+DMFT data of δ-doping SmTiO3 with a SrO monolayer (after [50]).
(a) 100-atom unit cell in a superlattice architecture: Sr (green), Sm (purple), Ti (blue), O (red).
Two inequivalent Ti sites are handled in each TiO2 layer. Structural relaxations are performed
on the DFT(GGA) level. (b) Total spectral function at different temperatures. (c) Layer-,
orbital- and T -resolved spectral function. The correlated subspace consists of three effective
t2g orbitals at each Ti site. (d) QP weight Z and dimensionless electron-electron scattering
rate βΓ = −Z ImΣ(i0+) for the dominant state |2〉 in the first (open circles) and second
(filled circles) TiO2 layer. (e) Orbital-resolved imaginary part of the self-energy on the Mat-
subara axis. Left: larger frequency range, right: low-frequency region with fitting functions
ImΣ(ωn) = C0 + Aωαn (dashed/full lines). Exponential-fitting cutoff nc is denoted by the
dotted line. Values α = 1 and C0 = 0 mark the Fermi-liquid regime.

4.2 δ-doping of titanate Mott insulators

Even more intriguing physics may be found when starting directly from a doped-Mott state
within the heterostructure setting. Motivated by experimental work [51–53], a first-principles
many-body investigation of δ-doping the rare-earth titanates LaTiO3, GdTiO3 and SmTiO3 with
a single SrO layer was undertaken [54, 50]. Especially the δ-doped SmTiO3 case displays
puzzling physics in experiment, namely NFL transport that switches to FL-like characteristics
upon adding further SrO layers. In the rare-earth titanate 3d(t12g) series of distorted-perovskite
Mott insulators, the magnetic low-temperature state changes from AFM to FM with the size
of the rare-earth ion. The samarium titanate is still AFM, but just on the border towards fer-
romagnetism. Structurally well-defined hole doping introduced by the SrO monolayer renders
SmTiO3 metallic. The DFT+DMFT results (see Fig. 8) reveal significant spectral-weight trans-
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Fig. 9: Delafossite ABO2 crystal structure. (a) R3̄m and (b) P63/mmc symmetry. A (grey),
B (blue) and O (red). From Ref. [57].

fer to higher energies compared to DFT, and in addition a complex layer-resolved electronic
structure. While far from the doping layer the system resides in an orbital-polarized Mott-
insulating state, it is conducting in an orbital-balanced manner just at the interface TiO2 layer
(cf. Fig. 8c). Both regimes are joined by an orbital-polarized doped-Mott layer with a largely
renormalized QP peak at the Fermi level. A detailed analysis of the layer- and orbital-dependent
self-energies shown in Fig. 8d,e indeed reveals signatures of a non-Fermi-liquid (NFL) expo-
nent for the dominant effective t2g orbital in the second, i.e., orbital-polarized doped-Mott, TiO2

layer. Further investigations hint towards competing AFM-FM fluctuations in the Mott-critical
zone as a possible cause for NFL behavior [50]. A pseudogap(-like) structure in the theoret-
ical spectral function subject to such fluctuations has indeed been identified in experimental
studies [55]. In an extension of this study, it was shown that the addition of further SrO layers
establishes an extra band-insulating regime in the formed SrTiO3-like region, with a stronger
inplane xy-polarized metallic layer at the boundary [56].

5 Natural oxide heterostructures: delafossites

Delafossites, named after the french crystallographer Gabriel Delafosse (1796-1878), are oxides
of typeABO2, whereA and B denote different metallic elements. Their unique crystal structure
(see Fig. 9) consists of an alternate stacking of triangular A lattices and planes of edge-sharing
BO6 octahedra along the c-axis. Importantly these two different layer types are connected via
oxygen in a so-called dumbbell position. There are two possible stacking types, namely the
more common rhombohedral one with R3̄m space-group symmetry and the hexagonal one
giving rise to P63/mmc symmetry. The metallic ions are in the formal oxidation state A+ and
B3+, respectively.
Delafossites split into a larger insulating and a smaller metallic class of compounds. In a se-
ries of papers [58–60], Shannon et al. in 1971 described the novel synthesis and single-crystal
growth of several delafossites with A=Pd, Pt and Ag. Among those, there are oxides with
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exceptionally high electrical conductivity at room temperature, e.g., PdCoO2 and PtCoO2, in
combination with an outstanding single-crystal purity. This combined feature of such delafos-
sites has started to become an intense field of research in recent years (see e.g. Refs. [61, 62]
for reviews). That specific group of delafossites in terms of metallic properties, includes also
the PdCrO2 compound, which, among further challenging physics, hosts Mott-insulating CrO2

layers [63–65].
This brings us to a very relevant aspect in view of our general heterostructure context. The
delafossite architecture gives rise to a natural heterostructure, in which individual layers may
attain a distinct character of their own. In most known layered materials, e.g., cuprates, cobal-
tates, etc., there is usually one ’active’ layer and the remaining part mainly provides the glue.
However in delafossites, e.g., the A layer can manage the metallic transport, while the BO2

layers account for the magnetic ordering. This not only entails exciting physical processes in
the pure compound, but furthermore possibly allows for a kind of ‘meta oxide-heterostructure’
physics upon additional (nano-)engineering.

5.1 Basic DFT characterization

Let us first focus on a DFT assessment of selected Co- and Cr-based delafossites. Figure 10
displays the band theoretical results for the spectrum of PdCoO2, PdCrO2 and AgCrO2, namely
density of states (DOS) and band structures. For PdCoO2 we also provide plots of the Wannier-
like Pd(4d) orbitals. In that compound, the Pd(4d) states are largely occupied with a bandwidth
(W ) hierarchy of Wa1g > We′g > Weg . As shown in Fig. 10b, the Co(3d) weight is mostly
located in the bands close to and above the Fermi level εF, with a single band crossing εF.
The latter dispersion, denoted in the following ‘cPd’, is dominantly of mixed Pd(4d) and par-
tial Co(3d) kind. Note that the e′g orbitals are the ones with the strongest in-plane character
(see Fig. 10b). Though the band-filling Co(3d) character resembles an original Co(3d6) pic-
ture, from the hybridizations at the Fermi level a completely inert Co-t2g subshell is not truly
justified. The DFT fermiology and dispersions at low energy are in good agreement with data
from angle-resolved photoemission spectroscopy (ARPES) measurements [66] and de Haas-
van Alphen studies [67]. Thus plain DFT seemingly provides already an adequate description
of key PdCoO2 features.
Contrary to PdCoO2, the B-site states of Cr(3d) character are much less filled, the three t2g-
dominated bands are right at the Fermi level, and the Pd(4d) character at εF is minor (see
Figs. 10c, d). This however strongly disagrees with available experimental data from ARPES [68,
63] and quantum oscillations [69, 70]. In experiment, there is also only a single band crossing
the Fermi level, quite similarly as in PdCoO2. This discrepancy is due to the neglect of strong
electronic correlations in conventional DFT, which misses the Mott-localized character of the
CrO2 layers. Partial agreement with experiment concerning the dispersions can be achieved
within spin-polarized DFT [71, 68, 63, 72], accounting also for the magnetic ordering at low
temperatures. But this Slater-type handling of the Cr(3d) states is not describing the underlying
physics comprehensively.
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Fig. 10: DFT electronic structure of PdCoO2, PdCrO2 and AgCrO2. (a) Total and orbital-
resolved A-site(4d) density of states. (b) Band structure along high symmetry lines in the kz =
0 plane, with fatbands marking the B-site(3d) and the orbital-resolved A-site(4d) character.
Additionally, the corresponding real-space Pd(4d) projected local orbitals are provided for the
case of PdCoO2: Pd (grey), Cr (light blue) and O (red). (c, d) Same as (a, b) but for PdCrO2.
(e, f) Same as (a, b) but for AgCrO2. From Ref. [57].

Finally, the AgCrO2 compound would be insulating in DFT if the Cr-t2g states were not located
again at the Fermi level (see Figs. 10e, f). The Ag(4d) states are filled and would give rise to a
band insulator. The missing correlation effects on Cr become most evident here. The prominent
Ag-a1g dominated band just below the Cr-t2g bands in energy and with a nearly flat dispersion
along K-M bears striking resemblance to the former low-energy cPd band in PdCoO2. In fact
as we will see in the following, this present band will just form the highest valence band in true
AgCrO2 once correlations are properly included. Furthermore for the same reason, the akin
band in PdCrO2 (yet there with stronger Pd-e′g character) will be shifted to εF.
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5.2 Impact of correlation effects

For the charge self-consistent DFT+DMFT calculations the correlated subspace is build up from
the five effective B-site Wannier-like 3d functions as obtained from the projected-local-orbital
formalism [15, 16], using as projection functions the linear combinations of atomic 3d orbitals
which diagonalize the B-site 3d orbital-density matrix. A five-orbital Slater-Kanamori Hubbard
Hamiltonian, i.e., including density-density, spin-flip and pair-hopping terms, is utilized in the
correlated subspace, parametrized by a Hubbard U and a Hund exchange JH. The B site will
here be either of Co or Cr type and a value of JH = 0.7 eV is proper for TM oxides of that
kind. Concerning the Hubbard interaction, the value U = 3 eV is assigned to the 3d states of
Co and Cr in PdCoO2 and PdCrO2, respectively [73,74]. For Cr(3d) in AgCrO2, the somewhat
larger value of U = 4 eV is used in order to comply with the weaker screening because of the
(nearly) filled Ag(4d) shell. Note that no further Hubbard interactions are assigned to the A
site. The d orbitals on those sites are here of 4d kind, of formal d9 filling and only weakly
hybridizing with oxygen. Thus by any means, Coulomb interactions are expected much smaller
than on the B site. Spin-orbit coupling is neglected in the crystal calculations. Though the
ACrO2 delafossites order antiferromagnetically at low temperatures within the CrO2 layers,
the investigations remain at still higher T assuming paramagnetism for all studied cases. If not
otherwise stated, the system temperature is set to T = 290 K. Further details on the calculational
settings can be found in Ref. [57] and see also Refs. [64, 75].

Figure 11 exhibits the spectral DFT+DMFT summary for the three compounds. In the case of
the Co compound, the changes compared to DFT appear minor, as already expected from the
simplest picture of a closed Co-t2g subshell. The dispersions, which now describe true quasi-
particle features, are hardly modified at lower energy. Quite on the contrary, the QP dispersion
for PdCrO2 has changed dramatically (see Fig. 11b); the DFT-original Cr bands at εF have dis-
appeared and instead, a single cPd dispersion as in PdCoO2 crosses the Fermi level. This result
brings theory eventually in line with experimental findings [68, 63, 69, 70]. Also for AgCrO2,
the DFT+DMFT approach settles the comparison with experiment, namely by identifying the
insulating nature with a compatible gap of ∼ 1.8 eV. While the latter delafossite shows of
course no Fermi surface, the fermiology of PdCoO2 and PdCrO2 in Figs. 11d,e becomes rather
similar with interactions. A single-sheet interacting Fermi surface, comprising a single electron,
is centered around Γ and has a hexagonal shape with some warping. Note that this warping is
somewhat stronger in the case of the Co compound.

Two functions are provided to discuss the k-integrated spectra (see Fig. 11h-j). First, the site-
and orbital-projected spectral function Aproj(ω), defined by projecting the Bloch-resolved spec-
tral function Aν(k, ω) with Bloch index ν onto a chosen site-orbital and summing over ν,k.
Note that this function is comparable but strictly not identical to the local spectral function Aloc,
which is obtained from analytical continuation of the local Green function. Second, it proves
instructive to also plot directly Aν(ω), i.e., the k-integrated Bloch-resolved spectrum. This al-
lows us to trace the behavior of the former DFT bands upon interaction and displays the QP
formation originating in Bloch space.
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Fig. 11: Spectral properties of PdCoO2, PdCrO2 and AgCrO2 from paramagnetic DFT+DMFT.
(a-c) k-resolved spectral function A(k, ω) along high symmetry lines in the kz = 0 plane. (d-f)
Interacting Fermi surface in the kz = 0 plane. (g-i) Site- and orbital-projected spectral function
Aproj(ω) (top) and Bloch-resolved spectral functionAν(ω), see text (bottom), respectively. From
Ref. [57].

The projected spectrum of PdCoO2 exhibits the near subshell filling of Co(3d) and the Pd dom-
inance of the low-energy QP peak at the Fermi level. In PdCrO2, the Cr-t2g states are in a Mott
state and therefore their spectral weight is shifted to upper and lower Hubbard bands. The Cr-eg
states are mostly empty, but show also strong incoherence effects in Fig. 11b. Mott criticality
in the CrO2 layers has been originally suggested by several experiments from strong hints for
localized Cr3+ S = 3/2 spins [76, 63, 70]. The QP peak at low energy is of dominant Pd(4d)

character, therefore confirming the previously announced mechanism of a correlation-induced
shift of a DFT-original deeper lying Pd-dominated band towards εF. The projected AgCrO2

spectrum shows again the Mott-insulating Cr(3d) part along with the band-insulating Ag(4d)

part. The plots of Aν(ω) render obvious that for PdCoO2 the low-energy QP is for the most
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part constituted from a single Pd-dominated Bloch dispersion, which we call LE-Pd. The same
holds for the PdCrO2 case. Yet importantly, both QP peaks display the hybridizing contribution
of Co/Cr-dominated functions, and the LE-Pd function moreover exhibits significant energy
dependence. Both features point to the relevance of the subtle impact of electronic correlation
onto the low-energy regime. Or in other words, the ’single-band’ dispersion crossing εF, though
not dominated by the strongly-interacting B-site 3d orbitals, still carries subtle effects of corre-
lations which most certainly rule (parts of) the challenging delafossite physics. But be aware of
our difference in nomenclature; ’cPd’ denotes the complete single low-energy dispersion, while
’LE-Pd’ marks the most dominant Aν contribution to it.
The impact of electronic correlations is especially crucial and intriguing for PdCrO2. On a more
formal level, interactions lead to a metal-to-metal transition between a system with Cr(3d)-
dominated threefold dispersion at weak coupling and a system with Pd(4d)-dominated single
dispersion at strong coupling. The question arises how this apparent quantum phase transition
takes place with increasing interaction strength U . Figure 12a displays the spectral function and
fatbands for the DFT limit (U = 0) and for U = 1.5 eV, i.e., half the assumed correct interaction
strength in PdCrO2. The comparison renders the mechanism for the transition clear: The three
bands at the Fermi level are filled with two electrons, and hence four electrons populate the
altogether four bands when counting down in energy from εF. These four bands are of mixed
Cr(3d), Pd(4d) character, with dominance from the 3d sector. Due to the given band entan-
glement, strong correlations transform three of them into Hubbard bands, and leave a resulting
one with half filling at the Fermi level. Interestingly, for the intermediate coupling (right panel
of Fig. 12a), the system adopts a ‘strange’ situation. The Cr-t2g dispersions are very incoher-
ent and not yet Mott localized, and the cPd dispersion is not yet fully established coherently.
Note that especially the latter dispersion, which appears weakly-interacting at strong and weak
coupling, is intriguingly affected by correlations close to the given metal-to-metal transition.
This underlines the intricate inter-layer physics that is at work in PdCrO2 with its ‘hidden-Mott’
state.
From a model perspective of correlated electrons, Kondo-lattice type of Hamiltonians describ-
ing strongly-interacting sites within a Fermi sea [77, 78] have been discussed as a starting per-
spective for PdCrO2 [64]. Such a framework has then indeed been put into practice in order to
account for the coupling of the Cr spins to the Pd layer in the magnetically-ordered state [65].
However, as already mentioned in Ref. [64], a standard Kondo-lattice model of spins coupled to
free electrons appears too simplistic to cover the full complexity of the above described hidden-
Mott physics [79]. Modelling the electronic correlations that originate from the CrO2 layer and
spanning over to the Pd layer in a comprehensive way has most definitely to account for the
outlined metal-to-metal transition.
Because of the 4d10 state of silver in AgCrO2, an intricate band entanglement as in PdCrO2 is
missing. In the DFT limit, the three Cr-t2g bands at the Fermi level are already half filled with
three electrons. Thus the internal Mott transition in the CrO2 layers does not lead to a metal-
to-metal transition, but to a more ordinary metal-to-insulator transition with increasing U. But
there is a twist; the valence-band maximum of insulating AgCrO2 is dominated by silver (and
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Fig. 12: Correlation features in delafossites. (a) Spectral properties of PdCrO2 for different
interaction strengths. Left panel: U = 0 eV, i.e., DFT bands. Right panel: U = 1.5 eV. Top:
spectral function, bottom: fatbands for Cr(3d) (left) and Pd(4d) (right) (from [75]). (b) Sketch
of the basic differences in the k-integrated spectral function ρ(ω) for the most-relevant four
bands close to the Fermi level among the studied delafossites. Top: DFT, bottom: DFT+DMFT.
Left: PdCoO2: Co-t2g bands occupied, uppermost Pd(4d)-band half filled; middle: hidden-
Mott PdCrO2: Cr-t2g bands 1/3 filled, uppermost Pd(4d)-band occupied; right: band-Mott
insulating AgCrO2: Cr-t2g bands half filled, uppermost Ag(4d)-band occupied. From Ref. [57].

oxygen) character, highlighting the band-insulating aspect of the system. The compound is
therefore best coined as band-Mott insulator.
To emphasize the key differences of the given delafossites from a minimal perspective, Fig. 12b
summarizes the main features from the noted four-band perspective of B-site derived t2g bands
and A-site derived uppermost 4d band part.
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Fig. 13: Paramagnetic DFT+DMFT spectral data for the out-of-plane heterostructure.
Pd1/2Ag1/2CrO2. (a) Crystal structure, with Pd: blue, Ag: grey, Cr: green and O: red. (b)
Spectral function A(k, ω) along high-symmetry lines in the kz = 0 plane of reciprocal space
(left) and k-integrated site- and orbital-projected spectral function (right). (c) Fermi surface
for kz = 0 within the first Brillouin zone (green hexagon). (d) k-integrated Bloch contribution
Aν(ω) with characterization of dominance. After Ref. [75].

5.3 Theoretical Mott design

As noted earlier, delafossites may be viewed as natural heterostructures with different elec-
tronic characteristics in the A- and BO2-layers. It may be therefore obvious that a merging of
delafossite physics and the explicit field of oxide heterostructures could turn out as a fruitful
combination. In fact, heterostructures from combining PdCrO2 and AgCrO2 may be of partic-
ular interest. Both compounds have similar lattice parameters, resulting in a minor mismatch,
and differ only by one electron in theA-site valence. However their electronic phenomenology,
i.e., hidden-Mott metal vs. band-Mott insulator, is quite different. Heterostructuring both de-
lafossites provides therefore a specific doping scenario: by keeping the local environment rather
undisturbed, filling modifications in the Cr-t2g manifold may be triggered.

Alternate stackings of Pd, CrO2 and Ag layers, i.e., straightforward out-of-plane heterostruc-
tures, are a natural realization of such a scenario. Let us discuss a specific PdCrO2/AgCrO2

stacking along the c-axis, namely Pd1/2Ag1/2CrO2 (see Fig. 13a), with the Hubbard U (identical
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on every Cr site) being also correspondingly interpolated from the limiting delafossite cases (see
Ref. [75] for further details). From the PdCrO2 perspective, the additional blocking layers of Ag
kind as well as the stronger Mott-insulating character induced therefrom into the CrO2 layers
should increase correlations within the Pd layers, too. But this will again happen in a more sub-
tle way than in standard correlated systems, where an associated Coulomb repulsion for such
a layer is increased when looking for stronger correlation effects. Remember that there is no
Hubbard U on Pd and all correlation increase has to take place in a “nonlocal” way from the
surrounding layers. Thus, the present heterostructures pose a quite original correlation problem
at low energy; a half-filled Pd layer without intra-layer interaction, subject to rising ‘Coulomb
pressure and confinement’ imposed from the neighboring layers. How does the single electron
of dominant Pd(4d) character cope with that situation?

Figure 13 displays the DFT+DMFT spectral properties at room temperature for the given meta-
heterostructure. A detailed discussion, also concerning stability issues and with extension to
lower-temperature properties, can be found in Ref. [75]. The main result, may be extracted
from the low-energy comparison of the k-resolved and the k-integrated data: while there are
still QP-like dispersions visible in A(k, ω) at the Fermi level, the integrated spectra shows
vanishing spectral weight at εF. We coin this puzzling electronic state as correlation-induced
semimetal (CIS), which is obviously a result of the intriguing correlation scenario described
above. Upon rising obstruction of transport, the key Pd(4d) electron can neither localize in real
space (as in a Mott insulator) nor rest in a filled band (as in a band insulator). Hence it reduces
the low-energy spectral weight as much as possible for an intact half-filled band, resulting in the
CIS state. Note that this finding is not an artifact of the analytical continuation from Matsubara
space to real frequencies, as the result is confirmed from both, maximum-entropy as well as
Padé methods [75] and therefore a robust feature. In some sense it amounts to a very strong
reduction of the usual QP coherence scale of strongly correlated electrons, yet by still keeping
the ‘coherence’ of the original dispersion. To our knowledge, such a rather exotic electronic
state has not yet been reported in correlated matter and it awaits experimental verification.

Finally, let us push the limits of conceivable delafossite engineering even somewhat further, by
interpreting the metallic implication of Pd in PdCrO2 and the band-insulating implication of Ag
in AgCrO2 theoretically footloose. Instead of engineering PdCrO2 ‘out of plane’ from replacing
Pd layers by Ag layers, one may imagine an ’in-plane’ alternation from replacing Pd sites by Ag
sites in the periodically-repeatedA layer. As a result, a novel natural-heterostructure delafossite
emerges, but now with a decorated A layer. The viewpoint behind arises from picturing the
A layer in hidden-Mott delafossite as a canonical single-band triangular lattice at half filling,
embedded in a Mott-insulating background. By manipulating the features of this triangular
lattice, a platform for studying correlation effects in such a Mott background may be generated.
The simplest manipulations in this regard are given by the straightforward transformations of
the original triangular lattice via the K- and M -point ordering instabilities, associated with the
honeycomb (K) and the kagomé (M ) lattice (see Fig. 14a). Realizing those lattices within
a Mott background is exciting because they host Dirac-semimetallic and, in the case of the
kagomé lattice, additionally flat-band dispersions. The study of these dispersion features under
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a b

c d

Fig. 14: Effective-honeycomb and -kagomé (Pd,Ag)CrO2 delafossite. (a) In-plane design of
the A layer via the natural triangular-lattice ordering instabilities of K-point (honeycomb)
and M -point (kagomé) kind (from [80]). (b) Designed crystal structure from understanding
Pd(Ag) positions as active(blocking) sites; Pd: blue, Ag: grey, O: red; Cr: green. Left: 3D
view and right: view onto the effective honeycomb lattice of Pd sites. (c, d) Interacting spectral
information from DFT+DMFT at T = 193 K. (c) Spectral function in (top) larger and (bottom)
smaller energy window for effective-honeycomb structure. (d) same as (c) but for effective-
kagomé structure.

the possible influence of strong correlations is a recent emerging research field in condensed
matter, see e.g. Refs. [81–83].

To facilitate this reductions of the triangular lattice, the introduction of periodic blocking sites
which ideally disconnect hopping processes, can be a promising route. From the nominal
Ag(4d) filled-shell in the CrO2-based delafossites, we assume in the present context that Ag
sites within the Pd layer may serve as such blocking sites. For sure, finite covalency will only
realize a partial blocking, however, this may still be sufficient to mimic basic honeycomb- or
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kagomé-lattice features. To realize a honeycomb(kagomé) lattice in that spirit within the A
layer, one out of three(four) in-plane Pd sites has to be replaced by Ag. Note that though
preparing such orderings in the lab will be surely demanding, a layer-by-layer growth might
still be feasible from tailoring the layer stoichiometry. If the given Pd-Ag in-plane orderings
are thermodynamically stable (for given temperature, pressure, strain, etc.), nature will take
its course in realizing the periodic effective honeycomb/kagomé pattern. For the honeycomb
case, Fig. 14b depicts the designed delafossite structure. The DFT+DMFT calculations for both
effective-lattice systems are again performed with corresponding linear interpolation of the cho-
sen Hubbard U values for the bulk compounds. The honeycomb(kagomé) structure asks for a
supercell of three(four) original formula units. Note that we utilized a somewhat lower system
temperature of T = 193 K for both structural cases, since from general inspection of the spectral
properties, the coherence scale for stable quasiparticles appears smaller for the given in-plane
alternations compared to the out-of-plane heterostructures.

In Fig. 14c,d we show the resulting spectral functions. From graphene studies it is well known
that the nearest-neighbor (NN) tight-binding electronic structure of the half-filled honeycomb
lattice is semimetallic, with prominent Dirac dispersions (i.e. massless Dirac fermions) at the
K point in reciprocal space [84]. The low-energy spectrum of the present effective-honeycomb
lattice in the delafossite setting shows indeed some resemblance of this feature. First, the CrO2

planes remain Mott-insulating upon the in-plane (Pd, Ag) structuring and there are two Pd-
dominated dispersions close to εF (see Fig. 14a). A Dirac-like dispersion aroundK is indicated,
yet shifted, with different filling and different overall dispersion compared to graphene. Still,
some blocking behavior of Ag is realized, transforming the original PdCrO2 low-energy disper-
sion in direction towards the canonical honeycomb dispersion. The NN tight-binding electronic
structure of the kagomé lattice is known for its flat-band feature at one side of the band edge,
as well as for the Dirac dispersion at 4/3 (2/3) filling, depending on the sign of the NN hop-
ping (e.g. [81]). In the present case, the flat-band feature should appear at the upper band
edge and thus the Dirac point at 2/3 filling. Figure 14d depicts the resulting spectral function of
effective-kagomé (Pd,Ag)CrO2, and from a brief look the canonical kagomé features are hard to
decipher. The intriguing effect of correlations and only-partial Ag blocking render things hard
to read. Yet after a closer look, and after also comparing with the non-interacting DFT states,
the remains of the flat-band feature can be located around 1 eV above the Fermi level. Inter-
estingly, the interactions in the delafossite structure seemingly transfer spectral weight from
there towards εF. Close to Γ, a waterfall-like spectral signature may be observed. Hence a flat,
but at T = 193 K rather incoherent, low-energy feature ranging from K to M and halfway to
Γ emerges. The Dirac-dispersion feature at K from the canonical kagomé lattice can also be
identified at about −0.6 eV.

In conclusion, expectedly neither the effective-honeycomb nor the effective-kagomé lattice re-
alization in the modified PdCrO2 structure enables canonical textbook dispersions at the Fermi
level. But as a proof of principle, the in-plane engineering of delafossites may be a route to
create nontrivial low-energy dispersions which are subject to the puzzling layer-entangled cor-
relation delafossite physics.
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6 Further systems

So far, the present review mainly focussed on early transition-metal titanate heterostructures,
but theoretical work also dealt with other oxide designs. For instance, the late-transition-metal
rare-earth (R) nickelate series RNiO3 provides important material building blocks, too [85].
Originally, there was the idea to realize cuprate-like physics within nickelates by proper het-
erostructuring [86, 87], however experimental success remained absent for a long time. It was
only 2019 that Li et al. detected superconductivity in thin films of reduced NdNiO2 on an STO
substrate [88]. If this superconducting state is cuprate-like is, however, still a matter of ongoing
debate (see e.g. [89]).
Bulk perovskite-like vanadates split into correlated metals, e.g., SrVO3 and CaVO3, and Mott
insulators, e.g., LaVO3 and YVO3. Heterostructures based on SrVO3 were studied in view of
a possible loss of metallicity in a small-layer limit [90, 91]. Moreover, transition-metal ox-
ides from the 4d and 5d series serve as further building blocks. For instance, the 4d4 physics
of strontium and/or calcium ruthenates poses a longstanding problem, which can be tuned by
heterostructuring [92].

7 Concluding remarks

We here provided a short overview on selected features of DFT+DMFT applications to oxide
heterostructures, mainly guided by the author’s own work. Note that especially the experimental
side of this frontier field of condensed matter physics extends to various further phenomena,
e.g., detailed magnetism engineering in interfaces, which can be found in other, more general
reviews on the oxide-heterostructure topic.
From the DMFT perspective, one may state that present state-of-the-art DFT+DMFT is truly
capable of addressing many challenges of oxide heterostructures. In other words, such ‘large-
scale’ quantum materials science problems are not out of reach for first-principles many-body
techniques. Of course, therefore one has to leave the ‘safer ground’ of model Hamiltonians or
more straightforward bulk scenarios. Hence especially in such a regime, DFT+DMFT is not a
‘black-box’ machinery, but physical intuition and careful weighing of the calculational setting
(i.e. choice of correlated subspace, etc.) goes hand in hand with demanding numerics. But this
may not be seen as a contradicting endeavor, but quite on the contrary: heavy numerics guided
by proper physical insight seems indispensable to tackle the multiorbital and multisite correlated
electron problem of oxide heterostructures and related modern materials complexities.
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10.2 Michael Potthoff

1 Motivation

Consider two objects A and B. These could be physical objects, such as elementary particles,
molecules, or macroscopically large bodies. They could be mathematical structures, but also
poems or novels, the mood of two people, etc. It is obvious that the question “Is A equal to
B?” rarely deserves a positive answer. In the case of “Is A essentially equal to B?” on the other
hand, it seems to be a question worthy of discussion in almost all situations. All the complexity
here is cleverly hidden in the word “essentially”. This leaves room for us to define criteria by
which we can decide about essential equality or inequality. An instructive example is a cat and
a dog. Are these “objects” the same? No, but it may be reasonable to regard them as essentially
the same, depending on the criterion chosen, e.g., that of being an animal.
Why do we bother? The relation “is essentially the same” is an equivalence relation because the
following statements appear to be immediately true: “A is essentially the same as A”, “if A is
essentially the same as B, then B is essentially the same as A”, and “if A is essentially the same
as B and B is essentially the same as C, then A is essentially the same as C”. Any equivalence
relation can be used to classify objects, and classification is an important goal of almost any
science. Classification of life forms, for example, is one of the most important goals of biology.
In physics, there are various concepts for classifying systems or the static or dynamic states of
systems. These find expression, for example, in the periodic table of elements or in equilibrium
phase diagrams of macroscopically large physical bodies. Despite the same chemical composi-
tion, we distinguish, for example, the condensed and the liquid state of water. Decision-making
criteria in many cases, and also in the distinction between solid and liquid, can be based on
symmetry arguments, i.e., on invariance under a group of transformations.
Let us discuss a well-known example from mathematics, which is frequently used in quantum
physics: A separable Hilbert space is a linear space over the field of real or complex numbers,
i.e., addition and scalar multiplication are defined and satisfy a couple of postulates. In addition
the space is equipped with a bilinear or sesquilinear inner product, which defines a distance
function for which it is a complete metric space, and has a countable basis. Two separable
Hilbert spaces HA and HB are essentially the same, HA

∼= HB, if there exists an isomorphism
HA → HB, i.e., an invertible map preserving the mathematical structure. Due to the rich
structure, the equivalence relation ∼= is very strong. This “explains” the simplicity of the clas-
sification, namely all (infinite-dimensional) separable Hilbert spaces are essentially the same
and, e.g., isomorphic to L2.
A more fruitful, finer classification is obtained with a “weaker” equivalence relation. Groups,
for example, are mathematical structures defined with a minimum of postulates. Structure-
conserving maps between two groups G1 and G2, group isomorphisms, therefore define a much
weaker equivalence relation G1

∼= G2. In fact, a complete classification is an entirely open
mathematical problem. Narrowing a bit and asking for essential equality between finite, simple
groups, brings us to one of the major milestones of group theory. Here, a complete classification
has been achieved in fact with a proof that is documented several hundred papers published over
the last 70 years.
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Fig. 1: Various topological subspaces of R3.

An equivalence relation that has proven very fruitful in the context of condensed-matter physics
is “A can continuously and reversibly be deformed into B”. Continuity is a rather weak property
of functions and the main concept of topology. To give a mathematical example again, we may
consider R3 as a topological space and forget about its capability to carry a linear structure.
Among the topological subspaces of R3 we have, e.g., the 2-sphere S2 = {x ∈ R3 | ||x|| = 1},
the Cartesian product of 1-spheres S1 × S1, the surface of a cube C2, the 2-torus (“donut”) T 2,
the open or closed 3-ball with the 2-sphere as its boundary, and the like, see Fig. 1. We find that
S1 × S1 ∼= T 2 � S2 ∼= C2 � x-y plane etc.

An important tool of topological classification are topological invariants. These are all quan-
tities that are preserved under continuous transformations that have a continuous inverse trans-
formation. The number of holes is such an invariant. Two subspaces with different number
of holes in fact cannot be continuously deformed into each other. This explains, why S2 (no
hole) and the torus T 2 (one hole) are topologically different. On the other hand, two subspaces
with the same number of holes are not necessarily topologically equivalent. An example is the
2-sphere and the x-y plane. These may differ in another invariant.

In electron band-structure theory we are interested in the topological classification of more com-
plex structures. Consider a system of independent electrons on an infinite periodic lattice. Its
Bloch HamiltonianH(k) parametrically depends on the wave vectors k in a reciprocal unit cell.
In two dimensions, for example, this parameter space forms a torus T 2 because wave vectors at
the boundaries of the reciprocal unit cell must be identified. However, it is not (only) the non-
trivial topology of the parameter-space geometry that is the focus. We are rather interested in
the topological classification of the bundle of ground states of H(k) over T 2. Questions behind
this are: Can these ground states be deformed into each other continuously? Can we topo-
logically classify band structures in this way? In case of band insulators, this seemingly simple
question has been answered affirmatively and comprehensively. The answer is surprisingly deep
and requires substantial mathematical background. It has led to a classification scheme called
“the 10-fold way”, in which symmetry arguments and different topological invariants play the
essential role.

The goal of this contribution is twofold: First, with the Chern number, we exemplarily pick
a central topological invariant and, starting from basic concepts, discuss its precise definition,
its range of applicability for the construction of topological phase diagrams, its connection
with time-reversal symmetry, its experimental significance, etc. This elucidates the concept of
“class A” Chern insulators, i.e., band insulators with a certain topological twist, which fall into
one of the mentioned 10 classes.
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Second, despite the great success of topological band theory, it cannot be straightforwardly
extended to interacting electron systems. The development of novel concepts for the topological
characterization and classification of the states of strongly correlated electron systems is one the
major activities in theoretical physics, and in fact it is one of the most fascinating endeavors.
One promising route is paved by combining dynamical mean-field theory with topological band
theory, and the discussion of this idea and of an illuminating example will take a major part of
the present work.
The presentation heavily makes use of various ideas from textbooks on topology and its applica-
tions in physics [1–4], on the results of the M.Sc. thesis of David Krüger, essentially published
in Ref. [5], and of the B.Sc. thesis of Lara Heyl [6].

2 Chern number

The Chern number is a topological invariant. To define this invariant and to prove its quanti-
zation, we have to introduce and discuss a couple of basic theoretical concepts, including the
adiabatic theorem, the Berry connection, gauge transformations and the Berry phase, and finally
the Berry curvature.

Adiabatic theorem

Consider a system Hamiltonian H which smoothly depends on r parametersR = (R1, ..., Rr)

H = H(R) = H(R1, ..., Rr) . (1)

The space of parametersM is a smooth r-dimensional manifold. We will further assume that
the ground state

∣∣Φ0(R)
〉

of H(R) is unique (nondegenerate) for allR. This implies that there
is a finite gap ∆(R) to the first excited state

∣∣Φ1(R)
〉

on the entire manifold M. For each
parameter configuration R ∈ M the Hilbert space H is “locally” spanned by an orthonormal
eigenbasis {

∣∣Φj(R)
〉
} of H(R), i.e., we have

H(R)
∣∣Φj(R)

〉
= Ej(R)

∣∣Φj(R)
〉
. (2)

Suppose that the parameters evolve in time as described by a trajectory R = R(t) in M.
This means that the Hamiltonian acquires an explicit time dependence H(t) = H

(
R(t)

)
. The

formal solution of Schrödinger’s equation provides us with the state of the system at time t:∣∣Ψ(t)〉 = T exp
(
−i
∫ t
0
dτ H

(
R(τ)

))∣∣Ψ(0)〉, where T is the time ordering and where have set
~ ≡ 1. We assume that the state at time t = 0 is the ground state of H

(
R(t = 0)

)
, i.e., at t = 0

we have
∣∣Ψ(0)〉 = ∣∣Φ0

(
R(0)

)〉
.

The adiabatic theorem [7,8] states that, if the time evolution of the parametersR(t) is sufficiently
slow, the system will remain in its ground state. More precisely, the state of the quantum
system at time t is the instantaneous ground state of the Hamiltonian H

(
R(t)

)
, i.e., we have∣∣Ψ(t)〉 ∝ ∣∣Φ0

(
R(t)

)〉
. This is a strong statement and it is nontrivial to precisely formulate the

conditions under which this holds true. Roughly, its validity requires that the typical time scale
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τtypical of the parameter dynamics is much larger than the inverse of the gap: τtypical � 1/∆.
Here, we take the adiabatic theorem for granted and will focus on the phase of the state. The
adiabatic theorem, as we have formulated it, tells us that the state at time t is a ground state of
H
(
R(t)

)
, ∣∣Ψ(t)〉 = e−iγ(t)

∣∣Φ0

(
R(t)

)〉
, (3)

but it leaves the phase factor e−iγ(t) yet undetermined.

Berry connection

Schrödinger’s equation can be derived from the action principle δS = δ
∫
dt L = 0 with the

Lagrangian
L = L

(
|Ψ〉, ∂t|Ψ〉, 〈Ψ |, ∂t〈Ψ |, t

)
=
〈
Ψ
∣∣i∂t −H(R(t)

)∣∣Ψ〉 . (4)

In fact, 0 = ∂L/∂〈Ψ | − ∂t
(
∂L/∂(〈∂tΨ |)

)
=
(
i∂t − H

(
R(t)

))
|Ψ〉, while the second Euler-

Lagrange equation for 〈Ψ | is just the adjoint Schrödinger equation. The Lagrange formalism is
a useful tool, as one can incorporate the result of the adiabatic theorem as a holonomic constraint
with the goal to get a simple equation of motion for the yet unknown phase γ(t) only. Using
Eq. (3) to express the “generalized coordinates”

∣∣Ψ(t)〉 and
〈
Ψ(t)

∣∣ in terms of
∣∣Φ0

(
R(t)

)〉
and〈

Φ0

(
R(t)

)∣∣, we get an effective Lagrangian,

Leff = eiγ(t)
〈
Φ0

(
R(t)

)∣∣∣(i∂t −H(R(t)
))
e−iγ(t)

∣∣∣Φ0

(
R(t)

)〉
, (5)

which indeed is a functional of the unknown phase of the system state only, while the local
ground states

∣∣Φ0

(
R(t)

)〉
have fixed selected phases. Since |Ψ〉 and 〈Ψ | must be treated as

independent in Eq. (4), γ and γ have to be treated as independent as well. Hence, the Lagrangian
Leff has the functional form Leff(γ, γ, ∂tγ, ∂tγ, t) with an explicit time dependence due toR(t).
Carrying out the time derivative i∂t of the terms on the right and using Eq. (2) for j = 0, we
arrive at

Leff = eiγ(t)e−iγ(t)
(
∂tγ(t)− E0

(
R(t)

)
+A0

(
R(t)

)
·Ṙ(t)

)
. (6)

Here,

A0(R) = i
〈
Φ0(R)

∣∣∣ ∂
∂R

∣∣∣Φ0(R)
〉

(7)

is the Berry connection, which mediates between the ground states at R and R+dR on the
manifoldM, andA0(R)·Ṙ =

∑r
ρ=1A0,ρ(R)·Ṙρ with Ṙρ = ∂tRρ. Note that the normalization

condition for the state implies that A0(R) is real. The resulting Euler-Lagrange equations for
γ and γ are equivalent, such that eventually γ = γ. The equation for γ,

∂tγ(t) = E0

(
R(t)

)
−A0

(
R(t)

)
·Ṙ(t) , (8)

is easily solved by

γ(t) = γ(0) +

∫ t

0

E0

(
R(τ)

)
dτ −

∫ t

0

A0

(
R(τ)

)
·Ṙ(τ) dτ , (9)
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Finally, with Eq. (3) and choosing w.l.o.g. γ(0) = 0,

∣∣Ψ(t)〉 = exp

(
−i
∫ t

0

E0

(
R(τ)

)
dτ

)
exp

(
i

∫ R(t)

C,R(0)

A0(R) · dR

)∣∣Φ0

(
R(t)

)〉
. (10)

The first phase factor is called “dynamical”, the second “geometrical”. For the second, the
substitution rule has been used in the last step. We see that it only depends on the path C from
R(0) toR(t) inM, a geometrical object, but not on the time dependence of the trajectoryR(t),
on “velocity”, “acceleration” etc.

Gauge transformations and Berry phase

After having demonstrated the relevance of the Berry connection for the adiabatic time evolution
of a quantum system, we will now turn to our main question, namely its relevance for the (time-
independent) topological properties of the system and reconsider the bundle of ground states∣∣Φ0(R)

〉
withR∈M. The choice of an orthonormal energy eigenbasis for eachR, see Eq. (2),

also implies the choice of a particular phase ϕ(R) for each of the ground states in M. This
choice is arbitrary, so it is important to ask what happens if we make a different choice. Our
naive expectation is that all observable ground-state properties of the system are invariant under
a transformation of the phase, i.e., under a gauge transformation of the form∣∣Φ0(R)

〉
7→ eiϕ(R)

∣∣Φ0(R)
〉
. (11)

Such anR-dependent gauge transformation is called “local”, as opposed to a “global” transfor-
mation

∣∣Φ0(R)
〉
7→ eiϕ

∣∣Φ0(R)
〉
. The system’s topological properties are governed by the map

R 7→ eiϕ(R) from the parameter manifoldM into U(1) =
{
z ∈ C

∣∣ |z| = 1
}

. The fact that this
map or, equivalently, theR-dependent choice of the phase factors, has observable consequences
as has been pointed out by M. Berry [9].
Under a local gauge transformation, Eq. (11), the Berry connection transforms as

A0(R) 7→ A′0(R) = A0(R)− ∂ϕ(R)

∂R
. (12)

This implies that A0(R) is gauge dependent. It has no direct physical meaning but depends on
the arbitrary choice of the phases ϕ(R) of the local ground states |Φ0(R)〉. The situation is
particularly interesting, if C is a closed path inM, given by some parametrization R = R(λ),
where the real parameter λ could stand for the time. In this case γC =

∮
CA0(R)·dR is called

the Berry phase. Under a gauge transformation, the Berry phase transforms as γC 7→ γC −∮
C

(
∂ϕ(R)/∂R

)
·dR, see Eq. (12). If certain rather general conditions are satisfied, as specified

by the Poincaré lemma and regarding, in particular, the continuity of ∂ϕ(R)/∂R, we can argue
that the Berry phase is invariant γC 7→ γC −

∮
C dϕ(R) = γC .

However, the integral along C can be nonzero in fact. Consider, for example, M = R3 and
the circle C =

{
R = (X, Y, Z)T

∣∣X2+Y 2 = R2 , Z=0
}

of radius R around R = 0 in the
X-Y plane. Suppose A′0(R) = A0(R)− (−Y,X, 0)T/(X2+Y 2). Locally, we have A′0(R) =
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A0(R)− (∂/∂R) arctan(Y/X). However, the map ϕ(R) = arctan(Y/X) is discontinuous on
the X = 0 plane, and ∂ϕ(R)/∂R is singular on the Z axis. In fact, it is straightforward to see
that

∮
C

(
∂ϕ(R)/∂R

)
·dR = 2π 6= 0.

Generally, under an arbitrary gauge transformation, we have

γC =

∮
C
A0(R)·dR 7→ γC + 2πk (13)

with k ∈ Z. This is equivalent with the statement that the Berry phase factor eiγC is always
gauge invariant. To verify this, we rewrite the integral as the limit of a Riemann sum

exp (iγC) = exp

(
i

∮
C
A0(R)·dR

)
= lim

n→∞
exp

(
iA0(Rn)·∆Rn + · · ·+ iA0(R1)·∆R1

)
= lim

n→∞

(
1+iA0(Rn)·∆Rn

)
· · ·
(
1+iA0(R1)·∆R1)

)
. (14)

This is a Volterra product integral. The k-th factor can be written as 1 + iA0(Rk)·∆Rk =

1 −
〈
Φ0(Rk)

∣∣ (∣∣Φ0(Rk)
〉
−
∣∣Φ0(Rk−∆Rk)

〉)
=
〈
Φ0(Rk)

∣∣Φ0(Rk−∆Rk)
〉
, with the help of

Eq. (7). We haveRk−∆Rk = Rk−1 and, since C is a closed path, we can identifyR0 withRn.
This yields

exp (iγC) = lim
n→∞

〈
Φ0(Rn)

∣∣Φ0(Rn−1)
〉
· · ·
〈
Φ0(R1)

∣∣Φ0(R0)
〉

= lim
n→∞

tr
(∣∣Φ0(Rn)

〉〈
Φ0(Rn)

∣∣ · · · ∣∣Φ0(R1)
〉〈
Φ0(R1)

∣∣Φ0(R0)
〉〈
Φ0(R0)

∣∣) . (15)

where the latter representation is manifestly gauge invariant, since the phases cancel out in each
of the dyadic products.

Example: Toy model with two-dimensional Hilbert space

As an example, we will consider the following toy Hamiltonian on a three-dimensional param-
eter manifold

H = −1

2
R·τ , (16)

Here R ∈ M = R3 \ {0} and τ = (τ1, τ2, τ3)
T is the vector of Pauli matrices. Actually, this

form of H is generic for a quantum system with a two-dimensional Hilbert space. The 2×2
matrix representing the Hamiltonian can be expanded in the Hermitian basis {1, τ1, τ2, τ3},
which yields Eq. (16) after dropping the uninteresting term ∝ 1.
When interpreting the three parameters R as the components of a field strength B, the model
Eq. (16) just describes a local spin 1/2 in an external magnetic field. We thus expect a Zeeman
splitting of the two eigenstates of H . In fact we have E0(R) = −R/2 and E1(R) = +R/2

where R = |R|. Note that we have intentionally excluded the point R = 0 from the manifold
M, as here the ground state would be degenerate and our entire construction would break down.
TheR-dependent normalized ground state of the model is readily calculated and is conveniently
expressed in terms of spherical coordinatesR = R

(
cosφ sin θ, sinφ sin θ, cos θ

)T as

∣∣Φ0(R)
〉
=
∣∣Φ0(θ, φ)

〉
=

(
cos(θ/2)

eiφ sin(θ/2)

)
. (17)
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It

Fig. 2: Hairy-ball theorem: There is no everywhere nonvanishing and continuous tangent vec-
tor field on an n-sphere, if n is even. Left: Sketch of a continuous tangent vector field for n = 1.
Middle: Tangent vector field with two twirls for n = 1. Right: Tangent vector field on S2 with
(already) two twirls. At each R ∈ S2, the direction of the arrow with unit length specifies the
phase ϕ(R).

In fact, the ground state is independent of R, and it is almost everywhere a smooth and in-
vertible function of θ and φ. The angle variables provide us with a chart of the 2-sphere
S2 =

{
R
∣∣R=1

}
. However, the state that is obtained in the limit θ → π, i.e., when approach-

ing the south pole of S2, will depend on φ. This means that the map (θ, φ) 7→ R 7→
∣∣Φ0(R)

〉
is discontinuous at the south pole. Hence, the parameter manifold S2 cannot be described by a
single chart. A second one is necessary for a complete atlas.
Choosing a different gauge is another way to deal with the singularity since this will not af-
fect any physical, gauge-invariant properties. In fact, the gauge transformation

∣∣Φ0(R)
〉
7→

e−iφ
∣∣Φ0(R)

〉
does the job. It removes the singularity at the south pole — but it also intro-

duces a similar one at the north pole. Clearly, the problem cannot be solved with a continuous
gauge transformation, and the proposed one is itself discontinuous. As we have seen above,
R = (X, Y, Z)T 7→ ϕ(R) = φ = arctan(Y/X) is discontinuous on the entire X = 0 plane.
Generally, there is no gauge such that the phase of

∣∣Φ0(R)
〉

is continuous on the entire manifold
M, which essentially is the 2-sphere. The 2-sphere, with a phase factor eiϕ(R) ∈ U(1) ∼= S1

attached to each point, is like a hairy sphere, so that we can apply the “hairy-ball theorem” [4],
see Fig. 2. This states that any attempt to comb a hairy billiard ball (the 2-sphere) smoothly,
without twirls, must fail and that there must be at least one singular point.
On the equator θ = π/2, oriented from west to east, and for arbitrary φ ∈ [0, 2π[, the φ
component of the Berry connection obtained from Eq. (17) is

A0(θ, φ)Reφ = i
〈
Φ0(θ, φ)

∣∣∂φ∣∣Φ0(θ, φ)
〉
= −1

2
, (18)

where eφ = (1/R)∂R/∂φ. Here, we have used the definition Eq. (12) and the representation
∂/∂R = eφ(R sin θ)−1(∂/∂φ) + eθ(· · · ) + eR(· · · ) with θ = π/2 and R = 1. Computing the
line integral along the equator, where dR = Reφ dφ, yields the Berry phase

γequator =

∮
equator

A0(R)·dR =

∫ 2π

0

A0(θ, φ)·Reφ dφ = −π . (19)

In the context of adiabatic dynamics, this has the interesting consequence that the system state
|Ψ〉 picks up a sign eiγC = −1 whenR is slowly steered once around the equator C.
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Fig. 3: Parallel transport along a closed path on a flat and on a curved space.

In the above-discussed alternative gauge after the transformation
∣∣Φ0(R)

〉
7→ e−iφ

∣∣Φ0(R)
〉
=(

e−iφ cos(θ/2), sin(θ/2)
)T, we get a different result for the Berry connection, A′0(θ, φ)·Reφ =

+1
2
, showing again that A′0(R) is not gauge invariant. Computing the corresponding Berry

phase yields γequator = +π. This is consistent with our general reasoning: The Berry phase γC
is gauge invariant up to an integer multiple of 2π only, but the Berry phase factor eiγC is fully
gauge invariant.

Berry curvature

More elegantly, we can compute the Berry phase γC with the help of the Stokes theorem

γC =

∮
C
A0(R)·dR =

∫
S
Ω0(R)·dS . (20)

Here S is the unit normal vector of the surface S on the sphere of fixed radiusR that is bounded
by the closed path C = ∂S, and Ω0(R) = ∂R×A0(R) is the curl of the Berry connection.
The orientation of the path C is inherited from the orientation of S in the usual way by the
right-hand rule. Ω0(R) is called the (ground-state) Berry curvature. In this form, the Stokes
theorem is formulated for applications to a three-dimensional parameter space only, and we will
stick to the above toy model. Qualitatively, however, the entire discussion holds for arbitrary
r-dimensional manifoldsM, and a brief discussion of the general case will be given later.
The Berry phase γC is a quantity, which measures the degree to which parallel transport fails to
preserve the geometrical data that is being transported. Parallel transport along closed loops is
in a way trivial on flat spaces but leaves a detectable footprint for a curved space, see Fig. 3. In
fact, Eq. (20) demonstrates that a finite Berry phase requires a finite Berry curvature Ω0(R).
Eq. (19) shows that parallel transport of states in Hilbert space does not follow descriptive
Euclidean geometry. Rather, it takes two circumnavigations of the equator instead of just one
to get back to the same state.
The Berry curvature is a highly convenient quantity since it is invariant under arbitrary gauge
transformations. This follows from its definition, from the transformation behavior (12) of
the Berry connection, and from the fact that the curl of any gradient field vanishes. Another
important property is ∂RΩ0(R) = 0, i.e., the Berry curvature is divergence-free. Again, this
holds by definition since ∂RΩ0(R) = ∂R · ∂R×A0(R) = 0.
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Vice versa, there is the mathematical question, under which conditions a divergence-free vector
fieldΩ0(R) can be expressed as the curl of another vector field on the entire manifoldM. This
is answered by the following form of the Poincaré lemma: If the manifoldM is an open ball
or, more generally, a star-shaped open set in R3, one can find a single field A0(R) such that
Ω0(R) = ∂R×A0(R) globally, i.e., for all R ∈ M. Note that locally a representation as the
curl of a vector field is always possible.
In case of topologically more complicated manifolds, a global representation may not be possi-
ble. The manifoldM = R3\{0} relevant for the toy model or, since the ground state does not
depend on R, the submanifold S2, are in fact examples for manifolds that cannot be covered
by a single chart and are thus topologically different from R3 or from R2, respectively. Conse-
quently, the Stokes theorem Eq. (20) cannot be applied if S = S2. We would mistakenly get
γC = 0 since the path C vanishes in this case.
Let us compute the Berry curvature for our toy model concretely. Its α-th component

Ω0,α(R) =
1

2

∑
βγ

εαβγ Ω0,βγ(R) (21)

can be expressed in terms of an antisymmetric real matrix

Ω0,βγ(R) = ∂βA0,γ(R)− ∂γA0,β(R) = i
(〈
∂βΦ0(R)

∣∣∂γΦ0(R)
〉
−
〈
∂γΦ0(R)

∣∣∂βΦ0(R)
〉)

= −2 Im
〈
∂βΦ0(R)

∣∣∂γΦ0(R)
〉
= −2 Im

∑
j 6=0

〈
∂βΦ0(R)

∣∣Φj(R)
〉〈
Φj(R)

∣∣∂γΦ0(R)
〉
.

(22)

For the second equality, we have used Eq. (7) and the fact that partial derivatives commute in
case of a smooth R dependence. For the last, we have inserted a resolution of the identity (at
R). Note that the term j = 0 does not contribute as for j = 0 the matrix elements are real.
Using the identity

〈
Φj(R)

∣∣∂γΦ0(R)
〉
=
〈
Φj(R)

∣∣∂γH(R)
∣∣Φ0(R)

〉
/
(
E0(R)−Ej(R)

)
, valid

for j 6= 0, we finally have

Ω0,βγ(R) = −2 Im
∑
j 6=0

〈
Φ0(R)

∣∣∂βH(R)
∣∣Φj(R)

〉〈
Φj(R)

∣∣∂γH(R)
∣∣Φ0(R)

〉(
E0(R)−Ej(R)

)2 . (23)

In case of the toy model, the j-sum merely consists of a single term, referring to the excited
state

∣∣Φ1(R)
〉
. Furthermore, ∂βH(R) = −τβ/2, see Eq. (16), and

(
E0(R)−E1(R)

)2
= R2.

Hence

Ω0,βγ(R) = −1

2
Im

〈
Φ0(R)

∣∣τβ∣∣Φ1(R)
〉〈
Φ1(R)

∣∣τγ∣∣Φ0(R)
〉

R2
(24)

and with Eq. (21)

Ω0(R) =
1

2

∑
αβγ

εαβγ Ω0,βγ(R) eα = −1

4
Im

〈
Φ0(R)

∣∣τ ∣∣Φ1(R)
〉
×
〈
Φ1(R)

∣∣τ ∣∣Φ0(R)
〉

R2
. (25)
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We can choose the z axis to point in the direction of R, such that
∣∣Φ0(R)

〉
= (1, 0)T with

Eq. (17) and
∣∣Φ1(R)

〉
= eiφ(0, 1)T . Evaluating the matrix element

〈
Φ0(R)

∣∣τ ∣∣Φ1(R)
〉
= eiφ(1, 0) τ

(
0

1

)
= eiφ

 1

−i
0

 ,
〈
Φ1(R)

∣∣τ ∣∣Φ0(R)
〉
= e−iφ

 1

i

0

 ,

(26)
and remembering that we had assumedR = Rez, we find

Ω0(R) = −1

2

R

R3
. (27)

Since Ω0(R) = ∂R×A0(R), one may ask the question, if there is a similarly compact result
for the Berry connection. In fact, one may verify by a direct calculation that, for an arbitrarily
chosen unit vector e, the curl of

A0(R) = −1

2

1

R2

e×R
1 + eR/R

(28)

yields the Berry curvature (27), as has already been noted by P. Dirac in 1931 [10].
Equations (27) and (28) are interesting as they allow us to interpret A0(R) as the vector po-
tential of the magnetic field Ω0(R) of a “magnetic monopole” with “magnetic point charge”
q = −1/2 located at the origin R = 0. Note that A0(R) is singular for all R with R = −Re,
i.e., on the ray (Dirac string) starting atR = 0 to infinity in −e direction. Different choices for
e just correspond to different gauges. The singular point R = −e, where the ray intersects S2,
can be moved around on S2 by choosing different gauges but it cannot be removed for any par-
ticular gauge. Hence, Ω0(R)=∂R×A0(R) holds locally but not globally on S2 or on R3\{0}.
This is consistent with our earlier discussion that the Poincaré lemma does not apply to S2.
There is also a descriptive meaning of the Berry phase γC . Equation (20) tells us that γC is
the flux of the “magnetic field” through a surface that is bounded by the closed path C. The
right-hand rule tells us that, for C being the equator, oriented from west to east, S is the upper
hemisphere. Using Eq. (27) with dS=R2(R/R) dS, we see that γC = −1

2

∫
S
(R/R3)dS = −π

for any great circle on the sphere of arbitrary radius. This generalizes our earlier result, Eq. (19).
We can also integrate over the lower hemisphere π/2 < θ < π to compute the Berry phase via
the Stokes theorem. According to Eq. (27), the collected flux is the same:

∫
S
Ω0(R)dS = −π.

However, in applying the Stokes theorem with the same path C (the equator) we have to take care
of an additional sign,

∮
CA0(R)dR = −

∫
SΩ0(R) dS, since the orientations of C and S are not

consistent in this case (the right-hand rule is violated). There is a second point to be considered:
The Stokes theorem holds ifA0(R) is smooth on (an open set containing) the lower hemisphere,
which is not the case for the Berry connection derived from Eq. (17). In the above-discussed al-
ternative gauge after the transformation |Φ0(R)〉 7→ e−iφ|Φ0(R)〉, the Berry connectionA′0(R)

is in fact smooth on the lower hemisphere. However,
∮
CA

′
0(R)dR = π, opposed to Eq. (19),

but consistent with the Stokes theorem:
∫
SΩ0(R) dS = −

∮
CA
′
0(R) dR=−π.
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Chern number

We are now in a position to define the Chern number and to understand why this is a topological
invariant. Given the HamiltonianH(R) of a quantum system with a nondegenerate ground state
for allR on its parameter manifoldM, our goal is to show that the first Chern number, defined
as

C =
1

2π

∮
S
Ω0(R)·dS , (29)

is quantized: C ∈ Z.
Here, we consider a closed two-dimensional surface S embedded in a two- or higher-dimen-
sional manifold M. The Chern number will generally be dependent on our choice for S.
For simplicity, we still stick to a three-dimensional parameter space, e.g., to M = R3\{0},
which applies to our toy model. The Berry curvatureΩ0(R) is divergence-free. Hence, locally
Ω0(R) = ∂R×A0(R). IfM could be covered by a single chart, i.e., if it is essentially given by
R3, then the Poincaré lemma would tell us thatΩ0(R) is globally given as the curl of the Berry
connection A0(R) defined on the entire manifoldM. In this case C = 0, Namely, the Stokes
theorem gives

∮
S ∂R×A0(R)dS =

∮
∂SA0(R)dR = 0 since the boundary of S vanishes.

Consider now the case of a nontrivial M and assume that the closed surface S = S1 ∪ S2,
where S1 and S2 are surfaces, which both share the same closed path C as their boundary,
except for the different orientation: ∂S1 = −∂S2 = C. Let Ω0(R) = ∂R×A0,1(R) on S1
and Ω0(R) = ∂R×A0,2(R) on S2. On an environment of C, the Berry connections A0,1(R)

and A0,2(R) satisfy ∂R ×
(
A0,1(R)−A0,2(R)

)
= 0, and thus differ by a gradient field, i.e.,

transform into each other via a gauge transformation. Thus, the corresponding Berry phase
factors are equal, eiγ1,C = eiγ2,C , while the Berry phases are equal modulo 2πk with k ∈ Z:∮

C
A0,1(R)·dR−

∮
C
A0,2(R)·dR = 2πk . (30)

We choose the orientation of C consistent with the orientation of S1 according to the right-hand
rule. The Stokes theorem then gives∫

S1
Ω(R)·dS1 =

∮
C
A0,1(R)·dR and

∫
S2
Ω(R)·dS2 = −

∮
C
A0,2(R)·dR , (31)

where the sign in the second equation comes from the fact that the orientations of C and S2 are
opposite. With Eq. (30) and Eq. (31) we conclude that∮
S
Ω(R)·dS =

∫
S1
Ω(R)·dS1+

∫
S2
Ω(R)·dS2 =

∮
C
A0,1(R)·dR−

∮
C
A0,2(R)·dR ∈ 2πZ. (32)

This is exactly the proposition made and thus concludes the proof.
Inserting the result we have obtained for the toy model Eq. (27) in the definition of the Chern
number Eq. (29), we find a nontrivial (nonzero) invariant

C =
1

2π

∮
S

(
−1

2

R

R3

)
·dS = −1

2

1

2π
4π = −1 ∈ Z , (33)

if we choose the closed surface S such that it once encloses the “magnetic monopole” atR = 0.
Taking a sphere centered around R = 0 is the most simple choice, and the result Eq. (33) is
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obtained straightforwardly. Let us emphasize, however, that it also holds for any continuous
deformation of the sphere as long as R = 0 is included, i.e., if there is no gap closure during
the deformation.
We conclude the discussion with two general points: First, it should be stressed that the Chern
number is assigned to a bundle

{
|Φ0(R)

〉}
S of ground states of Hamiltonians H(R) with pa-

rametersR belonging to a closed two-dimensional manifold S . This can be indicated by writing
C(S) or, more generally, C(S,λ), where we made explicit the dependence of the Hamiltonian
H = H(R,λ) on additional parameters λ, which are unrelated to R and which are called
control parameters. Examples for λ will be seen in the next section. A nonzero Chern num-
ber can be interpreted as a nontrivial twist of this bundle. We can now state that the bundle{
|Φ0(R,λ1)

〉}
S cannot be deformed continuously into the bundle

{
|Φ0(R,λ2)

〉}
S , if the cor-

responding Chern numbers differ from each other, i.e., if C(S,λ1) 6= C(S,λ2). In passing
from λ1 to λ2 in control-parameter space, one would necessarily have to go through a critical
point λc, where there is a gap closure at one (or several) pointsR ∈ S, since the Chern number
cannot change as long the ground state is nondegenerate.
Second, the entire construction can be generalized from three-dimensional parameter mani-
foldsM to manifolds of arbitrary dimension r using the calculus of differential forms and the
generalized Stokes theorem. In this language, the Berry connection is a 1-form, and the Berry
curvature Ω a 2-form, which can be integrated over a closed two-dimensional submanifold
of M, and are thus relevant for r = 3. By construction Ω is closed, i.e., dΩ = 0. In case
of a topologically nontrivial manifoldM, however, it is not necessarily exact, i.e., of the form
Ω = dA. For a bundle of Hamiltonians H(R) with parameters R living in an r = 2n+1-
dimensional manifoldM, and for a given closed 2n-dimensional submanifold S ofM, one can
associate the n-th Chern number C2n(S). It is defined as a 2n-dimensional integral over the
2n-form in

(2π)n
1
n!

∫
S tr(Ωn) over S, where Ω = dA+A2 is the Berry-curvature 2-form given in

terms of the nonabelian (matrix-valued) Berry-connection 1-form A. Let us also mention that
the case of even r must be treated differently. The details of the mathematical formulation are
too complicated to be discussed here. One may have a look at Refs. [3, 11–13].

3 Chern insulator

Our goal is to apply the concept of the Chern number as a topological invariant to a system of
noninteracting electrons on a lattice. An additional Hubbard interaction is discussed later.

Generic model of a noninteracting insulator

A lattice model for noninteracting electrons is uniquely characterized by a hopping matrix t and
has the Hamiltonian

H =
L∑

i,i′=1

M∑
α,α′=1

tiα,i′α′ c
†
iαci′α′ . (34)
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Here i = 1, ..., L labels the sites of a D-dimensional Bravais lattice of position vectors ri with
periodic boundary conditions, and α = 1, ...,M is an orbital index. For simplicity we consider
spinless fermions. Furthermore, M = 2 different orbitals per site are necessary at least to allow
for a band-insulating state with a gapped band structure. We choose M = 2 for simplicity.
We recap a few simple facts from band theory: The lattice is spanned by basis vectors ar with
r = 1, ..., D. Hence, ri =

∑D
r=1 nirar with nir ∈ Z. The discrete Fourier transformation

c†kα = L−1/2
∑

k e
ikric†iα block diagonalizes the Hamiltonian: H =

∑
kαα′ tαα′(k) c

†
kαckα′ .

Here, the wave vectors k lie in the unit cell of the reciprocal lattice spanned by the basis vectors
bs with s = 1, ..., D, defined as the unique solution of the inhomogeneous linear system of
equations arbs = 2πδrs. Periodic boundary conditions for the real-space lattice imply that
the wave-vector components are discrete: ks = (ms/Ls)bs with ms = 0, ..., Ls−1. There
are L = L1L2 · · ·LD wave vectors in any reciprocal unit cell. Typically, one chooses the first
Brillouin zone (1BZ). Furthermore, we have tαα′(k+g) = tαα′(k) for any reciprocal lattice
vector g =

∑D
s=1msbs.

The last point leads to the important observation that in the thermodynamic limit L → ∞ the
1BZ is actually a smoothD-dimensional manifold without a boundary, namely aD-dimensional
torus TD ∼= S1 × · · · × S1. This is nontrivial in the sense that the Poincaré lemma does not
apply when integrating over the 1BZ. Furthermore, for each k ∈ 1BZ ∼= TD the “Bloch
Hamiltonian” t(k) is a 2×2 matrix (in general M×M ). We conclude that for D = 2 we have
exactly the situation as discussed above in the toy-model example: A bundle of Hamiltonians
with two-dimensional Hilbert spaces attached to the points of a smooth nontrivial parameter
manifold 1BZ ∼= T 2 (replacing the 2-sphere).
However, the present situation is much more pleasant: The different Bloch Hamiltonians in the
bundle actually all derive from one and the same Hamiltonian of the system. Furthermore, the
closed two-dimensional surface S = 1BZ, over which the integration is performed, is an intrin-
sic property of the system, namely of its geometry. There is no need to indicate the dependence
of the Chern number C(S,λ) on the choice for S. There is no choice, since S is given a priori.
Hence, C(λ) is a material property and depends on material (control) parameters only. It can
be used to topologically classify the ground states in λ space.
For each k ∈ 1BZ we can expand the Bloch Hamiltonian in the basis of Hermitian 2×2 matrices
as t(k) = d0(k)1+d(k)·τ . Actually, this form is quite convenient to define interesting models,
rather than specifying the real-space hopping matrix tiα,i′α′ . As an example, we will consider
the Qi-Wu-Zhang (QWZ) model [14, 2] on the square lattice. This is defined by d0(k) = 0 and

d(k) =

 t sin kx
t sin ky

m+ t cos kx + t cos ky

 . (35)

Here, t > 0 is the hopping parameter, which can be fixed to specify the energy scale. Fur-
ther, m is the so-called “mass” parameter. The eigenvalues of t(k) = d(k)·τ are given by

ε±(k) = ±|d(k)| = ±t
√
sin2 kx + sin2 ky +

(
m/t+cos kx+cos ky

)2. We see that there is
a (fully occupied) valence band and an (unoccupied) conduction band separated by a finite
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gap ∆(k) = 2|d(k)| > 0 in the entire 1BZ (−π < kx, ky ≤ π), except for special val-
ues of the mass m, for which |d(k)| = 0. We immediately see that a gap closure requires
k = kc with kc ∈

{
(0, 0), (0, π), (π, 0), (π, π)

}
, i.e., it can take place at critical wave vec-

tors kc given by the high-symmetry points (HSPs) in the 1BZ. Furthermore, from the condi-
tion m/t + cos kx + cos ky = 0, evaluated at the HSPs, we find the critical mass parameters
mc = −2t, 0, 2t, at which there is a band closure (at kc = (0, 0), kc = (π, 0), (0, π), and
kc = (π, π), respectively).

Band and Chern insulators

Our toy model Eq. (16) is recovered with the substitution d ↔ −1
2
R. Hence, we immediately

get the Berry curvature (note that ground and excited states switch their roles and that the
prefactor 1

2
is the same, see Eq. (23))

Ω0(d) =
1

2

d

d3
. (36)

At least this is the Berry curvature when regarding d = (dx, dy, dz)
T as the parameters. One

would then have to choose, more or less arbitrarily, a closed two-dimensional surface embedded
in three-dimensional d space to compute the Chern number. The physical parameter manifold
S, however, is the 1BZ. This yields the Chern number as a material property. If the resulting
Chern number is nonzero, we refer to such a material as a “Chern insulator”, as opposed to a
“trivial” band insulator with C = 0.
For noncritical mass parameters, Eq. (35) defines a smooth map d : S → R3\{0}. Since S =

1BZ ∼= T 2 is a closed two-dimensional surface, its image under d,

D ≡
{
d = d(k) ∈ R3\{0}

∣∣ k = (kx, ky) ∈ 1BZ
}
, (37)

is a closed two-dimensional surface as well, which is embedded in R3\{0}. We can define its
infinitesimal vectorial surface element as dS = ∂d(k)

∂kx
×∂d(k)

∂ky
dkxdky, which is perpendicular

to D. This can be used, together with the substitution rule for functions of several variables, to
compute the Chern number as

C =
1

2π

∮
D

(
1

2

d

d3

)
dS =

1

4π

∮
S

d(k)

d(k)3
· ∂d(k)
∂kx

×∂d(k)
∂ky

dkxdky . (38)

The two-dimensional integral in Eq. (38) with the QWZ d(k) from Eq. (35) is easily evaluated
numerically, and one can verify in this way that C ∈ Z.
In fact, C = 0 for −∞ < m < −2t, C = +1 for −2t < m < 0, C = −1 for 0 < m < 2t, and
C = 0 for 2t < m < ∞. This provides us with a topological phase diagram. Systems in the
phase diagram with different Chern numbers cannot be deformed continuously into each other.
Upon varying m, one necessarily has to pass a critical value mc, where there is a band closure
at a HSP in the 1BZ and thus a degenerate ground state.
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Wrapping number

Now that we have the topological phase diagram, we may consider continuous deformations of
the Hamiltonian that do not lead to a gap closure and thus ensure that the Chern number does not
change. For example, we may treat the modulus of d(k) as a k-dependent control parameter.
A continuous deformation d(k) = |d(k)| 7→ 1 does not close the gap ∆(k) = 2d(k). Hence,
the Hamiltonian with normalized d(k) = 1 has the same Chern number as the original one.
This deformation is advantageous, since this implies ∂|d(k)|2/∂kx = 0 (and the same for ky),
and thus d(k) becomes perpendicular to ∂d(k)/∂kx, and to ∂d(k)/∂ky as well. Therewith,
d(k) becomes parallel to the surface element dS, and d(k)dS = ±dS with dS > 0. Eq. (38)
then reads

C = ± 1

4π

∮
D
dS , (39)

where D is the image of the 1BZ ∼= T 2 under the continuous map T 2 → R3\{0} with k 7→
d(k), see Eq. (37).
Since the 1BZ ∼= T 2 is a closed two-dimensional surface and since d(k) = 1, the image of T 2

is a closed two-dimensional surface embedded in the 2-sphere S2. This implies that the image
D must cover the entire S2 — once or several times. The Chern number is just the area of this
surface, divided by 4π. Since the surface area of S2 is just 4π, we see that the Chern number
is just the count, how often S2 is covered. Its sign reflects the orientation of the image with its
surface normal on S2 pointing inwards or outwards. The Chern number gives us the information
how often T 2 wraps around S2. It can be interpreted as a wrapping number.

Time-reversal symmetry

It is important to understand that a nonzero Chern number requires that time-reversal symmetry
is broken. The identity and time reversal form a group of transformations isomorphic to Z2.
According to Wigner’s theorem [8], time reversal is represented in Hilbert space by a unitary
or anti-unitary operator K. In single-particle quantum mechanics, it is defined via its action of
the position, momentum and spin operator as KrK† = r, KpK† = −p, and KsK† = −s. This
impliesK[x, px]K† = −[x, px], and since [x, px] = i~ we must haveKi~K† = −i~. This means
K is anti-unitary, i.e., anti-linear and unitary with K†K = 1. For a many-body system with an
even (odd) number of spin-1/2 fermions we haveK2 = 1 (K2 = −1). Here, we consider spinless
fermions, where K2 = 1. On the Fock space of a spinless-fermion model, the anti-unitary
operator K can be defined to act trivially on the annihilation and creation operators with respect
to the site-orbital basis, KciαK† = ciα (and the same for c†iα). Since c†kα = L−1/2

∑
k e

ikric†iα,
anti-linearity of K implies KckαK† = c−kα.
Let us assume that the parameter-dependent Hamiltonian H(R) of a spinless-fermion system
is time-reversal symmetric for all R, i.e., H(R) = KH(R)K†. Hence, we may assume that
the eigenstates of H(R) can be chosen among the eigenstates of K. In fact, we may choose the
phases of

∣∣Φj(R)
〉

such that K
∣∣Φj(R)

〉
= +

∣∣Φj(R)
〉
. These relations can be used to analyze
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the matrix element in the representation Eq. (23) of the Berry curvature. We have〈
Φ0(R)

∣∣∂βH(R)
∣∣Φj(R)

〉
=
〈
KΦ0(R)

∣∣∂β(KH(R)K†)
∣∣KΦj(R)

〉
=
〈
Φ0(R)

∣∣K†K∂βH(R)K†K
∣∣Φj(R)

〉∗
=
〈
Φ0(R)

∣∣∂βH(R)
∣∣Φj(R)

〉∗
, (40)

where we have used that 〈Au|v〉 = 〈u|A†v〉∗ for any anti-linear operator A and arbitrary states
|u〉, |v〉. Hence, the matrix element is real. With Eq. (23) we conclude that the Berry curvature
vanishes for any time-reversal symmetric Hamiltonian. The Chern number is zero.
Consider a multi-orbital spinless-fermion model, whereH =

∑
kαα′ tαα′ (k)c

†
kαckα′ is specified

by the Bloch Hamiltonian t(k). We have

KHK† = K
∑
kαα′

tαα′(k) c
†
kαckα′K

† =
∑
kαα′

t∗αα′(k) c
†
−kαc−kα′ =

∑
kαα′

t∗αα′(−k) c
†
kαckα′ , (41)

and thus H is invariant under time reversal, KHK† = H , if t(k) = t∗(−k). Specifically, for
the QWZ model t(k) = d(k)τ with d(k) given by Eq. (35). We have

t∗(−k) = d(−k)τ ∗ =
(
−dx(k),−dy(k),+dz(k)

)
·
(
τx,−τy, τz

)
, (42)

showing that time-reversal symmetry is broken. Thus, a topologically nontrivial phase of the
model signalled by a nonzero Chern number is not excluded.

The quantum Hall effect

Typically, a topological invariant is a rather abstract, mathematical concept, and its only signif-
icance is to discriminate topologically different phases that cannot be deformed into each other
continuously. Sometimes, on top of this important classification property, a topological invari-
ant can be an easily accessible physical observable. The Chern number of a two-dimensional
Chern insulator is exactly such a case, and it plays the central role in the quantum Hall effect.
The quantum Hall effect (QHE) is observed in a two-dimensional electron gas, which can be
realized, e.g., in gallium-arsenide heterostructures. Applying a magnetic field perpendicular
to the heterostructure, the transverse (Hall) resistivity Rxy can be measured as function of the
magnetic field strength. From the standard theory of electromagnetism and from Drude theory
one expects a linear dependence. At sufficiently low temperatures, however, plateaus in the
field dependence are found [15]. In fact, the zero-temperature Hall conductivity is quantized:
1/Rxy = νe2/h with integers ν characteristic for the Hall plateaus. This striking quantization
effect has been employed for a new practical standard for electrical resistance as it comes with
an extremely high accuracy. A theoretical derivation [16] shows that the integer ν is given by
the first Chern number. This means that the quantum Hall effect is eventually traced back to
topological properties of the two-dimensional electron gas.
The QWZ model must be seen as a simplified model related to the quantum anomalous Hall
effect (QAHE), i.e., the quantum version of the anomalous Hall effect. The latter requires a
combination of magnetic polarization and spin-orbit coupling to generate a Hall effect rather
than an external magnetic field. In fact, broken time-reversal symmetry rather than an orbital
magnetic field and Landau levels is more fundamental for the concept of a Chern insulator [17].
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Fig. 4: Gapless modes must exist at the boundary between two bulk systems with different Chern
numbers or at the surface of a Chern insulator.

Bulk-boundary correspondence

Another important and experimentally observable consequence of the existence of the Chern
number as a topological invariant in systems with broken time-reversal symmetry is the neces-
sary presence of gapless modes at the surfaces of a Chern insulator. The finite and quantized
conductivity in the quantum-Hall systems is in fact carried by these boundary modes. Their
number is exactly given by the Chern number, and each carries a flux quantum e2/h.
The existence of gapless boundary modes can be explained with the so-called bulk-boundary
correspondence. This is a rather deep concept in topology but can be sketched in simple terms
as follows:
Consider a D-dimensional system that is spatially cut into two subsystems along a D−1-
dimensional boundary, see Fig. 4. For each of the two D-dimensional subsystems, the bulk
band structure shall be gapped and topologically characterized by a Chern number. We assume
that the two Chern numbers are different and imagine an extended boundary which smoothly
interpolates between the bulk Hamiltonians of the two subsystems. Then, somewhere along a
path starting in the bulk of the first subsystem through the boundary and ending in the bulk of
the second, the energy gap must vanish. Otherwise it would be impossible for the topological
invariant to change. Hence, we conclude that at the boundary between two insulators with dif-
ferent Chern numbers, or, since the vacuum has vanishing Chern number, at the surface of a
Chern insulator, there must be low-energy electronic states crossing the gap. These boundary
modes have the fascinating and experimentally detectable property of being topologically pro-
tected. Their existence is a fundamental consequence of a gapped and topologically nontrivial
band structure and thus not affected by arbitrary local perturbations at the boundary.

4 Electron correlations

Up to this point we have concentrated on the topological properties of noninteracting lattice-
fermion models. We will now shift the focus to interacting models, such as the QWZ model
with an additional Hubbard interaction as an instructive prototype and example for concrete
calculations. To this end, we first define the spinful QWZ model with Hamiltonian H(0) =∑

kαα′σ tαα′(k) c
†
kασckα′σ, where σ =↑, ↓ denotes the spin projection and where t(k) = d(k)·τ

with d(k) given by Eq. (35). The QWZ+U model is then given by H = H(0) +H(1) where the
(intra-orbital) Hubbard term reads as H(1) = U

∑
iα niα↑niα↓ with niασ = c†iασciασ.
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Generally, a lattice-fermion model is defined via its hopping matrix tiα,i′α′ (see Eq. (34)) or
by the corresponding Bloch Hamiltonian t(k) that is obtained after Fourier transformation to
reciprocal space and can trivially be made spinful as above (if this is not already the case) and
equipped with a Hubbard or with the full Coulomb interaction. We will restrict ourselves to local
interactions, such as the Hubbard interaction, since in those cases one can straightforwardly
apply dynamical mean-field theory (DMFT).

Dynamical mean-field theory

For the following discussion, we recall some important facts related to DMFT. An overview is
given by Ref. [18].
(i) DMFT is an approximate mean-field theory for D-dimensional interacting lattice-fermion
models with local interactions. As opposed to other mean-field approaches, it becomes exact in
the limit of infinite spatial dimensions D →∞. This requires a proper scaling of the hopping-
matrix elements with D. In case of the hypercubic lattice, for example, the nearest-neighbor
hopping must be scaled as t = t∗/

√
D to maintain the balance between the noninteracting and

the interacting parts, H(0) and H(1), of the Hamiltonian in the D →∞ limit.
(ii) The central quantity of DMFT is the single-particle Green function G(k, ω). In the nonin-
teracting case, its elements are given by

G
(0)
αα′(k, ω) =

(
1

ω + µ− t(k)

)
αα′

, (43)

assuming a spin-diagonal and spin-independent hopping. Here, µ is the chemical potential. The
interacting Green function is obtained fromG(0)(k, ω) in terms of the local, i.e., k-independent
self-energyΣ(ω) as

G(k, ω) =
1(

G(0)(k, ω)
)−1 −Σ(ω)

. (44)

Locality of the self-energy is the decisive assumption of DMFT and is an exact property in the
limit D →∞.
(iii) Operationally, DMFT self-consistently maps the lattice model onto an Anderson impurity
model with the same local interaction term. The self-consistency cycle may be started with
a guess for Σ(ω). Via Eq. (44) this fixes G(k, ω) and the local Green function Gloc(ω) =
1
L

∑
kG(k, ω) in particular. The latter is used to define the noninteracting Green function

matrix G(ω) of a (multi-impurity) Anderson impurity model as

Gαα′(ω) =

(
1(

Gloc(ω)
)−1

+Σ(ω)

)
αα′

, (45)

and thereby fixes its noninteracting Hamiltonian H(0)
imp or action. The interacting impurity prob-

lem Himp = H
(0)
imp +H(1) must be solved for the same interaction, chemical potential and tem-

perature T (here assumed as T = 0) with the goal to get an updated self-energy that can be fed
back to the start of the cycle. The DMFT solution of the lattice problem is obtained by iterating
the cycle until self-consistency is reached. Clearly, an “impurity solver” is needed to run the
algorithm (see Ref. [18], for examples).
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Topological Hamiltonian

A noninteracting electron system on a lattice is specified by the Bloch Hamiltonian t(k). We
assume that (i) t(k) is gapped, i.e., that there is an energy µ0 such that, for all k ∈ 1BZ,
its eigenvalues εm(k) < µ0 if m = 1, ...,m0 (“occupied bands”) and εm(k) > µ0 if m =

m0+1, ...,M (“unoccupied bands”). We further assume that (ii) the total electron number is
N = 2m0L. Then, the state |χ0(k)

〉
=
∏

m≤m0

∏
σ c
†
kmσ|vac.〉 can be seen as the ground

state of H(k) =
∑

mσ εm(k) c
†
kmσckmσ =

∑
αα′σ tαα′(k)c

†
kασckα′σ at a given k ∈ 1BZ in the

invariant subspace with 2m0 electrons. The ground state of H(0) is |Φ0〉 =
∏

k

∣∣χ0(k)
〉
.

Apart from the trivial spin degeneracy which can be disregarded here, we have a Hamiltonian
H(0)(k) with a smooth dependence on the parameters of a two-dimensional closed manifold
(the 1BZ) with a unique, i.e., nondegenerate ground state for all k and thus a gap to the lowest
excited state. As discussed in the preceding section, we can thus define the corresponding Berry
curvature and infer that its integral over the parameter manifold is given by 2π times an integer,
the Chern number.
Within DMFT, this argument holds true if we replace t(k) by ttop(k) = t(k) + Σ(ω=0),
provided that ttop(k) is still gapped and that Σ(ω) does not diverge as ω → 0. The bundle
of matrices ttop(k) is called the “topological Hamiltonian” [19]. Note that the self-energy at
zero frequency Σ(ω=0) is a Hermitian matrix in the orbital indices as can be deduced from
the fundamental properties of the single-particle Green function and Dyson’s equation (44).
We also note that the Slater determinants |χ0(k)〉 do not have a direct physical meaning in
case of an interacting electron system and must be seen as auxiliary quantities. Nevertheless,
the topological Hamiltonian provides us with a means for computing an “interacting Chern
number” and thereby with a topological classification of gapped interacting electron systems on
a lattice.
We will proceed with the concept of topological Hamiltonian in the context of DMFT. How-
ever, in the extended context of interacting topological insulators there are some partly open
questions. However, we will postpone their discussion to the final section.

5 Exact interplay of correlations and topology inD=∞

Among the various mean-field theories, DMFT has an exceptional standing, since it is internally
consistent and nonperturbative, and since there is a nontrivial limit, in which this mean-field
approach becomes exact [20]. This is the limit of infinite spatial dimensions. For the Hubbard
model H =

∑
ii′σ tii′ c

†
iσci′σ + U

∑
i ni↑ni↓ on a D-dimensional hypercubic lattice, one has to

properly scale the nearest-neighbor hopping amplitudes to keep a nontrivial balance between the
tight-binding and the Hubbard-interaction term in the limit D → ∞, namely t = t∗/

√
D with

fixed t∗ (e.g. t∗=1). In this limit, DMFT provides the exact solution and, while one can profit
from certain simplifications such as the locality of the self-energy [21], the remaining physics
is highly nontrivial. This is demonstrated, for example, with the famous phase diagram for the
Mott metal-insulator transition [18]. Here, we consider the D → ∞ limit of a multi-orbital
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Hubbard model, which already for U = 0 has a nontrivial topological phase diagram including
band and Chern insulator phases. Our goal is to construct the model such that its correlations
and its topological properties remain nontrivial, such that we are able to study, on a numerically
exact level, the topological properties of a paradigmatic strongly interacting electron system.

Spinful QWZ model on aD-dimensional hypercubic lattice

To this end, we start from the noninteracting QWZ model, for which an extension to arbitrary
even dimensionsD = 2, 4, 6, ... is known [12], namelyH(0) =

∑
kαα′σ tαα′(k) c

†
kασckα′σ, where

α = 1, ...,M is the orbital index and tαα′(k) are the elements of the spin-independent Bloch
Hamiltonian

t(k) =

(
m+ t

D∑
r=1

cos kr

)
γ
(0)
D + t

D∑
r=1

sin kr γ
(r)
D . (46)

Here, t = t∗/
√
D is the hopping andm the mass parameter. We set t∗=1 to fix the energy scale.

This Bloch Hamiltonian is an M×M matrix for each wave vector k = (k1, ..., kD) ∈ 1BZ with
−π < kr ≤ π and is constructed with the help of the M×M matrices γ(µ)D , where µ = 0 or
µ = r = 1, ..., D. These satisfy the anticommutation relations of a Clifford algebra{

γ
(µ)
D , γ

(ν)
D

}
= 2δ(µν) . (47)

This algebra is a very convenient one, e.g., for the computation of the eigenvalues of t(k).
We have t(k) =

∑M
µ=0 dµ(k)γ

(µ) with d0(k) ≡ m + t
∑D

r=1 cos kr and dr(k) ≡ t sin kr for
r = 1, ..., D. Using Eq. (47) we immediately get

t(k)2 =
∑
µ

dµ(k)γ
(µ)
∑
ν

dν(k)γ
(ν) =

1

2

∑
µν

dµ(k)dν(k)
(
γ(µ)γ(ν)+ γ(ν)γ(µ)

)
=
∑
µ

dµ(k)
2 .

(48)
This means that there are two M/2-fold degenerate bands with dispersions given by ε±(k) =
±
(
d0(k)

2 +
∑

r dr(k)
2
)1/2, when disregarding the spin degree of freedom. Note that, since the

γ matrices are traceless, t(k) is traceless as well and, therefore, there must be as many negative
as positive eigenvalues.
The orbital-dependent density of states (DOS) is given in terms of the free retarded Green
function as

ρα(ω) = −
1

π
Im

1

L

∑
k

G(0)
αα(k, ω+i0

+) . (49)

Again, thanks to the Clifford algebra, we can easily compute

G(0)
αα(k, ω) =

(
1

ω + µ(0) − ε(k)

)
αα

=

(
1

ω −
∑

µ dµ(k)γ
µ
D

)
αα

=

(
ω +

∑
µ dµ(k)γ

µ
D

ω2 −
∑

µ dµ(k)
2

)
αα

. (50)

We consider a half-filled system and have set the chemical potential of the free system to zero.
ForD = 2, one obtains the QWZ model discussed Sec. 3 when choosing γ(1)

2 = τx and γ(2)
2 = τy,

and the so-called chiral element γ(0)
2 = −iτxτy = τz for the γ matrices. Note that they sat-

isfy the anticommutation relations Eq. (47), i.e., the Pauli matrices form a two-dimensional
representation of the algebra, M = 2. We have t(k) = d(k)·τ with d(k) given by Eq. (35).
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Fig. 5: Density of states on the A-orbitals for the D = 2 QWZ model for different m (left).
Right: Density of states (color code) at low excitation energies. t = t∗/

√
2 with t∗ = 1 sets the

energy scale. Figure taken from Ref. [5].

The matrices γ(r) have vanishing diagonal elements, such that there is a contribution from
γ(0) only. We have γ(0)αα ≡ zα=+1 for “A orbitals” α = 1, ...,M/2 and γ(0)αα ≡ zα=−1 for
“B orbitals” α = (M/2)+1, ...,M . This holds for general D and M (for the D = 2 QWZ
model: M = 2) and implies that the orbital-resolved free Green functions G(0)

αα(k, ω) for α =

1, ...,M can be divided into two classes with representatives G(0)
A (k, ω) and G(0)

B (k, ω).
The local DOS on the A orbitals is displayed in Fig. 5 (left) as a function of the mass pa-
rameter m. We note the symmetry ρA(ω) → ρA(−ω) for m → −m. Furthermore, we have
ρA(−ω) = ρB(ω). In the right plot for small frequencies, the evolution of the gap with m can
be read off. Gap closures are found atm = 0 andm = ±

√
2 (in units of t∗ = 1, i.e., t = 1/

√
2),

as discussed earlier.

Bulk-boundary correspondence

For D = 2 dimensions and for mass parameter m = 1 the system is a Chern insulator with
C = −1. Hence, according to the bulk-boundary correspondence, there must be a gap closure
at the surfaces of the bulk system. This is uncovered, e.g., by a calculation for the system in a
ribbon geometry, i.e., we assume that the system is infinitely extended (with periodic boundary
conditions) is x direction, while in y direction it consists of a finite number d of one-dimensional
chains labelled by a chain index λ = 1, ..., d. As the vacuum (for λ < 1 and λ > d) has Chern
number C = 0, we expect gapless edge modes localized at the two edges.
For the actual calculation we can only profit from translational symmetry in x direction. We
perform a two-dimensional Fourier transformation of the bulk Bloch Hamiltonian, Eq. (46),
or specifically, for D = 2, of t(k) = d(k)·τ with d(k) given by Eq. (35) to real space, cut
the hopping parameters in Eq. (34) at the two edges, and perform a one-dimensional Fourier
transform from x space back to kx space. The result is a d×d matrix for each wave “vector” kx,
which must be diagonalized numerically. The d eigenvalues as functions of kx represent the
band structure of the QWZ model in a ribbon geometry.
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Fig. 6: Dispersions of theD = 2 QWZ model in a ribbon geometry atm=1 (left). Calculations
for d=10 chains of infinite length in x direction with edges at λ=1 and λ=10 in y direction.
Right: Weight of various eigenstates in the different chains λ=1, ..., d of a ribbon with thickness
d=40, as indicated. Calculations for t = t∗/

√
2 with t∗=1. Figure taken from Ref. [6].

They are displayed in Fig. 6 (left) for a ribbon thickness of d = 10. In fact, we find two
low-energy eigenmodes visible around kx = 0, which split off the “bulk continuum”, which
is here represented by 8 bands only, at wave vectors kx ≈ ±0.36π. Each of these modes
bridges the bulk band gap. Furthermore, the analysis of the corresponding eigenstates in the
right part of Fig. 6 shows that one edge mode is localized at the top edge λ = 1 and the other
one at the opposite edge λ = 40. Note that here the calculations have been done for a thicker
ribbon with d = 40. The corresponding weight factors |〈i, α|kx, λ〉|2 decay exponentially with
increasing distance to the edges, opposed to bulk states which extend over the entire ribbon.
Let us emphasize once more, that these two gapless edge modes must necessarily exist and that
they are topologically protected against local perturbations.

Topological phase diagram of theD = 2 QWZ+U model

We now add a local Hubbard-type interactionH(1) = (U/2)
∑

iασ niασniα−σ to the Hamiltonian
and consider the resulting two-dimensional QWZ+U model at half filling. Within the DMFT,
the self-energy is site-diagonal, i.e., k-independent. Furthermore, as the H(1) term is an intra-
orbital interaction only, it is diagonal in orbital space, Σαβ(k, ω) = Σαβ(ω) = δαβΣα(ω).
Analogous to the discussion of the density of states above, the orbital-dependent diagonal
elements Σα(ω) can be divided into two classes A and B. With the definition Σ±(ω) =
1
2

(
ΣA(ω)±ΣB(ω)

)
, we have the following decomposition

Σ(ω) = Σ+(ω)1+Σ−(ω)γ
(0)
D=2 , (51)

where γ(0)
2 = τz for D = 2. We see that the topological Hamiltonian

ttop(k) = t(k) +Σ(k, ω=0) = t(k) +Σ+(0)1+Σ−(0)τz (52)
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D (see text). Energy units:
t = t∗/

√
D with t∗=1. Figure taken from Ref. [5].

acquires a nontrivial additional (staggered) orbital structure due to the second term, which adds
to the term in Eq. (46) proportional to γ(0)

D=2. We thus expect a nontrivial modification of the
U = 0 topological phase diagram.
The actual calculation by means of DMFT is conceptually simple: The lattice model is self-
consistently mapped onto two Anderson impurity models, one for the A orbitals and another one
the B orbitals, which are related to each other by A-B sublattice symmetry. As our intention is
to cover the entire m-U parameter space, a simplified DMFT scheme, the two-site DMFT [22],
is helpful. This has successfully been cross-checked against accurate DMFT results obtained
with the standard Lanczos solver [23].
The top panel of Fig. 7 displays the topological phase diagram in the m-U control-parameter
space for dimension D = 2. The phase diagram is shown for negative m only. The m > 0

range is obtained by reflection at the m = 0 axis with a simultaneous sign change C 7→ −C.
At U = 0 and when increasing m, we thus pass from C = 0 over C = +1 (for m > −

√
2) and

C = −1 (for m > 0) to C = 0 (for m >
√
2), i.e., from a band insulator over two topologically

different Chern insulators back to a band insulator again.
Right atm=mc=0, i.e., at the topological phase transition, the bulk system is a so-called semi-
metal. The semi-metal state at this critical mass parameter does not have a (one-dimensional)
Fermi surface. The gap is rather closed at isolated k points in the 1BZ, namely at kc = (π, 0)

and kc = (0, π).
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For U > 0, the Chern number is computed from the topological Hamiltonian, Eq. (52), and is
thus affected by the self-energy at ω = 0. As Σ(ω) is diagonal in orbital space, this merely
amounts to a renormalization of the chemical potential, µ → µ + Σ+(ω=0), and of the mass
parameter, m → m + Σ−(ω=0). Since m acts as the strength of a staggered orbital field,
m = 0 means that the orbital polarization nA−nB vanishes and that ΣA(ω) = ΣB(ω). Hence,
Σ−(ω) = 0 and Σ+(ω) = ΣA(ω) = ΣB(ω). Furthermore, the ω = 0 value of Σ+(ω) = U/2 is
exactly compensated by the chemical potential µ = U/2. Hence, for finite but not too large U
and at m = 0, the topological Hamiltonian equals the noninteracting one, and thus the system
remains in a (correlated) semi-metal state.
For U > Uc ≈ 6, the self-consistently determined DMFT self-energy develops a pole at ω = 0.
This implies that the concept of the topological Hamiltonian breaks down. In fact, at Uc there is
a transition from the correlated semi-metal to a topologically trivial Mott insulator with C = 0,
which is somewhat reminiscent of the paradigmatic metal-to-Mott-insulator transition predicted
by DMFT [18].
For m 6= 0, the system becomes orbitally polarized. At constant U < Uc and for decreasing m,
the Chern-insulator phase with C = 1 extends up to a U -dependent critical mass parameter
mc(U), where a topological phase transition to the band insulator takes place. Upon decreasing
m for U > Uc the Mott insulator is stable up to a second U -dependent critical mass parameter
mMott(U), where a transition to the correlated C=1 Chern-insulator takes place. The phase
diagram shown in Fig. 7 suggests that the Mott insulator and the band insulator (both withC=0)
cannot be connected continuously, as they are separated in parameter space by topologically
nontrivial phases with C 6= 0.

Arbitrary even dimensionsD

Since DMFT is a (rather questionable) approximation in case of a two-dimensional lattice
model, it is worthwhile to ask if and how these results change for the same model on a higher-
dimensional lattice. Eventually, in the D → ∞ limit, the DMFT becomes exact, so that one
might expect exact results for a strongly correlated and topologically nontrivial model at the
same time. This extension to lattices of arbitrary dimensions D requires some effort. We con-
centrate on even dimensions, for odd D a somewhat different but similar approach is necessary.
Let us mention that the D →∞ limit is not unique and that approaching it via even or via odd
D yields different results.
The QWZ model on the hypercubic lattice with arbitrary even D, defined via Eq. (46), requires
an explicit representation for the Hermitian and traceless generators γ(µ)D with µ = 0, 1, ..., D of
the Clifford algebra Eq. (47). There is in fact a general recursive prescription [12], namely

γ
(0)
D+2 = τz ⊗ 1 , γ

(r)
D+2 = τx ⊗ γ(r)

D for r = 1, ..., D

γ
(D+1)
D+2 = τx ⊗ γ(0)

D , γ
(D+2)
D+2 = τy ⊗ 1 ,

(53)

where 1 is the 2D/2-dimensional unity. Explicitly, γ(0) = diag(+1,+1, ...,−1,−1, ...). The
number of orbitals M = 2D/2 scales exponentially with D. Since a lower-dimensional faithful
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representation is not possible [12, 24], the model becomes rather artificial. This is the price we
have to pay to get a correlated and topologically nontrivial model solvable by DMFT.

Noninteracting electronic structure

At U = 0 and arbitrary even D, the band structure is easily obtained by squaring t(k), as
shown above, and we get the dispersions of the two M/2-fold degenerate bands ε±(k) =

±
(
t2
∑

r sin
2 kr + (m+t

∑
r cos kr)

2
)1/2. We set t = t∗/

√
D and t∗ = 1. Due to the point-

group symmetries, band closures are found at the high-symmetry points (HSPs) kc = kn0 ≡
(0, ..., 0, π, ..., π) in the 1BZ, and for the

(
D
n0

)
inequivalent permutations of the components,

where n0 counts the number of vanishing entries kr. To get a band closure, the condition
m = (D−2n0) t must be met or, equivalently,

m/t∗ = (D−2n0)/
√
D . (54)

Thanks to the Clifford algebra, we can easily compute the moments M (n)
α =

∫
dω ρnα(ω) of

the local partial density of states (DOS) of the orbital α for small n. We find the normalization
conditionM (0)

α = 1, the center of gravityM (1)
α = mγ

(0)
αα = ±m, and the α-independent variance

M
(2)
α −

(
M

(1)
α

)2
= t2D = 1. Hence, the scaling of the hopping leads to a proper balance

between H0 and H1 for D→∞. The mass parameter m must not be scaled to maintain a
nontrivial model.
The dispersions for theD=4 model are shown in Fig. 8 (left). ForD=4 we haveM=2D/2=4,
and thus the degeneracy of each band is M/2 = 2. Comparing results for different m (see color
code), we find gap closures form = −2,−1, 0, 1, 2 at the high-symmetry points (HSPs) kc with
n0 = 4, 3, 2, 1, 0, respectively. This is consistent with Eq. (54), which yieldsm = (4−2n0)/2 =

2−n0 forD = 4. The respective number of equivalent HSPs is 1, 4, 6, 4, 1, and the total number
of wave vectors getting critical when varying m from m = −∞ to m = +∞ is 2D = 16.
The right panel in Fig. 8 displays the A-orbital DOS in the D → ∞ limit for mass parameter
m = −1.5. It can be calculated analytically (see Ref. [5])

ρα(ω) =
1

2

1

t∗
√
π
Θ
(
|ω|−t∗/

√
2
)

signω
∑
s=±

(
ω√

ω2−t∗2/2
+ szα

)
e−

(s
√

ω2−t∗2/2−m)
2

t∗2 . (55)

Recall the definition zα=+1,−1 for A, B orbitals. Interestingly, the DOS has anm-independent
gap given by∆=

√
2t∗, opposed to any finite-D DOS. This point requires discussion, see below.

Topological phase diagrams at U =0

The middle panel of Fig. 8 displays the topological phase diagrams of the noninteracting QWZ
model for D = 2, 4, ..., when using m as a control parameter. For each even dimension D, the
red points mark the critical mass parameters given by Eq. (54). In fact they separate topologi-
cally inequivalent states of the system characterized by different Chern numbers. Actually, for
arbitrary even D, the relevant invariant is the (D/2)-th Chern number CD, which is obtained
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code. Middle: Different topological phases with Chern numbers CD(n0) (green), separated by
critical m-values (red dots) for different D. Right: U = 0 DOS on the A-orbitals at m = −1.5
for D = ∞. Inset: orbital polarization as function of m for D = ∞. Nearest-neighbor
hopping: t = t∗/

√
D, t∗ = 1 sets the energy scale. Figure taken from Ref. [5].

as a D-dimensional integration of the D-form, which has been discussed above, over the 1BZ.
(Note that here we depart from the conventional notation CD/2 for the (D/2)-th Chern number.)
The (D/2)-th Chern number of a topological phase for an m that satisfies, for some n0 ∈
{0, ..., D−1}, the condition

D−2n0−2√
D

< m/t∗ <
D−2n0√

D
, (56)

i.e., that lies between the critical mass parameters with band closures at k2n0−2 and kn0 , respec-
tively, is given by [12, 25, 26]

CD(n0) = (−1)n0+
D
2

(
D−1
n0

)
. (57)

For the extreme cases
m/t∗ < − D√

D
and for

D√
D
< m/t∗ (58)

we have band insulators with CD/2(n0=D−1) = 0 and CD/2(n0=0) = 0, respectively.
Fig. 8 (middle) shows that the m-distance between two neighboring transitions shrinks to zero
for D → ∞. Eq. (56) gives us ∆m = 2t∗/

√
D. Hence, for high D the system is arbitrarily

close to criticality for any m, and in the limit D →∞, the set of critical m’s becomes dense in
any finitem-interval. The phase diagram exhibits a continuum of topologically different phases.
This observation has a couple of implications.
First, it means that the definition of a critical point in the 1BZ becomes elusive for D → ∞,
since ε±(k) = ε±(k

′) if ‖k−k′‖ = 0, where we have defined ‖k‖2 ≡ limD→∞D
−1∑D

r=1 k
2
r .

‖ · ‖ is a semi-norm, i.e., ‖k‖ = 0 does not imply k = 0. Hence, the concept of band closures
at isolated points in the 1BZ breaks down. For a given m, we have ε±(k) = 0 at a critical wave
vector k = kc(m) but also at all wave vectors k with ‖k−kc(m)‖ = 0. Furthermore, while the
number

(
D
n0

)
of equivalent critical HSPs at a given critical m and the total number 2D of HSPs

in the 1BZ diverge, their ratio approaches a constant when D →∞.
Second, since all values of the mass parameter are critical, one would expect the absence of a
gap in the DOS for any m. To understand the fact that the DOS displayed in Fig. 8 (right) has
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range is plotted as the phase diagram is symmetric underm→−m. Figure taken from Ref. [5].

an m-independent gap ∆ = 2t∗, one can analytically analyze the DOS at a critical m at any
finite D. For sufficiently small frequencies (see Ref. [5]),

ρα(ω) = c(D,n0)|ω|D−1/t∗D (59)

with a coefficient c(D,n0) which, for any n0 and thus for any critical m, tends to zero ex-
ponentially fast with D → ∞. This demonstrates that the contribution of wave vectors with
ε±(k) = 0 to the DOS vanishes in the D → ∞ limit. For D → ∞, we conclude that the DOS
does not indicate whether the system is a (Chern) insulator or a semi-metal. The distinction
between insulator and semi-metal becomes meaningless in this limit.
A third important observation is related to the Chern number. Eq. (57) shows that for D →
∞ only the modulus of the Chern number, and only after proper normalization, has a well-
defined limit. Since

∑D−1
n0=0 |CD(n0)| = 2D−1, we thus introduce a Chern density as c(n0) =

limD→∞ |CD(n0)|/2D−1. To express the Chern density as a function of m, we employ n0 =(
D−m

√
D/t∗

)
/2, see Eq. (54). Furthermore, since ∆m 7→ 0 we write dm ≡ 2t∗/

√
D. With

the Moivre-Laplace theorem, which states that the binomial distribution converges to the normal
distribution, we then find

c(n0) = lim
D→∞

√
2

πD
e−2

(D/2−n0)
2

D = c(m) dm (60)

with
c(m) =

1

t∗
√
2π
e−

1
2

m2

t∗2 . (61)

The Chern density is a smooth Gaussian density. It is normalized by construction and turns out
to have unit variance. This is important, as it shows that not only dynamic correlation effects
but also nontrivial topological properties survive the D → ∞ limit when using the standard
scaling of the hopping.

Topological phase diagram of the interacting system forD→∞

Fig. 9 displays the topological phase diagram of the QWZ+U model in the limit D → ∞. The
control parameters arem and U , and the topological invariant, the Chern density, is indicated by
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Fig. 10: Local spectral function on α = A-orbitals for m = 0 (left) and m = −1.5 (right) for
various U in the D →∞ limit as obtained by two-site DMFT. Figure taken from Ref. [5].

the color code. The results have been obtained numerically employing the simplified two-site
DMFT scheme [22,5] and have been cross-checked against full DMFT employing the Lanczos
solver [23]. The Chern density is obtained from the topological Hamiltonian, where we merely
have to take into account a renormalization of the chemical potential, µ 7→ µ+Σ+(ω=0), and
of the mass parameter, m 7→ m+Σ−(ω=0).
We first discuss the U = 0 case. As a function of m, the Chern density is a Gaussian, see
Eq. (61). This means that the system smoothly evolves from a conventional band insulator,
with c(m, 0) → 0 in the limit m → −∞, to a Chern insulator (or semimetal, this cannot be
distinguished). The invariant increases and takes the maximum value c(m, 0) = 1/

√
2π at

m = 0. The phase diagram for m > 0 is simply obtained by reflection at the m = 0 axis
(also for U > 0). Already the U = 0 phase diagram is quite unconventional, since we have
an infinitely fine classification, where each value of the (modulus of the) control parameter m
defines a separate topological phase. At the same time, each value for m is also critical.
With increasing U at m = 0, the Chern density c(0, U) stays at its maximum, until at U = Uc ≈
6t∗ the system undergoes a correlation-driven transition to a Mott-insulating phase. The Mott
phase is topologically trivial with c = 0. Approaching Uc either from above or from below,
the transition is characterized by a continuously vanishing renormalization factor z 7→ 0, where
z ≡ 1/

(
1− ∂Σα(ω=0)/∂ω

)
is independent of the orbital type α. The quantity z plays the role

of a band-gap renormalization [27]. Examples for the U -dependent interacting spectral function
on the A orbitals are given in Fig. 10 for m = 0 and for m < 0.
For U > Uc, the Mott phase extends to m < 0 and is bounded for all m by a line of critical
interactions Uc(m). For m → −∞ we observe that Uc(m) develops into a linearly increasing
function of |m|. This is due the fact that the system becomes fully orbital-polarized, see the inset
in Fig. 8 (right). Hence, the self-energy becomes static and approaches constants ΣA → U ,
ΣB → 0, such that the renormalization of m is trivial: m→ m+Σ−(ω=0)→ m+ U/2. As a
consequence, the band insulator with c = 0 cannot be smoothly connected to the Mott insulator
with c = 0 without passing topologically nontrivial states with c > 0.
The whole phase diagram Fig. 9 can be understood as being the D → ∞ limit of m-U phase
diagrams at finite D, see Fig. 7, where we have used the same color coding as in Fig. 9 for the
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Chern density, and where the (signed and unnormalized) Chern numbers are given additionally
and directly label the topological phases in the figure. Note the alternating sign and the mono-
tonic increase of the modulus of the Chern number along any straight path from the band to the
Mott insulator. With increasing D, the number of topologically nontrivial phases CD(m) 6= 0

increases and they cover ever narrower regions in the m-U plane (recall ∆m=2t∗/
√
D for

U =0), until they shrink to one-dimensional curves of constant color given by c(m,U)= const
in Fig. 9. In the limit D→∞, systems on these iso-Chern curves are topologically equivalent,
while on paths crossing iso-Cherns one passes through a continuum of topologically different
phases.

6 Concluding discussion

We have demonstrated that DMFT can be used to study the interplay between topology and
correlations in a model for a Chern insulator on an infinite-dimensional lattice. While the ap-
proach is numerically exact, the underlying model necessarily involves, besides the D → ∞
limit, an infinite number of orbitals and is thus somewhat artificial. There are three main lines
along which the discussion could proceed:
The considered example belongs (at U = 0) to the so-called class A of the complete topological
classification of noninteracting lattice-fermion systems. The other nine classes of the “ten-fold
way” have not yet been considered (a simple modification of the theory covers class A III). One
important question is, whether interacting lattice-fermion models can be constructed that remain
well-defined and nontrivial in the D →∞ limit for all classes. In the positive case, this would
demonstrate that the ten classes “survive” if one switches on a Hubbard-type interaction, and we
would have explicit models as prototypes, at least in the (comparatively simple) D →∞ limit.
Even in this limit, where DMFT applies, however, we would not be sure that the classification
was complete – another problem to be tackled.
Complexity rises dramatically, if one attempts a topological classification of all interacting sys-
tems on finite-dimensional lattice. Clearly, already the correlation problem is hard. On the
other hand, we are allowed to consider continuous deformations, preferably to models, which
are more simple from the correlation point of view. This might help to proceed. Up to now
a general classification has not been achieved and theory is still at the very beginning, see
Ref. [28] for a discussion. Some important questions are: Is the topological phase diagram of a
noninteracting system stable against weak interactions? Vice versa, can topologically nontrivial
phases be generated by interactions? In the D →∞ limit, the answer is “yes”, see Fig. 9. More
important, are there topologically nontrivial phases in interacting models that have no analog
to those of noninteracting ones, i.e., cannot be connected to a phase classified by the ten-fold
way? Is a topologically nontrivial Mott insulator possible? What are the consequences of the
bulk-boundary correspondence in case of interacting systems?
On a more pragmatic level and with the focus to concrete materials, one may attempt to com-
pute topological invariants of two- and three-dimensional interacting systems by approximate
numerical tools. DMFT itself and its various extensions to include nonlocal correlations to
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some extent, suggest themselves and appear attractive since the Chern number, for example, can
be computed by means of a formula based on the single-particle Green function only [29, 30].
However, this expression rather is inconvenient for numerical studies as it involves an additional
frequency integration. Invoking the tool of continuous deformations, it has been shown [31] that
a strong simplification is possible and that it is sufficient to consider the self-energy at ω = 0

only, i.e., that the invariant can be computed from the topological Hamiltonian. A different
concept is that of the so-called pole expansion [32, 33]. Here, the self-energy is represented by
a hybridization function involving auxiliary orbitals. For a given self-energy, this allows us to
map the interacting to a noninteracting problem such that the standard methods of topological
classification apply. However, it has been questioned [34] that these two concepts are equivalent
in case of a k-dependent self-energy. Another more fundamental problem is that any scheme,
which is solely based on the single-particle Green function, disregards two-particle correlations
to some extent. The two-particle excitation spectra may undergo a gap closure while the one-
particle gap stays open, so that a complete topological classification cannot be achieved in this
way. Ref. [35] provides an example along this line of reasoning.
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1 Introduction

With the success of dynamical mean-field theory (DMFT) [1–3] in calculating strongly corre-
lated electron systems, there have been attempts from the very beginning [4] to systematically
extend DMFT. The aim is here to keep the good description of DMFT for local electronic
correlations, but also to capture non-local correlations beyond.

Indeed, the local DMFT correlations are doing an excellent job in describing a quasiparticle
renormalization with a weight Z that is uniform in momentum space – a surprisingly good
approximation for many transition metal-oxides and heavy fermion systems; as well as the
Mott-Hubbard metal-insulator transition that emerges for Z → 0 [2]. Furthermore, all kinds of
orders (magnetic, orbital, charge density wave . . .) are quite well captured in three-dimensional
systems up to the vicinity of the phase transition. Here, close to the phase transition, the mean-
field nature of DMFT surfaces, among others, in form of mean-field critical exponents. Non-
local correlations are here essential for describing the proper critical behavior. With a diverging
correlation length, long-range correlations feed back to the self-energy which thus becomes
non-local.

The DMFT approach has been covered already in various other chapters of this Autumn School
[3], and the present chapter will thus focus instead on non-local electronic correlations beyond
DMFT. When are such non-local correlations important?

A lot of our insight into physical phenomena stems from weak coupling perturbation theory.
Even though such an approach is certainly not applicable to strongly correlated electron sys-
tems, it often nonetheless provides for some qualitative understanding. One example, where
non-local correlations enter the self-energy are spin-fluctuations. These can be calculated at
weak coupling in the random-phase approximation (RPA) which is discussed in quantum field
theory textbooks. The RPA is the geometric series of all ladder diagrams with no, one, two
etc. Coulomb interaction lines, as illustrated in Fig. 1 (top). The figure just shows one term
of the sum, where “. . .” indicates that all orders in U are included. The RPA can be used to
calculate the magnetic susceptibility, Fig. 1 (top, without dashed line). As we will see later, the
poles of this susceptibility constitute bosonic quasiparticle excitations coined magnons or, in
the paramagnetic phase, paramagnons.

Now, when we add the dashed black line in Fig. 1 (top), we obtain a self-energy Feynman
diagram. It describes the coupling of the electron to the spin-fluctuations. We can also call it the
electron-(para)magnon interaction. As spin-fluctuations are very non-local we get – whenever
spin-fluctuations become important – contributions from diagrams with lattice sites i 6= j 6= k in
Fig. 1 (top). Such self-energy diagrams are certainly not contained in DMFT, which sums up all
local contributions of Feynman diagrams for the self-energy. Hence, whenever spin fluctuations
become large, we must expect important corrections to the DMFT self-energy. Indeed this is
not restricted to spin fluctuations, but depending on what kind of spin combination the particle
and the hole in the RPA ladder have, one can also obtain the coupling of electrons to charge,
orbital etc. fluctuations.
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Fig. 1: Top: Feedback of spin fluctuations (paramagnons) calculated in RPA to the self-energy.
Bottom: In diagrammatic extensions of DMFT such physics is taken into account but with the
bare interaction U (red wiggled line) replaced by a local vertex calculated from an impurity
model (light gray box). Depending on the flavor of the diagrammatic extension of DMFT dif-
ferent local vertices are employed. Reproduced from [5].

That means non-local correlations are certainly relevant whenever spin, charge etc. fluctuations
are important. An obvious regime where this is the case is the vicinity of a second-order phase
transition as already mentioned. Here the magnetic, charge etc. susceptibility diverges and sig-
nificant changes to the DMFT solution are thus to be expected. For low dimensional systems we
will get corrections also further away from the phase transition. The Mermin-Wagner theorem
prohibits long-range order with a continuous symmetry breaking in two-dimensions at finite
temperature. Hence, antiferromagnetic order is restricted to zero temperature. However, above
this zero-temperature antiferromagnetic phase, we have now strong antiferromagnetic fluctua-
tions in a wide temperature range, even with exponentially large correlation lengths. DMFT
has been developed with the limit of dimension d = ∞ in mind, see [1] and Chapter “Why
calculate in infinite dimensions?” by D. Vollhardt [3]. Hence, also from this perspective it is
not surprising that we need to expect larger corrections to DMFT for low dimensional systems.

On the other hand, we would like to keep the success of DMFT in describing a major part of
electronic correlations rather well: the local correlations. Two major routes to do so have been
developed to this end, see Fig. 2 for an illustration. Cluster extensions of DMFT [6] put the
DMFT concept of locality onto a cluster (instead of a single site) that is embedded in a DMFT
bath. For a single site cluster this is just DMFT. Illustrated in Fig. 2 is a two-site cluster where
thus non-local correlations between the two red sites of the cluster are captured. Such two site
clusters can, e.g., describe the formation of a spin singlet between two electrons on the two
sites. For a four site cluster also d-wave superconductivity can be described. However such
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Fig. 2: Left: In cluster extensions, a couple of sites (here two marked in red) are embedded
in a dynamical mean field which can be formulated through the self energy Σ. Restricted to a
single site, DMFT is obtained; extended to the full lattice the exact solution is recovered. Right:
In diagrammatic extensions, the locality of DMFT is put to the next level, the two-particle
level. Local two-particle building blocks Λ are connected by non-local Green function lines
Gij , resulting in a non-local full vertex F or susceptibility χ. When restricting Gij to its local
contribution Gii, DMFT is recovered. Adapted from [7].

small clusters tend, in practice, to largely overestimate the physics that is compatible with the
cluster such as the spin singlet formation and d-wave superconductivity for a two and four site
cluster, respectively. While one can go to clusters of size 10×10, a proper finite size scaling
remains challenging. This is even more true for realistic multi-orbital calculations that are
restricted to a handful of sites.

The other route extends DMFT [5] Feynman diagrammatically. Here, the concept of locality
is not extended to a cluster but instead to the n-particle vertex. For n = 1 we have the one-
particle vertex which is nothing but the self-energy. And a local self-energy is just the DMFT
approximation. For n = 2, i.e., the two-particle level, we start instead with a local two-particle
vertex and construct from it the non-local full vertex F, see Fig. 2 (right), as well as the non-
local self-energy and Green function. This is the level most commonly applied nowadays.
Similarly as for the cluster extensions there are different flavors depending on which local vertex
and which connecting Green functions are taken. At the end of the day, most of these different
flavors are very similar, at least as long as they take the two-particle, four-point vertex as a
starting point. Other approaches start from a three-point local vertex which is a more severe
approximation. For an overview and comparison, see the review [5].
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The originary method, called dynamical vertex approximation (DΓA) [8], considers the vertex
in terms of real fermions as local. A second widely applied approach is the dual fermion (DF)
approach [9]. Also within DΓA different flavors are used. In its most complete form, the fully
irreducible vertex Λ is approximated to be local. Then the parquet equations are needed to
construct F and the self-energy Σ. A local Λ is an excellent approximation, even for the two-
dimensional Hubbard model in the superconducting doping regime [10]. In the ladder DΓA
variant, the irreducible vertex Γ` in a certain channel ` such as the particle-hole (ph) channel
is considered to be local. In this case, the Bethe-Salpeter equation is sufficient to calculate F
along the same lines as in the RPA, only now with Γ` instead of U as a building block, i.e the
light gray box in Fig. 1 (bottom) is Γ` in this case. The ladder variant is numerically much less
expensive. It is sufficient if a certain channel dominates, but does not capture the coupling of
different channels into each other.

One can also extend the concept of locality to higher n-particle vertices. The n = 3-particle
vertex level, for example, has been employed for estimating the error of the n = 2-particle
calculations [11]. For n→∞ the exact solution is recovered.

Turning back to Fig. 1, we see that such diagrammatic extensions are well suited to describe
spin-fluctuations and their feedback to the fermionic self-energy. The same physics as is qual-
itatively described in RPA, is now captured for strongly correlated electrons since the local
Λ already encodes non-perturbatively all DMFT correlations. The Bethe-Salpeter ladder of
Fig. 1 is precisely the same as is also used to calculate the DMFT susceptibility, cf. the Chap-
ter “DMFT for linear response functions” by E. Pavarini [3]. What is not covered in DMFT
is how these spin-fluctuations impact the self-energy as well as self-consistency effects, i.e.,
how the changed Σ modifies G or that the local Γ` itself becomes different from DMFT. These
self-consistency effects lead to a dampening of the spin-fluctuations compared to the mean-field
DMFT solution, up to the point of fulfilling the Mermin-Wagner theorem in two-dimensions.

Diagrammatic extensions of DMFT have been highly successful: (i) The critical behavior in
the vicinity of (quantum) phase transition could be described for the first time in electronic
models, a topic which was covered already excessively in the Autumn School 2018 [12], see
also the review [5]. (ii) It was realized that the two-dimensional square lattice Hubbard model
with perfect nesting is insulating all the way down to zero interaction [13], correcting earlier
cluster DMFT results. (iii) The pseudogap and d-wave superconductivity can be described in
the two-dimensional Hubbard model, a topic which we will cover in the following chapters.
(iv) A new polariton, the π-ton has been discovered in model calculations [14]. (v) Realistic
materials calculations are possible and have been pursued, e.g., for SrVO3 [15].

In the following, we will first introduce one of the diagrammatic extensions of DMFT, the
DΓA, in Sec. 2. Simplifications when using the ladder variant of DΓA are outlined in Sec. 3.
The Hubbard model is introduced in Sec. 4 and its justification for cuprates and nickelates is
discussed. Physical results regarding spin fluctuations, the pseudogap and superconductivity
are discussed in Sec. 5, Sec. 6, and Sec. 7, respectively. Finally, Sec. 8 provides a conclusion
and outlook.
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Fig. 3: Dyson equation connecting the Green function and self energy Σ (single blue line:
non-interacting G0; double blue line: interacting G). The pair of scissors indicates that these
diagrams are one-particle reducible (i.e., cutting one G0 line separates the Feynman diagram
into two parts). From [12].

2 Dynamical vertex approximation

The aim of the present section is to provide the reader with the basic idea of the dynamical ver-
tex approximation. It builds upon a similar chapter of a preceding Jülich Autumn School [12].
A more detailed description for a second reading can be found in the review [5]. Further infor-
mation on how to calculate the superconducting critical temperature Tc and how to include the
asymptotic form of the vertex, can be found in [16].
The basic idea of the dynamical vertex approximation (DΓA) is a resummation of Feynman
diagrams, not order by order of the Coulomb interaction as in conventional perturbation theory,
but in terms of their locality. That is, we assume the fully irreducible n-particle vertex to be
local and from this building block we construct further diagrams and non-local correlations.
The first level (n = 1) is then just the DMFT which corresponds to all local Feynman diagrams
for the self-energy Σ. Note that Σ is nothing but the fully irreducible n = 1-particle vertex.
One particle-irreducibility here means that cutting one Green function line does not separate
the Feynman diagram into two pieces. Indeed such reducible diagrams must not be included
in the self-energy since it is exactly these diagrams that are generated from the Dyson equation
(Fig. 3) which, resolved for G, reads

Gkν =
(
1/G0

kν −Σkν

)−1 (1)

for momentum k, Matsubara frequency ν and non-interacting Green function G0
kν . Here and

in the following, single blue lines denote non-interacting Green functions G0 and double blue
lines indicate interacting Green functions G. Fig. 3 further shows how one-particle reducible
diagrams are generated through the Dyson equation. Hence these must not be contained in
the Feynman diagrams that constitute Σ, to avoid a double counting. That means, Σ must be
one-particle reducible in terms of G0. 1

On the next level, for n = 2, we assume the locality of the two-particle fully irreducible vertex
Λ. For the two-particle vertex, fully irreducible means that cutting two Green function lines

1In terms of G the skeleton diagrams for Σ are also two-particle reducible. But that is another story that is
connected with the way how Σ enters G.
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Λ
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Fig. 4: Parquet decomposition of the full (reducible) vertex F into the fully irreducible vertex Λ
and two-particle reducible diagrams Φ` in the three channels. The two pairs of scissors indicate
the reducibility of the three Φ`’s. Each two-fermion Feynman diagram belongs to one and only
one of the three Φ`’s or to Λ.

does not separate the diagram into two pieces. There are three different kinds (channels) ` of
reducible vertices Φ` and a fourth, Λ, that is fully irreducible. Most importantly each diagram
falls in one and only one of those four subgroups. Thus the full vertex F, containing all di-
agrams, can be written as the sum those. This decomposition of the vertex is called parquet
decomposition and is graphically displayed in Fig. 4.
The reason why there are three distinct reducible parts Φ` is that say leg 1 may stay connected
with leg 2, 3, or 4 when cutting two Green function lines as indicated in Fig. 4. These three
possible channels ` are denoted as particle-hole (ph), transversal particle-hole (ph) and particle-
particle (pp). The irreducible vertex of each channel is just the complement: Γ` = F − Φ`. It
is important to note that each reducible diagram is contained in one and only one of these
channels. One can show this by contradiction: otherwise cutting lines in two channels would
result in a diagram with one incoming and two outgoing lines, which is not possible because of
the conservation of (fermionic) particles.
There is a set of six exact equations, also called the “parquet equations” [17,5] to the confusion
of the common student, that allows us to calculate from a given Λ the six quantities: full vertex
F , self-energy Σ, Green function G and the three reducible vertices Φ`.
(1) The first equation is the actual parquet equation [Fig. 4, Eq. (2)]

F νν′ω
r,kk′q = Λνν

′ω
r,kk′q + Φνν

′ω
ph,r,kk′q + Φνν

′ω
ph,r,kk′q

+ Φνν
′ω

pp,r,kk′q (2)

where r ∈ {c, s} is the symmetric/antisymmetric spin combination, i.e., Fc/s = F↑↑ ± F↑↓ and
similarly for other vertices.2 The name indicates that Fc and Fs give rise to the charge and spin
fluctuations, respectively.
(2-4) Three of the six “parquet” equations are the Bethe-Salpeter equation in the three chan-
nels `. In [Fig. 5, Eq. (3)] we here only reproduce the ` = ph channel; again with r ∈ {c, s} for

2This assumes SU(2) symmetry, if this is broken altogether four spin combinations need to be taken into ac-
count.
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ΓphΓphF = + F
k+q

k

k’+q

k’

k+q

k k’

k’+q k’+q

k’k

k+q

k +q

k1

1

Fig. 5: Bethe-Salpeter equation in the particle-hole channel, ` = ph, allowing us to calculate F
from the irreducible vertex in Γph in this channel. The rightmost term produces the particle-hole
reducible diagrams denoted as Φph in Fig. 4; Γph = Λ+ Φph + Φpp.

a symmetric/antisymmetric spin combination3

F νν′ω
r,kk′q = Γ νν′ω

r,ph,kk′q +
∑
k1ν1

F νν1ω
r,kk1q

Gk1ν1 G(k1+q)(ν1+ω) Γ
ν1ν′ω
ph,r,k1k′q

; (3)

One often combines frequency ν and momentum k to a four vector k = (k, ν). We do not
do so in this Chapter for the equations, but in the figures k represents (k, ν). Further it is
important to choose a momentum-frequency convention for the vertices and stick to it. Because
of energy and momentum conservation we only need three momenta and frequencies for the
four points 1, 2, 3, 4 of the two-particle vertices in Fig. 4. Unless noted otherwise, we use the
ph convention which is the natural one for the ph channel and already used in Fig. 5. That
is, the 1, 2, 3, 4 frequency-momenta of Fig. 4 are related to Fig. 5 as follows: k1 = k, k4 = k′,
k2 = k+q, and—because of energy-momentum conservation— k3 = k′+q. The Bethe-Salpeter
equations in the other channels have the same structure just with another Γ`, ` = ph or pp, with
another way to connect the building blocks (see Fig. 4), and with another natural (diagonal)
frequency-momentum q.
(5) The fifth equation is the Dyson equation that we already introduced [Fig. 3, Eq. (1)].
(6) Finally, the sixth equation is the Schwinger-Dyson equation [Fig. 6, Eq. (4)] which reads

Σkν =
Un

2
− U

2

∑
k′,q

∑
ν′,ω

(
F νν′ω
c,kk′q − F νν′ω

s,kk′q

)
G(k+q)(ν+ω)Gk′ν′ G(k′+q)(ν′+ω) (4)

and connectsΣ and F . Here we consider a single-orbital and a local interaction U that connects
opposite spins. For this reason only F↑↓ = (Fc−Fs)/2 enters. The first term is simply the
Hartree(-Fock) term, which is not included in Fig. 6 and where n is the average number of
electrons per site in the paramagnetic phase.
This set of six exact parquet equations allows us to determine the six quantities F , Φ`, Σ, and
G, as well as Γ` = F−Φ`. If we knew the exact Λ, we could determine all of these quantities
exactly, as well as associated one- and two-particle physics. Unfortunately, we do not know
the exact Λ. Hence we need some approximation. If we approximate Λ by the bare Coulomb
interaction U, we obtain the parquet approximation [17]. We can do better than this, and in

3We implicitly assume a proper normalization of the momentum and Matsubara frequency sums, i.e.,∑
k =̂

1
NK

∑
k and

∑
ν =̂

1
β

∑
ν , where Nk is the number of momentum points and β = 1/T the inverse tem-

perature.
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Fig. 6: Schwinger-Dyson equation connecting the full vertex F and the self-energy Σ.
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Fig. 7: Lowest order Feynman diagrams that contribute to the fully irreducible vertex Λ.

DΓA we approximate Λ by all local Feynman diagrams. Quantum Monte Carlo simulations
show that this is an excellent approximation [10]. Indeed Λ is very compact. All two-particle
reducible diagrams are generated from it and the first irreducible diagram that enters Λ besides
the bare Coulomb interaction is of fourth order, see Fig. 7. So to speak the irreducible diagrams
Λ form a skeleton from which many more diagrams are generated. Because of this, it is more
local than Γ` and, in particular, much more local than F , Σ or G.

This local irreducible Λ is “summed up” in practice by solving an Anderson impurity model,
similar as in DMFT but now we calculate the two-particle Green function of the impurity model
and from this Λ. For example, we can use continuous-time quantum Monte Carlo simulations
in the hybridization expansion see “QMC impurity solvers” by P. Werner [3], e.g., using the
w2dynamics package [18] which allows us to calculate all two-particle responses using worm
sampling [19].

In principle, one can then further turn to the n = 3-particle level etc.; and, for the n → ∞-
particle fully irreducible local vertex DΓA one recovers the exact solution. As a matter of
course determining the n= 3-particle vertex becomes already cumbersome. But it may serve
at least as an error estimate [11] if one is truncating the scheme at the two-particle vertex level.
Also completely new physics, that is hitherto not understood, may be hiding behind diagrams
generated from the n= 3-particle irreducible vertex. Some physical processes such as Raman
scattering naturally require three-particle vertex functions.
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In the present section we have learned about the fully fledged parquet DΓA. It is unbiased with
respect to all three channels ` and thus treats antiferromagnetic or charge fluctuations in the
ph-channel on a par with e.g., superconducting fluctuations or weak localization corrections in
the pp channel. It also mixes the different channels. For two channels this mixing generates,
with some fantasy, a traditional parquet floor like pattern with ladder rungs in one direction
intermixed by ladder rungs in the orthogonal direction etc., hence the name. Being unbiased
definitely is a great advantage. For example, in [14] we were looking for weak localization
corrections to the optical conductivity in the pp channel and excitons that live in the ph chan-
nel. Instead we found that for strongly correlated systems that host strong alternating spin or
charge fluctuations, the ph channel is actually dominant for the optical conductivity, against all
expectations.

The drawback of the full parquet solution is that we deal with three momenta and three frequen-
cies. Even on a rather coarse discretization grid, we thus easily end up with Terabytes of data.
In the Bethe-Salpeter equation (3) the bosonic momentum q and frequency ω decouple, so that
it can be well distributed on several computer cores without the need to communicate. However,
this natural q and ω is channel dependent (see [5]), i.e., different for the three channels of Fig. 4.
Hence, when we add the three channels in the parquet equation (2), we mix different momenta,
requiring a lot of communication between different cores, which –say– have previously solved
the Bathe-Salpeter equation in different channels. Network traffic thus becomes the compu-
tational bottleneck on a supercomputer for parquet DΓA. Efforts to mitigate this problem are
the truncated unity basis for momentum space [20], the intermediate representation (IR) for
frequency space [21], and the single boson exchange decomposition [22].

3 Ladder dynamical vertex approximation

If we know that a certain channel is dominating, we can restrict ourselves to this particular chan-
nel and neglect the others and the mixing of different channels through the parquet equation.
Since Φph and Φph are related by crossing symmetry (invariance of exchanging the two incom-
ing lines [5]) both of these channels contribute to F in the same way, albeit with a crossing-
symmetry exchanged frequency and momentum combination. Hence, both channels must be
included in general.4 In this case, we hence only need to solve the Bethe-Salpeter equation (3)
and can consider a local Γph as input. For a bare interaction U, the Bethe-Salpeter equation
(3) yields diagrams as in Fig. 8(a). If we improve on this and use a local Γph we get the lad-
der DΓA approach and the diagrams of Fig. 8(b). From these diagrams (plus the contribution
from the crossing-symmetrically related ph channel) we get F , and from F in turn through the
Schwinger-Dyson equation (4) the self-energy.

4When we eventually connect F with altogether four Green functions to a susceptibility with a single bosonic
momentum and frequency [see Eq. (6) and Fig. 12 below)], the q = (π, π, . . .) susceptibility is dominated in
case of antiferromagnetic spin fluctuations by the ph channel, whereas the q = (0, 0, . . .) optical susceptibility
(conductivity) is dominated by the transversal particle-hole channel (π-tons [14]).
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Γpp

Fig. 8: (a) Spin fluctuations as calculated from the Bethe-Salpeter ladder diagrams in terms
of the bare Coulomb interaction U in RPA. (b) Same as (a) but now calculated in ladder DΓA
from the local irreducible vertex in the ph channel: Γ ≡ Γph. (c) These antiferromagnetic spin
fluctuations enter as Γpp (via the parquet equation) in the particle-particle channel. This leads
to the binding of two electrons into a Cooper pair, and if this bosonic Cooper pair Bose-Einstein
condensates to superconductivity. From [25].

If we want to calculate superconducting fluctuations in ladder DΓA we can plug the antiferro-
magnetic spin fluctuations as a superconducting pairing glue (which is nothing but Γpp) into the
pp channel. This is so-to-speak a poor man’s one-step parquet calculation. We get the ph and ph
spin fluctuations into the pp channel, but we do not feed back the pp fluctuations to the ph and
ph channel. For details on the superconducting calculations and also regarding the treatment of
high frequencies, see [16].

A self-consistency with respect to the recalculation of the Green function entering the Bethe-
Salpeter equation (3) is possible [23]. Different schemes have been proposed as well for a self-
consistency with respect to Γ (or Λ) starting with [24], for an overview see [5]. A simpler and
widely used approach is to do, instead, a so-called Moriyaesque λ-correction [5]. It essentially
adds a mass to the paramagnons (dampens the antiferromagnetic spin fluctuations). This mass
is fixed by a sum-rule for the susceptibility, and automatically warranties the correct high-
frequency asymptotics of the self-energy. This λ-correction has been introduced to mimic the
self-consistency and represents a considerable simplification of the calculations. For a further-
going discussion see [5, 25].

The advantage of the ladder DΓA is that –as long as we do not couple the ladders through the
parquet equations– the ladder only depends on a single frequency-momentum q instead of three
(q,k,k′). Hence numerically much lower temperatures, larger frequency grids and finer momen-
tum grids are feasible. Also realistic multi-orbital ab initio DΓA calculations are possible with
the ladder DΓA version [15]. The results presented in the following have been obtained by
ladder DΓA with a Moriyaesque λ-correction.
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4 Hubbard model, cuprates and nickelates

In this Chapter, we consider the one-band Hubbard model in two or three-dimensions

H = −
∑
ij,σ

tij c
†
iσcjσ + U

∑
i

ni↑ni↓. (5)

It consists of two terms: (i) a hopping term tij between sites i and j, which we restrict in the
following to a nearest neighbor t, next-nearest neighbor t′ and next-next-nearest neighbor t′′;
and (ii) a local Coulomb repulsion U. Here c†iσ (ciσ) creates (annihilates) an electron on site i
with spin σ in second quantization and niσ = c†iσciσ.
The Hubbard model is the quintessential model for strongly correlated electron systems, similar
as the Ising model for statistical physics or the Drosophila fly for genetics. For tij = 0, we have
just a collection of atoms and a spectra with peaks at ±U/2 for half-filling. For U = 0, there is
no interaction and we can solve the tight-binding Hamiltonian by Fourier transforming tij to εk
in momentum space. Then, just occupying all single-particle states up to the Fermi energy gives
the ground state. But, if we switch on U the electrons become correlated, the expectation value
〈niσnjσ′〉 6= 〈niσ〉〈njσ′〉. In particular local double occupations 〈ni↑ni↓〉 are heavily reduced
compared to the non-interacting, uncorrelated value.
While a screened interaction can –to a good approximation– often be replaced by the purely
local interaction U, materials require typically the consideration of more bands than the single-
band Hubbard model. This is even the case when we restrict ourselves to the low-energy orbitals
around the Fermi energy. An important exception are cuprate and nickelate superconductors.
The arguably simplest cuprate and nickelate crystal structure is the “infinite-layer”5 structure
displayed in Fig. 9 (A) and (B). Since the valence of the spacer cations is Ca+2 and Nd(La)+3,
the formal oxidation state is Cu+2 and Ni+1, respectively, so that both cuprates and nickelates
are in a formal 3d9 configuration. After such basic chemistry considerations, the first step to get
an idea of the relevant orbitals is doing a density functional theory (DFT) calculation.
Fig. 10 shows that for the cuprates a single 3dx2−y2-orbital is crossing the Fermi level. It gives
rise to the single hole-like Fermi surface sheet displayed in the lower left panel of Fig. 10. This
Cu 3dx2−y2-band and Fermi surface can well be described with proper hopping parameters t, t′

and t′′. But now we need to include the effect of electronic correlations. These are indicated
by the dashed arrows and the side panels of Fig. 10(A): the Cu 3dx2−y2-band splits into an
upper and lower Hubbard band. Since the oxygen orbitals are just a few eV below the Fermi
energy, these oxygen orbitals end up above the lower Hubbard band. As a consequence we
have a charge transfer insulator according to the scheme of Zaanen-Sawatzky-Allen and not a
Mott insulator, which one might have expected from the splitting into Hubbard bands. That
is, if we dope cuprates, and we need to do so to have a superconductor, the holes go into the
oxygen bands. Hence, in the case of cuprates, an Emery model description which incorporates
the copper 3dx2−y2-band and oxygen px and py bands as visualized in Fig. 9(C) is the most
appropriate low-energy model. Nonetheless, the majority of theoretical papers studying the

5The two distinct layers displayed in Fig. 9 are repeated on top of each other ad infinitum.
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Fig. 9: Crystal structure of (A) a characteristic cuprate, CaCuO2, and (B) the nickelate NdNiO2.
The Cu(Ni)O2 layers are separated by Ca(Nd) spacing layers in this “infinite-layer” structure.
Also shown are the relevant low-energy orbitals in both cases. (C) Cuprates are charge transfer
insulators so that the oxygen orbitals need to be included for an accurate microscopic descrip-
tion. The simplest such model is the Emery model with copper 3dx2−y2 , oxygen px and py
orbitals. As indicated there is a hopping tpd between Cu and O sites, and tpp between O sites;
double occupations are suppressed by the interaction U on the Cu sites just as in the Hubbard
model. (D) For nickelates we have a Ni-3dx2−y2-band and a A-pocket derived from the Nd 5dxy
band crossing the Fermi energy. Both are largely decoupled but we need to calculate, e.g., by
DFT+DMFT, how many holes go into the Ni-3dx2−y2-band Hubbard model and how many go
into the A-pocket reservoir. From [26].

cuprates use the single-band Hubbard model. This is to some extend justified by the fact that
oxygen-hole spin and copper spin form a Zhang-Rice singlet, which can be described effectively
by the Hubbard model. Also in experiment, there is a single Fermi surface as in Fig. 10(C) of
mixed oxygen and copper character.
In case of the nickelates, these oxygen bands are instead at a considerably lower energy. Hence
the lower Hubbard band is now above the oxygen band and we would have a Mott insulator –
if it was not for the Nd(La) 4d-bands.6 These Nd(La) 4d bands are closer to the Ni 3d-bands

6We here show LaNiO2 since it is slightly easier to calculate than NdNiO2 in DFT because it has no 4f -
electrons. Experimentally, La1−xSr(Ca)xNiO2 is also a nickelate superconductor with a Tc comparable to NdNiO2.
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Fig. 10: (A,B) Electronic structures of (A) CaCuO2 and (B) LaNiO2 as calculated in DFT. The
side panels indicate the effect of electronic correlations and the color bars the center of energy
of the most important bands. (C) and (D) DFT Fermi surface corresponding to (A) and (B),
respectively. From [26].

than the unoccupied Ca and Cu s bands are to the Cu bands. Hence they briefly cross the Fermi
level around the Γ and A momentum, which leads to the formation of pockets around these
momenta, see Fig. 10(D). The charge transferred to the Nd(La) pockets also leads to a self-
doping of the Ni 3dx2−y2-band, even for the parent compound Nd(La)NiO2 which has about
0.05 holes per Ni. In such a situation, a quasi-particle peak develops as indicated in the side
panel of Fig. 10 (B) with a quasiparticle mass enhancement m∗/m = 1/Z calculated to be
about five [27]. A further correlation effect is that the Γ -pocket is shifted above the Fermi level,
at least for larger Sr-doping and for LaNiO2.

Altogether this leaves us with two relevant bands as displayed in Fig. 9(B): the Ni 3dx2−y2-
band and the Nd(La)-derived A-pocket. Both bands do not hybridize and can hence, to a first
approximation, be considered as decoupled. The expectation is that the more strongly correlated
Ni 3dx2−y2-band is responsible for the superconductivity. Using Occam’s razor, i.e., if we try to
identify the most simple model, we end up with a one-band Hubbard model for the Ni 3dx2−y2-
band and a decoupled reservoir (A-pocket) that must be taken into account for translating the
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Fig. 11: Translation of Sr-doping to the occupation of the Ni 3dx2−y2-band (blue line; right
y-axis) and corresponding effective mass enhancement m∗/m (black line; left y-axis) as calcu-
lated by DFT+DMFT for (A) La1−xSrxNiO2 and (B) Nd1−xSrxNiO2. From [27] (Supplemental
Material).

Sr-doping of Nd(La)1−xSrxNiO2 into the actual hole doping of this Hubbard model. Otherwise
the A-pocket is merely a passive bystander. This simple model is illustrated in Fig. 9(D).

The hopping parameters of the nickelate Hubbard model can be obtained from a Wannier func-
tion projection onto the Ni 3dx2−y2-band: t = 0.395 eV, t′/t = −0.25, t′′/t = 0.12 [27]. Fur-
ther, the interaction strength U can be calculated by constrained random phase approximation
(cRPA, see Chapter “The GW+EDMFT method” by F. Aryasetiawan [3]). Considering the fact
that U is frequency(ω)-dependent in cRPA and –within the relevant energy range– on average
slightly larger than U(ω=0), one obtains U ≈ 8t from cRPA. For further details see [27].

The translation from Sr-doping to the occupation of the 3dx2−y2-band has been calculated in
DFT+DMFT7 including all five Nd and all five Ni d bands in DMFT. Fig. 11 (blue curve)
shows the results: One sees that roughly 50% of the holes (there is one hole per Sr) go into
the 3dx2−y2-band and the remaining 50% go into the pockets. For larger Sr-dopings, at around
25%, the curve flattens because here the Ni 3d3z2−r2 orbital approaches the Fermi level and
accommodates holes as well. The one-band Hubbard model DMFT calculation gives a very
similar spectrum as the full DFT+DMFT calculations with 5+5 Nd+Ni orbitals. Also the ef-
fective mass plotted in Fig. 11 (black curve) agrees [27]. Altogether this hints that the simple
Hubbard model is a good approximation for nickelates; experimental results are also consistent
with this picture so-far.

7For the DFT+DMFT method, see the Chapter “LDA+DMFT for strongly correlated materials” by A. Lichten-
stein [3]
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Fig. 12: The susceptibility χ consists of the bare bubble χ0 (first term on the right hand side)
and vertex corrections that can be calculated from the full vertex F .

5 Spin fluctuations

Spin fluctuations as visualized in Fig. 8(a,b) enter the full vertex F but subsequently also the
susceptibility which is connected to F as (Fig.12)

χr,qω =
∑
kν

Gkν G(k+q)(ν+ω)︸ ︷︷ ︸
≡χ0

qω

−
∑
kk′νν′

Gkν G(k+q)(ν+ω) F
νν′ω
r,k+k′qGk′ν G(k′+q)(ν+ω) (6)

for r = c/s i.e., the spin and charge susceptibility, respectively. As before, we restrict ourselves
to the paramagnetic phase for simplicity. The first term on the right hand side of Eq. (6) is just
the bare bubble contribution χ0, obtained directly from two (interacting) Green functions; the
second term are vertex corrections calculated form F. The minus sign is a matter of definition
of F. When F is calculated in RPA as in Fig. 8(a), we have Γr = ±U for r = c/s and obtain a
geometric sum, which eventually yields

χRPA
r,qω =

χ0
qω

1± Uχ0
qω

(7)

where the +/- is for r = c/s.
For certain ω’s and q’s Eq. (7) [and Eq. (6)] develops poles. We call these bosonic excitations
(para)magnons. The ω-q energy-momentum dispersion relation of these quasiparticles follows
the position of the poles.
The minus sign in Eq. (7) already indicates that spin fluctuations are generally stronger in a
Hubbard model. This can change if additional non-local interactions V are included. These
trigger a transition from an antiferromagnetic spin to a charge density wave order for ZV > U

in mean field (Z: number of neighbors; V : nearest neighbor Coulomb repulsion). Which
magnetic order dominates in RPA, solely depends on the q for which χ0

qω=0 is strongest. Close
to half-filling, we often have Fermi surfaces where for a k on the Fermi surface (ν = 0) also
k+q = (π, π, . . .) is at or close to the Fermi surface. Then both Gkν=0 and G(k+(π,π,...))(ν+ω)=0

are large in Eq. (6), and the antiferromagnetic susceptibility χ0
q=(π,π,...)ω=0 is maximal. Of

course, this is just the weak coupling picture. For larger Coulomb interactions we form large
magnetic moments and the change of physics is reflected in vertex F corrections beyond RPA.
More recently it could be demonstrated [25] that the local vertex Γr=m is suppressed compared
to the RPA Γs = −U value. This is shown in Fig. 13 (left). This suppression, in particular
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Fig. 13: Left: Difference of the local ph vertex in the magnetic channel from −U, i.e.,
δΓm = Γs − (−U) vs. the two fermionic Matsubara frequencies νn = i(2n+1)πT and ν ′n′
at zero bosonic frequency ω = 0. At small frequencies, Γs,ph and associated spin fluctuations
are suppressed. Right: This suppression also leads to a suppression of the non-local pp vertex
Γpp, i.e., the superconducting pairing glue, at small frequencies. It is obtained from antifer-
romagnetic spin fluctuations (i.e., from the local Γs corresponding to the left panel and the
Bethe-Salpeter equation, see Sec. 7). Right inset: Γpp as calculated in RPA. From [25] where
further details and parameters can be found.

that at the relevant small frequencies, leads to reduced spin fluctuations. Consequently, the
superconducting pairing as calculated along the line of Fig. 8(b,c) is suppressed as well, see
Fig. 13 (right). Its origin are local particle-particle excitations that enter Γs and reduce it along
the side diagonal frequencies ν = −ν ′.
This reduction of the DΓA spin susceptibility is key for a good description of antiferromagnetic
spin fluctuations, which are grossly overestimated in RPA for somewhat larger Coulomb inter-
actions U. In fact, it was shown that qualitatively and quantitatively the DΓA susceptibility
excellently agrees with other recent numerical calculations [28].
From the susceptibility one can obtain the correlation length ξ. Fourier-transformed to real
space r and time, the (equal-time) magnetic susceptibility behaves as

χsr =
〈
S(r)S(0)

〉
∼
(
|r|

ξ

)−1/2
e
−|r|
ξ (8)

at large distances r. Here, S(r) denotes the spin operator of the electrons at position (lattice site)
r. Fig. 14 shows this spin-spin correlations or susceptibility of the Hubbard model. Clearly,
an alternating (antiferromagnetic) correlation is visible. At high temperatures (left panel), the
correlation length is short and correlations quickly decay. In two dimensions we get, however,
an exponential increase of the correlation length with 1/T in DΓA [13] which is the reason
behind the very large correlation length of Fig. 14 (right panel). While a correlation length of
ξ = 4 lattice sites (left panel) can still be covered in cluster extensions of DMFT and lattice
quantum Monte Carlo methods, the rapidly increasing correlation length at lower temperatures
quickly puts a numerical limit to such cluster approaches.
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Fig. 14: Antiferromagnetic correlation function χs,r normalized to its r = 0 value vs. distance
r for the two dimensional Hubbard model along the x-direction (t′ = t′′ = 0, U = 0.5(4t);
all energies are here in units of 4t). The left and right panel show two different temperatures,
T = 0.025(4t) (left) and T = 0.025(4t) (right), where largely different correlation lengths (ξ)
are observed. From [13].

At a three dimensional phase transition, the susceptibility diverges with critical exponent ν:
ξ ∼ (T−Tc)−ν , and similarly χr,Qω=0 ∼ (T−Tc)−γ with a critical exponent γ. These critical
exponents could be calculated in DΓA and DF for the first time for correlated electronic models,
a topic that has been covered in a preceding Jülich Autumn School [12].

In practice, the correlation length is not calculated from fitting χsr. Instead one fits it Fourier-
transform χs,qω=0 in momentum space. For large correlation lengths and in the vicinity of its
maximum at the dominating wave vector Q,8 the susceptibility is of the Ornstein-Zernike form

χs,qω=0 ∼
1

(q−Q)2 + ξ−2
. (9)

That is, the inverse correlation length ξ−1 corresponds to the width of the susceptibility around
its peak at q = Q.

In two dimensions, the Mermin-Wagner theorem is fulfilled and there is no long range anti-
ferromagnetic order for finite temperature in the DΓA and with the diagrammatic extension of
DMFT [5]. In three-dimensions the antiferromagnetic phase transition temperature Tc is re-
duced compared to DMFT, as shown in Fig. 15. Also the critical behavior in the vicinity of the
phase transition is not any longer of mean-field type as in DMFT. Instead the critical exponents
well agree9 with those of the Heisenberg model [5, 12] for half-filling, as to be expected from
universality.

8For example, Q = (π, π) for the two-dimensional Hubbard model at half-filling.
9within the numerical error bars in the studied critical temperature regime
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Fig. 15: Phase diagram of the half-filled three-dimensional Hubbard model on a cubic lattice
with nearest-neighbor hopping t comparing various methods for the phase transition from the
paramagnetic metallic (PM) and insulating (PI) phase to the antiferromagnetic insulating phase
(AF). From [5] where further details and the abbreviation of the various methods can be found.

6 Pseudogap

Besides the susceptibility, spin fluctuations also impact the electronic self-energy, as already
indicated in Fig. 1. The effect of F on the self-energy Σ can be directly calculated via the
Schwinger-Dyson Eq. (4) [Fig. 6]. Physically, this corresponds to electron-(para)magnon scat-
tering which can reduce the lifetimes of the quasiparticles. An alternative way to write the
Schwinger-Dyson equation and to express the fermion-boson interaction is shown in Fig. 16.
Here, simply the F and two Green functions from Fig. 6 have been combined to γ, i.e., mathe-
matically

γνωr,kq =
∑
k′ν′

Fr,kk′qGk′ν′ G(k′+q)(ν′+ω) (10)

so that the Schwinger-Dyson equation becomes

Σkν =
Un

2
− U

2

∑
qω

(
γνωc,kq−γνωs,kq

)
G(k+q)(ν+ω) . (11)

Now, we can rewrite this further by merging U -reducible diagrams into an effective interaction
Wr, in the spirit of Hedin’s GW method (we will not go into further details here and refer the
reader to the Chapter “ The GW+EDMFT method” by F. Aryasetiawan [3], and to [22]). Beyond
GW, here also spin fluctuations are included in Ws. This is displayed in Fig. 16 (right). The
remaining U -irreducible γ̃ can be interpreted as the fermion-boson interaction andW as a boson
propagator. In the case of GW these bosons are plasmons (charge fluctuations), while for the
one-band Hubbard model (para)magnons (spin fluctuations) dominate. Such a reformulation of
the Feynman diagrams is also the idea of the single boson exchange (SBE) approach [22], which
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γ

Fig. 16: Schwinger-Dyson equation to calculate the self-energy Σ rewritten in terms of U and
γ or W and γ̃.

has been used recently to rewrite the DF and DΓA parquet equations. Much of the physics is
already contained in the boson propagators W so that the remaining fully irreducible parts of
the SBE parquet formalism decay much faster in frequency and momentum.
Particularly strong spin fluctuations, as they occur for the Hubbard model in two dimensions,
can give rise to a physical phenomenon called pseudogap. Theoretically, this pseudogap has
been established in numerical simulations and in weak coupling calculations. Experimentally,
it has been observed for cuprate superconductors, both in the spectrum as well as in transport
measurements. This kind of physics is naturally included in DΓA and other diagrammatic
extensions of DMFT.
Fig. 17 shows the Fermi surface of the two-dimensional Hubbard model for typical hopping
parameters of Cu(Ni) 3dx2−y2 orbitals in cuprates (nickelates). If we want to calculate the self-
energy for a momentum k on the Fermi surface, it will be effected by spin fluctuations. These
effects can be calculated via Eq. (11) [Fig. 16]. In Fig. 17 three particular points of the Fermi
surface are displayed: The antinodal momentum on the Fermi surface (PG) is close to (π, 0).
Here, the pseudogap first opens in experiment and in numerical calculations for the Hubbard
model at strong coupling. The nodal momentum (ARC) along the diagonal where an ARC-like
part of the Fermi surface survives after the opening of the pseudogap around PG [see Fig. 19
(rightmost panel) below]. Finally, the hot spot (HS) which is the point of the Fermi surface
where k+ (π, π) lies on the Fermi surface as well. At weak coupling, the pseudogap opens first
at the HS.
The spin-fermion coupling of Fig. 16 leads to an additional contribution to the self-energy on top
of the local DMFT self-energy. In the Bethe-Salpeter equation Eq. (4) or equivalently Eq. (11),
the vertex F respectively γ – or in Fig. 16 (right) W– are dominated by spin-fluctuations for
the two-dimensional Hubbard model. These spin fluctuations are strongly peaked around the
antiferromagnetic weave vector Q = (π, π) and can be modeled approximately by the Ornstein-
Zernicke form Eq. (9) around Q. Hence the spin-fermion contribution to the self-energy can
approximately written as (see [29])

Σk ν=iδ ∝ γ̃T
∑
q

G(k+q) ν=iδ

(q−Q)2 + ξ−2
, (12)

employing the rapid decay of γ̃ with bosonic frequency ω and restricting ourselves to the Fermi
energy (ν = iδ, δ → 0)10. Further one can replace G by G0 so that Eq. (12) can also be

10One can approximate this, at the cost of some additional broadening, by the lowest Matsubara frequency
ν0 = iπT .
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Fig. 17: Typical Fermi surface of the t-t′-t′′ Hubbard model. The blue and red colors denote the
occupied and unoccupied part of the Brillouin zone, respectively. The circle (PG), square (ARC)
and diamond (HS) denote specific momenta k that are discussed in the text. The corresponding
momenta k + (±π,±π) connected to these by the antiferromagnetic wave vector Q = (π, π)
are also plotted, as circles with typical inverse correlation lengths ξ−1 as radius. The upper left
quadrant shows the parts of the Fermi surface that are “heated” (red) and “cooled” (blue), i.e.,
become less and more coherent because of Imγ̃ (see text). From [29].

employed as an ansatz for the spin-fermion self-energy or for fitting the pseudogap with only
two fee parameters [γ̃ and ξ; if Q is known].
The sum of Eq. (12) is dominated by q ≈ Q where the antiferromagnetic spin fluctuations are
strongest. In weak coupling theory γ̃ = 1, and we get a damping, i.e., an imaginary part of
the self-energy whenever G(k+Q)0 has a sizable imaginary part. This is the case whenever we
have spectral weight A(k+Q)ν = − 1

π
ImG(k+Q)ν for (real frequency) ν = 0. For G = G0, i.e.,

without dampening, this is only possible if k + Q is on the Fermi surface, too. Deviations by
about the inverse correlation length (circles in Fig. 17) are possible, as then antiferromagnetic
correlations are still sizable (which is the essence of the Ornstein-Zernicke form).
The condition that, for a considered k on the Fermi surface, also k + Q is on the Fermi surface
is exactly fulfilled for the hot spots (HS) in Fig. 17. At weak coupling, the prefactors of Eq. (12)
are small and we need very long correlation lengths ξ to get a sizable imaginary part of the self-
energy. Hence, here the pseudogap opens first at the hot spots.
At strong coupling the typical inverse correlation lengths are as displayed in Fig. 17 for the
onset of the pseudogap. Numerical calculations (see Figs. 18, 19 below) and experiment show
that the pseudogap opens first at the part of the Fermi surface marked as “PG” in Fig. 17. One
reason for this might be that with the shorter correlation length, i.e., larger ξ−1, the large spectral
contribution of the van Hove singularity at (π, 0)11 becomes relevant.

11and cubic-symmetrically related momenta
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Fig. 18: Imaginary part of the DΓA self-energy vs. index n of the Matsubara frequency νn =
i(2n+1)πT , in the pseudogap region for a typical Hubbard model. Parameters: U = 8, t′ =
−0.2, t′′ = 0.1, T = 0.05 (all in units of t), and 10% hole doping. Clearly the self-energy is very
different for the two momenta plotted, i..e, in the nodal direction of the Fermi surface and in
the anti-nodal direction. The downturn of the anti-nodal self-energy indicates the development
of a pole and thus a splitting of the spectral function away from the Fermi energy. Figure by
courtesy of Paul Worm.

A second mechanism has been identified in [29]: the spin-fermion interaction γ̃ develops an
imaginary part because of particle-hole asymmetry at strong U. Hence we also get an imaginary
part for Σ in Eq. (12) from the real part of the Green function G(k+q) ν=0,

ReGk ν=iδ =
µ− εk − ReΣk ν=iδ(

δ − ImΣ(k) ν=iδ

)2
+
(
µ− εk − ReΣk ν=iδ

)2 . (13)

This real part is displayed as false color in Fig. 17 for the non-interacting Green function (Σ=0).
It has opposite sign (blue vs. red in Fig. 17) for the occupied (unoccupied) part of the Brillouin
zone, where εk + ReΣk ν=iδ < (>)µ; µ is the chemical potential.
Hence, for the PG momentum where we scatter into the blue occupied part in Fig. 17 the
imaginary part of the DMFT self-energy is enhanced by non-local correlations. This part of the
Fermi surface is hence strongly dampened and eventually develops a pseudogap. In contrast, for
the ARC momentum the imaginary part of the DMFT self-energy is even reduced (in absolute
terms). The ARC quasiparticles are so-to-speak “cooled”, i.e., become even more coherent
because of spin fluctuations. This dichotomy is another mechanism that opens the pseudogap
first in the nodal (PG) region and not at the hot spot (HS) if we are at strong coupling.
Fig. 18 shows the typical momentum differentiation that we obtain for the self-energy in the
pseudogap region. The self-energy in the nodal and anti-nodal region is largely different. In
the nodal direction, ImΣk,ν ∼ −ν with the slope corresponding to the quasiparticle weight
Z at this momentum. At the opening of the pseudogap, for momenta in the PG region, the
self-energy first develops a large imaginary part, limν→0 ImΣk,ν . This corresponds to a strong
dampening or extremely short life times of quasiparticles in this region. In Fig. 18 this would
mean a flat curve for small frequencies. Eventually, the self-energy develops a pole, and we
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Fig. 19: DΓA spectrum at the Fermi energy for different dopings of nickelate superconductors
throughout the Brillouin zone (i.e, x- and y-axis are the kx and ky momentum ranging from −π
to π, and the false color show the spectral function at the Fermi energy ν = 0). From [27].

can see in Fig. 18 the onset of such a pole as the downturn of ImΣk,ν for small Matsubara
frequencies.

This is akin to the Mott insulator where the self-energy behaves as

Σk,ν =
U2

4ν
(14)

However, now this pole only occurs in the PG momentum regime, and the origin are spin fluc-
tuations not Mott-Hubbard physics. Consequently the prefect or, being given by the spin fluc-
tuation strength, is smaller than U2

4
. In the PG regime, the spectrum is hence gapped because

of this pole structure (or strongly suppressed if Im is only large), whereas the ARC region still
shows spectral weight.

Let us now turn to the nickelate superconductors. Fig. 19 shows the spectrum of the Ni
3dx2−y2 band12 for nickelates as calculated by DΓA for the effective Hubbard model (see Sec. 4
where also the parameters can be found). The parent compound NdNiO2, corresponding to
n3dx2−y2

= 0.95 (rightmost panel) has a pseudogap in the antinodal (PG) region, indicated by
missing spectral weight in Fig. 19. This DΓA prediction still awaits an experimental confir-
mation; angular resolved photoemission experiments are urgently needed but have not been
successfully done yet.

For making nickelates superconducting, one needs to dope this 3dx2−y2 band, e.g., to n3dx2−y2
=

0.80 or 0.85. For these superconducting dopings, we have a clear Fermi surface throughout the
Brillouin zone in Fig. 19 and no pseudogap.13

12There are additional Nd pockets, see Sec. 4.
13As a technical remark, the spectrum has been calculated from Akν0 = −1/π Gkν0 at the lowest Matsub-

ara frequency ν0 = iπT , which leads to some additional broadening (smearing) but avoids the error-prone and
cumbersome analytical continuation.
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7 Superconductivity

Next we turn to the task of calculating the superconducting order and critical temperature Tc
from the antiferromagnetic spin fluctuations. The general procedure has already been indicated
in Fig. 8(c). More specifically, the first step is the calculation of the full vertex F from Γph
(plus the crossing symmetrically related ph channel), by summing the Bethe-Salpeter ladder
diagrams in this channel(s). This calculation includes spin and charge fluctuations, but in the
Hubbard model spin fluctuations prevail. In the second step, we insert these spin fluctuations
into the pp channel. That is, we calculate Γpp = Λ+Φph +Φph. Since no pp reducible diagrams
have yet been included (except for the local ones), we can also rewrite this as Γpp = F −Φlocal

pp .
From this Γpp we can next recalculate F including superconducting fluctuations via the Bethe-
Salpeter equation in the pp channel. This is akin to the Schwinger-Dyson Eq. (3) in the ph
channel, except that we have to properly rotate the momenta and to use Γpp instead of Γph.
Similarly as in RPA [Eq. (7)], we get a superconducting (SC) susceptibility of the form

χSC,q=0ω=0 =
∑
kk′νν′

χ0
(

1 + Γpp,q=0ω=0 χ
0
)−1

(15)

Here, we are interested in the instability at ω = 0 and the coupling of two fermions with
momentum k and −k into a Cooper pair as in Fig. 8(c), i.e., a total momentum q = 0 in the pp
channel14. The generalized15 bare bubble susceptibility at ω = 0 and q = 0 is

χ0
kk′νν′ = Gk′ν′ G−k−ν δ(k−k′) δν,ν′ (16)

and the double underlines denote matrices with respect to kν and k′ν ′.
In order to obtain superconductivity, i.e., a diverging χSC,q=0ω=0 one of the eigenvalues λ of the
matrix−Γpp,q=0ω=0 χ

0 has to approach λ = 1. For electron-phonon mediated superconductivity

this is simple since the electron-phonon coupling gives rise to an attractive (negative) Γpp. For
the repulsive Hubbard model, this is much more difficult to achieve since Γpp also includes the
repulsive (positive) Coulomb interaction +U. Nonetheless, an attraction can be mediated by
antiferromagnetic spin fluctuations through retardation (ν, ν ′) and non-locality (k, k′). The k,
k′ structure of the diverging (λ → 1) eigenvector (or the corresponding real space structure)
determines the symmetry of the superconducting symmetry breaking and gap (s-wave, d-wave
etc.). For phonons with an across the board attraction, one gets s-wave superconductivity. For
the spin fluctuations in the Hubbard model d-wave is more favorable to avoid the large local
repulsion +U.16

The Mermin-Wagner theorem also applies for superconductivity, where in two dimensions and
at finite temperatures only the Nobel-prize-winning topological Berezinskii-Kosterlitz-Thouless

14This q is not to be confused with that in the ph channel which is peaked around Q = (π, π) and corresponds
to another combination of the external legs of the four-point vertex F .

15without kk′νν′ summation
16For the d-wave, Γpp mediates between momenta k and k′ on the Fermi surface, for which the superconducting

eigenvalue has opposite sign.
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Fig. 20: Superconducting Tc vs. year of discovery for various important superconductors. After
the copper age, there has been an iron age, and now we are in the nickel age. From [31].

(BKT) transition is possible. At first glance, this is a contradiction to the observed superconduc-
tivity in cuprates and nickelates. However, these materials are not perfectly two-dimensional
but layered quasi-two-dimensional materials. In this situation, and with the strongly increasing
correlation length around the BKT transition, even a tiny coupling in the inter-layer direction
will trigger superconductivity, a little bit below the BKT transition. In the DΓA calculation,
a self-consistency is necessary to (possibly) get a BKT transition. Without the self-consistent
feedback of the superconducting fluctuations, we eventually get a mean-field kind of supercon-
ducting transition and a finite Tc which is closer to experiment than the ideal two-dimensional
calculation with BKT transition.

As for superconducting materials, the three years ago discovered nickelate superconductors [30]
have led to enormous theoretical and experimental efforts. One therefore also speaks of the
nickel age for superconductivity, see Fig. 20. Also shown are hydrogen-based superconductors
that are phonon-mediated and have a Tc above room temperature, but only under the enor-
mous pressure of a diamond anvil cell. Hence the challenge is to increase Tc for the uncon-
ventional (i.e., not phonon-mediated) correlated superconductors or to reduce the pressure for
the hydrogen-based superconductors. Here, the nickelates have a Tc that is still quite substan-
tially below that of the cuprates. While one can expect Tc to further increase somewhat with
new and better synthesized nickelate films, one should not expect a room temperature nickelate
superconductor. The high hope is instead that nickelates and cuprates are very similar but also
decisively distinct, an ideal situation to discriminate the essentials from the incidentals for high-
temperature superconductivity. The iron pnictides are instead pretty far away from the cuprate
or nickelate physics.



11.26 Karsten Held

0

20

40

60

0 10 20 30 40

5.5 10 15 20 23

T
C
[K

]

Sr-doping[%]

dx2−y2-hole doping[%]

DΓA theory
Exp. a priori

Exp. a posteriori
Exp. defect free

Fig. 21: Superconducting phase diagram Tc vs. Sr-doping (lower x-axis) and vs. doping of the
3dx2−y2-orbital (upper x-axis) as calculated for Nd1−xSrxNiO2 in DΓA [27]. At the time of
the calculation a single experimental data point (“a priori” [30]) was available. The first ex-
perimental superconducting dome (“a posteriori” [32]) showed already reasonable agreement.
With cleaner films (“defect free” [33]) the agreement has become breathtaking, in particular
if one considers how challenging it is to calculate Tc reliably. Also the pentalayer nickelate
(Tc ≈ 13 K, 20% holes in the 3dx2−y2 orbital [34]) well matches the Tc of DΓA and the shown
infinite layer experiment. Adapted from [27].

In Sec. 4, we have already pointed out that the nickelates can be described by a one-band
Hubbard model with an appropriately adjusted doping; and in Fig. 19 we have shown the thus
calculated spectrum with a pseudogap for the (non-superconducting) parent compound NdNiO2.

For this nickelate Hubbard model, we find [27] (not surprisingly) d-wave superconductivity
in ladder DΓA. The superconducting Tc vs. doping is plotted in Fig. 21 as a function of Sr-
doping. Actually the theoretical calculation was a prediction here since, when three years ago
superconductivity in nickelates has been discovered [30], only a single Tc at 20% doping was
available at first because of the difficulties to synthesize Nd1−xSrxNiO2 in the low oxidation
state Ni+1. With the recent progress to synthesize clean superconducting nickelate films [33],
the theoretical predicted phase diagram has been spectacularly confirmed in experiment, see
Fig. 21.

The physical reason that we see in Fig. 21 a superconducting dome is two-fold: The downturn
at large doping is because antiferromagnetic spin-fluctuations get weaker further and further
away from half-filling. The down-turn at small doping, towards half-filling, on the other hand
is a consequence of the pseudogap which develops in this doping region, see Fig. 19. Thus, the
electron propagators in Fig. 8(c) loose coherence in a larger part of the Fermi surface, and the
superconducting susceptibility is suppressed despite considerable spin fluctuations.
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Recently also a pentalayer nickel12 has been synthesized [35], which has very similar hopping
parameters [34]. Its Tc = 14 K agrees with DΓA and with the Tc of the infinite layer nickelates
shown in Fig. 21. Here, DMFT indicates that pentalayer nickelates have no pockets [34] and
thus a doping of 0.2 holes per site in the 3dx2−y2-orbital. The absence of pockets in pentalayer
nickelates further corroborates the picture of a decoupled reservoir that is not relevant for su-
perconductivity as advocated in Fig. 9. Altogether the DFT+DMFT and DΓA calculations for
nickelates and the experiments for the different nickelates provide for a consistent picture [34].
This gives us some hope that we might finally be able to actually calculate and predict super-
conducting Tc’s, the arguably biggest challenge of solid state theory.

8 Conclusion and outlook

Diagrammatic extensions of DMFT are very appealing in several ways: They combine the good
description of DMFT with the, to the best of our knowledge, most important non-local physics.
In this Chapter we have focused on spin fluctuations and how they mediate superconductivity,
but other fluctuations such as charge fluctuations, weak localization corrections, excitons –you
name it– are treated on an equal footing. Also (quantum) criticality can be described, a topic
that has been discussed in an earlier Jülich Autumn School [12]. Diagrammatic extensions of
DMFT are also very appealing since they merry quantum field theoretical with its qualitative
understanding and numerics which is unavoidable for a quantitative description of strongly
correlated electrons systems.
Different variants of diagrammatic extensions of DMFT exist and, for the sake of brevity, we
have concentrated here on the first (and widely employed) variant: the dynamical vertex approx-
imation. All variants have in common that they calculate a local vertex and construct non-local
correlations from this vertex diagrammatically. In regions of the phase diagram where non-local
correlations are short range, results are similar as for cluster extensions of DMFT. However,
the diagrammatic extensions also offer the opportunity to study long-range correlations, which
is key for (quantum) criticality but also important in other situations, as well as to calculate
materials with many orbitals [15].
There is still plenty of room for improvement: starting from (i) various self-consistencies, us-
ing (ii) a cluster instead of a single site as a starting point, (iii) compactifying the vertex with
the intermediate representation (IR) in frequency space [21], the truncated unity in momentum
space [20] and the single-boson exchange [22] in Feynman diagram space, and thus allowing
for parquet DΓA calculations at lower temperatures. Another development has been (iv) the
calculation of the underlying two-particle vertices directly for real frequencies, which is pos-
sible using the numerical renormalization group (NRG) method, see Chapter “The physics of
quantum impurity models” by J. von Delft [3].
In this Chapter, we have concentrated on antiferromagnetic spin fluctuations, how they open
a pseudogap and how they mediate superconductivity. The Tc predicted for nickelates agrees
well with experiment – actually much better than what we dared to hope for. This gives us some
confidence that we are on the right track to better model and understand superconductivity, that
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we eventually have the tools to predict Tc for new materials. While many theoreticians in the
many-body community consider antiferromagnetic spin fluctuations to be at the origin of high
temperature superconductivity, the mechanism for unconventional superconductivity remains
hotly debated. Maybe through a careful analysis and predictions we can now prove that this is
indeed the microscopic mechanism for high-temperature superconductivity.
Diagrammatic extensions of DMFT such as the DΓA also offer the opportunity to study many
other phenomena and to do materials calculations. Phenomena such as changes of the topology
in strongly correlated are hitherto hardly understood, a Berezinskii-Kosterlitz-Thouless transi-
tion in two-dimensions could possibly be described, or Luttinger or spin Peierls physicists in
one dimension. All of this leaves plenty of opportunities for the next generation of physicists.
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[16] M. Kitatani, R. Arita, T. Schäfer, and K. Held, arXiv:2203.12844 (2022)

[17] N.E. Bickers: Theoretical Methods for Strongly Correlated Electrons
(Springer, 2004), chap. 6, pp. 237–296

http://www.cond-mat.de/events/correl22
http://www.cond-mat.de/events/correl18


11.30 Karsten Held

[18] M. Wallerberger, A. Hausoel, P. Gunacker, A. Kowalski, N. Parragh, F. Goth, K. Held, and
G. Sangiovanni, Comput. Phys. Commun. 235, 388 (2019)

[19] P. Gunacker, M. Wallerberger, E. Gull, A. Hausoel, G. Sangiovanni, and K. Held,
Phys. Rev. B 92, 155102 (2015)

[20] C.J. Eckhardt, C. Honerkamp, K. Held, and A. Kauch, Phys. Rev. B 101, 155104 (2020)

[21] M. Wallerberger, H. Shinaoka, and A. Kauch, Phys. Rev. Research 3, 033168 (2021)

[22] F. Krien, A. Valli, and M. Capone, Phys. Rev. B 100, 155149 (2019)

[23] J. Kaufmann, C. Eckhardt, M. Pickem, M. Kitatani, A. Kauch, and K. Held,
Phys. Rev. B 103, 035120 (2021)

[24] T. Ayral and O. Parcollet, Phys. Rev. B 94, 075159 (2016)
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1 Introduction

Dynamical mean-field theory (DMFT) [1] has been combined with density functional theory
(DFT), commonly referred to as LDA+DMFT [2], which is regarded as a major breakthrough
in the description of strongly correlated materials since it allows for a realistic description of
the electronic structure of materials with strong dynamical correlations ranging from strongly
correlated metals to Mott-Hubbard insulators. Starting from a DFT electronic structure as a
background, a model Hamiltonian containing the strongly correlated manifold is constructed by
making a tight-binding fit to the DFT bandstructure. This is usually done by using maximally
localized Wannier functions [3]. The single-particle Hamiltonian is then complemented by a
Hubbard-U term describing the onsite interaction between the strongly correlated states and a
double-counting (DC) term is subtracted. This yields the DFT+DMFT Hamiltonian

Ĥ =
∑

Ri,R′j,σ

ĉ†Riσ
(
HDFT

Ri,R′j,σ −HDC
Ri,R′j,σ

)
ĉR′jσ +

1

2

∑

R,ijkl,σσ′

ĉ†Riσ ĉ
†
Rjσ′ U

σσ′

ijkl ĉRlσ′ ĉRkσ, (1)

where Ri label an atomic site R and an orbital i whereas σ labels the spin. The onsite effective
Coulomb interaction U is defined as

Uσσ′

ijkl =

∫
d3rd3r′ φσ∗i (r)φσ

′∗
j (r′)U(r, r′)φσk(r)φ

σ′

l (r
′). (2)

The problem defined by the Hamiltonian (1) can then be solved by using the DMFT machinery.
By mapping the lattice problem to an impurity problem, this method captures the essential
physics of local correlations responsible for many phenomena in strongly correlated systems,
not accessible within the one-particle description. Notable among these are the Mott metal-to-
insulator transition and Kondo effects, which are beyond static theories. The combination of
DMFT and DFT opens up wider possibilities of investigating electronic properties of strongly
correlated materials than is possible within earlier static theories such as the DFT+U scheme.
It provides a coherent description of metal and insulator on equal footing.
The basic assumption of local self-energy, however, hinders applications of this scheme to phe-
nomena involving long-range correlations such as charge disproportionation and superconduc-
tivity, as well as phenomena involving coupling to long-range charge and spin fluctuations.
Even in iron, a seemingly simple system, it has been found that its Curie transition tempera-
ture TC from paramagnetic to ferromagnetic ordering is greatly overestimated when computed
within DMFT. The predicted value of TC of iron by DMFT is 1900 K, almost twice as large as
the experimental value of 1043 K [4]. It is likely that this large discrepancy has its origin in the
long-range part of the self-energy. Also, there is evidence from photoemission experiments [5]
for a strong momentum dependence of the mass renormalization of iron. Another phenomenon
for which a nonlocal self-energy is expected to play an important role is the non-Fermi-liquid
behavior in two dimensions arising from the van Hove singularity [6].
This local self-energy assumption is one of the fundamental problems inherent in DFT+DMFT.
The other is the issue of double counting, inherited from the DFT+U scheme. There is also
the problem of determining the Hubbard U, which is often treated as adjustable, making the
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method less predictive when applied to real materials. In recent years, however, it has become
possible to compute the Hubbard U for real materials using a number of methods such as the
constrained LDA (cLDA) [7] or the constrained random-phase approximation (cRPA) [8].
There are thus two main aspects of DFT+DMFT which should be improved: the assumption of
local self-energy and the problem of double counting. The assumption of the self-energy being
local is expected to be valid when the correlated electrons are highly localized such that the local
Coulomb interaction far exceeds the nonlocal one. As the correlated electrons become more
itinerant, one anticipates that the nonlocal interaction becomes more significant and accordingly
the importance of the nonlocal components of the self-energy increases. The second aspect, the
double-counting problem, is a long-standing one, which was already recognized in the earlier
LDA+U method. The problem arises from the nonlinear dependence on the density of the Kohn-
Sham exchange-correlation energy, which renders it difficult, if not impossible, to remove the
contribution from the density of the correlated electrons only.
One approach to address the above two issues is the combination of the GW method and ex-
tended DMFT (GW+EDMFT) [9,10], the former replaces the Kohn-Sham DFT. Being a Green
function method, it is possible to remove the double-counting correction precisely. Moreover,
the GW method was originally conceived to treat extended systems such as the electron gas
so that it naturally incorporates nonlocal or long-range self-energies. Seen from the point of
view of GW, the GW+EDMFT method can be regarded as a route of going beyond RPA by
including vertex corrections in the form of local correlations.

2 GW method

In this section, the GW approximation (GWA) [11–13], which may be regarded as the back-
ground electronic structure in the GW+EDMFT method, is elaborated. The screened interac-
tion, which is an essential part of the GW+EDMFT method, is discussed first in detail. The
detailed derivations of the self-energy and response functions are given in Appendix A. In our
notation, r is a combined variable for space and spin: r = (r, σ), and an integer represents
space, spin, and time: n = (rn, tn). Atomic units are used throughout where

m = } = e = a0 = 1. (3)

2.1 Screened interaction W

The screened interaction is an essential part of GWA as well as in the GW+EDMFT scheme.
Due to the Coulomb repulsion and the exchange interaction, electrons tend to avoid each other,
resulting in the formation of a screening hole around each electron. This leads to an effective
screened interaction between an electron and the other electrons in the system, which is much
smaller than the bare interaction, especially in metals. It is the density response functions that
determine the screened interaction.
Within GWA, only the linear density response function is needed. Higher-order density re-
sponse functions correspond to vertex corrections. The linear response theory can be estab-
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lished by applying an external time-dependent field Vext to a system of electrons. The induced
density to linear order in the applied field is given by

ρind(1) =

∫
d2 R(1, 2)Vext(2) , (4)

where R is the linear density response function. This induced density in turns generates an
induced back potential, with v the bare interaction,

Vind(1) =

∫
d2 v(1−2) ρind(2) , (5)

which screens the applied potential

Vtot(1) = Vext(1) + Vind(1) . (6)

The screened or total potential in terms of the linear response function is then given by

Vtot(1) = Vext(1) +

∫
d2 v(1−2) ρind(2)

= Vext(1) +

∫
d2 d3 v(1−2)R(2, 3)Vext(3)

=

∫
d3
[
δ(1−3) +

∫
d2 v(1−2)R(2, 3)

]
Vext(3) . (7)

The quantity in the square bracket can be identified as the inverse dielectric matrix

ε−1(1, 3) =
δVtot(1)

δVext(3)
= δ(1−3) +

∫
d2 v(1−2)R(2, 3) . (8)

Applying the above formula to the instantaneous Coulomb potential

v(1−2) = v(r1−r2) δ(t1−t2) (9)

as the applied perturbing field yields the screened Coulomb interaction

W (1, 2) =

∫
d3 ε−1(1, 3) v(3−2) = v(1−2) +

∫
d3 d4 v(1−4)R(4, 3) v(3−2) , (10)

or in matrix form
W = ε−1v = v + vRv . (11)

Thus, W (1, 2) may be interpreted as a screened potential at space-time point 1 of a test charge
located at space-time point 2. Fourier transforming Eq. (10) with respect to t = t1−t2 yields

W (r1, r2;ω) = v(r1−r2) +
∫
dr3dr4 v(r1−r4)R(r4, r3;ω)v(r3−r2) . (12)

There are two limiting cases of interest. The static screened interaction W (r1, r2;ω=0) can be
seen as the time-average of W (r1, r2; t), as follows from the definition of the Fourier transform.
Equivalently, from Eq. (12), it is the screened interaction of the static bare interaction v(r1−r2)
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(without δ(t1−t2)). At the other end of the limit, W (r1, r2;ω→∞) approaches the bare interac-
tion v(r1−r2) since R(ω) decays asymptotically as ∼ 1/ω2 as can be seen from Eq. (90). This
simply means that at very high frequency the electrons cannot react sufficiently fast to the rapid
variation of the applied potential so that screening is ineffective.
The screened interaction via the linear density response encodes the charge excitation spectrum
of the system, as can be seen in Eq. (12). Thus, when the applied frequency matches a collective
charge excitation (plasmon) energy of the system, a resonance peak in the imaginary part of W
is expected to appear.
The correlation part of the screened interaction is the second term on the right-hand side of (12),

W c(ω) = v R(ω) v . (13)

Since the Coulomb interaction v is frequency independent, the spectral representation of W c is
identical in form to that of R(ω) as in Eq. (91) of Appendix A

W c(r1, r2;ω) =

∫ 0

−∞
dω′

B(r1, r2;ω
′)

ω − ω′ − iη +

∫ ∞

0

dω′
B(r1, r2;ω

′)

ω − ω′ + iη
, (14)

where
B(ω) = v S(ω) v = − 1

π
sign(ω) ImW (ω) , (15)

with S given in Eq. (92). Since S(ω) is anti-symmetric, so is B(ω):

B(−ω) = −B(ω) . (16)

2.2 Random-phase approximation

It is unrealistic to calculate the exact response functions for real systems since it would require
computation of the exact excited states of the many-electron system. This necessitates approx-
imations, as commonly the case in many-electron theory. A practical and highly successful
approximation is the random-phase approximation (RPA) [14]. As discussed later, it can be
understood as the time-dependent Hartree approximation since it takes into account only the
change in the Hartree potential with respect to the time-dependent perturbing field.
In the Green function formalism, the response function is expressed as in Eq. (88), and using
the identity δG = −GδG−1G as in Eq. (84), we find

R(1, 2) = i

∫
d3 d4 G(1, 3)

δG−1(3, 4)

δVext(2)
G(4, 1+) . (17)

Using δG−1/δVext as in Eq. (85) we obtain

R(1, 2) = −i
∫
d3 d4 G(1, 3)

([
δ(3−2) + δVH(3)

δVext(2)

]
δ(3−4) + δΣ(3, 4)

δVext(2)

)
G(4, 1+) . (18)

RPA corresponds to neglecting the term δΣ/δVext in (18) yielding

R(1, 2) = −i
∫
d3 G(1, 3)

[
δ(3−2) + δVH(3)

δVext(2)

]
G(3, 1+)

= P (2, 1) +

∫
d3 d4 P (1, 3) v(3−4)R(4, 2) . (19)
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Fig. 1: Feynman diagrams for the screened interaction in the random-phase approximation and
the self-energy within the GW approximation. Figures courtesy of Fredrik Nilsson.

where
P (1, 2) = −iG(1, 2)G(2, 1+). (20)

Thus, in RPA only the change in the Hartree potential is taken into account and for this reason
it can be regarded as the time-dependent Hartree approximation.
In frequency space, the polarization P in RPA is given by

P (r1, r2;ω) = −i
∫
dω′

2π
G(r1, r2;ω+ω

′)G(r2, r1;ω
′) . (21)

Replacing G by G0 given in Eq. (109) yields

P 0(r1, r2;ω) =
occ∑

n

unocc∑

n′

(
φn(r2)φ

∗
n′(r2)φ

∗
n(r1)φn′(r1)

ω − (εn′−εn−iδ)
− φn(r1)φ

∗
n′(r1)φ

∗
n(r2)φn′(r2)

ω + (εn′−εn−iδ)

)
. (22)

2.3 GW self-energy

Within the GW approximation [11–13], the self-energy is given by

Σ(1, 2) = iG(1, 2)W (2, 1) , (23)

where W is the screened Coulomb interaction, usually calculated within RPA. Using the con-
volution theorem, the Fourier transform into frequency space yields

Σ(r1, r2;ω) = i

∫
dω′

2π
G(r1, r2;ω+ω

′)W (r2, r1;ω
′) eiηω

′
. (24)

The screened interaction and the corresponding GW self-energy within RPA are shown in
Fig. 1.
GWA has been found to be very successful in providing an accurate electronic structure for
weakly to moderately correlated systems, whose valence electrons usually originate from s- or
p-orbitals. Being based on perturbation theory, GWA is not expected to be able to describe the
Mott metal-to-insulator transition in strongly correlated systems. To see the problem with the
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GWA consider the expression for the imaginary part of the Green function, which is propor-
tional to the spectral function:

ImG(ω) =
ImΣ(ω)

(
ω−ε−ReΣ(ω)

)2
+
(
ImΣ(ω)

)2 . (25)

In order to open up a gap from a metallic state, ImΣ(ω), which is inversely proportional to the
quasiparticle life-time, should become infinite around the Fermi level so that the quasiparticle
weight present in the metal at the Fermi level is removed. The transition from a metal to a Mott
insulator poses a fundamental difficulty because the GW self-energy varies as ω2 around the
Fermi level, characteristic of a Fermi liquid, as shown below. From Eq. (14) and using (16)

∂

∂ω
W c(r1, r2;ω)

∣∣∣∣
ω=0

= −
∫ 0

−∞
dω′

B(r1, r2;ω
′)

(−ω′ − iη)2 −
∫ ∞

0

dω′
B(r1, r2;ω

′)

(−ω′ + iη)2

= +

∫ ∞

0

dω′
B(r1, r2;ω

′)

(ω′ − iη)2 −
∫ ∞

0

dω′
B(r1, r2;ω

′)

(−ω′ + iη)2
= 0, (26)

SinceB(ω) is proportional to ImW (ω) and recognizing thatB(0) = 0, it follows from Eqs. (113)
and (114) that for small ω the imaginary part of the self-energy behaves as

Γ (ω) ∝ ω2. (27)

This implies that the GW self-energy cannot not open up a Mott gap starting from a metallic
band structure.

3 GW+EDMFT method

The problem with GWA in treating strongly correlated systems such as Mott insulators moti-
vates the combination of GWA and extended DMFT (EDMFT). On the other hand, from the
point of view of DMFT, GWA provides a route for taking into account nonlocal self-energy,
missing in DMFT or EDMFT.

3.1 G0W 0+DMFT

It is instructive to first consider the combination of the one-shot GWA, Σ = iG0W 0, with
the standard DMFT. This combination may be seen as a simple extension of the DFT+DMFT
scheme, in which the background DFT electronic structure is replaced by the GW one. Apart
from improving the band structure, the double-counting problem inherent in the DFT+DMFT
scheme is avoided. However, there are different ways of removing the double-counting term
when self-consistency is not imposed. Either one removes the local projection of the lattice
GW self-energy or one removes the impurity GW self-energy. These two double-counting
forms are not strictly the same.
In the G0W 0+DMFT scheme the self-energy is given by

Σ̂(ω) =
∑

knn′

|ψkn〉ΣGW
nn′ (k, ω) 〈ψkn′ |+

∑

mm′

|φm〉
(
Σimp
mm′(ω)−ΣDC

mm′(ω)
)
〈φm′| . (28)
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Here ψkn are the DFT eigenstates and φm the localized orbitals, e.g., the maximally localized
Wannier orbitals constructed from the correlated states. ΣGW

nn′ is the GW self-energy obtained
from a one-shot GW calculation based on the DFT band structure and Σimp the impurity self-
energy calculated with a dynamical U computed using the constrained RPA (cRPA) method.
ΣDC
mm′ is the double-counting correction, defined as

ΣDC
mm′(ω) = i

∑

m1m2

∫
dω′

2π
Gloc
m1m2

(ω+ω′)W loc
mm1m2m′(ω

′) , (29)

where Gloc
m1m2

is the local projection of the DFT Green function expressed in the localized
orbitals. In Matsubara frequencies,

ΣDC
mm′(iωn) = −

∑

m1m2

1

β

∑

k

Gloc
m1m2

(iωn+iνk)W
loc
mm1m2m′(iνk) , (30)

where ωn and νk are, respectively, the fermionic and bosonic Matsubara frequencies, and β is
the inverse temperature. The two different ways of subtracting the double-counting term arise
from the ambiguity in W loc when it is not determined self-consistently. If W loc is calculated
from the impurity problem one has

W loc(ω) =
(
1− U(ω)P loc(ω)

)−1
U(ω), (31)

in which P loc is the local projection of the RPA polarization within the correlated subspace
and U(ω) is obtained from cRPA. This definition of W loc corresponds to the fully screened
interaction of the impurity model computed within GWA. On the other hand, W loc can also be
defined to be the local projection of the lattice W onto the correlated subspace

W loc(ω) =
∑

k

W (ω,k) , (32)

which is not necessarily the same as the one in Eq. (29), when self-consistency is not imposed.
In Fig. 2 the quasiparticle bandstructure and the k-integrated spectra of a prototypical corre-
lated metal SrVO3 within the G0W 0+DMFT scheme are shown and compared with the re-
sults obtained from the one-shot G0W 0 and LDA+DMFT. The one-shot G0W 0 quasiparticle
dispersion shows a band narrowing compared with that of LDA, as expected. The G0W 0 oc-
cupied band width of 0.8 eV, while a significant improvement over the LDA band width, is
still too large compared with the value measured in photoemission experiment, which is about
0.6 eV [16]. In contrast, the LDA+DMFT calculations, which have been performed using a
frequency-dependent U, result in an occupied band width of only 0.4 eV, which is significantly
smaller than the experimental value as can be seen in Fig. 2. There is a very large band nar-
rowing compared with the starting LDA bandstructure. This band narrowing is significantly
stronger than in the standard LDA+DMFT with a static U [17]. One may then conclude that
the frequency dependence of U effectively enhances correlations, which would correspond to a
larger static U. The G0W 0+DMFT scheme, on the other hand, brings the quasiparticle disper-
sion in close agreement with experiment with an occupied band width of slightly smaller than
0.6 eV. It is interesting to observe that a nonlocal self-energy tends to increase the band width
while a local self-energy narrows the band width.
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Fig. 2: Quasiparticle bandstructure (left) and k-integrated spectral function (right) of
SrVO3 within the G0W 0+DMFT scheme, compared with the results based on G0W 0 and
LDA +DMFT with dynamic U. The figures are taken from Sakuma et al. [15].

3.2 Extended DMFT

In order to develop the full GW+EDMFT scheme it is necessary to extend DMFT in order to
take into account long-range interactions. The G0W 0+DMFT scheme described in the previous
section does not take into account self-consistency in the local screened interaction. As in
the original DMFT, self-consistency is only imposed on the local Green function, which may be
regarded as a one-particle correlation function. The concept of DMFT, however, is more general
and can be extended to higher-order correlation functions. A natural step beyond the original
DMFT is to impose self-consistency on the local screened interaction Wloc or equivalently the
local (charge) response function, which is a two-particle correlation function. This extended
DMFT (EDMFT) [9] furnishes a means to solve an extended Hubbard model with nonlocal
interactions using the framework of DMFT. As in the original DMFT, the auxiliary system is the
Anderson impurity model but in addition to the hybridization function (Weiss field)∆(τ), which
determines the local Green function, another “Weiss field”, U(τ), is needed to determine the
local screened interaction Wloc. In this case U(τ) plays the role of a dynamic effective impurity
interaction in such a way that when it is screened by the impurity polarization reproduces at self-
consistency the local projection of the lattice screened interaction. Thus, U(τ) is analogous to
G(τ), which when “screened” by the impurity self-energy reproduces at self-consistency the
local projection of the lattice Green function. It can then be seen that the impurity polarization
is analogous to the impurity self-energy.

The effective impurity action is given by

Simp = −
∫ β

0

dτdτ ′
∑

σ

d∗σ(τ)G−1(τ−τ ′) dσ(τ ′) +
∫ β

0

dτdτ ′ n↑(τ)U(τ−τ ′)n↓(τ ′) , (33)

where

−
(
∂

∂τ
− µ

)
G(τ−τ ′)−

∫ β

0

dτ ′′∆(τ−τ ′′)G(τ ′′−τ ′) = δ(τ−τ ′), (34)
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or in frequency space
G−1(iωn) = iωn + µ−∆(iωn). (35)

The self-consistency condition in EDMFT requires self-consistency in both the local Green
function and the local screened interaction:

Gloc = Gimp, Wloc = Wimp, (36)

where
Wimp(ω) = U(ω) + U(ω)Pimp(ω)Wimp(ω), (37)

and Wloc is the local projection of the lattice screened interaction W obtained from the equation

W (ω) = U + UP (ω)W (ω), (38)

where P is the lattice polarization. U is the bare interaction which may contain long-range
(offsite) components. Comparison with the Dyson equation for the Green function,

G(ω) = G0(ω) +G0(ω)Σ(ω)G(ω), (39)

shows that the polarization P is the analog of the self-energy whereas W is the analog of the
Green function, whereas U plays the role of the bare propagator G0. For the Hubbard model
with onsite interactions we have Uij = Uδij which yields U = U by construction and in this
case EDMFT reduces to the regular DMFT. For a system with offsite interactions this is not
the case. The effects of the long-range interactions are taken into account in the dynamically
screened effective impurity interaction U(ω). In real materials U will be the bare Coulomb
interaction v(r−r′).

3.2.1 Self-consistency loop in EDMFT

To initiate the self-consistency loop in EDMFT, the local polarization and the local self-energy
are, respectively, set to Pimp and Σimp

Ploc = Pimp, Σloc = Σimp. (40)

The basic assumption of EDMFT, in which the lattice self-energy and the lattice polarization
are approximated by their local values, is applied

Pk = Ploc, Σk = Σloc. (41)

From the Dyson equation the lattice Green function Gk and the lattice screened interaction Wk

are computed

Gk = G0
k +G0

k Σk Gk , (42)

Wk = Uk + Uk Pk Wk , (43)
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from which the local Green function and the local screened interaction are obtained

Gloc =
∑

k

Gk, Wloc =
∑

k

Wk. (44)

Applying the EDMFT self-consistency condition,

Gimp = Gloc, Wimp = Wloc, (45)

allows us to construct the fermionic Weiss field G and the effective impurity interaction (bosonic
Weiss field) U from the Dyson equations

Gimp = G + GΣimpGimp → G = Gimp

(
1 +ΣimpGimp

)−1
, (46)

Wimp = U + U PimpWimp → U = Wimp

(
1 + PimpWimp

)−1
. (47)

G and U provide an input for solving the impurity problem with the action defined in Eq. (33),
yielding a new Gimp and the impurity charge susceptibility χimp. A new impurity self-energy
and a new impurity polarization are extracted as

Σimp = G−1 −G−1imp, (48)

Pimp = χimp

(
1 + U χimp

)−1
. (49)

The last equation is formally equivalent to

Pimp = U−1 −W−1
imp (50)

but it is numerically preferable since it avoids possible singularities in U−1 and W−1
imp.

The loop is now continued until the EDMFT self-consistency condition in Eq. (36) is fulfilled.
The concept of DMFT is quite general and it is possible to extend the self-consistency condition
on local quantities to a three-particle correlation function, such as the one formulated in the
TRILEX approach [18], and to higher-order correlation functions.

3.3 GW+EDMFT

We are now in the position to construct the full GW+EDMFT scheme [9,10]. The formal func-
tional derivation is given in Appendix B. As in EDMFT, two propagators are now at disposal:
the fermionic one-particle Green function G and the bosonic screened interaction W. These
two propagators constitute the basic variables in the free-energy functional Ψ (see Appendix
B). The lattice self-energy Σ and polarization P are no longer approximated by the correspond-
ing local impurity quantities but they now in addition contain nonlocal components from the
GW self-energy. The self-energy is then given by

Σ(k, iωn) = Σimp(iωn) +ΣGW
nonloc(k, iωn). (51)

Similarly, the polarization is given by

P (k, iωn) = Pimp(iωn) + PGW
nonloc(k, iωn). (52)
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Σimp and Pimp are, respectively, the EDMFT impurity self-energy and polarization. The above
two expressions are free from double counting since both ΣGW

nonloc and PGW
nonloc contain no local

components, which have been subtracted out from the corresponding lattice quantities

ΣGW
nonloc(k, iωn) = ΣGW (k, iωn)−ΣGW

loc (iωn) (53)

PGW
nonloc(k, iωn) = PGW (k, iωn)− PGW

loc (iωn) . (54)

The lattice Green function and screened interaction are calculated from Σ and P using the
Dyson equations

G = G0 +G0ΣG, (55)

W = v + vPW , (56)

where G0 is the Hartree Green function and v is the bare interaction.

3.4 Multitier GW+EDMFT scheme

To apply the full GW+EDMFT scheme described in the previous sections to real materials,
due to computational complexity it is inevitable to adopt approximations. Fortunately, in most
correlated materials, for which the GW+EDMFT scheme is designed, it is usually the case that
the electronic structure can be separated into correlated and noncorrelated bands. Although
the separation is arbitrary, physical consideration imposes a strong constraint on the choice of
correlated bands, which are typically partially filled narrow bands across or around the chemical
potential originating from localized states of 3d- or 4f -orbitals.
In the multitier GW+EDMFT scheme [19, 20], the Hilbert space is decomposed into a cor-
related subspace and the rest. A concrete example is provided by the prototypical correlated
metal SrVO3 in which the narrow partially filled t2g band is naturally chosen as the correlated
subspace. GW+EDMFT self-consistency is performed only in the correlated subspace whereas
contribution to the self-energy from the rest of the Hilbert space is accounted for by a one-shot
GW. There is a physical motivation for this strategy. It is known that fully self-consistent GW
alone tends to worsen the one-shot results (in comparison with experiment). Within the corre-
lated subspace, however, the detrimental effects of self-consistency on the GW self-energy are
expected to be counteracted by vertex corrections in the form of the EDMFT self-energy.
It is possible to introduce an intermediate subspace I, containing an additional few bands
around the Fermi level considered to be important for the low-energy physics. The intermediate
subspace then includes a set of correlated bands crossing the Fermi energy and, in addition, a
few more weakly correlated bands which hybridize with the correlated bands. The correlated
subspace C is spanned by the narrow bands that cannot be accurately described by GWA. In this
case, the GW+EDMFT self-consistency is performed within the intermediate subspace I. In
Fig. 3 the different subspaces and tiers are illustrated. Together with the three subspaces there
are three different tiers that work on the respective subspace. In tier III the full space is treated
within the one-shot GWA (G0W 0-approximation).
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Fig. 3: Upper panel: Schematic figure of the subspaces in multitier GW+EDMFT, reproduced
from Nilsson et al. [19]. Lower panel: Schematic figure of how the tiers work on the different
subspaces, reproduced from Boehnke et al. [20].

In practice, one starts with a DFT bandstructure and performs a one-shot GW calculation on
the entire Hilbert space (tier III) yielding a self-energy ΣG0W 0. A calculation of the bare effec-
tive interaction, U(ω), within the intermediate subspace is also performed using the constrained
random-phase approximation (cRPA) method. The effective bare propagator (G0

k) and interac-
tion (Uq) on the intermediate subspace are then computed as

G0
k
−1 = iωn + µ− εKS

k︸ ︷︷ ︸
G−1

KS,k

+VXC,k −
(
ΣG0W 0

k −ΣG0W 0

k

∣∣
I

)

︸ ︷︷ ︸
Σr

k

∣∣
I

(57)

U−1q =v−1q −
(
PG0G0

q − PG0G0

q

∣∣
I

)

︸ ︷︷ ︸
P r
q

. (58)

Here εKS
k are the Kohn-Sham (KS) DFT eigenenergies, VXC,k the exchange-correlation poten-

tial, ΣG0W 0

k the one-shot GW self-energy, vq the bare Coulomb interaction and PG0G0

q the RPA
polarization computed from the Kohn-Sham bandstructure. The notation A

∣∣
I

means that all in-
ternal sums when computing the quantity A are restricted to the intermediate subspace. U is the
effective Coulomb interaction on the intermediate subspace computed using cRPA andG0 is the
analogous downfolding for the single-particle Green function. The exchange-correlation poten-
tial is removed from the Kohn-Sham Green function and replaced by theG0W 0 self-energy. The
exact double counting ΣG0W 0|I is known and thus the scheme is free from the double-counting
problem.
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Fig. 4: Self-consistency flow chart of the multitier GW+EDMFT scheme. Reproduced from
Nilsson et al. [19].

The bare propagators G0 and U are computed only once and used in subsequent self-consistent
GW+EDMFT calculation within the intermediate subspace. At each iteration the GW self-
energy within the intermediate subspace (tier II) is computed, while the local part of the self-
energy within the correlated subspace C is computed using the EDMFT impurity solver (tier
I). The two self-energies are then summed with the double counting removed. The screened
interaction W is computed in a similar fashion in which the polarization plays the role of the
self-energy. This yields the final equations for the single particle Green functionG and screened
interaction W

G−1k = G0
k
−1

︸ ︷︷ ︸
TIER III

−
(
ΣGW

k

∣∣
I
−ΣGW

∣∣
C,loc

+∆VH|I
)

︸ ︷︷ ︸
TIER II

−Σimp
∣∣
C,loc︸ ︷︷ ︸

TIER I

. (59)

W−1
q = U−1q︸︷︷︸

TIER III

−
(
PGG
q

∣∣
I
− PGG

∣∣
C,loc

)

︸ ︷︷ ︸
TIER II

−P imp
∣∣
C,loc︸ ︷︷ ︸

TIER I

. (60)

ΣGW
k is the self-energy computed within the self-consistent GWA and Σimp the local impurity

self-energy computed within EDMFT. ∆VH|I is the change of the Hartree potential within the
intermediate subspace. ΣGW

∣∣
C,loc

and PGG
∣∣
C,loc

are, respectively, the double counting for the
self-energy and the polarization in tier II.



GW+EDMFT 12.15

Fig. 5: LDA bandstructures of SrMoO3 and SrVO3 with t2g bands crossing the Fermi level.
Figures courtesy of Fredrik Nilsson.

The impurity EDMFT self-energy and polarization provide local vertex corrections within the
correlated subspace through, respectively, Σimp

∣∣
C,loc

and P imp
∣∣
C,loc

at each iteration in the self-
consistency cycle in tier II. This feature, a feedback between local and nonlocal correlations
both on the single-particle and two particle level, is not accounted for in one-shot GW+DMFT.
The self-consistency cycle is illustrated in Fig. 4.

3.5 Applications to cubic perovskites SrMoO3 and SrVO3

Application of the GW+EDMFT method to real materials is illustrated for the case of cubic
perovskites SrMoO3 and SrVO3. In Fig. 5 the LDA bandstructure for the two compounds are
shown. Both compounds have an open d-shell, split into the t2g and eg components by the
crystal field, with the eg bands lying higher in energy and unoccupied. As can be seen in the
figure, the t2g-band of SrMoO3 is wider than that of SrVO3 since the 4d-orbitals of Mo are more
spread than the 3d-orbitals of V. It is then expected that SrMoO3 is less correlated than SrVO3

and as such these compounds provide an interesting testing ground for GW+EDMFT.
LDA+DMFT calculations cannot reproduce the satellite structures of SrMoO3 unless U is cho-
sen to be unrealistically large. This suggests that the satellites may be of different nature from
the commonly assumed Hubbard bands and it was proposed that they could be plasmons arising
from long-range charge fluctuations [21].
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Fig. 6: Spectral functions of SrMoO3 and SrVO3 calculated using GW+EDMFT. For SrMoO3

comparison is made with LDA and one-shot GW as well as with experiment. For SrVO3 com-
parison is made with one-shot and fully self-consistent GW. The lower figures show the imag-
inary part of the screened interaction. The figures are reproduced from Boehnke et al. [20] and
Nilsson et al. [19]. The experimental spectra for SrMoO3 is taken from Wadati et al. [21].

Contrary to SrMoO3 the electronic structure of SrVO3 can be reproduced relatively well within
LDA+DMFT with a suitable choice of U [17]. Experimentally, a significantly renormalized
quasiparticle peak compared with the LDA bandwidth as well as upper and lower satellite struc-
tures can be observed. SrVO3 has therefore been commonly thought of as a strongly correlated
metal with upper and lower Hubbard bands.

It has however been found that the spectral function of SrVO3 can be well reproduced within
the cumulant expansion [22]. The cumulant expansion describes long-range charge fluctuations
(plasmons) but cannot account for the strong local correlations giving rise to Hubbard bands.
This raises the question concerning the physical origin of the satellites in SrVO3, whether they
are collective excitations or atomic in origin. This issue can neither be addressed by DMFT nor
the cumulant method since the former accounts only local correlations but ignores long-range
charge fluctuations whereas the latter is a theory constructed to describe a coupling between
electrons and bosonic excitations such as plasmons and phonons. GW+EDMFT, on the other
hand, accounts for these two aspects of local and nonlocal correlations and is therefore well
suited to investigate the nature of the satellites in SrVO3.
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In Fig. 6 the t2g-spectral functions for SrMoO3 and SrVO3 and ImW computed using the mul-
titier GW+EDMFT method are shown. In these calculations the intermediate subspace (and
hence the self-consistency) was restricted to the t2g-bands. Information about collective charge
excitations in ImW is manifested as peaks at the excitation energies. From Fig. 6 it is quite evi-
dent that these excitations are present in both SrMoO3 and SrVO3. In SrMoO3 these long-range
charge fluctuations give rise to a shoulder structure in the spectral function. This conforms
with the suggestion by Wadati et al. [21] that the shoulder structure is of plasmonic origin al-
though the satellite position and weight are lower compared with experiment. However, oxygen
vacancies can lead to an overestimation of the satellite weight [23] in these materials.
More revealing is the results for SrVO3. The feedback from long-range screening included in
the self-consistency cycle reduces the effective impurity interaction U substantially. It is clear
from Fig. 6 that the self-consistently computed U for SrVO3 is much too small to account for
the satellites as Hubbard bands, whose separation is approximately given by U(0). Similar
to SrMoO3, long-range charge fluctuations give rise to a peak in ImW which in turn yields
plasmon satellites in the spectral function. Thus, these calculations strongly suggest that SrVO3

is a moderately correlated metal with plasmon satellites rather than Hubbard bands of atomic
origin. It is worth noting that the quasiparticle renormalization in GW+EDMFT is slightly
underestimated compared with experiment, which points to the important role of nonlocal vertex
corrections beyond GW+EDMFT.
GW+EDMFT has also been applied to investigate screening from eg-states and antiferromag-
netic correlations in d(1,2,3)-perovskites [24] as well as normal state of Nd1−xSrxNiO2 [25].
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Appendices

A Derivation of the GW approximation

In this Appendix, the GW approximation is derived in detail. The derivations have been carried
out for zero temperature, but extension to finite temperature is quite straightforward.
In the occupation number representation, the electronic part of the Hamiltonian is given by

Ĥ =

∫
dr ψ̂†(r)h0(r) ψ̂(r) +

1

2

∫
drdr′ ψ̂†(r) ψ̂†(r′) v(r−r′) ψ̂(r′) ψ̂(r) , (61)

where
h0 = −

1

2
∇2 + V (r) and v(r−r′) = 1

|r− r′| . (62)

ψ̂(r) is the field operator which annihilates an electron at r and ψ̂†(r) is its conjugate which
creates an electron at r. In our notation, r is a combined variable for space and spin: r = (r, σ)

and an integer represents space, spin, and time: n = (rn, tn). Atomic units are used throughout,
where

m = } = e = a0 = 1. (63)

The atomic unit of energy is Hartree and one Hartree is equal to 2 Rydberg or about 27.2 eV.

A.1 Equation of motion

We will define and work out the self-energy using the equation of motion approach. From the
equation of motion of the field operator

i
∂ψ̂H(1)

∂t1
=
[
ψ̂H(1), Ĥ

]
, (64)

one obtains
(
i
∂

∂t1
− h0(1)

)
G(1, 2) + i

∫
d3 v(1−3)G(2)(1, 2, 3, 3+) = δ(1−2), (65)

where
v(1−2) = v(r1−r2) δ(t1−t2) , (66)

and G(2) is the two-particle Green function defined as

G(2)(1, 2, 3, 4) = (−i)2
〈
Ψ0

∣∣T ψ̂H(1) ψ̂
†
H(2) ψ̂H(3) ψ̂

†
H(4)

∣∣Ψ0

〉
. (67)

The notation 3+ means (r3, t+3 ).
The equation of motion of the two-particle Green function will in turn generate the three-particle
Green function and so forth resulting in a hierarchy of ever increasing order of Green functions.
The mass operator M is introduced to truncate the hierarchy:

i

∫
d3 v(1−3)G(2)(1, 2, 3, 3+) = −

∫
d3M(1, 3)G(3, 2) . (68)
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The self-energy Σ is defined to be the mass operator with the mean-field Hartree potential VH
removed

Σ(1, 2) =M(1, 2)− VH(1) δ(1−2) , (69)

where
VH(1) =

∫
d3 v(1−3)ρ(3) . (70)

The equation of motion of the Green function then becomes
(
i
∂

∂t1
− h(1)

)
G(1, 2)−

∫
d3Σ(1, 3)G(3, 2) = δ(1−2) , (71)

where h includes the Hartree potential

h = h0 + VH. (72)

From the equation of motion in Eq. (71) the inverse Green function is given by

G−1(1, 2) =

(
i
∂

∂t1
− h(1)

)
δ(1−2)−Σ(1, 2) . (73)

This expression will be used to construct an iterative equation for the self-energy.

A.2 Self-energy

Instead of following the conventional diagrammatic approach of many-body perturbation the-
ory (see, e.g., Fetter and Walecka [26]), the self-energy can be conveniently derived using the
functional derivative method [11,12]. By applying a time-dependent probing field ϕ(rt) the re-
sponse of the Green function with respect to this probing field can be related to the self-energy.
Once derivatives are taken, the field is set to zero. In the presence of an external field it is
suitable to work in the interaction representation and define the Green function as

iG(1, 2) =

〈
Ψ0

∣∣T Ŝψ̂D(1) ψ̂
†
D(2)

∣∣Ψ0

〉
〈
Ψ0

∣∣Ŝ
∣∣Ψ0

〉 (74)

where ψ̂D(1) is the field operator in the interaction (Dirac) picture

ψ̂D(rt) = eiĤt ψ̂(r) e−iĤt. (75)

It is to be noted that the above field operators are independent of the probing field ϕ(rt). The
operator Ŝ is defined as

Ŝ = ÛD(∞,−∞), (76)

where
ÛD(t, t

′) = T e−i
∫ t
t′ dτφ̂(τ) (77)

is the time-evolution operator in the interaction picture, with

φ̂(t) =

∫
d3r ρ̂D(rt)ϕ(rt) , (78)
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where ρ̂D(rt) is the density operator. The definition of G in Eq. (74) reduces to the usual
definition when ϕ = 0.
We will now take the functional derivative of G with respect to ϕ. In order to do this it is only
necessary to work out the functional derivative of Ŝ with respect to ϕ since the field operators
in the Dirac picture do not depend on ϕ:

δŜ

δϕ(3)
=

δ

δϕ(3)
T e−i

∫
d4 ρ̂D(4)ϕ(4) = −i T Ŝ ρ̂D(3) . (79)

We obtain from Eq. (74)

i
δG(1, 2)

δϕ(3)
=− i

〈
Ψ0

∣∣T Ŝ ρ̂D(3) ψ̂D(1) ψ̂
†
D(2)

∣∣Ψ0

〉
〈
Ψ0

∣∣Ŝ
∣∣Ψ0

〉

+
i
〈
Ψ0

∣∣T Ŝ ψ̂D(1) ψ̂
†
D(2)

∣∣Ψ0

〉〈
Ψ0

∣∣T Ŝ ρ̂D(3)]
∣∣Ψ0

〉
〈
Ψ0

∣∣Ŝ
∣∣Ψ0

〉2 . (80)

The two-particle Green function in the interaction picture is defined according to

G(2)(1, 2, 3, 4) = (−i)2
〈
Ψ0

∣∣T Ŝ ψ̂D(1) ψ̂
†
D(2) ψ̂D(3) ψ̂

†
D(4)

∣∣Ψ0

〉
〈
Ψ0

∣∣Ŝ
∣∣Ψ0

〉 , (81)

and obtain
δG(1, 2)

δϕ(3)
= iG(1, 2)ρ(3)−G(2)(1, 2, 3, 3+). (82)

This relation is fundamental because it expresses the two-particle Green function, and hence the
self-energy through Eqs. (68) and (69), as a linear response of the one-particle Green function
with respect to the probing field.
A formal expression for the self-energy can now be written down by substitutingG(2) in Eq. (68)
with the expression in Eq. (82)

Σ(1, 2) = i

∫
d3 d4 v(1−3)δG(1, 4)

δϕ(3)
G−1(4, 2)

= −i
∫
d3 d4 v(1−3)G(1, 4)δG

−1(4, 2)

δϕ(3)
, (83)

where in the second line the following identity has been used

GG−1 = 1→ δGG−1 +GδG−1 = 0→ δG = −GδG−1G . (84)

From the equation of motion in (71) one finds, keeping in mind that the probing field ϕ is
present in h,

δG−1(4, 2)

δϕ(3)
= −

(
δ(4−3) + δVH(4)

δϕ(3)

)
δ(4−2)− δΣ(4, 2)

δϕ(3)
. (85)

This expression together with Eq. (83) yields an iterative equation for the self-energy, which
facilitates an expansion of the self-energy in powers of the Coulomb interaction. Since

VH(4) =

∫
d5 v(4−5)ρ(5) , (86)
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we have
δVH(4)

δϕ(3)
=

∫
d5 v(4−5) δρ(5)

δϕ(3)
=

∫
d5 v(4−5)R(5, 3) , (87)

where R is the time-ordered linear density response function

R(1, 2) =
δρ(1)

δϕ(2)
= −iδG(1, 1

+)

δϕ(2)
. (88)

From Eq. (80) we find, with 2→ 1+ and after setting ϕ = 0→ Ŝ = 1, the time-ordered linear
density response function is given by

iR(1, 2) =
〈
Ψ0

∣∣T ρ̂(1) ρ̂(2)
∣∣Ψ0

〉
− ρ(1) ρ(2) . (89)

The spectral representation can be obtained by inserting a complete set of N -electron eigen-
states of the Hamiltonian and performing a Fourier transformation yielding

R(r1, r2;ω) =
∑

n

(〈
Ψ0

∣∣∆ρ̂(r1)
∣∣Ψn
〉〈
Ψn
∣∣∆ρ̂(r2)

∣∣Ψ0

〉

ω − (En−E0) + iη
−
〈
Ψ0

∣∣∆ρ̂(r2)
∣∣Ψn
〉〈
Ψn
∣∣∆ρ̂(r1)

∣∣Ψ0

〉

ω + (En−E0)− iη

)
,

(90)
where

∆ρ̂(r) = ρ̂(r)− ρ(r) .

For analytical treatment it is useful to write the density response function in terms of its spectral
representation as

R(r1, r2;ω) =

∫ 0

−∞
dω′

S(r1, r2;ω
′)

ω − ω′ − iη +

∫ ∞

0

dω′
S(r1, r2;ω

′)

ω − ω′ + iη
, (91)

where S is the spectral function given by

S(r1, r2;ω) =
∑

n

〈
Ψ0

∣∣∆ρ̂(r1)
∣∣Ψn
〉〈
Ψn
∣∣∆ρ̂(r2)

∣∣Ψ0

〉
δ(ω−En+E0) , (92)

defined to be anti-symmetric in frequency,

S(−ω) = −S(ω) .

The above spectral function is valid for systems with time-reversal symmetry (no magnetic
field) for which

〈
Ψ0

∣∣∆ρ̂(r1)
∣∣Ψn
〉〈
Ψn
∣∣∆ρ̂(r2)

∣∣Ψ0

〉
=
〈
Ψ0

∣∣∆ρ̂(r2)
∣∣Ψn
〉〈
Ψn
∣∣∆ρ̂(r1)

∣∣Ψ0

〉
. (93)

The density response functions are central quantities in the calculation of the self-energy. Iter-
ation of Eq. (83) together with (85) generates increasingly higher order density response func-
tions, which determine the self-energy. The iteration starts by setting δΣ/δϕ = 0 yielding the
well-known GW approximation.
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A.3 Self-energy expansion in the screened interaction

It is possible to reformulate the iterative equation for the self-energy in Eqs. (83) and (85) in
terms of the screened interaction W instead of the bare interaction v [11,12]. Instead of varying
the bare probing field ϕ, one varies the total screened potential Vtot in Eq. (6).
The linear density response function is reformulated by introducing the polarization function
P , defined as the linear response function with respect to the total potential Vtot

P (1, 2) =
δρ(1)

δVtot(2)
. (94)

In terms of the polarization function, the induced density becomes

ρind(1) =

∫
d2 P (1, 2)Vtot(2) . (95)

Equating Eqs. (4) and (95) and using Eq. (6) for Vtot and Eq. (5) for Vind one finds

R(1, 2) = P (1, 2) +

∫
d3 d4 P (1, 4) v(4−3)R(3, 2) . (96)

The response function R is related to the polarization function as

R(1, 2) =
δρ(1)

δϕ(2)
=

∫
d3

δρ(1)

δVtot(3)

δVtot(3)

δϕ(2)
=

∫
d3 P (1, 3) ε−1(3, 2) (97)

and Eq. (56) for the screened interaction can be written as

W (1, 2) = v(1−2) +
∫
d3 d4 v(1−3)P (3, 4)W (4, 2) . (98)

Using the chain rule for functional derivatives, the iterative equation for the self-energy can now
be written in terms of the screened interaction W

δG−1(4, 2)

δϕ(3)
=

∫
d5
δG−1(4, 2)

δVtot(5)

δVtot(5)

δϕ(3)
= −

∫
d5

(
δ(5−4) δ(4−2) + δΣ(4, 2)

δVtot(5)

)
ε−1(5, 3),

(99)
where the second line has been obtained from the definition of ε−1 in Eq. (8) and from Eq. (73).
Substituting the above expression for δG−1/δϕ into Eq. (83) yields

Σ(1, 2) = iG(1, 2)W (2, 1) + i

∫
d4 d5 G(1, 4)W (5, 1)

δΣ(4, 2)

δVtot(5)
, (100)

where W is given in Eq. (56). This iterative equation clearly displays the expansion of the self-
energy in powers of the screened interaction W as the equation is iterated. The first term is the
well-known GW approximation.
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A.4 GW approximation

Fourier transformation of
Σ(1, 2) = iG(1, 2)W (2, 1) (101)

yields, using convolution theorem,

Σ(r1, r2;ω) = i

∫
dω′

2π
G(r1, r2;ω + ω′)W (r2, r1;ω

′) eiηω
′
. (102)

Using the spectral representation of G,

G(r1, r2;ω) =

∫ µ

−∞
dω′

Ah(r1, r2 ;ω
′)

ω − ω′ − iδ +

∫ ∞

µ

dω′
Ae(r1, r2; ω

′)

ω − ω′ + iδ
, (103)

one finds for the exchange part

Σx(r1, r2) = iv(r1−r2)
∫
dω′

2π

∫ µ

−∞
dω1

Ah(r1, r2;ω1) e
iηω′

ω + ω′ − ω1 − iδ
= −v(r1−r2)

∫ µ

−∞
dω1A

h(r1, r2;ω1) .

(104)
The factor exp(iηω′) ensures that the contour is closed along a semicircle above the real axis so
that only poles below the chemical potential corresponding to occupied states are picked up.
For the correlation part we find, using the spectral representation of W c in Eq. (14), dropping
the space variables for clarity,

Σc(ω) =

∫ µ

−∞
dω1

∫ ∞

0

dω2
Ah(ω1)B(ω2)

ω + ω2 − ω1 − iδ
−
∫ ∞

µ

dω1

∫ 0

−∞
dω2

Ae(ω1)B(ω2)

ω + ω2 − ω1 + iδ
. (105)

The spectral representation of the correlation part of the self-energy has the same form as that
of the Green function and can be written as

Σc(r1, r2;ω) =

∫ µ

−∞
dω′

Γ h(r1, r2;ω
′)

ω − ω′ − iδ +

∫ ∞

µ

dω′
Γ e(r1, r2;ω

′)

ω − ω′ + iδ
, (106)

where

Γ h(ω) =
1

π
ImΣc(ω)Θ(µ−ω) , (107)

Γ e(ω) = − 1

π
ImΣc(ω)Θ(ω−µ) . (108)

If we use a noninteracting Green function

G0(r1, r2;ω) =
occ∑

n

φn(r1)φ
∗
n(r2)

ω − εn − iδ
+

unocc∑

n

φn(r1)φ
∗
n(r2)

ω − εn + iδ
, (109)

corresponding to

Ah(r1, r2;ω) =
occ∑

n

φn(r1)φ
∗
n(r2) δ(ω−εn) , (110)

Ae(r1, r2;ω) =
unocc∑

n

φn(r1)φ
∗
n(r2) δ(ω−εn) , (111)



12.24 Ferdi Aryasetiawan

where the one-particle states {φn} with eigenvalues {εn} are usually chosen to be the Kohn-
Sham orbitals or Bloch states, then the exchange potential reduces to the familiar expression

Σx(r1, r2) = −v(r2−r1)
occ∑

n

φn(r1)φ
∗
n(r2). (112)

The spectral functions of the correlation part of the self-energy become

Γ h(r1, r2;ω ≤ µ) =
occ∑

n

φn(r1)φ
∗
n(r2)B(r2, r1; εn−ω)Θ(εn−ω) , (113)

Γ e(r1, r2;ω > µ) =
unocc∑

n

φn(r1)φ
∗
n(r2)B(r2, r1;ω−εn)Θ(ω−εn) . (114)

The correlation part of the self-energy can then be obtained from the spectral representation in
Eq. (106).
The above expression shows that collective charge excitations (plasmons) embodied in B(ω),
proportional to ImW, are transferred to ImΣ. Through the Dyson equation these plasmon
excitations are coupled to the Green function and appear as satellites in the spectral function.
This explicitly describes a clear picture of the coupling between the electrons and the collective
charge excitations in the system, which is illustrated in the Feynman diagram in Fig. 1. An
added electron or hole represented by the Green function line interacts with the system and
induces a collective charge excitation or a plasmon which is reabsorbed at a later time. This
coupling to the plasmon excitation renormalizes the noninteracting Green function via the self-
energy, resulting in a heavier effective mass and the transfer of quasiparticle weight to the
satellite region.

B Functional derivation of GW+EDMFT

The Hamiltonian of a many-electron system moving in some external potential vext is given by

Ĥ = Ĥ0 + V̂ , (115)

where
Ĥ0 =

∫
dr ψ̂†(r)h0(r) ψ̂(r) , (116)

h0(r) = −
1

2
52 +vext(r), (117)

V̂ =
1

2

∫
drdr′ ψ̂†(r) ψ̂†(r′) v(r−r′) ψ̂(r′) ψ̂(r) . (118)

r labels position and spin variables: r = (r, σ) and v(r−r′) = 1/|r−r′|. The interaction term
of the Hamiltonian can be rewritten as

V̂ =
1

2

∫
drdr′ ρ̂(r) v(r−r′)

(
ρ̂(r′)− δ(r−r′)

)
, (119)
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where the second term is the unphysical self-interaction term. V̂ can be expressed in terms of
the density fluctuation operator,

∆ρ̂(r) = ρ̂(r)− ρ(r), (120)

as
V̂ = ∆V̂ +

∫
dr VH(r)ρ̂(r)− EH −

1

2

∫
drdr′ δ(r−r′) v(r−r′) ρ̂(r), (121)

where
∆V̂ =

1

2

∫
drdr′∆ρ̂(r) v(r−r′)∆ρ̂(r′), (122)

VH(r) =

∫
dr′ v(r−r′) ρ(r′), (123)

and
EH =

1

2

∫
drdr′ ρ(r) v(r−r′) ρ(r′). (124)

The Hartree potential VH can be incorporated into the one-particle part of the Hamiltonian Ĥ0

and the Hartree energy EH can be absorbed into the chemical potential. The self-interaction
term can also be included in Ĥ0 and it will eventually cancel out of physical observables.
In the functional integral formalism, one evaluates at each time slice ε = β/M [27]

e−ε(Ĥ−µN) = e−ε(Ĥ0−µN̂+V̂ ) ∼ e−ε(Ĥ
′
0−µN̂)e−ε∆V̂ , (125)

where Ĥ ′0 includes the one-particle residue V̂−∆V̂. Using the Hubbard-Stratonovich transfor-
mation, which is essentially a Gaussian integral formula for operators, one has

∫ ∏

i

(
dθi√
2π

)
e−

1
2
θAθ+θĴ =

1√
detA

e
1
2
ĴA−1Ĵ . (126)

Applying this operator identity one obtains

e−ε∆V̂ = e−ε
1
2

∫
drdr′∆ρ̂(r)v(r−r′)∆ρ̂(r′). (127)

Associating Ĵ → i∆ρ̂, A−1 → εv and θ → εφ, one finds

e−ε∆V̂ = [det(εv−1)]1/2
∫

dφ√
2π

e−ε
1
2

∫
drdr′φ(r)v−1(r−r′)φ(r′)+iε

∫
drφ(r)∆ρ̂(r), (128)

where φ is an auxiliary bosonic field which is real (not a Grassmann variable).
The partition function is given by

Z =

∫
D[ψ∗ψ] e−S(ψ∗,ψ), (129)

where a correspondence between the annihilation and creation field operators and the Grass-
mann variables has been made as follows:

ψ̂(x)→ ψ(x), ψ̂†(x)→ ψ∗(x). (130)
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The label x represents position, spin and imaginary time variables: x = (r, τ) = (r, σ, τ). The
Coulomb interaction is written as

v(x−x′) = v(r−r′) δ(τ−τ ′). (131)

The action is given by

S(ψ∗, ψ) =

∫
dxψ∗(x)

(
∂

∂τ
− µ+ h0(x)

)
ψ(x)+

1

2

∫
dxdx′ ψ∗(x)ψ∗(x′) v(x−x′)ψ(x′)ψ(x).

(132)
Using the Hubbard-Stratonovich transformation described above the action can be naturally
decomposed as a sum of three terms

S(ψ∗, ψ, φ) = SF(ψ
∗, ψ) + SB(φ) + SBF(ψ

∗, ψ, φ), (133)

where

SF(ψ
∗, ψ) =

∫
dxψ∗(x)

(
∂

∂τ
− µ+ h0(x) + VH(x)

)
ψ(x), (134)

SB(φ) =
1

2

∫
dxdx′ φ(x) v−1(x−x′)φ(x′), (135)

SBF(ψ
∗, ψ, φ) = −i

∫
dx φ(x)

(
ψ∗(x)ψ(x)− ρ(x)

)
. (136)

SF and SB correspond, respectively, to the fermion and boson mean-field actions. SBF is the
interaction term between the bosonic and fermionic fields. Implicit in this last term is the
presence of the Coulomb interaction, which can be brought out by making a transformation
φ = vφ̃, yielding a more intuitive expression

SBF(ψ
∗, ψ, φ̃) =

∫
dxdx′ φ̃(x′) v(x′−x)

(
ψ∗(x)ψ(x)− ρ(x)

)
. (137)

The partition function after the Hubbard-Stratonovich transformation becomes

Z =

∫
D[ψ∗, ψ, φ] e−SF(ψ

∗,ψ)−SB(φ)e−SBF(ψ
∗,ψ,φ). (138)

Using the coupling constant integration technique, the contribution to the thermodynamic po-
tential Ω = − lnZ from the SBF coupling term can be calculated

Zα =

∫
D[ψ∗, ψ, φ] e−SF(ψ

∗,ψ)−SB(φ) e−αSBF(ψ
∗,ψ,φ). (139)

∂Ωα

∂α
= −∂ lnZα

∂α
= − 1

Zα

∂Zα
∂α

=
〈
SBF(ψ

∗, ψ, φ)
〉
α
, (140)

Ω −Ω0 =

∫ 1

0

dα
∂Ωα

∂α
=

∫ 1

0

dα
〈
SBF(ψ

∗, ψ, φ)
〉
α
. (141)

Introducing source potentials JF and JB which couple, respectively, to the fermion and boson
fields one finds

Z[JF, JB] =

∫
D[ψ∗, ψ, φ] e−SF(ψ

∗,ψ)−SB(φ)−ψ∗JFψ+ 1
2
φJBφ e−SBF(ψ

∗,ψ,φ). (142)
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Fig. 7: The GW+EDMFT approximation to the Ψ -functional. The first diagram corresponds
to GWA and the second diagram the double counting. Lower-case indexes are restricted to the
same unit cell, and thus correspond to diagrams accounted for in the impurity problem. The
figure is taken from Boehnke et al. [20].

Consider first the case when SBF = 0, i.e., no coupling between the bosonic and fermionic
fields. SF can be associated with a thermodynamic potential ΩF and its Legendre transform

ΓF [G] = ΩF[JF]− JFG = Tr lnG− Tr (G−10 G− 1), (143)

where

G−10 (x, x′) = −
(
∂

∂τ
− µ+ vext(x) + VH(x)

)
δ(x−x′). (144)

For the bosonic part,

ZB[JB] =

∫
D[φ] e− 1

2
φ(v−1−JB)φ =

(
det(v−1− JB)

)−1/2
, (145)

where the Gaussian integral formula for real variables has been used. Defining the boson prop-
agator

W (x, y) =
〈
φ(x)φ(y)

〉
=

2

ZB

δZB

δJB(x, y)
= 2

δ lnZB

δJB(x, y)
. (146)

and using the identity
ln detM = Tr lnM, (147)

one finds
lnZB[JB] = −

1

2
ln det

(
v−1− JB

)
= −1

2
Tr ln

(
v−1− JB

)
, (148)

W [JB] = 2
δ lnZB[JB]

δJB
=
(
v−1− JB

)−1 → JB[W ] = v−1−W−1, (149)

ΩB[JB] = − lnZB[JB] =
1

2
Tr lnW−1 = −1

2
Tr lnW. (150)

One then obtains

ΓB[W ] = ΩB[JB] +
1

2
Tr (JBW ) = −1

2
Tr lnW +

1

2
Tr
(
v−1W − 1

)
, (151)

which shows that ΓB, the Legendre transform of ΩB, is indeed a functional of W.
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Taking into account the coupling term SBF yields

Γ [G,W ] = ΓF[G] + ΓB[W ] + Ψ [G,W ], (152)

where from Eq. (141)

Ψ [G,W ] =

∫ 1

0

dα 〈SBF(ψ
∗, ψ, φ)〉α . (153)

Functional derivative with respect to G yields the Dyson equation for G

δΓ [G,W ]

δG
=
δΓF[G]

δG
+
δΨ [G,W ]

δG
(154)

−JF = G−1 −G−10 +
δΨ [G,W ]

δG
, (155)

with the fermion self-energy

Σ[G,W ] =
δΨ [G,W ]

δG
+ JF. (156)

Similarly, functional derivative with respect to the boson propagator W yields

δΓ [G,W ]

δW
=
δΓB[W ]

δW
+
δΨ [G,W ]

δW
(157)

1

2
JB = −1

2
W−1 +

1

2
v−1 +

δΨ [G,W ]

δW
, (158)

with the boson self-energy or polarization

P [G,W ] = −2δΨ [G,W ]

δW
+ JB. (159)

For JF = JB = 0, which correspond to the extrema of Γ [G,W ] we find the Dyson equations
for G and W

δΓ [G,W ]

δG
= 0→ G = G0 +G0ΣG, (160)

δΓ [G,W ]

δW
= 0→ W = v + v P W. (161)

The EDMFT approximation corresponds to an onsite approximation to G and W

ΨEDMFT = Ψ [GRR,WRRRR]. (162)

GWA, on the other hand, corresponds to the first-order diagram in Ψ

ΨGW = −1

2
TrGWG . (163)

This yields the total GW+EDMFT functional in Fig. 7

ΨGW+EDMFT = ΨGW + ΨEDMFT +
1

2
Tr(GRRWRRRRGRR), (164)

where the last term is the double-counting term.
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1 Introduction

Pump-probe experiments with short laser pulses allow to excite condensed matter systems and
to spectroscopically analyze the subsequent dynamics of their microscopic degrees of free-
dom over a wide range of timescales, from fast electronic processes below one femtosecond to
the picosecond dynamics of the crystal lattice and of collective orders like superconductivity.
Femtosecond pulses are nowadays available in a large spectrum of photon energies, and many
complementary probing techniques have been brought to the ultrafast time domain: For exam-
ple, time- and angular-resolved photoemission (trARPES) can probe the momentum-dependent
electronic structure, time-resolved Xray scattering can reveal the evolution of the crystal lattice,
and resonant inelastic Xray scattering (RIXS) based on intense Xray pulses from free electron
laser sources can give access to low energy magnetic and orbital excitations. Such experiments
have opened up a field of research in condensed matter physics with many facets [1–3]: On
the one hand, the hope is that a real-time observation of dynamical processes can reveal the in-
teraction between microscopic degrees of freedom more directly than conventional equilibrium
probes. On the other hand, many experiments have shown that an excitation of correlated solids
far out of equilibrium can give rise to states that are not simply related to equilibrium phase
diagram, which suggests the possibility for a controlled engineering of the collective behavior
in solids on ultrafast timescales.

In general, we can distinguish two classes of pathways used to establish new equilibrium states.
First, the redistributions of electron populations between different bands and orbitals can trigger
a nontrivial dynamics. This redistribution is often loosely referred to as photo-doping, although
it does not imply a change of the total electron count (like in chemical doping), but only a
change of the electron count in a certain subset of bands. Such photo-excitation processes have
been shown to, e.g., induce a metal-insulator transition in VO2 on timescales below 100 fs [4],
lead to the enhancement of excitonic condensates [5], or trigger photo-induced non-thermal
phase transitions like the photo-induced melting of antiferromagnetic order [6]. In strongly
correlated electron systems, photo-doping can have a direct impact on the electronic structure,
due to a shift of the bands, the formation or destruction of coherent quasiparticles, and the ul-
trafast modification of relevant interaction parameters due to screening, such as the Hubbard U
(see Sec. 4.1). The second pathway relies on a direct effect of the laser field while a system
is driven. This includes the idea of nonlinear phononics [7], where the anharmonic coupling
to strongly driven phonon modes is used to steer the crystal lattice, but also the magnetic and
electronic properties of solids. More generally, the period-averaged dynamics of a periodically
driven system can be understood in terms of a so-called Floquet Hamiltonian, which can dif-
fer significantly from the un-driven Hamiltonian in the presence of nonlinearities. A prominent
example of this so-called Floquet engineering, which is more routinely used in cold atom exper-
iments [10], is the generation of topologically nontrivial bands by circularly polarized light in
graphene [8, 9], and there are many theoretical proposals towards Floquet engineering of inter-
acting quantum systems, such as a manipulation of superconducting pairing or spin-exchange
interactions [2, 3]. In a solid, however, heating processes from the drive are usually inevitable,
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so that properties of the driven state rely both on the field-induced modification of the Hamilto-
nian, and on the effect of non-thermal electron populations similar to photo-doping.
The theoretical description of such non-equilibrium processes must therefore capture the joint
evolution of the spectrum (density of states) and the distribution functions, which mutually de-
pend on each other in a correlated system. The Keldysh formalism provides the framework to
discuss many-body physics for transient and steady-state non-equilibrium situations. Techni-
cally, many-body approaches which are rooted in a diagrammatic formalism can be generalized
to the time-domain by replacing imaginary-time arguments by a time variable on a more general
real-time contour. In particular, this holds for dynamical mean-field theory (DMFT) [11–14]
and its extensions, which in equilibrium present a versatile approach to obtain the electronic
structure of correlated electrons. The numerical evaluation of the resulting equations in real-
time is however far more challenging, as discussed below. In the context of DMFT, the main
challenge is the non-perturbative solution of the quantum impurity problem: Real-time Quan-
tum Monte Carlo techniques have to cope with the notorious dynamical sign problem, while
wave-function based techniques such as matrix product state evolutions suffer from the full
exponentially large dimension of the relevant Hilbert space (see Sec. 3.2). In spite of that, non-
equilibrium DMFT is applied to an increasing set of topics in particular related to the study
of photo-induced dynamics in Mott insulators, e.g., to understand light-induced phases such as
hidden states with spin and orbital order [15] or superconductivity [16], or the investigation of
strong-field phenomena such as strong-field localization and high-harmonic generation [17,18].
The purpose of this lecture is to explain the foundations of non-equilibrium DMFT and some
of its extensions, more than giving a summary of recent applications. As such, the lecture has a
significant overlap with a previous lecture in this school [19]. Nevertheless, in order to provide a
self-contained set of notes we will repeat some of the basic concepts. Compared to the previous
lecture, the present notes do not contain details of the solution of integral equations for real-
time non-equilibrium Green functions (there is now a detailed technical report on this in the
literature [20]), but instead include a chapter on the GW+DMFT formalism out of equilibrium,
which is a promising route towards first principles simulations of correlated electron systems
out of equilibrium.

2 Keldysh formalism

This chapter recapitulates basis aspects of the Keldysh formalism. For a more detailed review,
the reader might consider the textbooks by Kamenev [21], Stefanucci and van Leeuwen [22], or
Ref. [14].

2.1 The L-shaped time contour
Time evolution operator

We consider a system which at initial time t0 is in a given quantum state, or more generally a
statistical mixture ρ =

∑
nwn|ψn〉〈ψn| of states |ψn〉 with probabilities wn. In the follow-
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ing, we will assume the latter to be the thermal Gibbs ensemble for a given Hamiltonian,
ρ = e−βH(t0)/Z. For times t > t0, the system then evolves according to a time-dependent
Hamiltonian H(t). Taking the expectation value of an observable O in the time-evolved state
and averaging over initial states gives

〈O(t)〉 =
∑
n

wn〈ψn| U(t0, t)O U(t, t0)|ψn〉 = Tr ρU(t0, t)O U(t, t0) , (1)

with the time-evolution operator U(t, t′) from time t′ to t. For t > t′ (forward evolution), the
latter is given by (~ = 1 throughout these notes)

U(t, t′) = Tt e
−i

∫ t
t′ dt̄H(t̄), (2)

where Tt is the time-ordering operator which brings operators at later time to the left. The
action of the time-ordering can be read in two ways: First, by splitting the time-interval [t′, t]

in N →∞ infinitesimal time-steps (t0 ≡ t′, t1, ..., tN = t), over which the Hamiltonian can be
taken to be constant, we have

Tt e
−i

∫ t
t′ dt̄H(t̄) = Tt lim

N→∞

N∏
j=1

e−i(tj−tj−1)H(tj) = lim
N→∞

e−i(tN−tN−1)H(tN ) · · · e−i(t1−t0)H(t1), (3)

i.e., the time-ordering operator brings the evolution over the infinitesimal time-steps [tj, tj+1] in
the correct order. Alternatively, we can expand the exponent in Eq. (2) in a Taylor series and
apply the time-ordering to the individual terms,

Tt e
−i

∫ t
t′ dt̄H(t̄) =

∞∑
n=0

(−i)n

n!

∫ t

t′
dt1 · · ·

∫ t

t′
dtn Tt

(
H(t1) · · ·H(tn)

)
(4)

= 1 +
∞∑
n=1

(−i)n
∫ t

t′
dt1

∫ t1

t′
dt2 · · ·

∫ tn−1

t′
dtnH(t1) · · ·H(tn). (5)

This expression is recognized as iterative solution of the integral equation for the evolution
operator, U(t, t′) = 1 +

∫ t
t′
dt1H(t1)U(t1, t

′).

L-shaped time-contour and contour-ordered correlation functions

With an analogous notation, the backward time-evolution can be expressed using the anti time-
ordering operator Tt̄ that brings operators at later time to the right, U(t′, t) = Tt̄ e

−i
∫ t
t′ dt̄H(t̄)

for t′ < t. Finally, writing the density matrix ρ in terms of the imaginary time evolution with
H(τ) ≡ H(0), the expectation value Eq. (1) becomes

Tr ρU(t0, t)O U(t, t0) =
1

Z
Tr
(
Tτe

−
∫ β
0 dτH(τ)

)(
Tt̄e
−i

∫ 0
t dtH(t)

)
O
(
Tte
−i

∫ t
0 dtH(t)

)
. (6)

(Here and in the following we set t0 = 0 without loss of generality). The three time-ordered
exponentials in this expression can be combined into a single time-ordering along the L-shaped



DMFT out of equilibrium 13.5

Fig. 1: The Keldysh contour C, ranging from time 0 to a maximum time tmax, back to time 0, and
finally to −iβ on the imaginary-time branch. Times on the upper and lower real-time branch
are denoted by t+ and t−, respectively. Both t+ and t− are real, and the index ± serves only to
distinguish backward and forward time-evolution. The arrows denote the time-ordering along
C from “earlier” to “later” contour times.

time contour C, which extends from 0 to some maximum time tmax in forward direction, back
to 0, and finally to −iβ in the imaginary direction (see Fig. 1). Hence, Eq. (6) becomes

〈O(t)〉 =
1

Z
TrTC e

−i
∫
C dtH(t)O(t), (7)

with the contour-ordering operator

TCA(t)B(t′) =

{
A(t)B(t′) t later than t′ on C
ξB(t′)A(t) t′ later than t on C.

(8)

The sign ξ is −1 if the permutation of A and B involves an odd number of permutations
of fermion creation of annihilation operators, and +1 otherwise. The sign is not relevant
in Eq. (7), but only for the definition of correlation functions below. Equations (7) and (3)
are then understood in the same way: splitting the contour in N → ∞ infinitesimal steps
(t0 ≡ 0+, t1, ..., tN = −iβ), with to = t+ being the time argument of the operator O, the
operator TC in the expression

TC

(
e−i

∫
C dtH(t)O(t)

)
= TC

( N∏
j=1

e−i(tj−tj−1)H(tj)O(to)
)

(9)

orders the evolution over the infinitesimal timesteps [tj, tj−1] and O such that Eq. (6) is recov-
ered.
Analogous to Eq. (7), we naturally define multi-point contour-ordered correlation functions,
such as the two-point function 1

Z
TrTC e

−i
∫
C dtH(t)A(t)B(t′). In short, we will use the notation

1

Z
TrTC e

−i
∫
C dtH(t)A(t)B(t′) · · · = 〈TCÂ(t)B̂(t′) · · · 〉H , (10)

where 〈· · · 〉H = 1
Z

Tr e−βH(0) · · · is the initial state expectation value, and an operator Ô(t)

(with a hat) is understood in the Heisenberg picture, Ô(t) = U(0, t)O U(t, 0). When all time
arguments are on the imaginary branch of C, contour-ordered correlation functions are identical
to the imaginary-time correlation functions considered in the Matsubara formalism〈

TCÂ(−iτ)B̂(−iτ ′) · · ·
〉
H

=
1

Z
TrTτe

−i
∫ β
0 dτ̄H(τ̄)A(τ)B(τ ′). (11)
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Keldysh action

The discrete time formulation (9) shows that contour-ordered expectation values can be repre-
sented as a path integral, in full in analogy to imaginary-time ordered expectation values. In
particular, for a normal-ordered Hamiltonian H[c†, c] in terms of creation and annihilation op-
erators c and c† (suppressing for simplicity single-particle labels for spin, orbital, momentum),
the coherent state path integral for the partition function (or rather, any generating function for
contour-ordered expectation values) is given by

Z = TrTC e
−i

∫
C dtH(t) =

∫
D[c̄, c]eiS[c̄(t),c(t)] , S =

∫
C
dt
(
c̄(t)i∂tc(t)−H[c̄, c]

)
, (12)

with anti-periodic or periodic boundary conditions

c(0+) = ±c(−iβ) (13)

for bosons or fermions, respectively. This expression is understood in the usual way as the
N → ∞ continuum limit of the path integral on a discretized time contour with timesteps
t0 = 0+, ..., tN = −iβ, and action

SN =
N∑
n=1

δtn

(
ic̄n

c̄n − cn−1

δtn
−H[c̄n, cn−1]

)
, cn ≡ c(tn), δtn = tn − tn−1. (14)

One should check that the exponent iS reduces to the usual imaginary time action

iS = −
∫ β

0

dτ
(
c̄(τ)∂τc(τ) +H[c̄(τ), c(τ)]

)
(15)

when t = −iτ is restricted to the vertical branch of C.
With the action (12), contour-ordered expectation values have a path integral representation

TrTC e
−i

∫
C dt̄H(t̄)A(t)B(t′) · · · =

∫
D[c̄, c]eiSA(t)B(t′) · · · , (16)

where on the right-hand side operators O(t) ≡ O[c̄(t), c(t)] are understood in their coherent
state representation. In the following, we will use the notation〈

A(t)B(t′) · · ·
〉
S

=
1

Z

∫
D[c̄, c]eiSA(t)B(t′) · · · (17)

for contour-ordered expectation values related to an action S.
It should be stressed that in spite of the imaginary contribution from the real-time branches
of C, the path integral is convergent for both bosons and fermions. For example, the action
iS = i

∫
C dt c̄(t)(i∂t − ε)c(t) for a single bosonic degree of freedom (H = εc†c) defines a

convergent Gaussian integral, other than the path integral for a pure real-time path which would
be marginally convergent. With this, field theoretical techniques like the formulation of effective
actions and the Hubbard Stratonovich decoupling, as well as Wick’s theorem and the derivation
of perturbation theory carry over from the imaginary-time Matsubara formalism to the Keldysh
formalism on the L-shaped contour C by a simple replacement of the time variable.
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2.2 Contour-ordered Green functions
Definition and relation to other representations

The most important two-point correlation function for the formulation of many-body methods
is the Green function

Gjj′(t, t
′) = −i

〈
cj(t)c̄j′(t

′)
〉
S

= −i
〈
TC ĉj(t)ĉ

†
j′(t
′)
〉
H
. (18)

Here j denote single particle labels, such as orbital, spin, and lattice site. The contour-ordered
Green function does not only naturally appear in the context of diagrammatic perturbation the-
ory, but it also contains all information on experimentally accessible single-particle observables.
Before formulating many-body theory, we therefore explain how to relate the contour-ordered
Green functions to the Green functions which are conventionally used for the description of
systems in equilibrium.
(i) When both time arguments are on the vertical branch, we have

Gj,j′(−iτ,−iτ ′) = iGM
j,j′(τ−τ ′), (19)

whereGM
j,j′(τ−τ ′) = −

〈
Tτ ĉj(τ)ĉ†j′(τ

′)
〉
H

is the imaginary time-ordered Matsubara Green func-
tion. This relation will be in particular important below to relate expressions in the Matsubara
and Keldysh formalism. (ii) When one time argument is on the lower and one the other on
the upper real-time contour, the contour ordering implies a fixed operator ordering. The two
possible orderings are

Gj,j′(t−, t
′
+) = −i

〈
cj(t)c

†
j′(t
′)
〉
≡ G>

j,j′(t, t
′), (20)

Gj,j′(t+, t
′
−) = −iξ

〈
c†j′(t

′)cj(t)
〉
≡ G<

j,j′(t, t
′), (21)

with ξ = 1 (ξ = −1) for Bosons (Fermions). These two functions therefore represent the
propagation of an additional particle (G>) or a hole (G<) in the time-evolving system. Finally,
(iii), of relevance below are the retarded and advanced Greens functions

GR
j,j′(t, t

′) = Θ(t−t′)
(
G>
j,j′(t, t

′)−G<
j,j′(t, t

′)
)
, (22)

GA
j,j′(t, t

′) = Θ(t′−t)
(
G<
j,j′(t, t

′)−G>
j,j′(t, t

′)
)
. (23)

Spectroscopic interpretation

The Green functions G> and G< have a direct interpretation in terms of spectroscopic probes
that add or remove electrons, such as tunnelling experiments and (inverse) time-resolved pho-
toemission spectroscopy [23]. In an idealized description of such an experiment, we couple a
probe orbital f to a given orbital j of the system, by adding the termH ′ = s(t−tp)eiω(t−tp)f †cj+

h.c. to the Hamiltonian, where the function s(t−tp)eiω(t−tp) is a time-dependent probe field with
probe frequency ω and probe envelope s(t−tp) centered around some probe time tp. For elec-
tron addition (removal) the probe orbital is assumed to be filled (empty) at time t = −∞, and
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the signal I> (I<) is given by the change
∣∣〈f †f〉t=∞ − 〈f †f〉t=−∞∣∣ after and before the probe.

Straightforward time-dependent perturbation theory leads to the expression

I
>(<)
jj (ω, tp) =

∫
dt dt′ eiω(t−t′)(±i)G>(<)

j,j (tp+t, tp+t
′) s(t)s(t′)∗ +O(s4). (24)

The upper (lower) sign refers to electron addition (removal); Eq. (24) is stated for fermions. This
equation will be used below for the interpretation of non-equilibrium Green functions within a
spectral representation.

Relation to equilibrium Green functions

In equilibrium, translational invariance in time implies that real-time propagators X(t, t′) de-
pend only on the time-difference, and can be represented using the Fourier transform X(ω) =∫
dt eiωtX(t, 0). Within the spectroscopic interpretation with an infinitely long probe pulse

(s(t) = const.), Eq. (24) gives I>(<)
j (ω) ∝ ±iG>(<)

jj (ω), so that the electron and hole prop-
agator can be interpreted in terms of the electron addition and removal spectrum, respec-
tively. A straightforward expansion in (many-body) energy eigenstates (Lehmann represen-
tation) shows that the Green functions (20) and (21) are related to a single spectral density
Aj,j′(ω) = − 1

π
ImGR

j,j′(ω+i0) and the Fermi function f(ω) (again, the relations are stated for
fermions)

G>
j,j′(ω) = 2πiAj,j′(ω)f(−ω), (25)

G<
j,j′(ω) = −2πiAj,j′(ω)f( ω). (26)

The electron removal spectrum is therefore given by the spectral density A(ω) multiplied with
an occupation function f(ω) that gives the probability to find a state at ω to be occupied, while
the electron addition spectrum is given by the same spectrum and the probability to find the state
unoccupied, f(−ω) = 1− f(ω). It should be emphasized that this relation holds for any sys-
tem in thermal equilibrium, also an interacting one. The distribution function f(ω) is entirely
universal, i.e., it does not depend on any details of the Hamiltonian but only on temperature.
This universal relation is analogous to the fluctuation-dissipation theorem, which gives a uni-
versal relation between response functions and time-dependent autocorrelation functions which
is valid for any system in thermal equilibrium.
Moreover, the Lehmann representation expansion shows that the spectral function is related to
the Matsubara Green function by the analytical relation

GM
j,j′(τ) = −

∫
dωAj,j′(ω)e−ωτf(−ω). (27)

This highlights how, in equilibrium, it is in principle sufficient to solve the system on the imag-
inary branch of the contour. The knowledge of G(τ) would suffice to determine the spectrum,
so that the equilibrium theory is complete in terms of the imaginary time propagators. In prac-
tice, however, extracting real frequency information from imaginary time Green functions is an
ill-conditioned problem (analytical continuation).
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Green functions in a time-evolving state: Wigner representation

In a time-evolving state, time-translational invariance is lost, so that both spectral and occupa-
tion functions depend on two time-arguments separately. It is still often convenient to introduce
a partial Fourier representation: A symmetric choice is the Wigner transform for a function
X(t, t′), with average time tav = (t+t′)/2 and a relative time trel = t−t′, and a Fourier trans-
form with respect to trel,

X(tav, ω) =

∫
dtrel e

iωtrel X(tav+trel/2, tav−trel/2). (28)

For example, the Wigner transforms G<,>(t, ω) are then naturally related to time-resolved elec-
tron addition and removal experiments: With a Gaussian probe profile S(t) = exp(−t2/2τ 2)

with duration τ , Eq. (24) gives

I
>(<)
j (ω, t) ∝

∫
dω′ dt′ (±i)G>(<)

jj (t+t′, ω+ω′) e−t
′2/τ2e−ω

′2τ2 , (29)

i.e., an average of G>(<)
jj (t, ω) over a window of width δt = τ in time and δω = 1/τ in

frequency which satisfies energy-time uncertainty.1

In analogy to Eqs. (25) and (26), we can parametrize G>(<)(t, ω) in terms of a time-dependent
spectral function and a time-dependent occupation function

G<(ω, t) = 2πiA(ω, t) F (ω, t), (30)

G>(ω, t) = −2πiA(ω, t)
(
1−F (ω, t)

)
, (31)

omitting orbital indices for simplicity (A and F are matrices in orbital space). This repre-
sentation emphasizes that the real-time Keldysh formalism provides a set of equations which
describe the joint evolution of the spectral and distribution functions, as outlined in the intro-
duction. This fact can also be turned into an approximate time-evolution scheme in terms of
a quantum Boltzmann equation [24] which is an approximate equation of motion for a time-
dependent occupation function, supplemented with certain approximations for the spectrum.
One should note, however, that while ±iG>(<)(t, ω) is real (hermitian), it is not necessarily
positive and cannot directly be interpreted in terms of a phase space probability in time and
frequency. Only after averaging over an energy-time uncertainty window we obtain a positive
quantity, see Eq. (29) above. This is analogous to the Wigner phase space density W (x, p) as
function of position and momentum, which becomes a phase space probability distribution only
after suitably averaging over the conjugate variables x and p. Although the Wigner represen-
tation is often convenient to represent the time evolution, for numerical evaluation the (t, t′)

1Note that this does not mean thatG(t, t′) would be measurable only up to time-frequency uncertainty. Instead,
Eq. (24) shows that in principle the full time dependence can be retrieved from experiment. For example, to
measure G<(t, t′) in a given time window, we choose an orthonormal basis φn(t) for time-dependent functions
in that interval, and expand −iG<(t, t′) =

∑
n,n′ φ∗n(t)gn,n′φn′(t′). The matrix gn,n′ is hermitian and positive

definite. A probe pulse S(t) = φn(t) then measures the diagonal components, I< = gn,n. A probe pulse
S(t) = φn(t) + eiϕφm(t) gives I< = gn,n + gm,m + e−iϕgn,m + eiϕgn,m, so that off-diagonal components gn,m
can be obtained by scanning the phase difference ϕ [25].
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representation is therefore often more suitable, because it allows for a causal time-propagation
algorithm even on short timescales whereA and F cannot be understood as positive distribution
functions.

Causal property of contour-ordered functions

Finally, we note an important property of contour-ordered correlation functions which will
be used below. The values of the contour-ordered function G(t, t′) with t and t′ on different
branches of C are not all independent, because the largest real-time argument can be shifted
between the upper to the lower contour branch. For example, for t′ < t,

G(t+, t
′
+) =

1

Z
Tr e−βH(0) U(0, t)U(t, tmax)︸ ︷︷ ︸

C−

U(tmax, t)cU(t, t′)c†U(t′, 0)︸ ︷︷ ︸
C+

= G(t−, t
′
+). (32)

The brackets indicate the part of the contour-ordered operator TCe−i
∫
C dtH(t) along the upper and

lower branch, respectively. Because the time-evolution between t and tmax along the upper and
lower branch cancel, c can be shifted between the two branches. The redundancy which follows
from Eq. (32) can be used to represent the contour-ordered Green functions in terms of fewer
components; in particular, real time components can always be represented in terms of G< and
G>, hence the knowledge of the contour-ordered Green function is precisely equivalent to the
knowledge of time-dependent spectral and distribution functions.

2.3 Perturbation theory
Equation of motion and inverse Green functions

The action (12) for the noninteracting Hamiltonian H(t) = ε(t)c†c can be written as a quadratic
form S =

∫
dtdt′ c̄(t)δC(t, t

′)(i∂t − ε)c(t′). Here δC(t, t′) is the delta-function consistent with
the contour integral, i.e.,

∫
C dt

′ δC(t, t
′)g(t′) = g(t) for any function g(t) on C. This quadratic

action is to be understood as the continuum limit of a discrete form S =
∑

a,a′ c̄aAaa′ca′ where
a, a′ label all orbital and discrete time indices. Gaussian integration for the discrete action yields
the moments

〈cac̄a′〉S =
1

Z

∫
D[c̄, c]eiScac̄a′ =

1

Z

∫
D[c̄, c]e−

∑
b,b′ c̄b(−iAbb′ )cb′cac̄a′ = (iA−1)a,a′ . (33)

i.e., the Greens function Gaa′ = −i〈cac̄a′〉S and A are inverse matrices in time. Reinstating
the continuum limit, the equation A · G = 1 yields the equation of motion for the free Green
function G, ∫

C
dt̄ δC(t, t̄)(i∂t̄ − ε)G(t̄, t′) =

(
i∂t − ε(t)

)
G(t, t′) = δC(t, t

′). (34)

In the derivation of this equation one should note that in contrast to the inverse of the discrete
matrixA, the differential equation (34) does not have a unique solution unless a proper boundary
condition is specified. This boundary condition is provided by the relation

G(0+, t) = ξG(−iβ, t), G(t, 0+) = ξG(t,−iβ), (35)
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with the Bose (Fermi) sign ξ, which follows from the (anti)-periodic boundary condition (13)
of c and c̄ in the path integral.
From now on we use a continuum notation assuming that all operations take place within the
space of (anti)-periodic functions. Multiplication of two contour functions corresponds to con-
volution along C,

[A ∗B](t, t′) =

∫
C
dt̄ A(t, t̄)B(t̄, t′), (36)

and the inverse A−1(t, t′) of a function A(t, t′) is understood as the differential or integral equa-
tion

∫
C dt̄ A

−1(t, t̄)A(t̄, t′) =
∫
C dt̄ A(t, t̄)A−1(t̄, t′) = δC(t, t

′) with the boundary condition (35)
(additional matrix multiplication in orbital indices implied).

Wick’s theorem

Wick’s theorem is a consequence of Gaussian integrals, and it therefore holds for contour-
ordered functions as well as for imaginary time-ordered functions: For a quadratic action iS0 =

−
∑

a,a′ c̄a(−iAaa′)ca′ , the n-point expectation values factorize in two-point functions,

〈c1 · · · cnc̄n′ · · · c̄1′〉S0 =
∑
π

ξπ〈c1c̄π(1)′〉S0 · · · 〈cnc̄π(n)′〉S0 . (37)

where π runs over all permutations of the numbers (1, ..., n), and ξπ is the sign of the permuta-
tion for fermions and 1 for bosons, i.e., the right hand side of the expression is the determinant
(permanent) of the matrix Mij = 〈cj c̄j′〉S for fermions (bosons). Wick’s theorem therefore
directly implies a factorization of contour-ordered correlation functions for a noninteracting
Hamiltonian H0,

(−i)n
〈
TC ĉ(t1) · · · ĉ(tn)ĉ†(t′n) · · · ĉ†(t′1)

〉
H0

=
∑
π

ξπG0(t1, t
′
π(1)) · · ·G0(tn, t

′
π(n)) (38)

in terms of the Green function G0(t, t′) = −i
〈
TC ĉ(t)ĉ

†(t′)
〉
H0

.
For illustration, let use the factorization of contour-ordered correlation functions to analyze the
function

χR(t, t′) = −iΘ(t−t′)
〈
[Ô(t), Ô(t′)]

〉
H
, (39)

which gives the response of the operator O to a time dependent field coupling to O (Kubo
relation). In the Matsubara formalism, the response is obtained from the analytical continua-
tion of the imaginary-time ordered correlation function χ(τ) = −

(〈
Tτ Ô(τ)Ô(0)

〉
− 〈O〉2

)
;

taking a noninteracting fermionic system H =
∑

a εac
†
aca and a single particle observable

O =
∑

ab oabc
†
acb, one would, after some algebra, obtain the convolution of the unoccupied den-

sity of states A>a (ω) = Aa(ω)f(−ω) and the occupied density of states A<a (ω) = Aa(ω)f(ω),

− 1

π
ImχR(Ω+) =

∑
a,b

|oab|2
∫
dω
(
A>b (ω+Ω)A<a (ω)− A>b (ω−Ω)A<a (ω)

)
. (40)
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For Ω > 0, the two parts of the expression naturally describe energy absorption and emission
when going from an occupied state a to and unoccupied state b. The same expression can be
obtained in a relatively straightforward manner from the Keldysh formalism. We start from the
contour-ordered correlation function χ(t, t′) = −i

(〈
TCÔ(t)Ô(t′)

〉
−
〈
Ô(t)

〉〈
Ô(t′)

〉)
, which is

related to the response function by

χR(t, t′) = Θ(t−t′)
(
χ(t−, t

′
+)− χ(t+, t

′
−)
)
. (41)

Application of Wick’s theorem for general contour arguments (t, t′) directly gives

χ(t, t′) = −i
∑
ab,cd

oabocd
〈
TC ĉ

†
a(t)ĉd(t

′)
〉
H0

〈
TC ĉb(t)ĉ

†
c(t
′)
〉
H0

= −i
∑
ab

|oab|2Gaa(t, t
′)Gbb(t

′, t).

where in the second step we used that Gab = δabGaa. Using G(t+, t
′
−) = G<(t, t′) and

G(t−, t
′
+) = G>(t, t′), we can read off

χ(t−, t
′
+) = −i

∑
ab

|oab|2G>
aa(t, t

′)G<
bb(t
′, t) , χ(t+, t

′
−) = −i

∑
ab

|oab|2G<
aa(t, t

′)G>
bb(t
′, t),

after which the spectral representation (30) and (31) directly yields Eq. (40) by inverse Fourier
transform. This exercise should highlight how working with contour-ordered Green functions
in equilibrium is equivalent to and working with imaginary time Green functions and doing an
analytical continuation.

Diagrammatic perturbation theory

Because Wick’s theorem applies for contour-ordered correlation functions as well as for imagi-
nary time-ordered functions, the construction of diagrammatic perturbation theory does not de-
pend on the time contour, and is formally the same for Matsubara Green functions and contour-
ordered Green functions. Green functions are represented in terms of connected diagrams G
representing products of the noninteracting Green function G0 and the interaction V. Because
the Keldysh formalism is obtained from the Matsubara formalism by just replacing the time
contour, one can translate a diagram for GM(τ−τ ′) in terms of the noninteracting Green func-
tion GM

0 (τ) and the interaction V (τ) to the Keldysh formalism by using the following rules:

(1) For all correlation functions (X ≡ G, G0, V ), replace XM(τi−τj) by
−iX(ti, tj), where the arguments represent either external arguments τ
and τ ′ or internal arguments, which are later integrated over [cf. Eq. (19)].

(2) Replace internal integrals
∫ β

0

dτj by i
∫
C
dtj .

(3) Replace δ(τ−τ ′) by the contour delta function −iδC(t, t′).

(42)

For example, let us illustrate these rules for the retarded interaction (omitting spin and site
indices for simplicity)

SMV =

∫ β

0

dτdτ ′ c̄(τ+)c(τ)V (τ−τ ′) c̄(τ ′+)c(τ ′), (43)
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=

+τ1

τ2τ+
2

τ1τ2

τ τ′ 

G(τ − τ′ )
V(τ1 − τ2)

G0(τ − τ1)G0(τ − τ′ ) +τ τ′ τ τ′ τ′ τ

Fig. 2: Leading diagrams for the expansion of the Green function G(τ) = −
〈
Tτc(τ)c†(0)

〉
in

terms of the interaction terms (43), corresponding to the Hartree (left diagram) and Fock (right
diagram) self energy.

in the imaginary-time formalism, where the superscript + means that the time argument is
infinitesimally later. The last two diagrams in Fig. 2, obtained by expanding e−SMV to leading
order in the expression G(τ) = −〈Tτc(τ)c†〉, reads in the Matsubara formalism

G(τ − τ ′) = −
∫
dτ1dτ2 G0(τ−τ1)G0(τ1−τ2)G0(τ2−τ ′)V (τ1−τ2)

+

∫
dτ1dτ2 G0(τ−τ1)G0(τ2−τ+

2 )G0(τ1−τ ′)V (τ1−τ2), (44)

Hence in the Keldysh formalism we have

G(t, t′) = i

∫
C
dt1dt2 G0(t, t1)G0(t1, t2)G0(t2, t

′)V (t1, t2)

− i
∫
C
dt1dt2 G0(t, t1)G0(t2, t

+
2 )G0(t1, t

′)V (t1, t2),

where, using rules (i) and (ii) above, the overall sign is determined from a factor (−i) on the left-
hand side (one propagator) and a factor (−i)4i2 (four propagators, two integrals) on the right-
hand side. An instantaneous interaction is V (τ−τ ′) = δ(τ−τ ′)U is replaced by −iV (t, t′) =

−iδC(t, t′)U(t) using rules (i) and (iii).
As in the Matsubara formalism, we introduce the self-energy Σ(t, t′), which is the sum of all
one-particle irreducible diagrams without external Green functions legs, from which the Green
function is obtained by the Dyson equation. The latter is replaced from the Matsubara contour,

G(τ−τ ′) = G0(τ−τ ′) +

∫ β

0

dτ1dτ2G0(τ−τ1)Σ(τ1−τ2)G(τ2−τ ′) (45)

using again rules (i) and (ii), to the integral equation on C,

G(t, t′) = G0(t, t′) +

∫
C
dt1dt2G0(t, t1)Σ(t1, t2)G(t2, t

′). (46)

For example, the first order self energy (Hartree and Fock) can be read off Eq. (44),

ΣH(τ−τ ′) = δ(τ−τ ′)
∫
dτ1V (τ−τ1)G(τ1−τ+

1 ) (47)

ΣF (τ−τ ′) = −V (τ−τ ′)G(τ, τ ′), (48)
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where in the first line the argument τ+
1 is infinitesimally later than τ1, so that G(τ1−τ+

1 ) =

〈c†c〉 ≡ n is the density. In the Keldysh formalism, the above rules give

ΣH(t, t′) = −iδC(t, t′)
∫
C
dt1V (t, t1)G(t1, t

+
1 ) (49)

ΣF (t, t′) = iV (t, t′)G(t, t′). (50)

In the first line, −iG(t1, t
+
1 ) = n(t) is again the density. For an instantaneous interaction

V (τ−τ ′) = δ(τ−τ ′)U, the Hartree diagram is thus ΣH(t, t′) = δ(t, t′)Un(t). A more inter-
esting exercise is to rewrite the contribution for a retarded interaction. In this case, for t on the
real-branch of C the contour integral can be rewritten as∫
C
dt1V (t, t1) (−i)G(t1, t

+
1 ) =

∫
C
dt1V (t, t1)n(t1) =

∫ ∞
−∞

dt1
(
V (t, t1,+)−V (t, t1,−)

)
n(t1),

where we have shifted the imaginary branch of C to t = −∞, and assumed that V (t, t′) decays
sufficiently fast; in the last step, the contour integral is written explicitly in terms of integrals
over the upper and lower branch, with opposite integration direction. Finally, using the causality
property (32), which allows to shift the larger of the two arguments t and t1 freely between the
upper/lower contour, the integral is transformed to∫

dt1n(t1)Θ(t−t1)
(
V (t1,+, t−)−V (t1,−, t+)

)
=

∫
dt1V

R(t, t1)n(t1). (51)

The Hartree self energy is therefore given by

ΣH(t, t′) = δC(t, t
′)

∫
dt1V

R(t, t1)n(t1) ≡ δC(t, t
′)Vmf(t), (52)

which is a time-dependent mean-field potential Vmf(t); one can see that the retarded interaction
is the response function that determines the mean-field potential at time t due to the density at
time t1.

Numerical solution of the Dyson equation

For a given self-energy, the Dyson equation (46) must be solved in order to obtain the Green
function. Writing Eq. (46) in short as G = G0 + G0 ∗ Σ ∗ G, it can be reformulated in
the form G−1 = G−1

0 − Σ, with the inverse operator in time as introduced below Eq. (36).
For the noninteracting problem H0 =

∑
ab c
†
ahab(t)cb, the inverse Green function is G−1

0 =

δC(t, t
′)
(
i∂t − h(t)

)
[cf. Eq. (34)], so that the Dyson equation can be formulated as an integral

differential equation on C,(
i∂t − h(t)

)
G(t, t′)−

∫
C
dt̄ Σ(t, t̄)G(t̄, t′) = δC(t, t

′) (53)

(omitting orbital and spin indices, i.e., G, h, Σ are understood as matrices in orbital space).
Equation (53) and the equivalent Eq. (46) are integral and integro-differential equations on C,
which in most cases must be solved numerically (Kadanoff-Baym equations). It is important
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to note that one can obtain the solution in a time-stepping manner: With an equidistant time
grid (tn = nδt), let us denote the nth timeslice of the two-time function X(t, t′) to include all
elements where one argument is nδt and the other is eithermδtwithm ≤ n or on the imaginary
time branch; timeslice n = −1 is simply the Matsubara component of X (both time arguments
on the imaginary time branch). Causality then implies that G on timeslice n can be computed
from G on all timeslices m < n and Σ on all timeslices m ≤ n as an input. Moreover, the
self-energy Σ[G] must be a causal functional of G, which implies that Σ on timeslice n can be
evaluated in terms of G (or G0) on timeslices m ≤ n. Hence the typical evolution algorithm
will proceed in two steps:

(1) Initial state simulation: Solve the problem on the imaginary time axis, in order to deter-
mine the Matsubara components of Σ and G.

(2) Timestepping: For each n ≥ 0, do the following: (i) ExtrapolateΣ from timeslice n−1 to
timeslice n. (ii) Compute G on timesline n by solving the Dyson equation. (iii) Compute
Σ on timeslice n using G on timesline m ≤ n. Iterate (ii) and (iii) until convergence.

Having in mind that G basically contains the information on spectral and distribution function,
one can again see that the Keldysh formalism provides a joint equation of motion for spec-
tral and distribution functions, which is nonlinear (because Σ is a nonlinear functional of G)
and non-Markovian, i.e., the propagation depends on all the history. The actual implemen-
tation depends on the parametrization of the Green functions. Detailed implementations are
described, e.g., in Refs. [26] and [20]. The latter is the basis for the open source code NESSi
http://www.nessi.tuxfamily.org, which provides a high-order accurate solution of
various integral equations on C, as well as basic routines to construct diagrams from contour-
ordered Green functions.
In spite of being just a linear equation, the solution of the Dyson equation can provide a severe
numerical bottleneck, in particular for multi-orbital simulations. Determination of G for each
element of a timeslice n requires a convolution integral over all previous times. Hence the
numerical effort to solve the Dyson equation up to time n scales like O(n3). More serious is
the requirement to keep G and/or Σ at all previous timeslices in memory: For example, for
a realistic simulation with L = 10 bands in an energy window of 10 eV over a time window
of 1 ps=1000 fs, we can expect that the timestep δt should resolve the inverse of the largest
energy scale, δt � ~/10 eV≈ 0.1 fs, so that the simulation would extend over at least n = 104

timesteps (probably more). With each element G(t, t′) being an L×L matrix in orbital space,
this corresponds to 1010 complex numbers or, more than 100 GB. As one of such objects must be
kept for each momentum in a suitably discretized Brillouin zone, realistic materials simulations
would quickly reach the limit of current day computational capabilities.
Clearly, the equidistant discretization is far from optimal, and there are several directions dis-
cussed in the present literature to overcome these limitations. A simple possibility is to im-
plement a systematic truncation of the memory kernel Σ(t, t′) within the time-stepping proce-
dure [27]. In this way, simulations up to n = 106 timeslices could be performed within DMFT
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simulations [28,29] for certain parameters. In this case, the numerical effort scales linearly with
n, and the memory is constant. Another promising route is to explore different compact rep-
resentations of the two-time functions, such as hierarchical storage formats [30]. Beyond that,
also approximate solutions of the integral equations, such as the Generalized Kadanoff-Baym
Ansatz [31] or Quantum Boltzmann equations [32, 33] have the potential to extend simulations
over a large number of timesteps n at a linear cost O(n1) in computation and a constant cost
O(n0) in memory.

3 Non-equilibrium DMFT and beyond

3.1 Non-equilibrium DMFT

Non-equilibrium DMFT formalism

DMFT approximates only the spatial correlations in a mean-field manner, but accurately treats
local temporal fluctuations. The main approximation is the locality of the self-energy, which
becomes exact in the limit of infinite coordination number [34]. The formulation of DMFT
within the Keldysh and the Matsubara framework differs only by the choice of the time contour,
and all arguments regarding the derivation of DMFT, such as the cavity method [11] and power
counting arguments for the locality of the self-energy, can be transferred one-to-one from imag-
inary time to C. We therefore only briefly summarize the formalism. For clarity, the DMFT
equations in this section are all stated for the single-band Hubbard model in the spin-symmetric
phase; orbital indices can easily be added.
With a spatially local self energy Σij = δijΣjj , lattice Green functions are obtained by solving
the Dyson equation

G−1
jj′(t, t

′) =
(
i∂t + µ

)
δC(t, t

′)δjj′ − δjj′Σjj(t, t
′)− δC(t, t′)vij(t), (54)

where vij(t) are the hopping matrix elements, which contain the external laser fields. To ob-
tain a best local approximation to the self-energy, one can imagine to start from the skeleton
expansion Σ̂[G] of the self energy, i.e., a diagrammatic expansion in terms of the fully dressed
propagator G, and then restrict the expansion for Σjj to the terms which contain only the local
propagator Gjj , but are otherwise summed up to all orders in the interaction. Due to the locality
of the interaction, these local contributions to the skeleton expansion can be generated by solv-
ing an impurity model with a single interacting site and an arbitrary noninteracting environment
(bath). Because the functional form of the skeleton expansion does not depend on the nonin-
teracting part of the action, the functional dependence of the impurity self-energy Σimp[Gimp]

on the impurity Green function is the same as the functional dependence of the local lattice
self energy Σjj[Gjj] on the local Green function. Hence, the impurity self-energy serves as an
approximation for the lattice self-energy,

Σjj′(t, t
′) = δjj′Σimp(t, t

′), (55)



DMFT out of equilibrium 13.17

as long as the bath is designed such that the self-consistency condition

Gimp(t, t
′)

!
= Gjj(t, t

′). (56)

is satisfied. (For simplicity of notation, we also assume translational invariance in space.) For
this construction, the impurity model must have the same local interaction as the lattice model,
and a general quadratic contribution to the action,

Simp =

∫
C
dtdt′

(∑
σ

c̄σ(t)G−1
σ (t, t′)cσ(t)− U(t) c̄↑(t)c↑(t)c̄↓(t)c↓(t)δC(t, t

′)
)
, (57)

G−1(t, t′) =
(
i∂t + µ

)
δC(t, t

′)−∆(t, t′), (58)

which describes one site of the lattice embedded in an environment with hybridization function
∆(t, t′). This is the action of a time-dependent Anderson Impurity Hamiltonian. From the
action one obtains the interacting impurity Green function

Gimp(t, t
′) = −i

〈
c(t)c̄(t′)

〉
Simp

, (59)

and the impurity self-energy is set by the impurity Dyson equation

G−1
imp(t, t

′) = G−1(t, t′)−Σimp(t, t
′). (60)

Equations (54) through (60) provide the closed set of equations for non-equilibrium DMFT,
and the auxiliary quantity ∆(t, t′) can be eliminated when the local lattice Green function Gjj

equals the corresponding impurity quantity.
The actual implementation of the self-consistency depends on the algorithm used to solve the
impurity model. Keeping in mind that the self-consistent equations are integral equations in
time, one should bring them to a form that is numerically most stable. For example,G−1 is an in-
tegral operator which has a singular contribution δC(t, t′)i∂t on the time diagonal [cf. Eq. (34)],
Eq. (60) cannot be directly solved for Σimp on a given time grid after Gimp has been calculated.
Instead, one can e.g., extract the function Z = (i∂t+µ−Σimp)

−1 by solving the linear equation

Gimp = Z ∗ (1 +∆ ∗Gimp) (61)

for Z (this equation is equivalent to (60) and (58)), and then use Z to solve Eq. (54) for the
lattice Green function in its equivalent integral form (1− Z ∗ v) ∗G = Z.

3.2 Impurity solvers

The most challenging part of the DMFT equations is the solution of the auxiliary problem, i.e.,
the determination of the Green function (59) from the action (57) with a given hybridization
function∆(t, t′). Like in equilibrium DMFT, the action (57) can be mapped to a single impurity
Anderson impurity model (SIAM)

HSIAM = Uc†↑c↑c
†
↓c↓ +

∑
p,σ

εp,σ a
†
pσapσ +

∑
p,σ

(
Vp(t)a

†
p,σcσ + h.c.

)
, (62)
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with time-dependent hybridization Vp(t) to bath orbitals labelled by p. In fact, one can see that
the hybridization function ∆SIAM representing the discrete bath in the SIAM is given by

∆SIAM(t, t′) =
∑
p

Vp(t)gp(t, t
′)V ∗p (t′), (63)

with the isolated Green function gp of a single site of the bath [35]. Hence the parameters Vp
can be determined by a simple fit of the analytical expression ∆SIAM(t, t′) to the hybridization
obtained from the DMFT self-consistency. The most efficient way to make use of this discrete
representation has been to compute the time-dependent Green functions using a many-body
wave function |Ψ(t)〉 in a matrix product state (MPS) representation [36]. However, while a
MPS representation is efficient for ground states which satisfy an area-law entanglement, the
time-propagated state can often not be represented efficiently, leading to an exponential increase
of computational resources with the simulated time. This has restricted simulations so far to
relatively short times [37]. Moreover, it turns out to be necessary to increase the number of bath
orbitals in the representation (63) for large time in order to ensure that ∆SIAM(t, t′) decays as a
function of relative time, as required for a continuum bath. To ensure such a decay, one could
couple the bath orbitals themselves to simple reservoirs that can be treated within a Lindblad
equation. This would increase the computational cost, as it requires a propagation of the many-
body density-matrix instead of the wave function, but it would allow to keep the number of
auxiliary bath sites fixed for long time simulations. Such an open system representation for the
non-equilibrium SIAM has been used so far only to solve DMFT for non-equilibrium steady
states [38].

An alternative to the discrete bath representation are Quantum Monte Carlo (QMC) techniques,
which can give numerically exact results in equilibrium [39]. A direct extension of QMC al-
gorithms by extending the time contour from the imaginary to the L-shaped contour suffers
from a severe phase problem and is restricted to very short times. There are interesting and
fundamental problems related to in the short-time dynamics, such as dynamical phase transi-
tions [40], but in order to study the photo-induced dynamics in most materials few hopping
times are often not yet sufficient. More promising real-time QMC algorithms are formulated in
the spirit of diagrammatic Monte Carlo methods, such as the so called inchworm algorithm [41]
which samples the self-energy in the strong coupling expansion, or is vertex generalization, the
recently proposed slime-mold algorithm [42]. So far the high numerical cost has prevented an
application of these approaches within real-time DMFT simulations, but recent developments in
particular towards non-equilibrium steady state DMFT promise that real-time Quantum Monte
Carlo may soon be used to simulate the photo-induced dynamics of correlated solids.

Most applications of non-equilibrium DMFT to describe photo-induced dynamics in solids have
been based on a perturbative solution of the impurity model, such as adaptations of the iterated
perturbation theory [11], or alternatively a systematic expansion in ∆(t, t′) [43]. In this so-
called strong-coupling expansion one splits the action S into the local part Sat =

∫
C dtHat(t),

with the atomic HamiltonianHat that contains the local interaction, and the time-nonlocal terms
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Sn−l. The latter can have a very general form, such as

Sn−l =
∑
γ

∫
C
dt1dt2 φ̄γ(t)∆γ(t, t

′)ψγ(t
′), (64)

where γ sums over all hybridization and interaction channels, and ψ and φ̄ are general opera-
tors. In the single impurity Anderson model, e.g., γ ≡ σ, φ̄γ ≡ c̄σ, ψγ ≡ cσ, but the general
formulation also allows for inter-orbital hybridizations in multi-band systems, anomalous hy-
bridizations in superconducting systems,

∫
C dt1dt2

(
c↑(t)∆cc(t, t

′)c↓(t
′) + c̄↓(t)∆c̄c̄(t, t

′)c̄↑(t
′)
)
,

retarded density-density interactions
∑

σσ′

∫
C dt1dt2 nσ(t)Vσ,σ′(t, t

′)nσ(t′) (here φ̄σ,σ′ ≡ c̄σcσ
and ψσ,σ′ ≡ c̄σ′cσ′), or electron-phonon interactions (ψ = cσb, cσ b̄ etc., acting in a local space
of electrons and phonons). The strong-coupling expansion is expected to work well in the Mott
phase, as it can be formulated for an arbitrary local part of the Hamiltonian, and it defines
a conserving approximation (which respects conservation laws of energy and particle number
also in the approximate solution of the time-evolution). In particular the lowest order (the so
called non-crossing approximation, NCA) has been used extensively to study the dynamics of
Mott-insulators within DMFT. The technical details of this expansion on the Keldysh contour
are explained in Refs. [43] and [14] as well as in earlier notes of this lecture series [19].

3.3 Multi-band DMFT+GW
Extensions and Limitations of DMFT

The main limitation of DMFT is the local approximation to the self-energy. As in equilibrium
DMFT, non-equilibrium variants have been formulated for both cluster extensions and diagram-
matic extensions of DMFT. Cluster extensions are in particular important to keep short range
correlations of spin and charge on the scale of few lattice sites, which can have a pronounced
influence on the short time dynamics. For example, photo-excited carriers in a Mott insula-
tor, as described in a one band Hubbard model, can loose kinetic energy on the timescale of
few inverse hopping times due to the interaction with short-range antiferromagnetic order [44],
i.e., the background of spin fluctuations serves a an efficient heat bath for the electronic quasi-
particles, which can act much faster than the cooling of photo-excited carriers by coupling to
phonons.
Another limitation of plain DMFT is the restriction to local interactions. An important con-
sequence of non-local interactions in the solid is the feedback of the long-range Coulomb in-
teractions on the parameters of the model Hamiltonians due to dynamical screening. For large
excitation densities, or interactions involving many bands, one can expect a sizeable renormal-
ization of the Hubbard U via screening, which may even close a Mott gap. The question of
screening is also closely related to the determination of parameters for time-dependent models
from ab-initio theory. The combination of a non-equilibrium Green function approach such as
DMFT with time-dependent density functional theory encounters the double counting problem,
which is even harder to solve out of equilibrium than in equilibrium simulations. An interesting
perspective is therefore the combination of non-equilibrium GW with DMFT [45, 46], which
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can be formulated in a consistent functional language. This formalism is presented in the next
chapter, following mainly Ref. [47].

The GW+DMFT formalism

For simplicity we consider a system with several orbitals per unit cell, but only density-density
interactions. The most general Hamiltonian is

H =
∑
j,j′

∑
a,b

Jj,a;j′,a′c
†
j,acj′,a′ +

1

2

∑
j,j′

∑
a,a′

vj,a;j′,a′nj,anj′,a′ ≡ H0 +HV (65)

where j and j′ label the unit cells, and a, a′ are combined spin/orbital indices, J is the hopping
matrix, and v the interaction. The action is therefore

S =

∫
d1d2 c̄(1)G−1

0 (1, 2) c(2)− 1

2

∫
d1d2 n(1)V (1, 2)n(2) ≡ S0 + SV , (66)

where we have introduced a combined notation 1 ≡ (t1, j1, a1) for time, space and orbital
indices, with

∫
d1 =

∫
C dt1

∑
j1,a1

, and δ(1, 2) = δC(t1, t2)δj1,j2δa1,a2 , as well as the interac-
tion matrix V (1, 2) = vj1,a1;j2,a2 δC(t1, t2), and the noninteracting Green function G−1

0 (1, 2) =

(i∂t1 + µ) δ(1, 2) − J(1, 2). The first step is to decouple the interaction using a Hubbard-
Stratonovich transformation using a real field ϕ(1) and the Gaussian identity

eiSV =
1

Zϕ

∫
D[ϕ] eiSϕe−

∫
d1ϕ(1)n(1), Sϕ = −1

2

∫
d1d2 ϕ(1)V −1(1, 2)ϕ(2). (67)

Here V −1 is inverse in site, orbital, and time,
∫
d1̄V −1(1, 1̄)V (1̄, 1′) = δ(1, 1′). It is worthwhile

to note that the Gaussian integral over ϕ in Eq. (67) is convergent: Using the rules Eq. (42), the
action iSϕ reduces to iSϕ = −1

2

∫ β
0
dτ
∑

j,a,j′,a′ ϕj,a(τ)(v−1)j,a;j′,a′ϕj′,a′(τ) on the Matsubara
branch, which defines a convergent integral if the matrix v is positive definite (repulsive inter-
action).
After the Hubbard-Stratonovich decoupling, the system is described by electrons interacting
with a fluctuating bosonic field ϕ, with the effective action

Seff[c, c̄, ϕ] = Sϕ[ϕ] + S0[c̄, c] + i

∫
d1 ϕ(1)n(1), (68)

in the sense that the partition function is Zeff =
∫
D[c̄, c]

∫
D[ϕ]eiSeff[c,c̄,ϕ]. In the new represen-

tation, we then introduce the propagators W of the interaction as well as the electronic density
correlation functions χ,

W (1, 1′) = i
〈
ϕ(1)ϕ(1′)

〉con
Seff

(69)

χ(1, 1′) = −i
〈
n(1)n(1′)

〉con
Seff

(70)

with the connected correlation function 〈AB〉con = 〈AB〉−〈A〉〈B〉. The Hubbard Stratonovich
transformation implies the exact relation

〈ϕ(1)〉 = i

∫
d1̄ V (1, 1̄)〈n(1̄)〉 ≡ iVmf(1) (71)

W (1, 1′) = V (1, 1′) +

∫
d1̄d2̄ V (1, 1̄)χ(1̄, 2̄)V (2̄, 1′), (72)
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which shows that ϕ(1) takes the role of a fluctuating mean field, and its propagatorW is the fully
screened interaction. We can now use the action (68) and formulate the diagrammatic perturba-
tion theory for the electronic (G) and bosonic (W ) propagators in terms of the electron-boson
interaction eiSn−ϕ = e−

∫
d1n(1)ϕ(1), where the noninteracting propagators are the noninteract-

ing Green function G0 and the bare interaction V. We introduce self-energies Σ[G,W ] and
Π[G,W ] for the electrons and bosons,

W−1 = V −1 −Π[W,G], G−1 = G−1
0 −Σ[W,G]. (73)

(Π is called the polarization function). The perturbation theory is formulated in terms of a
self-consistent skeleton expansion, i.e., the propagators in the self-energies do not contain self-
energy insertions. From the action, the lowest-order approximation would be [cf. Eqs. (47) and
(48)]

Σ(1, 1′) = iG(1, 1′)W (1, 1′)− i〈ϕ(1)〉 δ(1, 1′) ≡ ΣGW (1, 1′)− i〈ϕ(1)〉 δ(1, 1′), (74)

Π(1, 1′) = −iG(1, 1′)G(1′, 1) ≡ ΠGW (1, 1′). (75)

The second term in Σ, together with the exact relation (71), is just the Hartree mean-field po-
tential −i〈ϕ(1)〉 δ(1, 1′) = Vmf(1) δ(1, 1′). The terms ΣGW and ΠGW define the celebrated
GW approximation, which was developed by Hedin [48]: In this approximation the electronic
self-energy is expanded to leading order in the fully screened interaction, and the polariza-
tion is approximated by the Lindhard function expressed in terms of the renormalized electron
propagators. While this approach is understood to be an accurate approximation in electronic
structure calculations of weakly correlated materials, (superior to standard density functional
approximations), it fails to describe the effect of strong local correlations, such as the Mott tran-
sition. To overcome this limitation, one can therefore combine the idea of DMFT with the GW
approximation [45, 46]:
Let us assume that we can identify a certain subset C of orbitals which are considered to be
strongly correlated, so that within that subset we would like to use a more accurate approxima-
tion for the self-energy and the polarization. In the spirit of DMFT, one can aim to add on top of
the self-energy and polarization defined in Eqs. (74) and (75) a nonperturbative self-energyΣcorr

and polarization Πcorr which (i), act only on the correlated orbitals, (ii) are local in space, and
(iii) are given by all contributions to the skeleton expansion which contain only the space-local
propagators of the correlated manifold at the same site. In other words, we set

(Σcorr)j,a′;j,a′(t, t
′) =

δj,j′Σloc,cor[Gloc,cor,Wloc,cor]a′;a′(t, t
′) a, a′ ∈ C

0 otherwise
, (76)

and analogous for Πcorr, where here we define the local propagators in the correlated subspace
a, a′ ∈ C as

(Gloc,cor)a,a′(t, t
′) = Gj,a;ja′(t, t

′), (Wloc,cor)a,a′(t, t
′) = Wj,a;ja′(t, t

′). (77)
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Like in conventional DMFT, we then introduce an electron-boson impurity model as an auxil-
iary device to evaluate these local contributions. The impurity action is

Simp =

∫
C
dtdt′

∑
a,a′∈C

c̄a(t)G−1
a,a′(t, t

′)ca′(t
′)− 1

2

∑
a,a′∈C

∫
C
dtdt′ ϕa(t)W−1

a,a′(t, t
′)ϕa′(t

′)

+ i
∑
a∈C

∫
C
dt ϕa(t)ha(t)(t) + i

∑
a∈C

∫
C
dt ϕa(t)na(t). (78)

Here G, W and h essentially define the noninteracting propagators of electrons and bosons in
the impurity model; they are free parameters, which will be fixed by self-consistency conditions
below. The last term is the electron-boson interaction, which is the same as in the lattice ac-
tion (68). From the impurity model we measure the impurity correlation functions

〈
ϕa(t)

〉
imp,

(Wimp)a,a′(t, t
′) = i

〈
ϕa(t)ϕa′(t

′)
〉con

imp and (Gimp)a,a′(t, t
′) = −i

〈
ca(t)c̄a′(t

′)
〉

imp, and use the
Dyson equation (understood as matrix equation in time and in the space C)

W−1
imp =W−1 −Πimp, (79)

G−1
imp = G−1 −

(
Σimp(t, t

′)− iδ(1, 1′)〈ϕ(1)〉imp

)
. (80)

Here, we have treated the Hartree self-energy separately. If then we request a self-consistency
between impurity quantities and local lattice quantities on the correlated subspace,

Gimp
!

= Gloc,cor, Wimp
!

= Wloc,cor,
〈
ϕa(t)

〉
imp =

〈
ϕj,a(t)

〉
imp for a ∈ C, (81)

it is guarantied that Σimp and Πimp provide the sum of all local diagrams. Finally adding the
correlated and GW self-energies gives the full approximation to the lattice self-energy,

Σ(1, 1′) =
[
iG(1, 1′)W (1, 1′)− iGloc,cor(1, 1

′)Wloc,cor(1, 1
′)
]

+Σimp(1, 1
′)− iδ(1, 1′)〈ϕ(1)〉,

(82)

Π(1, 1′) =
[
− iG(1, 1′)G(1, 1′) + iGloc,cor(1, 1

′)Gloc,cor(1, 1
′)
]

+Πimp. (83)

Here in the GW self-energy and polarization we have subtracted the local contribution, which
is already contained in Σimp and Πimp respectively. Moreover, from the impurity model we take
only the contribution beyond the Hartree mean-field term, because 〈ϕ(1)〉 is the same in the
impurity and lattice due to the self-consistency.
This completes the description of the theory: One can start with a guess for the free parameters
W , G [or ∆], and h, solve the impurity model to extract Σimp and Πimp, calculate the lattice
self energies and polarization from Eqs. (82) and (83), from that calculate the lattice G and W ,
extract their local contributions, use the self-consistency condition to obtain a new guess for
W , G, and h. In the actual implementation [47], there are some differences: First, the impurity
model is transformed to a purely electronic model by integrating out the phonons,

Simp =

∫
C
dtdt′

∑
a,a′∈C

c̄a(t)G̃−1
a,a′(t, t

′)ca′(t
′)− 1

2

∑
a,a′∈C

∫
C
dtdt′ na(t)Wa,a′(t, t

′)na′(t
′),
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with the exact relations (cf. Eqs. (71) and (72))

Wimp(t, t
′) =W +WχimpW , 〈ϕ〉imp = i

∫
d1′W(1, 1′)〈n(1′)〉. (84)

Hence 〈ϕ〉imp and Wimp can be obtained by measuring χimp and 〈n〉imp. This can be done, e.g.,
with the strong coupling equation as described around Eq. (64). Moreover, in the real-time
Keldysh formalism, we again avoid directly solving for the inverse operators in discrete time
(as in Eq. (79)), but transform all equations to well-behaved integral equations (see also the
discussion around Eq. (61)). Finally, the bosonic propagators have time-local contributions,
such as an instantaneous interaction V δC(t, t′), which must be kept separately in the real time
formalism. For a detailed discussion of these technical points, the reader is referred to Ref. [47].

4 Photodoping in Mott and charge-transfer insulators

4.1 Overview

In a Mott or charge-transfer insulator, electrons in a partially filled band get localized due to the
Coulomb interaction. They still keep active spin and orbital degrees of freedom, leading to a
large variety of magnetically and orbitally ordered low temperature phases, which can turn into
unconventional metallic states or superconductors upon doping. DMFT and its extensions have
been instrumental in the understanding of this physics, and non-equilibrium DMFT is therefore
a natural starting point to investigate the non-equilibrium phenomena induced in Mott insulators
driven by strong laser fields. The most straightforward way to excite the Mott insulator is to use
a short laser pulse that is resonant to the charge gap. This will impulsively create mobile charge
carriers, such as doubly occupied sites (“doublons”) and holes in a single band Mott insulator,
and will be followed by a sequence of dynamical processes:
Immediate response of the electronic structure: In a correlated electron system, the redis-
tribution of charges between different orbitals leads to an almost immediate response of the
electronic spectrum. Since the kinetic energy of photo-excited charges after an impulsive ex-
citation is often high, the electrons will not form coherent quasiparticles on the shortest times,
but the metallic character of the photo-excited state will become manifest in the formation of
incoherent spectral weight within the Mott or charge-transfer gap. In a multi-band system, the
inter-band Coulomb interaction can give rise to band shifts, and moreover the mobile charges
will change the dynamic screening environment and therefore also interactions like the Hubbard
U in the valence band. Below, we will discuss the change of the Hubbard U in a photo-excited
charge-transfer insulator, which has been predicted theoretically [49,50] and recently measured
using time-resolved Xray absorption [51].
Thermalization: Thermalization of a system implies that the properties of the system eventu-
ally approach the properties of a system in equilibrium, at a temperature Tf such that the total
energy equals the thermal energy expectation value Eth(Tf ) at temperature Tf , 〈H(t)〉 ≡ Etot

!
=

Eth(Tf ). In a correlated electron system, one can expect that the electronic system can thermal-
ize before passing on a substantial fraction of its energy to other degrees of freedom (phonons),
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leading to the formation of a correlated electron liquid at high temperature, which subsequently
cools down by coupling to the lattice. While such a “hot electron picture” is quite obvious and
has been employed ever since in the investigation of photo-induced solids, the correlated nature
of the state brings in few nontrivial aspects: The high-temperature state, with temperature of the
order of the electronic band width, can have peculiar spectral and transport properties, such as
bad metallic behavior [52, 28]. In equilibrium, the same state would not be accessible because
also the lattice would have to be heated, and such high temperature correlated fermion liquids
are therefore rather accessible in cold atom quantum simulators [53]. The understanding of their
dynamics at short times and high energies offers the opportunity for a detailed and systematic
comparison of theory and experiment.
Prethermal photo-doped states: In the presence of the Mott or charge-transfer gap, full ther-
malization can be inhibited for relatively long times. The thermalization of a single-band photo-
doped Mott insulator has been analyzed within DMFT in Ref. [54], by calculating the double
occupancy and the spectral functions after the pulse. One finds that the double occupancy in-
creases during the pulse, and subsequently shows an exponential relaxation to a new final value,
from which the thermalization time can be extracted. This timescale strongly depends on U, and
ranges from few hopping times (few femtoseconds for a typical eV bandwidth) in the correlated
metal, to thousands of hopping times in the Mott phase. The fast thermalization in a small gap
Mott insulator has been experimentally investigated in 1T-TaS2 [55]. At large U, instead, the
double occupancy D can be viewed as an almost conserved quantity, so that one can expect
the electronic state to be described as a quasi-thermal state with a thermodynamic variable D
in addition to the total particle number N and the total energy E. In fact, simulations for the
one-band Hubbard model show that the system quickly establishes a distribution function with
a universal form, given by a Fermi function with separate chemical potentials in the upper and
lower Hubbard band [28]. This universal form hints at a description in terms of few additional
slow variables. Upon energy transfer to the lattice (or to spins [44] and other degrees of free-
dom), the state may acquire a low temperature but still have a substantial fraction of additional
doubly occupied sites and holes, i.e, it is a cold correlated liquid of spins (singly occupied
sites), holes and doublons. The quasi-steady properties of such photo-doped states may support
phases different from those in the equilibrium phase diagram. They can be explored by taking
the equilibrium states of a suitable model in which D is turned into an exactly conserved quan-
tity (for the Hubbard model, this is a generalized the t-J model, in which charge recombination
processes are projected out [57, 16]). Alternatively, one can try to work within the Hubbard
model and establish the quasi-steady state as a true steady state under the application of suitable
reservoirs [56]. In both cases, for the Hubbard model, η-pairing superconductivity is found for
strong photo-excitation [57, 16].

4.2 Electronic structure in a photo-excited charge-transfer insulator

Finally, we briefly review the first application of the non-equilibrium GW+DMFT to a realistic
material simulation [49]. We focus on a three-band model for a charge-transfer insulator. It
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Fig. 3: Left: 3-band Emery model for a charge-transfer insulator. Right: p and d spectral
functions in equilibrium, as obtained with GW+DMFT. Adapted from Ref. [49]

.

describes a two-dimensional cubic lattice with two ligand orbitals px and py and one d orbital per
unit cell (see Fig. 3, left). We take into account a nearest neighbor p-d hopping tpd = 0.4 eV, a
direct d-d hopping tdd = −0.1 eV, a charge-transfer energy (energy difference εp−εd = −2 eV),
a inter-site p-d density-density interaction Vpd = 2 eV, and a local Hubbard interaction on the
d orbitals, Udd = 8 eV. The parameters are determined to best match the spectrum for the
cuprate LSCO. With 5 electrons per unit cell, the system has a nominally half-filled d band,
which is split into upper and lower Hubbard band due to the large Udd. The model is solved in
and out of equilibrium with the GW+DMFT formalism (see Sec. 3.2), using the non-crossing
approximation as an impurity solver (Sec. 3.3). The local spectral function in equilibrium (β =

5) is shown in Fig. 3, right panel; one can clearly distinguish the upper and lower Hubbard band
in the d-related spectrum, where the lower Hubbard band hybridizes with the p bands.
We now simulate the time-dependent spectral and occupation functions during and after the
excitation of the system with a short electric field pulse. The pulse couples to the model via
both a Peierls phase and dipolar matrix elements (for details see [47]). The electric field has the
form

E(t) = E0e
−4.6(t−t0)2/t20 sin(Ω(t−t0)), (85)

with a frequency Ω that is varied below mostly resonant to the charge-transfer gap, and a du-
ration of roughly two cycles (t0 = 4π/Ω). It is polarized along the (11) direction, and the
amplitude is adapted to achieve a certain excitation density.
Figure 4a) shows the spectrum shortly after an excitation with about 5% photo-doping (mea-
sured by the change of the double occupancy after the pulse). Time-resolved spectra are ob-
tained from the Wigner transformAα(ω, t) = − 1

π
ImGR

α (t, ω+i0) for α = p, d. One can clearly
see a shift and broadening of all bands. To further elucidate the origin of these band structure
changes, one can switch off the nonlocal GW self-energies and polarizations, and keep only the
Hartree and Fock self-energies (HF+DMFT) in the simulation. In this case, the band shifts on
the d band can mainly be understood as a consequence of the mean-field p-d interaction, which
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Fig. 4: a) Spectra after photo-excitation of the Emery model in equilibrium (black lines) and
shortly after the excitation (40 fs, red). The pulse frequency Ω = 6 eV is resonant to an excita-
tion across the gap, and the excitation density (change in the doubly occupancy on the d-sites)
is about 5%. One finds a significant broadening and shift of the bands. b) Same parameters, but
taking only the static Hartree and Fock diagrams beyond DMFT into account. Adapted from
Ref. [49]

.

implies a shift of the d level given by δεd = Vpd δ〈nd〉 depending on the change δ〈nd〉 of the
p occupation. The result is shown in Fig. 4b). The center of mass shift of the upper Hubbard
band turns out to be about a factor two larger in the GW+DMFT simulation as compared to
the HF+DMFT simulation. This shows a significant quantitative role of the dynamic screening
processes due to the long-range interaction, which are captured by the GW formalism. In the
language of GW+DMFT, one can understand these screening processes in turns of a reduction
of the onsite interaction U in the photo-excited state. Similar band shifts after photo-excitation
have been reported for LSCO using XAS from a core level [51], which have also been inter-
preted as a dynamic screening of the Hubbard U. Because of the strong core-valence excitonic
character of the final state in XAS, XAS cannot directly be linked to the single-particle spectral
function presented in the present study. To get a quantitative interpretation of the experiment
it would be interesting to compute the XAS within GW+DMFT, along the lines presented in
Ref. [58].

In addition to the quantitative relevance of the dynamic screening processes, we observe that
the spectrum is strongly broadened in the GW+DMFT simulation, while band shifts are more
or less rigid within HF+DMFT. The reason is that the interaction of electrons with the nonlocal
dynamic charge fluctuations, which is captured by the GW diagrams, opens a new scattering
channel in the photo-doped state. For the same reason, also the dynamics of the occupation
functions is very different in the two cases (not shown here, see Ref. [49]): The interaction
of electrons with charge fluctuations leads to a rapid relaxation of the photo-doped electron
and hole distributions to the bottom of the upper Hubbard band and the top of the hybrid p/d
bands, respectively, whereas this relaxation would require the coupling to an additional bath
of phonons in the HF+DMFT simulation. Hence, we see that keeping the dynamical nonlocal
fluctuations is essential for an accurate description of photo-doped states.
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5 Outlook

In these notes we have reviewed the theoretical basis for a description of correlated electron sys-
tems out of equilibrium using the non-equilibrium extension of DMFT and GW+DMFT. While
such simulations have been used to understand many aspects of photo-exited states in solids, a
desirable future development will be to bring the non-equilibrium formalism to a similar level
of quantitative predictive power as the equilibrium DMFT formalism. The main challenge in
this direction is the solution of the impurity problem. There are currently no non-perturbative
impurity solvers which work at long times. While low-order variants of the strong-coupling
expansion, such as NCA, can be applied very flexibly within the Mott phase, they become in-
creasingly inaccurate for correlated metallic phases. An interesting perspective are given by the
application of the non-perturbative methods (QMC [41] and Hamiltonian-based solvers [35]). In
the near future, it might in particular become feasible to use these non-perturbative techniques
for a study of non-equilibrium steady states, which then can provide an effective description
of long-lived photo-excited phases [16, 56], or be elevated to study slow time-evolution using
quantum Boltzmann equations based on steady-state DMFT [32].
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Poincaré lemma, 10.9
polar catastrophe, 9.6
polarization

impurity, 12.9
lattice, 12.10
RPA, 12.6

polaron operators, 5.24
potential energy, 5.21
prethermalization, 13.24
principle of detailed balance, 2.24
projection scheme, 7.15
pseudogap, 11.19, 11.23

Q
quantum database, 4.13
quantum Hall effect, 10.17
quantum Hall liquid, 2.35
quantum impurity model, 3.2, 5.2

action, 5.3
bath Green function, 5.4
Green function, 5.3
hybridization function, 5.3
Weiss Green function, 5.4, 5.5

quantum Monte Carlo, 7.2
continuous-time, 8.14

quasi one-dimensional metals
TTF-TCNQ, 2.34

quasiparticle decay rate
effect of disorder, 2.33

quasiparticle lifetime
approximate expressions in 2D, 2.21
approximate formula in three dimen-

sions, 2.19
calculation by Fermi golden rule, 2.16
Giuliani and Quinn formula, 2.21

quenching of the kinetic energy at high
magnetic field, 2.36

QWZ model, 10.14

R
random-phase approximation (RPA), 11.2,

12.5
regularization, 6.13
renormalization, 2.26

constant, 2.34
group, 6.25

resistance minimum, 3.2

S
Schrieffer-Wolff transformation, 3.5
Schwinger-Dyson equation, 11.8, 11.9,

11.20
screened interaction, 12.3
self-consistency, 8.19, 9.5
self-consistent equation, 1.8, 1.20, 1.24,

1.26
self-energy, 1.20–1.22, 1.24–1.27, 5.5

Hubbard dimer, 8.5
local, 8.5, 8.8

Shannon entropy, 6.29
single-impurity Anderson model, 1.13,

1.23, 1.24, 3.3
singular value decomposition (SVD), 6.10
Sommerfeld model for electrons in met-

als, 2.2
spectral function, 6.3



Index I.5

experimental measurement of, 2.21
spectral representation

Green function, 12.23
response function, 12.21
screened interaction, 12.23
self-energy, 12.23

spin fluctuations, 11.3, 11.16, 11.18
spin glass, 1.8
superconductivity, 11.24, 11.26
surface states, 10.22
susceptibility, 8.34, 11.16

T
Tikhonov regularization, 6.14
time-reversal symmetry, 10.16
topological

Hamiltonian, 10.20
invariants, 10.3
phase diagram, 10.28

topological properties, 1.27–1.29
tunneling

between identical quantum wells, 2.21
experiments at high magnetic field,

2.37
twistronics, 1.12
two-channel Kondo model, 3.17

V
vertex, 11.3, 11.9, 11.17

W
Wannier functions, 8.25
weak-coupling continuous-time impurity

solver, 5.7
acceptance probability, 5.9
Green function measurement, 5.11
proposal probability, 5.9

Weiss field, 8.20
Wick rotation, 6.3
Wick theorem, 13.11
Wigner representation, 13.9
Wigner’s theorem, 10.16
Wilson chain, 3.9
Wolff model, 1.13
wrapping number, 10.16

Z
zeroes of the Laughlin wave function,

2.36





Schriften des Forschungszentrums Jülich 
Modeling and Simulation 

1. The LDA+DMFT approach to strongly correlated materials 
Lecture Notes of the Autumn School 2011 Hands-on LDA+DMFT 
edited by E. Pavarini, E. Koch, D. Vollhardt, A. Lichtenstein  (2011), 420 pages 
ISBN 978-3-89336-734-4 

2. Correlated Electrons: From Models to Materials 
Lecture Notes of the Autumn School on Correlated Electrons 2012 
edited by E. Pavarini, E. Koch, F. Anders, and M. Jarrell (2012), 450 pages 
ISBN 978-3-89336-796-2 

3. Emergent Phenomena in Correlated Matter 
Lecture Notes of the Autumn School on Correlated Electrons 2013 
edited by E. Pavarini, E. Koch, and U. Schollwöck (2013), 520 pages 
ISBN 978-3-89336-884-6 

4. DMFT at 25: Infinite Dimensions 
Lecture Notes of the Autumn School on Correlated Electrons 2014 
edited by E. Pavarini, E. Koch, D. Vollhardt, A. Lichtenstein (2014), 450 pages 
ISBN 978-3-89336-953-9 

5. Many-Body Physics: From Kondo to Hubbard 
Lecture Notes of the Autumn School on Correlated Electrons 2015 
edited by E. Pavarini, E. Koch, and P. Coleman (2015), 500 pages 
ISBN 978-3-95806-074-6 

6. Quantum Materials: Experiments and Theory 
Lecture Notes of the Autumn School on Correlated Electrons 2016 
edited by E. Pavarini, E. Koch, J. van den Brink, G. Sawatzky (2016), 420 pages 
ISBN 978-3-95806-159-0 

7. The Physics of Correlated Insulators, Metals, and Superconductors 
Lecture Notes of the Autumn School on Correlated Electrons 2017 
edited by E. Pavarini, E. Koch, R. Scalettar, and R. Martin (2017), 450 pages 
ISBN 978-3-95806-224-5 

8. DMFT: From Infinite Dimensions to Real Materials 
Lecture Notes of the Autumn School on Correlated Electrons 2018 
edited by E. Pavarini, E. Koch, A. Lichtenstein, D. Vollhardt (2018), 480 pages 
ISBN 978-3-95806-313-6 

9. Many-Body Methods for Real Materials 
Lecture Notes of the Autumn School on Correlated Electrons 2019 
edited by E. Pavarini, E. Koch, and S. Zhang (2019), 520 pages 
ISBN 978-3-95806-400-3 
 



Schriften des Forschungszentrums Jülich 
Modeling and Simulation 

10. Topology, Entanglement, and Strong Correlations 
Lecture Notes of the Autumn School on Correlated Electrons 2020 
edited by E. Pavarini and E. Koch (2020), 500 pages 
ISBN 978-3-95806-466-9 

11. Simulating Correlations with Computers 
Lecture Notes of the Autumn School on Correlated Electrons 2021 
edited by E. Pavarini and E. Koch (2021), 420 pages 
ISBN 978-3-95806-529-1 

12. Dynamical Mean-Field Theory of Correlated Electrons 
Lecture Notes of the Autumn School on Correlated Electrons 2022 
edited by E. Pavarini, E. Koch, A. Lichtenstein, D. Vollhardt (2022), 450 pages 
ISBN 978-3-95806-619-9 


	vollhardt
	Dimensions in physics: From zero to infinity
	Integer and continuous spatial dimensions
	Simplifications arising in infinite dimensions
	Example: Derivation of Bohr's atomic model from the Schrödinger equation

	Construction of classical mean-field theories in infinite dimensions
	Ising model
	Ising model with random coupling: The spin glass problem
	Hard-sphere fluid

	Correlated electrons in solids
	From the Ising model to the Hubbard model
	Characteristic features of the Hubbard model

	Static mean-field theories of the Hubbard model
	Hartree approximation
	Gutzwiller approximation

	Lattice fermions in infinite dimensions
	Simplifications of diagrammatic quantum many-body theory
	The Hubbard model in d=infinity

	Dynamical mean-field theory (DMFT) of correlated electrons and its applications
	The self-consistent DMFT equations
	Mott transition, ferromagnetism, and topological properties
	Correlated electrons in bulk materials, surfaces, and nanostructures

	Beyond mean-field theory
	1/d corrections
	Beyond DMFT

	Summary

	vignale
	A tale of many fermions
	Phenomenological theory
	The Landau energy functional
	The heat capacity
	The Landau parameters
	Compressibility and spin susceptibility
	Galilean invariance and effective mass
	Measuring m*, K and chiS

	The lifetime of quasiparticles
	General formulas
	Three-dimensional electron gas
	Two-dimensional electron gas
	Measuring the quasiparticle lifetime
	The kinetic equation

	Microscopic basis of the Landau theory of Fermi liquids
	Existence of quasiparticles and self-energy
	Landau interaction function and scattering amplitude

	Fermi liquid of massless Dirac fermions
	Non-Fermi-liquid behavior
	Disordered electron liquid
	Luttinger liquid
	Fractional quantum Hall liquid


	vondelft
	Introduction
	Single-impurity Anderson model: local moment formation
	Kondo model: spin-exchange interaction
	Numerical renormalization group
	NRG results for the single-impurity Anderson model
	Two-channel Kondo model
	Schrieffer-Wolff transformation

	weber
	Introduction
	Supervised learning and linear regression
	A single layer neural network: the perceptron model
	Neural networks
	Back-propagation

	Generating a quantum database for the Anderson impurity model
	Polynomial basis method
	Generating the validation dataset with exact diagonalization
	Data representation
	Defining the unknowns: from learning solutions to learning errors
	Constructing the database

	Training a model solver to solve the Anderson impurity model
	Data processing: symmetry, augmentation and transformation
	Activation function with many-body quantities
	An error correction approach for solving DMFT
	Database of solutions for the Anderson Impurity Model
	A Neural Network Impurity Solver
	A data-driven approach to the Mott transition

	Conclusion and code availability

	werner
	Quantum impurity models
	Action formulation
	Dynamical mean-field theory

	Continuous-time QMC solvers – General formalism
	Weak-coupling approach
	Sampling
	Determinant ratios and fast matrix updates 
	Measurement of the Green function
	Multi-orbital and cluster impurity problems

	Hybridization-expansion approach
	Sampling
	Measurement of the Green function
	Generalizations – Matrix and Krylov formalisms

	Scaling of the algorithms
	Electron-boson systems
	Local phonons
	Frequency-dependent interactions
	Boson distribution function


	koch
	Setting the stage
	Analytic continuation
	Analytic properties of the integral equations
	Preparing the data

	Optimization methods
	Least squares and singular values
	Non-negative least-squares
	Linear regularization
	Maximum entropy

	Average spectrum method
	Conclusions
	Technical appendices
	Blocking method for correlated data
	Non-negative least-squares algorithm (NNLS)
	Shannon entropy
	Sampling from a truncated normal distribution


	lichtenstein
	DFT and DMFT: Role of reference systems
	Functional approach
	Density Functional Theory
	Dual Fermion approach with a general reference system
	Perturbation in Dual Space
	LDA+DMFT scheme for real materials
	Conclusions
	Path integrals for fermions

	pavarini
	Introduction: the many-body problem
	From DMFT to LDA+DMFT
	DMFT for a toy model: The Hubbard dimer
	Non-local Coulomb interaction
	Quantum-impurity solvers: Continuous-time quantum Monte Carlo
	DMFT for the single- and multi-orbital Hubbard model
	LDA+DMFT: Model building

	Linear response functions
	Definitions
	DMFT and the Bethe-Salpeter equation
	The local susceptibility: Legendre representation
	Magnetic susceptibility for the single-band Hubbard model

	Conclusion
	Eigenstates of Hubbard dimer and Anderson molecule
	Lehmann representation of the local Green function
	Atomic magnetic susceptibility

	lechermann
	Introduction
	DFT+DMFT in a nutshell
	Band-insulator/band-insulator heterostructure
	LaAlO3/SrTiO3: defect-free interface
	LaAlO3/SrTiO3: oxygen-deficient interface
	Oxygen-deficient SrTiO3 surface

	Mott-insulator/band-insulator heterostructure
	LaTiO3/SrTiO3
	delta-doping of titanate Mott insulators

	Natural oxide heterostructures: delafossites
	Basic DFT characterization
	Impact of correlation effects
	Theoretical Mott design

	Further systems
	Concluding remarks

	potthoff
	Motivation
	Chern number
	Chern insulator
	Electron correlations
	Exact interplay of correlations and topology in D=infinity
	Concluding discussion

	held
	Introduction
	Dynamical vertex approximation
	Ladder dynamical vertex approximation
	Hubbard model, cuprates and nickelates
	Spin fluctuations
	Pseudogap
	Superconductivity
	Conclusion and outlook

	aryasetiawan
	Introduction
	GW method
	Screened interaction W
	Random-phase approximation
	GW self-energy

	GW+EDMFT method
	G0W0+DMFT
	Extended DMFT
	GW+EDMFT
	Multitier GW+EDMFT scheme
	Applications to cubic perovskites SrMoO3 and SrVO3

	Derivation of the GW approximation
	Equation of motion
	Self-energy
	Self-energy expansion in the screened interaction
	GW approximation

	Functional derivation of GW+EDMFT

	eckstein
	Introduction
	Keldysh formalism
	The L-shaped time contour
	Contour-ordered Green functions
	Perturbation theory

	Non-equilibrium DMFT and beyond
	Non-equilibrium DMFT
	Impurity solvers
	Multi-band DMFT+GW

	Photodoping in Mott and charge-transfer insulators
	Overview
	Electronic structure in a photo-excited charge-transfer insulator

	Outlook

	index

