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Abstract
In the frame of project FoGLIE (Fruition of Goods and Landscape in Interactive 
Environment), UAS were used to survey a park area in its less accessible zones, for 
scenic and stereoscopic videos, 3D modeling and vegetation monitoring. For this last 
application, specifically, through the acquisition of very high resolution images taken with 
two UAS-borne compact cameras (RGB and NIR), a DSM of a small vegetated area and 
the corresponding orthoimages were produced and co-registered. Planimetric and height 
accuracies in block adjustments and orthophotos are in the range of 0.10 m horizontally 
and 0.15 m in height. Then, after the derivation of synthetic channels, both unsupervised 
classification and supervised one were performed in order to test the algorithms’ ability 
to distinguish between different bushes and trees species: some of them were correctly 
classified by the latter method but misclassifications still remain. The overall accuracy for 
the unsupervised classification is about 50% while the supervised one yields an overall 
accuracy around 80%.
Keywords: Classification, DSM, UAS, vegetation , orthophoto, block adjustment.

Introduction: UAS for cultural heritage modelling and park monitoring
Italy is characterized by the presence of many places of both landscape and cultural 
values, such as museums or areas with heterogeneous and distributed cultural, historical 
and natural heritage.The management of these areas is complex both from the safeguard 
point of view and from the fruition one. The latter is mainly realized through paths and 
exhibition itineraries and the users interfaces consist of fixed stations or audio guides which 
provide static descriptions of the cultural/natural evidences and are often unsuitable in case 
of heterogeneous points of interest.
To overcome these limits, the pilot project FoGLIE (“Fruition of Goods Landscape 
in Interactive Environment”) was funded by the local government authority “Regione 
Lombardia”, with the aim of developing an audiovisual movable system and interactive 
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contents. Visits are made more effective and involving thanks to images, historical 
documents, virtual tours, 3D videos and models, available in augmented reality visualization 
by means of advanced devices (e.g. tablets). Furthermore, this innovative guide meets the 
purpose of enhancing the natural, artistic and cultural heritage and improving the typical 
land monitoring processes: indeed, it integrates the fruition phase with the documentation 
and preservation ones thanks to the possibility of recording videos and images automatically 
referenced in space and time [Gini et al., 2011]. The users can send them to a central 
system at the Park Main Centre together with explanatory messages: in this way, potential 
environmental problems can be quickly brought to the attention of the management staff 
and, at the same time, the simple fruition is turned into active safeguard.
A noteworthy aspect of the project is the use of not conventional aerial platforms, i.e. the 
so-called “Unmanned Aerial Systems” (UAS): they are “powered aerial vehicles that do not 
need a human operator physically onboard” [Eisenbeiss, 2009; Eisenbeiss and Sauerbier, 
2011]. Depending on their size and on the transportable payload, drones can be equipped 
with different sensors, including amateur compact cameras, thermal or infrared camera 
systems or a combination of them [Berni et al., 2009; Nagai et al., 2009; Laliberte et al., 
2011; Lucieer et al., 2012].
These new technologies have several advantages with respect to the manned aircraft systems: 
the low costs, the manoeuvrability, the possibility of being programmed to accomplish 
flights autonomously or to take very close aerial images and unconventional poses. All 
these characteristics make UAS the ideal photogrammetric platforms for life-threatening 
situations or areas which are not reachable by traditional aircrafts [Zhou et al., 2005; Wu 
et al., 2006; Niethammer et al., 2012]. At the same time, the flights repeatability, the fast 
data acquisition and its real-time transmission to ground stations (when possible) allow 
both control of the territory and frequent monitoring. As a consequence, the Unmanned 
Aerial Systems surely represent a new and flexible technology, able to collect a big 
amount of very high resolution information for both geometric and descriptive purposes, 
as generation of Digital Surface Models (DSMs), forest landscape assessment, analysis 
of critical environmental situations, evaluation of not accessible or not properly enhanced 
areas and so on.
Within the FoGLIE project, the UAS were used for a double purpose: to carry out indoor 
and outdoor flights for capturing images suitable for the audiovisual system and to help in 
the managing of the park territory. The university “Politecnico di Milano” was involved 
for providing scientific and technical support in the photogrammetric surveys to produce 
3D models of some historical buildings and augmented reality scenes, as well as for 
investigating the potentialities of UAS systems for vegetation monitoring.
In the present paper the attention is focused on a specific part of the project, a pilot survey 
which aimed at acquiring multispectral UAS images: they were processed with remote 
sensing classification techniques to detect non native tree species, thereby assisting the 
Park Forest authority to manage the selective cuttings.
In Section 2 the employed vector-sensors system, the planning and the execution of the 
UAS survey are described. The high resolution images were geo-referenced separately 
through a bundle block adjustment (Section 3); afterwards, the RGB data set was used 
to generate the DSM which, in turn, was employed to create RGB and NIR orthophotos. 
Both a supervised algorithm and an unsupervised one were run on a layer stack of eight 
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variables, four original channels plus four synthetic bands (Section 4); eventually, results 
are discussed in Section 5.

Experiment setup
The FoGLIE project used “Parco Adda Nord” as test area: to the south of Como Lake in 
Lombardy (Italy), the park follows the course of Adda River, with a narrow and long shape 
of roughly 55 km. It was selected due to the presence of several elements of both natural and 
historical value, such as Brivio wetland, the Leonardo’s locks and the Crespi d’Adda village, 
an example of the 19th- and early 20th-century “company town”, included into the UNESCO 
World Heritage List (http://whc.unesco.org/en/list/730/; for more information, please refer 
to the State of Conservation of World Heritage Properties in Europe [UNESCO, 2006]). 
Moreover, the park is still rich in native vegetation (see Fig. 1), e.g. alder (Alnus glutinosa), 
plane tree (Platanus spp.), poplar (Populus spp.), birch (Betula spp.), etc. Unfortunately, 
foreign invasive species were introduced long ago and are now so widespread that periodic 
selective cuttings are planned in order to protect the local ecosystem: particular care is 
devoted to tree of heaven (Ailanthus altissima), since it spreads like wildfire endangering 
the local vegetation. Instead the black locust (Robinia pseudoacacia) is a non native Italian 
species now considered naturalized [Celesti-Grapow et al., 2010].

Figure 1 - From left to right: Alnus glutinosa, Ulmus, Platanus and Robinia Psuedoacacia.

This work focuses on a pilot experiment on a small area (120x100 m2, with a difference in 
altitude of 15 m) located inside the park and close to Medolago village, Bergamo (see Fig. 2).

Figure 2 - Location of the survey area.
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Selected together with the “Parco Adda Nord” technical staff, it comprehends several land 
cover types, i.e. a small building, an agricultural field, a road and different tree species: an 
extended scrub of tree of heaven (Ailanthus altissima), hornbeam (Carpinus betulus), elm 
(Ulmus spp.) and black locust (Robinia pseudoacacia).

The vector-sensor system
The employed platform was the quadrirotor MicrodronesTM MD4-200 owned by Zenit S.r.l.: 
characterized by vertical take-off and landing, this vehicle can fly by remote control or 
autonomously, using the automatic pilot function and a GPS navigation system. Moreover, 
the MD4-200 is furnished with a software package which allows the user to manage all the 
functions needed to plan, monitor and analyze the flight (see Tab. 1 for more details).

Table 1 - Some technical specifications of MD4-200.
Payload capacity Up to 200 g
Flight duration ~ 30 min
Flight radius max. 500 m
Flight altitude max. 150 m

The digital compact camera, selected for taking RGB images, was the Pentax Optio A40 
due to its dimensions and low weight (130 g) which make it ideal to be carried by the MD4-
200. It features a CCD image sensor and, with an actual resolution of 12 megapixels, it can 
take photos with 4000x3000 pixels as maximum resolution. The second digital compact 
camera was a Sigma DP1, furnished with a Foveon X3 sensor and specifically modified 
by the owner (Zenit S.r.l. - the same of the Pentax) to allow the recording of near infrared 
radiation [Alba et al., 2011].
In order to reduce the Sigma’s weight (250 g), the camera was directly connected to the 
MD4-200 battery, thereby shortening the autonomy of the latter. Further cameras details are 
reported in Table 2.

Table 2 - Some technical specifications of the cameras.
Pentax Optio A40 Sigma DP1

Focal length (mm) 7.90 (fixed) 16.60 (fixed)
Sensor (mm) 7.48 x 5.61 20.70 x 13.60
Sensor (px) 4000 x 3000 2650 x 1740
Pixel size (������ 1.87 7.81

UAS survey planning and data acquisition
Because of the MD4-200 low payload, the concurrent use of the cameras was not possible 
thus only one at a time was employed: this required the development of a subsequent co-
registration procedure in order to work with multispectral information for the vegetation 
classification [Nebiker et al., 2008].
To cover the entire area, it was necessary to plan the acquisition of three strips (see Fig. 3); 
moreover, the flight height was kept constant at roughly 55 m due to security issues, thereby 
determining different Ground Sample Distances (GSD), equal to 1.33 cm for the Pentax 
and 2.63 cm for the Sigma DP1. The UAS flew autonomously on the testing area thanks to 
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the automatic pilot function, while the take-off and the landing were remotely controlled 
by the operator.

Figure 3 - Flight plan: strips and RGB camera 
projection centers.

Data were acquired in a sunny day of July 2011, by performing six separate flights in the 
South-North direction: indeed, the low UAS flight range (approximately up to 20 minutes) 
entailed the need to perform a single flight for each strip, by setting down the MD4-200 and 
changing its battery.  For what concerns the RGB dataset, the overall result was satisfactory 
although the attitude of some images was not nadiral, probably because of the presence of 
breeze or wind at the flight height. Instead, regarding the NIR data, several images were 
blurred and this problem might be linked to the long exposure time, chosen in order to 
capture infrared wavelengths. Another aspect to be underlined but concerning both images 
sets is that the illumination was not uniform within the single block, due to the time elapsed 
between the first and the third strips of each of them.
In conclusion, the procedure described in this paper was applied to 35 RGB images and 19 
NIR ones, selected from the original datasets of 43 and 40 photos respectively, on the basis 
of two criteria: maintaining an overlap as homogeneous as possible throughout the block 
and maximizing the number of visible ground surveyed points.

Block adjustment and surface modeling 
In order to calibrate the cameras, a b/w standard square panel was used, with a printed 
pattern of signals that are automatically recognized by PhotoModeler 6 (by Eos System 
Inc. http://www.photomodeler.com/index.html): a set of images in suitable positions and 
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orientation were acquired by both cameras and then employed by the software to compute 
the parameters of a Brown model [Brown, 1971], summarized in Table 3.

Table 3 - Calibration parameters estimated by PhotoModeler 6.
Pentax Optio A40 Sigma DP1

Theoretical Focal Length (mm) 7.90 16.60
Calibrated Focal Length (mm) 8.0968 16.8763
Principal Point xP (mm) 3.6031 10.3560
Principal Point yP (mm) 2.7577 6.9976
Radial Distortion k1 2.900∙10-3 2.639∙10-4

Radial Distortion k2 -1.205∙10-5 -7.068∙10-7

Decentering Distortion p1 -2.955∙10-5 -6.106∙10-5

Decentering Distortion p2 -3.432∙10-4 5.519∙10-5

After this preliminary step, the RGB images were processed in a bundle block adjustment 
[Ackermann and Tsingas, 1994] in PhotoModeler 6 with 16 GCPs, 13 Check Points (CPs) 
and 218 Tie Points (TPs) manually selected; this set of TPs was then exported and used 
also in LPS 2011 (Leica Photogrammetry Suite, ERDAS IMAGINE by Intergraph http://
geospatial.intergraph.com), in order to compare the results coming from close range and 
aerial photogrammetric software packages.
The residuals on ground coordinates of CPs were analyzed: even if accuracies are of the 
order of centimeters in both cases, better results came from LPS regarding the height 
coordinate (see Tab. 4).

Table 4 - Statistics of CPs residuals (m).
PhotoModeler LPS

ΔE ΔN Δh ΔE ΔN Δh
Mean 0.034 -0.017 0.121 0.018 -0.043 0.037
Std. Dev. 0.034 0.036 0.090 0.047 0.071 0.082
RMSE 0.047 0.038 0.149 0.048 0.081 0.087

Furthermore, the differences between the Exterior Orientation parameters (EO) estimated 
by PhotoModeler (PM) and the ones from LPS were computed, by showing variations up 
to some decimeters but always below 1 m (Tab. 5).

Table 5 - Statistics of differences in EO parameters (lengths in meters, angles in degrees).
EOPM - EOLPS

ΔE ΔN Δh Δω Δϕ Δκ
Mean 0.417 0.289 -0.058 0.313 0.554 0.064
Std. Dev. 0.085 0.076 0.188 0.079 0.057 0.176
Max 0.682 0.491 0.339 0.468 0.675 0.423
Min 0.297 0.159 -0.355 0.139 0.458 -0.197

In the following table (Tab. 6), the accuracies of the EO parameters only from LPS are 
listed, since PhotoModeler does not compute them.
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Table 6 - Accuracies of EO parameters from LPS (lengths in meters, angles in degrees).
Accuracies EOLPS

E N h ω ϕ κ
Mean 0.081 0.082 0.030 0.092 0.088 0.020
Std. Dev. 0.052 0.047 0.019 0.050 0.053 0.009

Lastly, the Exterior Orientation parameters were compared to the UAS position and attitude 
data, registered during the flight by the low-cost navigation system on board. As expected, 
these measurements can be considered only a rough approximation of the actual camera 
projection centers: indeed the position acquired by GPS code and the attitude obtained by 
low cost IMU were affected by errors not acceptable for photogrammetric purposes. The EO 
parameters estimated both by PhotoModeler and LPS departed appreciably from the recorded 
values, as expected, due to the low accuracies of the positioning system (see Tab. 7).

Table 7 - Statistics of differences between EO parameters from software packages and those 
from onboard sensor (lengths in meters, angles in degrees).

EOLPS - EOGPS/IMU

ΔEE ΔN Δhh Δω Δϕ Δκ
Mean 0.02 -0.28 1.88 0.527 -2.009 4.776
Std. Dev. 0.48 1.64 0.82 7.062 1.687 4.769
Max 1.25 6.49 4.19 12.561 1.731 13.675
Min -0.97 -2.08 0.31 -6.849 -4.864 -7.148

EOPM - EOGPS/IMU

ΔEE ΔN Δhh Δω Δϕ Δκ
Mean 0.18 0.16 1.80 0.559 -1.747 4.703
Std. Dev. 0.58 1.82 0.82 7.171 1.902 4.713
Max 1.55 7.73 4.27 13.159 2.674 13.664
Min -1.09 -1.46 0.22 -7.398 -4.818 -7.271

PhotoModeler and LPS yielded similar results with the highest differences in N (along strip 
axis� and ω, thus �aking clear it is not possible to obtain an accurate position of the ca�era 
by the onboard navigation system [Gini et al., 2012].
The bundle block adjustment algorithm of LPS 2011 was separately run also on the NIR 
images; then the attention was focused on the co-registration of the two datasets, necessary 
to work with multispectral images.

The DSM generation
Thanks to the modulus of Automatic Terrain Extraction (ATE) of LPS, a Digital Surface 
Model (DSM) was created by using the oriented block of RGB images with a high ground 
resolution of 0.10x0.10 m2.The automatic generation of the DSM starts from the extraction 
of homologous points on pairs of images, by exploiting the epipolar geometry and by 
computing the cross-correlation coefficient between the two images (“patch” and “slave”). 
Tests are then performed to eliminate any possible outliers. Once the images’ exterior 
orientation is known, the ground coordinates of the points are computed for space forward 
intersection (http://geospatial.intergraph.com).
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The comparison with the 37 ground surveyed points yielded the statistics in Table 8.

Table 8 - Accuracies of 37 height values: 
DSM compared with GPS heights (m).

hDSM - hGPS

Mean 0.054
Std. Dev. 0.141
Max 0.436
Min -0.305
RMSE 0.151

Beyond outliers near the borders, it is possible to highlight the presence of isolated spikes 
in the vegetation whose canopy, nevertheless, is generally quite well modeled. A wrong 
interpolation can be found in the middle of the road (see Fig. 4), where the presence of 
gravel maybe prevented the algorithm from modeling a flat surface, like actually it is. 
Therefore only few edits were required with respect to the purpose, i.e. the vegetation 
classification.

Figure 4 - DSM of the test area and, in the circles, 
some wrong interpolations (heights in m a.s.l.).

Orthophotos and mosaicking
Once a DSM was available, 35 RGB and 19 NIR separate orthophotos were generated from 
the original images, with ground resolution of 0.05x0.05 m2, and mosaicked separately 
thanks to the proper tool of LPS: even if it is able to create seam lines automatically, a 
manual correction was needed to minimize as much as possible any sharp illumination 
changes between images and strips. At the end the two overall orthophotos (RGB and NIR, 
see Fig. 5), co-registered through the projection on the same DSM, were resized for having 
equal extension of roughly 100x85 m2 (1982x1687 pixels).
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Figure 5 - Color Infra Red (CIR) and RGB orthophotos after co-registration.

Separate differences for the two orthophotos were computed by using 37 ground surveyed 
points, excluding few non visible points (12 in RGB and 5 in IR): some small differences 
remain in horizontal positions due to the distinct block adjustments (Tab. 9).

Table 9 - Statistics of the planimetric differences of 
orthophotos with respect to ground surveyed points (m).

RGB-GPS IR-GPS
Mean 0.086 0.065
Std. Dev. 0.053 0.037
Max 0.190 0.175
Min 0.009 0.016
RMSE 0.101 0.075

Moreover, by comparing coordinates of 25 ground control points visible on both orthophotos, 
the co-registration statistics of the differences can be checked (Tab. 10).

Table10 - Statistics of differences 
between orthophotos (m).

RGB-IR
Mean 0.076
Std. Dev. 0.035
Max 0.136
Min 0.026
RMSE 0.084
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Analysis of vegetation
Starting from the original 4 layers (Red, Green, Blue and NIR), several types of input 
quantities - let’s call them “variables” - were derived in order to improve the tree species’ 
classification, as already done in previous experiences [Gini, 2010]. In the context of this 
pilot experiment, a first quick procedure was carried out by computing typical indices 
(as NDVI) or by doing operations like band ratios, both present in literature for a long 
time [Silleos et al., 2006]. Only radiometric variables were created since the geometrical 
ones (such as curvature, slope, aspect and so on) do not seem to have a crucial role in 
classifying trees species, unless these latter have a characteristic and well-defined shape 
(e.g. cypress) or a particular limited height: this is not completely true for the species of 
interest. At the moment, it is in progress the analysis of the variables related to textural 
features because at least one of the species, i.e. tree of heaven (Ailanthus altissima), might 
be easily distinguishable by the structure of the leaves (as visible in Fig. 6).

Figure 6 - Leaves of tree of heaven (Ailanthus 
altissima).

Thus, the following spectral variables were generated in ERDAS Imagine:
a) NDVI: the Normalized Difference Vegetation Index is quite powerful in performing 

a qualitative classification thanks to its capacity to distinguish alive vegetated 
areas from other surface types (water, soil, etc.). It is expressed as the difference 
between the NIR and the red bands normalized by the sum of these [Silleos et al., 
2006];

b) Green ratio: it is obtained by dividing the green layer by the sum of all the four bands 
as done in previous experiences [Gini, 2010];

c) IHS: it is possible to define a color space that uses Intensity (brightness), Hue 
(dominant color) and Saturation (color’s purity) as the three positional parameters 
in place of R, G, B. After the transformation, the three parameters were separated 
and only Hue and Saturation were employed: indeed they are connected to the 
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spectral characteristics of the surface, whereas the intensity is mainly related to 
the characteristics which are common to the three original layers (RGB), as the 
topography [Brivio et al., 2006].

Since the computation of these variables from original channels influenced both the values 
range and the data type, it was necessary to uniform them to a common unsigned 8 bit (0-
255): it was performed by employing the “rescale” function implemented in ERDAS, that 
stretches or compresses the data to meet the new interval. This operation of rescaling was 
necessary to stack the 8 variables (the 4 derived and the original 4 layers) and to save them 
as a single file with 8 layers.
Since the classification was performed also with a standard supervised algorithm, it was 
necessary to have the ground position of samples belonging to the different classes: in 
remote sensing, it is usually performed a ground sampling of the involved spectral signatures 
through a spectrophotometer and a radiometric correction and calibration of the images. 
However, for the project’s purposes, the attention was focused on the development of 
empirical procedures based on quick surveys: hence the training and validation samples 
were selected directly on images and generated on the basis of GPS surveyed positions 
of some trees as well as the photographic and handwritten documentation collected with 
the park staff. In this case, the number of classes were chosen not only on the basis of 
the land covers and tree species really present in the area, but also on the fact that they 
had to be clearly visible in the orthophotos. Phytolacca (Phytolacca spp.), for instance, 
is a non native shrub certainly present and recognizable on the ground, but not on the 
images since it is often covered by the crowns of higher trees. Therefore, it was decided 
to select 8 classes with four belonging to tree species, listed in Figure 7 together with the 
samples.

Figure 7 - Training samples (on the left) and validation samples (on the right).

Unsupervised classification: ISODATA
The so-generated layer stack was classified in 8 land cover types by means of a classic 
unsupervised algorithm, the ISODATA [Tou and Gonzalez, 1974] implemented in ERDAS 
Imagine (Fig. 8).
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Figure 8 - Unsupervised classification (8 classes).

It can be noted that only the classes with deeply different spectral signatures were 
recognized and separated (for instance the concrete), while the algorithm mixed all the 
classes belonging to similar land cover. Thus, the 4 classes assigned to the vegetation are 
widespread and mixed and they do not correspond to separate tree species: for instance, 
the scrub of tree of heaven (Ailanthus altissima) in the upper part, the isolated black locust 
(Robinia pseudoacacia) in the grass, the plane trees (Platanus spp.) near the small house are 
misclassified. Furthermore, it can be noted that the shadowed areas were not recognized as 
a single class but were divided into three different ones (blue, red and light blue). Anyway, 
such a classification can be useful in the preliminary analysis of the spectral characteristics 
of the image: this step is often done before applying a supervised classification [Brivio et 
al., 2006].
The assessment of an unsupervised classification, which does not use any training samples, 
depends of course on “a posteriori” definition of classes on the basis of visual interpretation. 
By assigning to the resulting classes a prevalent meaning, the quality of the classification 
can be evaluated through the error matrix (see Tab. 11), which shows how many pixels of 
each class were actually classified into each class. The error matrix is very useful not only 
to estimate the amount of misclassified pixels but also to understand between which classes 
the misclassification occurs more frequently: a good classification is characterized by high 
values on the diagonal and low values out of it [Congalton, 1991].
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Table 11 - Error matrix of Isodata classification.

ISODATA - ERROR MATRIX

CLASS → Tree of 
heaven

Horn
beam Elm Black 

locust Concrete Grass Bare 
soil Shadow # Pixel of 

val. samplesVAL. SAMPLES ↓
Tree of heaven 261 249 11 451 0 1267 2 1 2242

Hornbeam 74 255 537 344 0 201 1 878 2290

Elm 12 53 96 68 0 39 0 149 417

Black locust 0 0 0 3 39 64 3094 0 3200

Concrete 0 0 1 0 4097 0 2 0 4100

Grass 425 391 216 672 0 2706 295 5 4710

Bare soil 21 19 47 223 0 909 2234 9 3462

Shadow 0 1 7 0 0 1 0 1160 1169

# Pixel of class 793 968 915 1761 4136 5187 5628 2202 21590

An overall accuracy is calculated from this matrix by taking the sum of the elements on 
the diagonal and dividing this by the total number of pixels. Traditionally, the total number 
of correct pixels in a category is divided by the total amount of pixels of that category as 
derived from the reference data: this number indicates the probability of a reference pixel 
being correctly classified and is often called “producer’s accuracy” (PA). On the other hand, 
if the total number of correct pixels in a category is divided by the total number of pixels 
that were classified in that category (i.e. the row total), then this result is indicative of the 
probability that a pixel classified on the map/image actually represents that category on the 
ground (“user’s accuracy”, UA) [Story and Congalton, 1986]. Another statistic which can 
be generated from the error matrix is the Kappa coefficient (Tab. 12): it takes into account 
all the values in the matrix and indicates how much of an improvement there is compared 
to randomly allocating pixels to classes [Congalton and Green, 2008; Murray et al., 2010].

Table 12 - Accuracies of Isodata classification.
UA PA

Tree of heaven 11.64% 31.40%
Hornbeam 11.14% 26.34%
Elm 23.02% 10.49%
Black locust 0.09% 0.17%
Concrete 99.93% 99.06%
Grass 57.45% 52.17%
Bare soil 64.53% 39.70%
Shadow 99.23% 52.70%

Overall Classif. Accuracy 50.08%
Kappa 0.4074



Gini et al.   UAS for multispectral survey in a park area

264

Supervised classification: Maximum Likelihood
A second test was performed by running a standard supervised algorithm, which required the 
use of training samples; on the layer stack already used in the unsupervised classification, 
the Maximum Likelihood algorithm was run in ERDAS Imagine (see Fig. 9): visually, it is 
possible to note how the tree of heaven was partly identified (the scrub in the upper left part 
of the image), even if several pixels of the grass were assigned to this class too.

Figure 9 - Supervised classification (8 classes).

The quality of classification has been evaluated again through the error matrix and the 
producer’s, user’s and overall accuracies (see Tab. 13 and Tab.14).
Compared with the unsupervised classification, this second one yields, as expected, higher 
values of accuracies in terms of overall accuracy, K value and for most of the user’s and 
producer’s accuracies.
From a detailed analysis of the error matrix it is evident that, a part for the classes of non 
vegetated soil (concrete, bare soil, shadow), among green coverages only elm is sufficiently 
separated (PA 76%); tree of heaven and black locust are assigned with a high percentage to 
the right classes (66% and 50% respectively), but are partially mixed also with grass sample 
pixels. The worst case is hornbeam, that is totally misclassified and attributed 43% to tree 
of heaven, 30% to elm, 13% to grass and only 10% to the proper hornbeam class. Thus, 
the non native species which the attention was focused on, i.e. the tree of heaven, is not 
assigned to other classes but, unfortunately, is “compromised” by the erroneous attribution 
of pixels which belong to the black locust, the hornbeam and the grass (the tree of heaven 
UA is in fact only 20%).



265

European Journal of Remote Sensing - 2014, 47: 251-269

Table 13 - Error matrix of Max. Likelihood classification.

MAXIMUM LIKELIHOOD - ERROR MATRIX

CLASS → Tree of 
heaven

Horn
beam Elm Black 

locust Concrete Grass Bare 
soil Shadow # Pixel of 

val. samplesVAL. SAMPLES ↓
Tree of heaven 528 417 39 552 0 1110 0 0 2646

Hornbeam 29 101 33 60 9 145 28 36 441

Elm 14 283 695 121 1 70 0 154 1338

Black locust 179 40 119 880 0 509 0 23 1750

Concrete 0 0 0 0 4103 0 1 5 4109

Grass 43 126 14 148 0 3310 47 85 3773

Bare soil 0 0 0 0 23 41 5552 0 5616

Shadow 0 1 15 0 0 2 0 1899 1917

# Pixel of class 793 968 915 1761 4136 5187 5628 2202 21590

Table 14 - Accuracies of Max. Likelihood classification.
UA PA

Tree of heaven 19.95% 66.58%
Hornbeam 22.90% 10.43%
Elm 51.94% 75.96%
Black locust 50.29% 49.97%
Concrete 99.85% 99.20%
Grass 87.73% 63.81%
Bare soil 98.86% 98.6%
Shadow 99.06% 86.2%

Overall Classif. Accuracy 79.06%
Kappa 0.7477

In conclusion, the supervised classification gives better results : the overall accuracy is 50% 
higher than the unsupervised one.

Discussion of results
Generally speaking, the results cannot be considered completely satisfactory, even if it 
was expected that not all the tree species were immediately distinguished. However, the 
experiment revealed the system capabilities: first of all, such a proximal sensing survey 
can be useful for generating a DSM and, consequently, a Canopy Height Model which can 
enable the estimation of dendrometric parameters and typological-structural characteristics 
in small scenarios [Hall et al., 2003]. Moreover, obviously depending on the case study, 
the use of traditional indexes, in the context of a new application at very high geometric 
resolution, can produce a subdivision into species groupings that contain enough information 
to distinguish specific tree species. The use of complementary data can help: for instance, 
where the tree of heaven was confused with the grass, the problem can be solved by using 
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also the height of the vegetation, easily obtainable from the DSM [Naidoo et al., 2012].
Lastly the geometric accuracies, achievable after the block orientation, were determined: 
in particular, the great distortions of compact cameras and the anomalies in the images’ 
orientations worsened the restitution accuracies with respect to those of traditional 
photogrammetric flights, even if a standard calibration procedure is applied. On the other 
hand, these issues were sufficiently compensated by the very high geometrical resolution, 
since this kind of application does not require an accuracy at centimeter level, unlike other 
close-range surveys (e.g. for architectural and restoration purposes); in this sense, also 
inaccuracies of some pixels can be disregarded.
In this respect, it is necessary to be careful in not exaggerating in geometric resolution, by 
fine-tuning the flight heights and, consequently, the GSD: otherwise, it can happen that the 
huge amount of data slows down the process and worsens the system performance, without 
adding information useful to improve the classification.
Another issue, related to the flight planning and to the vector-sensor system, is the great 
number of images: they needed to be mosaicked and this required the operator’s intervention 
in a demanding and time consuming process to produce an overall orthoimage of a very 
small area (100x85 m2). Thus the workflow should be automated as much as possible 
through the implementation of algorithms specifically designed for processing UAS images 
[Barazzetti et al., 2010; Remondino et al., 2011].
Another aspect to remember is the UAS low autonomy, which entailed the need to perform 
a single flight for each strip, by setting down the MD4-200 and changing its battery: thus, 
the illumination was not uniform within the single block of images, because of the time 
elapsed between the first and the third strip. A single flight should allow the overcoming of 
these limits: indeed it would reduce the presence of radiometric jumps, which can affect the 
creation of empirical “spectral signatures” and their effectiveness, as probably happened 
in the case study although the samples were selected on the entire orthoimage. Certainly, 
another aspect played a main role in this step and it is the low number of channels: the Red, 
Green, Blue and NIR ones provided a limited radiometric resolution which did not allow a 
completely effective classification of the tree species.
The solution of this problem can be found in the selection of proper multispectral or 
hyperspectral cameras which, at the same time, would allow to work with already co-
registered images: unfortunately, UAS are usually able to carry a limited payload and, since 
they are new emerging aerial platforms, there are not so many miniaturized multispectral 
cameras on the market. Anyway, those available, like Tetracam ADCLite, have lower 
geometric resolution and smaller sensor’s dimension (e.g. 5.99 mm x 4.5 mm), thus yielding 
very small single image ground print (roughly 45 m x 35 m) and increasing the number of 
photos necessary to cover the same extension. Not to mention the hyperspectral sensors, 
capable of collecting suitable spectral data but characterized by great weight (hence, bigger 
vehicles are necessary� and higher costs (even hundred of k€ as Speci� V10 or V16 syste�s, 
www.specim.fi).

Conclusions
In this paper an UAS survey was described in details, that is, from the flight planning to 
the acquired data processing, which was performed with the specific aim of classifying 
vegetation. It has been proved that through UAS is possible to realize local multispectral 
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surveys and subsequent high quality analysis. As a light multispectral camera was not 
available, two separate surveys were done, producing two orthophotos coregistered in a 
second time on the same DSM. Height and planimetric distances between RGB and NIR 
orthophotos, computed on several ground control points surveyed by GPS, show a good 
quality and coherence of the two products of the order of few GSD (0.10 m horizontally; 
0.15 m in height). Moreover, it has been proved that it is possible, with low cost instruments, 
to obtain a classification of different vegetable species that can help in identifying specific 
variety: the Maximum Likelihood algorithm yielded an overall classification accuracy 
about 80%, with producer’s accuracy values higher than 90% for shadow, concrete and 
bare soil, and a value of 66% for the tree of heaven.
Nevertheless the results are not completely satisfactory and the experiment revealed system 
capabilities and limits: besides the workflow that could be optimized and partially automated, 
different survey planning should be tested on wider areas and at higher elevations, even 
if with a lower geometric resolution. For what concerns the sensors, multispectral and 
hyperspectral cameras are certainly more suitable for classification purposes, but their use 
is constrained by the UAS limited payload and by the current high costs.
Eventually, the classification outcomes could be improved by deriving new textural 
variables, depending on the characteristics of the trees’ species of interest (e.g. tree of 
heaven). Further efforts might be addressed in achieving a more effective classification 
through the spectral signatures collection at various periods of the year as well as on plants 
at different phenological development phase and vegetative states of health. Of course, this 
procedure operates in the opposite direction with respect to the demands of a quick and 
low cost monitoring: a careful analysis of cost/benefit is needed according to each survey’s 
requirements.
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