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Abstract: The Central Nervous System (CNS) is the part of the nervous system including the brain
and spinal cord. The CNS is so named because the brain integrates the received information and
influences the activity of different sections of the bodies. The basic elements of this important organ
are: neurons, synapses, and glias. Neuronal modeling approach and hardware realization design for
the nervous system of the brain is an important issue in the case of reproducing the same biological
neuronal behaviors. This work applies a quadratic-based modeling called Digital Spiking Silicon
Neuron (DSSN) to propose a modified version of the neuronal model which is capable of imitating
the basic behaviors of the original model. The proposed neuron is modeled based on the primary
hyperbolic functions, which can be realized in high correlation state with the main model (original
one). Really, if the high-cost terms of the original model, and its functions were removed, a low-error
and high-performance (in case of frequency and speed-up) new model will be extracted compared
to the original model. For testing and validating the new model in hardware state, Xilinx Spartan-3
FPGA board has been considered and used. Hardware results show the high-degree of similarity
between the original and proposed models (in terms of neuronal behaviors) and also higher frequency
and low-cost condition have been achieved. The implementation results show that the overall saving
is more than other papers and also the original model. Moreover, frequency of the proposed neuronal
model is about 168 MHz, which is significantly higher than the original model frequency, 63 MHz.

Keywords: neuron; central nervous system; DSSN; brain

MSC: 68T07; 92B20

1. Introduction

In the past recent decades, a variety of mathematical computational approaches have
been implemented in different research fields such as fluid mechanic engineering [1–9],
chemical engineering [10–18], electrical engineering [19–28], telecommunication engineer-
ing [29–34], computer engineering [35–39], petroleum engineering [40–47], energy engineer-
ing [48–50], mathematics [51–59], environmental engineering [60–62], health and medical
sciences [63–65], industrial engineering [66], etc. Among the various applied computa-
tional methods, artificial neural networks have been widely used, which demonstrates their
capability. So, every effort in this field is of high importance.

Spiking Neural Networks (SNNs) are a very attractive research area based on neuronal
brain cells. The time-domain field in the SNN is the main concept that is based on the
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different models of neural networks. In SNNs, neurons can transmit data and information
via synaptic connection, and this causes different levels of learning and memory in the
human brain. In coupled neurons, when the presynaptic neuron is triggered by an applied
stimulus current, this can release the voltage signals, this voltage can trigger the synaptic
gap, and then the additional current is injected to the postsynaptic neurons, which is
illustrated as a train of spiking behaviors in the post neurons. This behavior of neurons can
be described by the spiking neuron models [67–72].

The basic elements in this system are neurons, synapses, and glias [69,73–75]. Neuron
blocks are the important organs in CNS, which have several vital roles such as receiving,
processing, and transmitting information to different parts of the human brain. On the
other hand, synapses connect the neurons and are responsible for transferring data between
neurons. Moreover, another cell called a glia can protect neurons in the CNS. Indeed,
glias regulate the synaptic coupling between neurons. Thus, in the first step, the neurons’
behaviors must be investigated in case of simulation and realization to obtain a compact
and practical hardware.

Neurons have different behaviors and reactions. These behaviors can follow the
basic pattern, which can be modeled by the mathematical equations in [76–83]. Two
basic modeling systems have been presented. The first state is the biological model with
biological parameters and reactions. Some basic models such as the Hodgkin–Huxley (HH)
neuron model and the ADEX neuron model. These models have the biological aspects and
may be a complex mathematical equation. On the other hand, SNN models are based on
the spike timing patterns and less biological states. In this approach, some models such as
the Izhikevic, FHN, and other models have been presented. Among these two modeling
aspects, the SNN modeling may be better than the biological ones because of their low-cost
implementations in hardware form. Indeed, when a compact neuron model (in hardware
state) is required, the SNN models are better choices. As a result, a model named the
Digital Spiking Silicon Neuron (DSSN) model is proposed [84]. This model was designed
to simulate several classes of neurons by simple digital arithmetic circuits.

The implementation of different models have been realized in different positions. Two
basic selections of the implementation are analog and digital states [67,68,70,71,85–90]. In
analog implementation, CMOS elements are applied to achieve an analog architecture to
follow the mathematical modeling of the neuron. This solution is fast, but it may suffer
from long development timing. On the other hand, in the digital realization of neuronal
models, a high amount of silicon may be required as well as high power consumption, but
this solution can be very efficient in comparison to other methods. Some capabilities of
the digital implementation are its high-degree of flexibility, reduced timing process, and
power supply. In this approach, using programmable boards such as FPGAs can be very
fast and flexible.

This paper presents a hardware implementation of the DSSN model in the case of a
digital system. The basic challenge of this realization is the quadratic term of the original
neuron model. In the general case, the quadratic term (because of its multiplier operation)
causes the speed-down in the final system. In other words, in the CNS, the speed of the
neuronal activity is a very important factor. If the final system does not have an acceptable
frequency, it influences the neural system. Thus, this nonlinear term must be removed or
converted to another simple term. Different approaches can be applied to obtain simple
mathematical equations. Among these approaches, converting the quadratic terms to
hyperbolic functions may be the best way. Indeed, by converting the nonlinear terms of
the original model to a set of hyperbolic functions, we have a new model (by protecting all
behaviors of the original mode) which converts all multiplier operations to a set of digital
SHIFTs and ADDs (This method will be explained). Consequently, using the proposed new
model, we have a low-cost, high-speed, and high-efficiency system which can trace the
original neuron model with a high-degree of similarity and performances.

The overall method for implementing the neuronal networks can be explained. The
efficient modeling, simulation, and implementation of biological neural networks are
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significant. Neuromorphic engineering is a very significant subject that takes inspiration
from biology, physics, mathematics, computer science, and electronic engineering to design
neural systems. In the field of biology and biomedicine, the theoretical and experimental
aspects of neuroscience are evaluated to have a better understandings of the brain structure.
Consequently, studying, modeling, simulation, and implementing brain-like systems to
realize the brain behaviors are a vital requirement. At first step, it is necessary that the
neuron model is selected. In this approach, many different neuron models have been
presented for spiking neural networks to reproduce their dynamical behavior. Some neuron
models have biological behaviors and other models reproduce the spiking patterns of the
human brain. The DSSN neuron model is a widely accepted model that can reproduce
the spiking patterns of the brain. After model selection, the time domain and dynamical
behaviors of the proposed neuron model have been evaluated. Indeed, the proposed
model is a modified case of the basic neuron model with low-error state and low-cost
hardware attributes. Since the original models have nonlinear terms and functions with
high-cost realizations, it is necessary that the model is modified to a new low-cost model
for its implementation on hardware platforms. To validate the proposed model in case of
following the original model, spiking patterns and dynamics must be considered. These
evaluations have been performed using MATLAB software simulations. Finally, to test and
validate the proposed model in hardware form, we have used the FPGA system design. In
fact, the Hardware Description Language (HDL) of the proposed neuron model has been
considered using the ModelSim and Xilinx ISE software. In this part, the proposed model’s
overhead costs have been compared to the original model cost realization. The proposed
model must be more efficient in comparison with the original model in case of overhead
costs (overall saving in FPGA) and speed-up (maximum frequency).

This paper is organized as follows. In Section 2, the background of the DSSN model
will be explained. In Section 3, the proposed procedure is evaluated. Section 4 presents the
dynamic behaviors and time domain analysis. Synaptic coupling is described in Section 5.
Overall hardware implementation is performed in Section 6 in detail. Production results
are presented in Section 7. The limitations of the method and also future directions have
been explained in Section 8. The paper concludes in Section 9.

2. Background

The Digital Spiking Silicon Neuron (DSSN) model is a simple practical model in terms
of qualitative states. This model is capable of reproducing different classes of spiking
such as Class I and Class II patterns. The DSSN model can be formulated by two coupled
differential equations for voltage and recovery variables. The mathematical equations of
the model are given by following statements:

dV
dt

=
φ

τ
( f (V)− n + I0 + IStimulus) (1)

dn
dt

=
1
τ
(g(V)− n) (2)

where

f (V) =

{
an(V + bn)2 − cn ; V < 0
−ap(V − bp)2 + cp ; V > 0

(3)

g(V) =

{
kn(V − pn)2 + qn ; V < r
kp(V − pp)2 + qp ; V > r

(4)

In these equations, V and n represents the voltage and slow variable, respectively. On
the other hand, V is the membrane potential, and n is the recovery variable for producing
the voltage variable. The parameter I0 is a bias fixed parameter, and IStimulus is the applied
current for neurons. The other parameters for generating the Class I and Class II patterns
are presented in Tables 1 and 2, respectively. These parameters are explained as follows:

• I0: Bias constant;
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• IStimulus: Applied current for neurons;
• φ and τ: Time constant;
• r, ax, bx, cx, kx, px, and qx (x = n and x = p): Constants that control the nullclines of

the variables (Dynamics of the model).

It is emphasized that the DSSN model is a spike-based neuron model, and all the
variables and constants are abstracted and do not have a physical unit. In addition, by
selecting appropriate values for these parameters, both Class I and Class II neurons can
be realized with parameter settings. Finally, different spiking patterns based on these two
basic parameters can be simulated, as can be seen in Figure 1.

Table 1. Different Parameters for Reproducing the Class I Pattern.

Parameter Value Parameter Value
an 8 ap 8
bn 0.25 bp 0.25
cn 0.5 cp 0.5
kn 2 kp 16
pn −0.3125 pp −0.2187
qn −0.7058 qp −0.6875
φ 1 τ 0.003
r −0.2053 I0 −0.205

Table 2. Different Parameters for Reproducing the Class II Pattern.

Parameter Value Parameter Value
an 8 ap 8
bn 0.25 bp 0.25
cn 0.5 cp 0.5
kn 4 kp 16
pn −0.5625 pp −0.2187
qn −1.3177 qp −0.6875
φ 0.5 τ 0.003
r −0.1041 I0 −0.23

Figure 1. Spike-based signals of the DSSN model. (A1–A5): Spiking patterns of Class I mode for
different stimulation current as: IStimulus = 0.1, IStimulus = 0.2, IStimulus = 0.5, IStimulus = 1, and
IStimulus = 2, respectively. (B1–B5): Spiking patterns of Class II mode for different stimulation current
as: IStimulus = 0.1, IStimulus = 0.2, IStimulus = 0.5, IStimulus = 1, and IStimulus = 2, respectively.
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3. Proposed Procedure

As can be seen in the mathematical equations of the original DSSN model, the basic
nonlinear term of this model is the quadratic term which is repeated in all parts of the model.
DSSN neuron is implemented on an FPGA digital board, but the quadratic terms of the
equations cause the final system to be no more efficient. In this situation, the best method is
to convert the nonlinear terms to new functions which have two basic conditions: first is the
high degree of similarity between the original and proposed method and second is the low-
cost digital implementation in terms of FPGA resources and higher frequency (speed-up)
compared with the original DSSN model. In this approach, there are different acceptable
ways to approximate and modify the original models, such as piecewise linear functions,
absolute functions, and hyperbolic terms. When the original models are approximated
by linear functions, the error level in the proposed model can be increased, but using the
hyperbolic functions reduces the error calculation, and a high-degree of similarity will also
be achieved. Thus, in this paper, we used the hyperbolic-based modifications. Another
advantage of this method is that by using these hyperbolic terms, all nonlinear terms and
functions in the differential equations are converted to digital SHIFTs and ADDs without
any multiplications. Consequently, we have a new model with all aspects of the original
model that it is efficient in terms of speed and costs compared with the original main DSSN
model. In the proposed model, the equations are reformulated as follows:

dV
dt

=
φ

τ
(F(V)− n + I0 + IStimulus) (5)

dn
dt

=
1
τ
(G(V)− n) (6)

where

F(V) =

{
an(Func(V))− cn ; V < 0
−ap(Func(V)− 4Vbn) + cp ; V > 0

(7)

G(V) =

{
kn(Func(V)) + qn ; V < r
kp(Func(V)) + qp ; V > r

(8)

where
Func(V) = 0.6sinh(0.65V) + 0.6cosh(1.5V)− 0.5 (9)

In other words, based on Equations (3) and (4), when these equations are simplified,
we have a new nonlinear function which is repeated in all equations. This new function
can be formulated as follows:

NL-Func(V) = V2 + 0.5V + 0.0625 (10)

Consequently, this nonlinear function can be replaced by Func(V) in all parts of
the original mathematical equations. By this modification, the proposed model can be
implemented in low-cost and high-speed states (This procedure is elaborated in detail
in the hardware section). In this approach, as can be depicted in Figure 2, the original
nonlinear function (NL-Func(V)) and the proposed hyperbolic term (Func(V)) have a high
degree of similarity, and the error level between these two equations is in the low state,
which is shown in the next sections. It is noticeable that based on Figures 1 and 2, the
permissible range of parameter value changes is given between −0.5 and +0.5. Indeed,
the modifications of the nonlinear terms of the neuron model have been conducted in this
variation range.
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Figure 2. Approximation for the nonlinear function (NL-Func(V)) by the hyperbolic function (Func(V)).

4. Dynamic Behaviors and Time Domain Analysis

Two basic factors should be considered for validating the proposed model. In this
approach, at first, it is important that the proposed model is in the same state (as dynamical
behaviors in equilibrium points and eigenvalues) as the original model; second, the time
domain analysis for two models (original and proposed) is done with low error calculation.

4.1. Dynamics

To investigate the modified model, the behaviors of neurons in the case of dynamics
are considered. In this way, to explain the transition from resting state to spiking state
(bifurcation), the interactions of the two nullclines play an important role [77,91,92].

The nullclines for the original model can be given by the following statements:
dV
dt = p(V, n)

dn
dt = q(V, n)

(11)


dV
dt = 0 ; p(V, n) = 0

dn
dt = 0 ; q(V, n) = 0

(12)


n = f (V)− n + I0 + IStimulus

n = g(V)
(13)

On the other hand, the nullclines of the proposed model are given as:
n = F(V)− n + I0 + IStimulus

n = G(V)
(14)

Consequently, for analyzing the equilibrium points, the Jacobean matrix and eigenval-
ues are required [77,91,92], and the Jacobean matrix can be obtained as:{

A B
C D

(15)

where 

A = ∂p(V,n)
∂V

B = ∂p(V,n)
∂n

C = ∂q(V,n)
∂V

D = ∂q(V,n)
∂n

(16)
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According to J(V, n), the stability of the fixed point is determined. The fixed points are
stable if A + D < 0, and they are unstable if A + D > 0. On the other hand, the fixed point
is stable if both of the eigenvalues of this matrix have a negative real part and is unstable
if at least one of the eigenvalues has a positive real part. As can be seen in Table 3, these
calculations are applied. On the other hand, Figure 3 illustrates the similarity between
spike patterns of the original and proposed DSSN neuron models. As depicted in this
figure, the equilibrium points are the same.

Table 3. Equilibrium Points For the Original and Proposed Models.

Point (Orig.) Value (Orig.) Point (Prop.) Value (Prop.)
Saddle Point (−0.2,−0.7) Saddle Point (−0.22,−0.68)
Spiral Source (0.09, 0.92) Spiral Source (0.1, 0.9)
Saddle Point (−0.28,−1) Saddle Point (−0.27,−0.98)
Spiral Sink (0.24, 1.27) Spiral Sink (0.22, 1.25)

Figure 3. Dynamical behaviors for the original and proposed models. (A1,A2): Dynamics for the
Class I and Class II patterns in the original model. (B1,B2): Dynamics for the Class I and Class II
patterns in the proposed model. In these tates, n is the slow variable and V is the membrane potential.
The equilibrium points of two original and proposed models are the same.

4.2. Time Domain

To validate the proposed neuron model in case of timing accuracy and spiking patterns,
the time domain must be considered. In this approach, based on different stimulus currents,
the spiking patterns between original and proposed DSSN models are compared. As can
be seen in Figure 4, spiking patterns of the proposed neuron model share a high degree
of similarity with the original model. In addition, the error calculations are in a low state,
which are computed in the next step.
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Figure 4. Comparison between spiking patterns of two models (original and proposed). (a–f): Spiking
patterns for considering the stimulus currents as: IStimulus=0.1, IStimulus=0.2, IStimulus=0.5, IStimulus=1,
IStimulus=2, and IStimulus=3.

As can be seen in Figure 4, in some region of the spiking patterns, there are differences
(errors) between the original and proposed DSSN models. Indeed, it is attempted to reduce
this error to a near-zero value. A different method is available to calculate the error values
between the original and proposed models. Some of these methods are focused on the
absolute differences between two signals. In addition, some methods are emphasized on
the square of root mean values. In this paper, these two basic error methods are applied
for validating that the proposed model is in the low-error calculation compared with the
original main model. These two methods are formulated as follows:

RMSE(VProp., VOrig.) =

√
∑n

i=1(VProp. −VOrig.)2

n
(17)

MAE =
1
n

n

∑
i=1
|VProp. −VOrig.| (18)

Moreover, as can be seen in Figure 5, the error level is based on the differences between
the original and proposed functions. Indeed, when this difference is accrued, the spiking
patterns between the original and proposed models may have differences. These differences
in our proposed models have been optimized, so the modified model regenerates the same
behaviors of spike-based behavior of the original model to a high degree of similarity and
low-error computations. As it is shown in Table 4, the error levels are calculated.

Table 4. Error Calculations of the Proposed Model.

IStimulus RMSE (Class I) MAE (Class I) RMSE (Class II) MAE (Class II)
0.1 0.05 0.02 0.067 0.022
0.2 0.08 0.01 0.1 0.018
0.5 0.09 0.034 0.095 0.04
1 0.1 0.028 0.15 0.039
2 0.075 0.014 0.035 0.012
3 0.11 0.08 0.16 0.06
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Figure 5. Error level between the original (black line) and proposed (dotted line) functions.

5. Synaptic Coupling

A synapse is a connection gap that can transfer data from a presynaptic neuron to a
postsynaptic neuron. Synaptic coupling is a significant issue in the case of memory and
learning. For describing the coupling behavior of two connected neurons, the synaptic
coupling system can be evaluated [93,94]. In this approach, a terminal can be considered
that incorporates a presynaptic neuron and a postsynaptic neuron. This synapse model can
be given by the following equation:

τs
dZ
dt = [1 + tanh(Ss(Vpresynaptic − hs))](1− Z)− Z

ds

ISynapse = ks(Z− Z0)

(19)

In the above equation, the parameter Z is the synapse factor. Moreover, the synaptic
parameters are given by the following:

• τs : Time delay (s);
• Ss : Responsible for the activation and relaxation of Z;
• ds : Relaxing the parameter Z;
• hs : Threshold parameter for the activation of Z;
• ks : Conductivity parameter;
• Z0 : Reference level of Z .

When the presynaptic neuron (Vpresynaptic) reaches its critical value (threshold voltage,
hs), the signal transmission of connected neurons is computed. Moreover, the synapse
stimulus, Isynapse, triggers the postsynaptic neuron. Table 5 shows the synapse parameters.

Table 5. Synapse Parameters.

τs = 10 Ss = 1 ds = 3 hs = −70 ks = 10 Z0 = 0

The synchronization effects of the coupled neurons are significant for the processing
of biological signals and play significant roles in the elucidation of diseases, such as
Parkinson’s disease, essential tremor, and epilepsy [95]. Consequently, by the appropriate
selection of input stimulus and synaptic conductance coefficient, the synchronization effects
can be controlled. This coupled proposed DSSN model is specified as follows:
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dVpre
dt = φ

τ (F(Vpre)− npre + I0 + IStimulus)

dnpre
dt = 1

τ (G(Vpre)− npre)

τs
dZ
dt = [1 + tanh(Ss(Vpre − hs))](1− Z)− Z

ds

Isynapse = ks(Z− Z0)

dVpost
dt = φ

τ (F(Vpost)− npost + I0 + ISynapse)

dnpost
dt = 1

τ (G(Vpost)− npost)

(20)

Consequently, by different stimulus currents, different states of the synchronization
between presynaptic and postsynaptic neurons in the proposed and original models are
evaluated. These states are depicted in Figure 6.

Figure 6. Time domain and dynamical portrait for two coupled DSSN models: (A) Original DSSN-
coupled models that correspond to (a1–d1); (B) Proposed DSSN-coupled models by (a2–d2). These
patterns are evoked by different stimulus as: IStimulus = 0.1, IStimulus = 0.2, IStimulus = 0.5, and
IStimulus = 1, respectively.
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6. Overall Hardware Implementation

This section presents a comprehensive digital architecture based on the proposed
neuron model using FPGA board hardware. For implementing a mathematical neuron
equation on FPGA hardware, different issues must be taken into account. In our paper,
since the final goal is the realization of a compact hardware with low-cost and high-speed
attributes, the first step is determining the bit-width, which must be in optimized state.
On the other hand, based on the proposed equations, the scheduling diagrams are created
to consider the final routes in the hardware implementation. In this state, the pipeline
approach can be applied to accelerate the output signals execution. In our architecture, all
of functions and terms of the model are realized without any using multiplier operations.
This causes the final proposed hardware to have a high-frequency and low-resources area
in comparison with the original one. After this state, we can use the Hardware Description
Language (HDL) to create the proposed digital code. In this way, different approaches are
used to obtain a low-cost implementation in FPGA level. Consequently, using the proposed
method, we have an efficient hardware that can be used as high-speed digital equipment in
spiking neural networks area.

6.1. Scheduling Diagrams

In this part, based on the proposed model (equations), the final scheduling diagrams
are created. In this approach, we have two basic variables (V and n) which are scheduled
as two main hardware routes. For considering the proposed model in hardware form, it
is essential that the hyperbolic terms of this model is reformulated (as a discretized form)
as below:

Func(V[i]) = 0.6[
20.65V[i] − 2−0.65V[i]

2
] + 0.6[

20.65V[i] + 2−0.65V[i]

2
]− 0.5 (21)

For implementing this function, the power2-based approximation can be used [68].
Generating the exponential functions (EXP. Unit) with powers of 2, is the key idea of
this approach, which is realized by a logic shift. Replacing multipliers with logic shift
operations leads to a significant low-cost hardware realization. As a result, in this approach,
the hyperbolic terms will be achieved. As depicted in Figure 7, this hyperbolic function can
be created.

Figure 7. Realizationof the proposed FUNC(V) function.

In the next step, using this FUNC(V) hardware, the hardware of the internal functions
(F(V), G(V)) are realized, based on the following discretized equations:

F(V[i]) =
{

an(Func(V[i]))− cn ; V[i] < 0
−ap(Func(V[i])− 4V[i]bn) + cp ; V[i] > 0

(22)
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G(V[i]) =
{

kn(Func(V[i])) + qn ; V[i] < r
kp(Func(V[i])) + qp ; V[i] > r

(23)

These two internal terms are realized, as can be depicted in Figure 8.

Figure 8. Realization of the proposed F(V) and G(V) functions.

Consequently, using the above internal functions, the scheduling diagrams of the
proposed model can be designed based on the following discretized equations:

V[i + 1] = dt ∗ φ

τ
(F(V[i])− n[i] + I0 + IStimulus) + V[i] (24)

n[i + 1] = dt ∗ 1
τ
(G(V[i])− n[i]) + n[i] (25)

The scheduling diagrams of the proposed equations are depicted in Figure 9.

Figure 9. Scheduling diagrams for realizing the basic variables, V and n.

As can be seen from the scheduling diagrams, the proposed neuron model can be
implemented as a digital system in a multiplierless state. All of the proposed terms and
equations of the implemented model have been realized based on the primary blocks such
as ADDs, SUBs, and digital SHIFTs. In other words, using the proposed method, the final
digital costs will be significantly reduced. This approach causes a speed-up (by increasing



Mathematics 2022, 10, 882 13 of 20

the system frequency) in the digital hardware that can be implemented on FPGA platforms.
One of the important issues in the neural networks is the large-scale realization of the brain
network. Indeed, if the maximum number of digitally implemented neurons is increased,
we have a real neuromorphic hardware that is capable of reproducing brain behaviors.
Consequently, the proposed model can be considered as a low-cost digital system that is
used in the brain network.

6.2. Bit-Width Definition

In digital implementation, it is essential that the proposed model bit-width is described
in detail for reducing the final hardware costs. As a first step, based on all parameters
and variables of the proposed model, the number of integers and fraction parts must be
calculated. In this way, for the proposed DSSN model, the maximum and minimum values
are 16 and −1.3177, respectively. These values require the bit number of 4 and 3 for the
integer and the fraction parts, respectively. Thus, in the first state, the number of 7 can
be required. Moreover, based on the scheduling diagrams of the proposed DSSN neuron
model (Figure 9), in the generating paths of the output signals (V and n), the signals may be
shifted to the right and left. In this condition, the bit-width is significantly varied. Based on
the final calculations, by shifting the signals to the right in the semi-final steps of the basic
variables, the number of 8 is added to the fraction part of the bit-width. Moreover, one bit
must be calculated for the sign bit of the proposed system. Consequently, the bit-width of
the final system is calculated as 16. In this calculation, the number of 4 for the integer part,
the number of 11 for the fraction section, and 1 bit for sign bit are required.

6.3. Architecture Design

After presenting the scheduling diagrams of the proposed model, it is required that
the proposed architecture of the digital design is considered. The overall architecture of the
proposed model is depicted in Figure 10.

Figure 10. The overall structure of the proposed architecture based on the DSSN equations and
scheduling diagrams.
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As can be seen in this figure, the model parameters are saved in the Memory0 block
(parameters that are presented in Tables 1 and 2). At first step, the FUNC(V) term is
realized based on the proportional scheduling diagram. After creating this basic function,
some Shi f terBlocks (based on the Equations (7) and (8)) are applied for generating the two
basic functions, F(V) and G(V). Then, by considering some Multiplexer Blocks, the final
terms can be realized. These final terms and also primary signals of the basic variables
(V and n) are applied to the Neuron Signal Calculator. This core unit is responsible for
reproducing the final voltage signals based on the DSSN neuron model. The neuron
calculator unit is based on the scheduling diagram that is presented in Figure 9. Finally, the
neuron signals are transferred to two buffers (Bu f f er V and Bu f f er n). Consequently, the
final signals are applied to an 8-bit DAC (Digital to Analog Converter) and can be showed
on the digital oscilloscope.

7. Production Results

The basic units of the hardware implementation are: scheduling diagrams of the basic
variables, the overall architecture, and the bit-width definition. Indeed, after bit-width
definition, the scheduling diagrams of the basic variables (V and n) are evaluated. In
this state, all aspects have been considered to achieve an HDL digital code. On the other
hand, the overall architecture is presented to show the controlling sequence of the digital
implementation.

To validate the proposed DSSN model and compare this model with other imple-
mentations, it is essential that a digital hardware is selected for realizing these models
on digital platforms. In this paper, the original and proposed neuron models are imple-
mented on Xilinx Spartan-3 FPGA Board (Model: XC3S50-TQ144 Package) for validating
the proposed method. On the other hand, the proposed neuron model is compared by
the DSSN model that is implemented in other similar papers [96]. Using the pipelining
method, the number of 250 connected neurons can be implemented on this FPGA platform
by resource utilization that is presented in Table 6. Two basic factors must be emphasized
in this issue: first is the maximum frequency of the digital design and second is the overall
saving in FPGA resources (in case of maximum number of implemented neurons on a
uniqe FPGA core). As can be seen from Table 6, these two parameters are in the better form
in comparison to the main DSSN model and also in comparison to the model presented
in [96]. As previously mentioned, since in the proposed DSSN model, all of nonlinear parts
(such as multipliers and quadratic functions) are replaced by digital SHIFTs, ADDs, and
SUBs, the final frequency of the digital system will be increased, significantly. Moreover,
by removing the multiplier operations in the proposed model, the overhead costs will be
reduced compared to other similar models. As a result, one of the basic parameters in
the realization of neural networks is the large-scale implementation. In this approach, the
overall saving in the FPGA resources is an essential issue. In this paper, the overall saving
in FPGA resources is higher than the original and other paper model [96]. On the other
hand, using an FPGA board, the maximum number of implemented proposed neurons
is higher than other models because in the Spartan-3 board that we used, the number
of resources are less than the Spartan-6 FPGA board that is used in [96]. Consequently,
the proposed model is in the better state in the case of large numbers of implemented
neurons compared to other methods. As a result, the final FPGA-based output signals
can be achieved as depicted in Figure 11. As it is illustrated in this figure, the proposed
signals (implemented on FPGA board) are in the high similarity state in comparison with
the original output voltage signals.
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Table 6. FPGA Utilization Results for the Different DSSN Models.

Resources Proposed DSSN (Spartan-3) Original DSSN (Spartan-3) J. Li [96] (Spartan-6)
Number of Slices 158 (21%) 610 (82%) 14,198 (26%)

Number of Slice Flip Flops 445 (29%) 1150 (75%) NA
Number of 4 input LUTs 953 (62%) 1050 (69%) 18,556 (68%)
Number of bonded IOBs 27 (5%) 34 (6%) NA

Number of GCLKs 1 (6%) 1 (6%) NA
DSP NA NA 48 (82%)

Block RAMs NA NA 73 (63%)
Max Speed 168 MHz 63 MHz NA

Figure 11. Digital oscilloscope for the proposed output signals (class I and class II in terms of
IStimulus = 1). Two basic spiking patterns (Class I and Class II) are presented for the voltage variable.

8. Discussion

Digital implementation of different parts of the central nervous system is an attractive
research field for achieving a real and practical system. In this area, the basic elements
of this nervous system are: neurons, synapses, and glias with large number populations
and a complex real network. Thus, to have a real system, it is necessary that the large
number of these neuronal cells are realized and that the complexity of their connections
are also considered. As a result, the basic limitation of this issue is the large-scale digital
implementation of these networks and their complex connections. On the other hand, since
the hardware platforms such as FPGA have limitations (in case of internal resources), to
achieve a real and large-scale design, a large number of FPGA boards must be used, which
can be a vital limitations in this field. Consequently, one of the topics that can be discussed,
studied, and implemented in the continuation of this type of issue is the implementation
of large networks of these neurons so that we can come closer to the real brain networks.
With such real systems, we can study some of the underlying brain diseases and perhaps
find solutions to treat them.

9. Conclusions

The simulation and implementation of neuronal networks are the attractive research
area and this requires knowledge of the central nervous system and its components. Thus,
modeling the neuronal behaviors must be very significant in case of using in the neuromor-
phic field. The realization of these models in low-cost and high-speed form is an essential
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issue targeting large-scale neuromorphic networks. Different approaches can be applied for
implementing these neuron models, but the target approach must cover all aspects of an
efficient digital design (without any nonlinear and high-cost terms implementation such as
multipliers, dividers, exponential units, quadratic terms, etc.). Consequently, in this paper,
a hyperbolic-based of the DSSN neuron model is presented in case of power-2 functions
without any multiplications. The proposed architecture can reproduce two basic classes of
spiking signals in a good similarity and efficiency. This approach causes reducing in error
calculation and increasing performances of the system in case of decreasing the required
resources on FPGA platform. Since the nonlinear parts of the DSSN neural modeling have
been removed, we have a multiplierless digital implementation. The proposed designed
system is in the high-frequency state and has an observable cost reduction in FPGA re-
sources compared with similar implemented neuron models. For validating and confirming
the proposed approach design, Spartan-3 FPGA board can be used and considered. In
this way, hardware results show that this new model is cablable for mimicking the same
behaviors of the original neuronal modeling. The new proposed hardware can follow the
original model in case of higher frequency and also low-cost realization condition. The
results of implementation show the better state in overall saving in FPGA and also higher
frequency of the proposed model about 168 MHz, which is significantly higher than the
original model, 63 MHz.
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