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We report on the theoretical analysis of bosonic and fermionic non-interacting systems in a discrete
two-particle quantum walk affected by different kinds of disorder. We considered up to 100-step
QWs with a spatial, temporal and space-temporal disorder observing how the randomness and the
wavefunction symmetry non-trivially affect the final spatial probability distribution, the transport
properties and the Shannon entropy of the walkers.

In statistical physics random walks describe the prop-
agation of a particle (the walker) under the action of
a probabilistic process which forces the latter to move
along preassigned directions (say one step on the left or
one step on the right if the system is one dimensional).
Despite their simplicity, random walks have found appli-
cations in many research fields, spanning from economics,
computer science, chemistry, and physics. A quantum
version of this model was first provided by Y. Aharonov,
L. Davidovich and N. Zagury [2] who introduced the no-
tion of quantum walks.
Unlike their classical counterparts, in quantum walks, the
final state of the walker is highly sensitive to the initial
conditions of the system. Indeed, during its evolution,
the particle spatial distribution does not converge to a
steady state, but it spreads ballistically. After few steps,
the counterintuitive profile of the wavefunction emerges
as a result of quantum interference among many possi-
ble paths. The massive parallelism in exploring multiple
trajectories, is at the base to simulate biological [28, 34],
chemical [28] and physical [33, 38, 40] systems and paving
the way for universal quantum computation [9, 10].

Regarding the experimental implementation of quan-
tum walks, they have been observed in several platforms,
such as nuclear magnetic resonance [36], trapped ions
and trapped cold neutral atoms [39, 45], single photons
in bulk [32], fiber optics [40, 41] and coupled waveguide
arrays [4, 33, 38].
The nature of propagation of multiple particles in a quan-
tum walk may be strongly affected even in the absence
of a direct interaction between them. Quantum (non-
local) correlations, present in the initial state will influ-
ence the overall wave-function evolution as the bunch-
ing/antibunching observed in interferometry. Entangled
walkers have been studied both theoretically [4, 22, 31,
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32] and experimentally [11, 33, 38] in orderered and dis-
ordered systems. Depending on the symmetry of the in-
put entangled state it is possible to simulate the particles
obeying different (boson/fermion) statistics.

With reference to the experimental realization of QWs
in presence of disorder presented in [11], here we report a
detailed theoretical and numerical description of propa-
gation of non-interacting bosonic and fermionic particles
in a disordered environment. In this photonic approach,
walkers are represented by photon pairs sharing polariza-
tion entanglement on a QW circuit implemented by an
array of cascaded beam splitters, as we will be describe
in the following. Generally, photons are limited to the
behavior dictated by Bose-Einstein statistics, which de-
fines quantum interference and quantum gates [17]. The
ability to simulate non-bosonic statistics with photons
by means of polarization entanglement, could give ac-
cess to phenomena otherwise not physically accessible or
that would be hidden by decoherence, providing a way to
verify quantum simulations performed in other quantum
systems [11, 37, 38]. Besides that, the controlled engi-
neering of disorder would enable a detailed understand-
ing of the distinct signatures of statistics on the system
localisation dynamics [11].

This paper is organised as follows. In the first section
we briefly review the discrete-time quantum walk and
the two-particle probability distributions for an ordered
structure. In sections §II, §III and §IV we analyze dif-
ferent types of disorder and the effects introduced into
the walk by varying the symmetry of the input states.
In section §V, we investigate how the disorder strength
affects the width of the wave-packet, showing how the
amount of disorder in the system can be varied in a con-
trolled fashion. Fractality, anomalous diffusion and other
transport properties of bosonic and fermionic particles
are discussed in section §VI, while Shannon entropy and
mutual information of these states are shown in section
§VII. Section §VIII is devoted to the conclusions.
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I. DISCRETE-TIME QUANTUM WALK

Let us give a brief review of some basic concepts on
discrete-time quantum walk. A quantum walker is a
quantum particle -such as an electron, atom or photon-
characterized by both “external” and “internal” degrees
of freedom, the former describing the propagation of the
system in real space, the latter describing the state of
the “coin” that dictates which path the particle has to
follow during the evolution. Accordingly, restricting to
walks along a discrete one-dimensional lattice, a generic
state of the system can be expressed as

|Ψ〉 =
∑
x

|ψ(x)〉 ⊗ |x〉 , (1)

|ψ(x)〉 = α(x) |L〉+ β(x) |R〉 , (2)

where |x〉 defines the particle position, with {|L〉 , |R〉} an
orthonormal basis for the coin space (assumed hereafter
to be bi-dimensional), and where α(x), β(x) are com-
plex amplitudes (the probability of finding the particle
at position x irrespectively from its internal state being
P (x) = 〈x|ψ(x)〉 [27]. In this setting the dynamics is
described as a stroboscopic process which, after t steps,
brings a generic initial state |Ψ〉 into the state

|Ψ(t)〉 =
∑
x

|ψ(x, t)〉 ⊗ |x〉 = Û t|Ψ〉 , (3)

with Û = Ŝ · (Ĉ ⊗ Î) being the unitary transformation
obtained by first performing an Hadamard transforma-
tion Ĉ (coin) on the internal degree of freedom followed

by a conditional displacement operator Ŝ [19], i.e.

Ĉ =
1√
2

(
1 1
1 −1

)
, (4)

Ŝ =
∑
x

|L〉 〈L| ⊗ |x− 1〉 〈x|+ |R〉 〈R| ⊗ |x+ 1〉 〈x| . (5)

Assume hence that the quantum walker is initially lo-
calized at position x = 0 with internal state |L〉 or |R〉.
As result of quantum interference among multiple paths
that originates from t steps of the evolution (3), the
counterintuitive profile of the quantum walk probabil-
ity distribution can be retrieved by measuring the po-
sition of the particle along the 1-D line irrespectively
from its internal state, i.e. by looking at the quantity
P (x; t) = 〈x|ψ(x, t)〉.

More complex probability distributions arise when two
or more particles are injected into the same quantum
walk. In particular an interesting situation is given by
the evolution of identical particles obeying bosonic or
fermionic statistics. In this case, due to the symmetri-
sation postulate of quantum mechanics, (bunching/anti-
bunching) is expected to influence the dynamics of the
quantum walks. These effects have been analyzed ex-
ploiting all-optical implementations of the discrete quan-
tum walk dynamics (3) [11, 38]. In these setups, building

up from the theoretical proposals of [18, 35] the propa-
gation of a single quantum walker along a 1-D line is
simulated with a single photon which undergoes to mul-
tiple scattering from 50/50 beam-splitters organized in a
bi-dimensional cascade array (see Fig. 1).
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FIG. 1: Photonic implementation of 1-D discrete-time quan-
tum walk. Each site is represented by a beam splitter (blue
empty box): a photon impinging on a symmetric beam split-
ter has the same probability to emerge from one of its two
outputs. Due to this feature, the beam splitter may be used
in a QW as both coin and step operator: by arranging many
beam splitters in a cascaded configuration, it is possible to
simulate a N-step QW circuit in which each line of beam
splitters simulates a step of the QW [11, 38].

This is particularly convenient since the conditional
displacement (5) is automatically implemented (via a
dual-rail encoding based on a “which-path” information)
in the propagation along the network. Most interest-
ingly in these systems it is possible to emulate statisti-
cal effects associated with the evolution of two indistin-
guishable particles, by exploiting the polarization degree
of freedom of a couple of photons to enforce the proper
symmetric/anti-symmetric distributions on the effective
1-D line [11, 31, 38]. Specifically, the quantum walk of
a pair of bosonic/fermionic particles is obtained by in-
jecting into the system the symmetric (anti-symmetric)
state |Ψ(±)〉 defined by

|Ψ(±)〉 =
1√
2

(
|ψA, H〉|ψB , V 〉 ± |ψB , H〉|ψA, V 〉

)
, (6)

where |ψA, H〉 = |ψA〉 ⊗ |H〉 and |ψB , H〉 = |ψB〉 ⊗ |H〉
are orthonormal vectors describing respectively a photon
with horizontal polarization which is entering the array
from two distinct ports of the setup -Fig. 1- (similar def-
initions apply for |ψA,B , V 〉 associated with a vertically
polarized single photon). Assuming that the propagation
through the network is polarization insensitive and that
no interaction is present among the two photons, after t
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steps Eq. (6) will evolve into

|Ψ(±)(t)〉 =
1√
2

(
|ψA(t), H〉|ψB(t), V 〉

±|ψB(t), H〉|ψA(t), V 〉
)
, (7)

where for C = A,B, |ψC(t)〉 = U t|ψC〉 is the the evolved
counterpart of the input state |ψC〉. Fig. 2 reports the
joint probability distribution P (±,sym)(x, y, t) associated
with the detection of a photon in position x and the other
in position y, irrespectively to their polarization, com-
puted at t = 50 and assuming that A and B are two
neighboring input ports of the setup (see Eq. (A8) of the
appendix for a formal definition of this quantity). The
different effects of symmetric (P (+,sym)) and antisym-
metric (P (−,sym)) distributions, which can be related to
bosonic and fermionic statistics respectively, are shown
in the corresponding probability distributions and den-
sity plots. The anti-bunching feature in Fig. 2c,d ex-
hibits zero-probability diagonal elements, meaning that
fermions are non-trivially arranged in space [22, 38].
Most significantly, this pattern survives the random scat-
tering process even after very long evolution times. While
bosons have non-vanishing probability to be at the same
site, fermions have zero probability to be at the same site,
as expected due to the Pauli exclusion principle [17, 37].
This profound difference between the two quantum walks
is a signature of the probability distribution sensitiveness
to the initial state, due to the unitarity of the evolution.

II. STATIC DISORDER AND ANDERSON
LOCALIZATION

Let us now move to the description of such a scenario
in presence of disorder.
Disorder exists at different levels in nature, ranging from
a few impurities or interstitial defects in an otherwise per-
fect crystalline host [3, 5, 29] to the strongly disordered
limit of glass structures [23]. In particular, the static dis-
order is set when a system parameter is a random vari-
able evolving in space but not in time [24]. Such systems
exhibit Anderson localization [3]. This phenomenon,
has a fundamental relevance since it offers a mechanism
to understand, for example, the electronic conductance
in imperfect crystals and the metal-insulator transition
[5, 23, 29].

As predicted by Anderson, static disorder may lead
to the absence of diffusion and the particle wavefunction
results localized. In one dimension, it can be rigorously
shown that all states are localized because of the repeated
backscattering and the localization lenght is proportional
to the mean free path of the particle, no matter how
strong or weak the disorder is [29].

The key factor for the interference effect responsible
for the localization is the broken periodicity in the dy-
namics of the system, induced by the disordered media:
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FIG. 2: Modes probability distributions P (±,sym)(x, y, t)
(a,b) and associated density plots (c,d) of bosonic (left) and
fermionic (right) two-particle states. At t = 0, two particles
are placed at two neighboring sites in the center of the lat-
tice. The distribution is calculated after t = 50 steps. The
matrices represent the probability to find one particle at the
output mode i and one at the output mode j. Both bosons
and fermions diffuse ballistically giving rise to significant con-
tributions in the corners of the probability distributions. Sim-
ilar plots but for N = 30 steps can be found in Ref. [31]. (e)
Marginal distribution P sym(x) of Eq. (A10) obtained by sum-
ming over the columns of plots (c,d). The same distribution
arises from both symmetric and anti-symmetric distribution
(See Appendix A).

random perturbations to the dynamics of the system can
break the periodicity, and manifest localization [7, 41].
Localization of the walker in one dimension may be con-
trolled by introducing drifts with constant momentum
between two consecutive steps of the walk, i.e. by ap-
plying controlled phase shift operations on the particle
wavefunction to randomly stop at each site the evolution
of the quantum coin [8], whose matrix now reads:

C(x) =
1√
2

(
eiφL(x) 0
0 eiφR(x)

)(
1 1
1 −1

)
. (8)
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At each step, coin operations evolve the initial state by
applying the same phases {φL(x), φR(x)}. While in ab-
sence of disorder quantum walk exhibits a spatial proba-
bility distribution diffusing ballistically, in case of static
disorder the distribution appears localized with a shape
characterized by an exponential decay.

Single particle transport in disordered lattices has been
experimentally observed in different frameworks (mi-
crowaves in strongly scattering samples [6], single pho-
tons in bulk [16], photonic lattices [26], ultrasounds waves
in a three-dimensional elastic system [12] and Bose-
Einstein condensates [43]); conversely, there are few nu-
merical studies [22, 40] and only one experiment about
multi-particle transport [11].

Understanding the behavior of a multi-particle system
in a disordered medium may be of great interest. Indeed,
the bosonic or fermionic nature of the particles strongly
affects the transport phenomenon, deriving from both
wave interference and quantum correlations. Because of
the coin operations unitarity, the static disorder only af-
fects the shape of the distribution and does not alter the
symmetry of the initial state. Therefore the quantum
walk with static disorder still results strongly dependent
on the input state, as the anti-bunching feature shows
with the diagonal-vanishing pattern in Fig. 3d.

By tracing out the position of one of the particles (i.e.
summing over the columns of the correlation matrix as
detailed in Eq. (A10)), it is possible to confirm the ex-
ponential decay of the Anderson peak by computing the
linear fit of the distribution in semilogarithmic scale (Fig.
3e,f) and therefore calculating the localization length in
inverse proportion to the angular coefficient.

The analysis here reported, dealing with a discrete
time quantum walk, could be performed also by exploit-
ing a continuous time QW, indeed the two approaches
have shown many similarities [44]. Simulations of space-
dependent disorder for two-particle systems have been
reported in this case by Lahini et al. [22], where the two-
particle correlation function is calculated after short evo-
lution times, in such a way that each particle has nonzero
probability to be localized or to remain ballistic: it may
be associated to an evolution in presence of static dis-
order whose strength is non-maximal. At variance with
this approach, in our scenario we implement a maximal
strength static disorder. In this case the probability of
the particles to diffuse ballistically becomes negligible on
a 100-step QW, allowing us to observe a pure localization
effect.

III. SPACE CORRELATED DYNAMIC
DISORDER AND DECOHERENCE

In this section we consider the case of a two-particle
quantum walk in the space correlated dynamic disorder
simulating the transition from quantum walk to classical
random walk for bosons and fermions.
The evolution is related to degrees of freedom defining the
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FIG. 3: Modes probability distributions (a,b) and associated
density plots (b,c) of bosonic (left) and fermionic (right) two-
particle states in the case of a quantum walk in presence of
static disorder. At t = 0, two particles are placed at two
neighboring sites in the center of the lattice. The distribution
is calculated after 50 steps and averaged over 100 configura-
tions of static disorder. Both bosons and fermions localize
nearby their initial position with a typical distribution pro-
file characterized by an exponential decay. The dependence
on the symmetry of the initial state is still observable. (e)
Marginal distribution P sym(x) of Eq. (A10) obtained by sum-
ming over the columns of plots (c,d). Linear fit in semilog
scale (f). The localization lenght after 50 steps of a two-
particle quantum walk is estimated to be ξ ∼= 3

system as external fields, temperature, pressure or dop-
ing [24]. Dynamic disorder leads to a decoherence effect
induced by the dynamic degrees of freedom: decoherence
is the cost of extracting knowledge about the state of a
system [20]. By turning on an interaction between the
quantum system and the environment, the fluctuations
in the environment lead to a reduction of the coherence
in the quantum system [20]. Thus decoherence plays a
crucial role in the transition from quantum to classical
world. The controlled introduction of decoherence en-
ables a detailed comprehension of its effects on the system
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dynamics, enabling the simulation of biological phenom-
ena which exploit these features [28].

The impact of decoherence on quantum walks has
been investigated both numerically and experimentally,
in various settings, mostly in one- [11, 20, 41] or two-
dimensional systems [42] using repeated measurements
[19, 20, 30] or topological noise by quantum coin phase
shift operations [7, 11, 20, 41]. In this case the time-
dependent coin operator reads

C(t) =
1√
2

(
eiφL(t) 0
0 eiφR(t)

)(
1 1
1 −1

)
. (9)

By assigning different quantum coin operators at every
step of the walk while retaining the same at every spatial
site (φL(t) = φR(t)), thus eliminating position depen-
dent phase correlations, the complete evolution will be
expressed as C(t)C(t− 1) . . . C(2)C(1) [7, 40].
Decoherence appears as a consequence of the dynamically
varying phase suffered by the quantum particle during its
evolution. As a result, the photon undergoes a classical
random walk, revealing a binomial probability distribu-
tion [20, 41]. In contrast to the previous case, the spatial
profile of the wave packet in Fig. 4 shows a parabolic
shape in the semilog scale, confirming a Gaussian distri-
bution profile.

It is important to highlight that, by introducing deco-
herence in quantum walks by quantum coin phase-shift
operations, the system dynamics is still unitary because
phase-shift operator is unitary. Hence the decoherence ef-
fect is caused only by an interference effect that mixes the
position distribution of the quantum walk to a uniform
distribution essentially as in the classical case. There-
fore, in presence of dynamic disorder quantum walk is
still strongly dependent on the symmetry of the input
state. Quantum particles lose their quantum waveform
(but not their quantum properties) given by the delo-
calized spatial distribution profile undergoing a classical
particle distribution profile, exhibiting the wave-particle
dualism.

IV. UNCORRELATED DYNAMIC DISORDER
AND ANDERSON TRANSITION

A particle moving in a spatially-disordered time-
independent potential can exhibit Anderson localization.
At the same time, it is also known that, if the disordered
potential is also fluctuating in time, localization is lost
and transport is restored. This is the so-called Anderson
transition, observed in a great variety of experimental
conditions, from electro-magnetic waves propagating in
strongly disordered dielectric structure such as, doped
semiconductors and amorphous systems [3, 5, 23, 29].
This transition can be obtained by changing tempera-
ture, pressure, doping [29] or magnetization [23]. Over
the years, several different mechanisms have been pro-
posed for the breakdown of Anderson localization due to
temporal fluctuations of the potential [1, 15, 21]. Mott
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FIG. 4: Modes probability distributions (a,b) and associated
density plots (b,c) of bosonic (left) and fermionic (right) two-
particle states in the case of dynamic disorder. At t = 0,
two particles are placed at two neighboring sites in the center
of the lattice. The distribution is calculated after 50 steps
and averaged over 100 configurations of dynamic disorder.
Both bosons and fermions localize nearby their initial position
with a typical binomial distribution profile characteristic of
classical random walk but the dependence on the symmetry
of the initial state is still observable. (e) Marginal distribution
P sym(x) of Eq. (A10) obtained by summing over the columns
of plots (c,d). Parabolic fit in semilog scale (f).

considered the effect of phonons at low temperatures, and
argued that this gives rise to a diffusive motion known
as variable-range hopping conductivity. Mott also consid-
ered the effects of a weak AC field, and suggested that
a resonant interaction dominates the low-frequency re-
sponse [21, 29].

By combining the two previous disordered scenarios,
we may simulate a symmetric or an antisymmetric system
in which localized states become extended states with
time due to decoherence effects. By randomly assigning
different quantum coin operators for each lattice site and
changing these operators during each step of the evolu-
tion, we induce a spatio-temporal disorder or fluctuating
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disorder [7]. Therefore the quantum coin operator of the
tth step of the dynamics can be expressed as

C(x, t) =
1√
2

(
eiφL(x,t) 0
0 eiφR(x,t)

)(
1 1
1 −1

)
(10)

where the value of φL,R(x, t) is randomly chosen at
every step t and at each site x. Thus the complete
evolution of the walk will be given by C(x, t)C(x, t −
1) . . . C(x, 2)C(x, 1) [7].

This scenario leads to distributions similar to those ob-
tained in presence of space-correlated dynamic disorder
(compare Figs. 4 and 5). Fig. 5 shows that with an
increasing number of steps the dynamic variation of the
phase competes with the localization effect given by the
static variation of the phase, displaying a Gaussian prob-
ability distribution. In the space-correlated dynamic dis-
ordered scenario, we have shown that particles started in
a disorder-free configuration with extended distributions
of quantum states and the effect of disorder was to shrink
the wave functions displaying a Gaussian profile. Here,
input states first localize in an Anderson peak owing to
static disorder, and only after the distributions become
binomial due to decoherence: static disorder has a pri-
ority upon dynamic disorder because the former acts on
different spatial sites of the same temporal step, while
the latter’s action is the same for all the site of a given
step. Therefore, dynamic disorder is a global effect on
the walk and it is slower than the static effect, as we will
show in the next section.
Also in this case, the quantum walk still has a strong
dependence from the symmetry of the input state, as we
can notice in Fig. 5. Unlike Fig. 4d, the fermionic dis-
tribution in Fig. 5d has a Gaussian spatial profile more
pronounced and very similar to the bosonic wave packet.
This is due to the fact that, as we said, input states lo-
calize (Fig. 3) before becoming extended.

V. DISORDER STRENGTH

When a disordered scenario is considered, the degree
of disorder needs to be characterized quantitatively. This
physical quantity can be addressed by taking into account
the disorder strength which is determined by Φmax, i.e.
the maximal applied phase shift which defines the uni-
form interval [0, Φmax] from which {φL(x), φR(x)} are
randomly chosen [41].

The stepwise increase of the disorder strength Φmax
enables the controlled transition of the system from the
ballistic evolution of the disorder-free quantum walk, to-
wards the diffusive (subdiffusive) evolution in a scenario
with dynamic (static) disorder, as shown in Fig. 6.
To this purpose we characterized the resulting expan-
sion profile by the two-particle distribution variance

Var(±)(xM ) of twice their mean position xM = x + y,

1

0.0080.008

1

1

0

(a) (b)

(d)

(e)

(c)

(f) x

0
100

100

50
50

0
100

50
50

100

FIG. 5: Modes probability distributions (a,b) and associated
density plots (b,c) of bosonic (left) and fermionic (right) two-
particle states in the case of fluctuating disorder. At t = 0,
two particles are placed at two neighboring sites in the center
of the lattice. The distribution is calculated after 50 steps
and averaged over 100 configurations of disorder. Space-
correlated dynamic disorder competes with static disorder
extending quantum states and forbidding localization. The
result is that both bosons and fermions distributions become
Gaussian and the dependence on the symmetry of the initial
states still remains. (e) Marginal distribution P sym(x) of Eq.
(A10) obtained by summing over the columns of plots (c,d).
Parabolic fits in semilog scale (f).

i.e.

Var(±)(xM ) =
∑N
x,y=1(x+ y)2P (±,sym)(x, y)− (11)

[
∑N
x,y=1(x+ y)P (±,sym)(x, y)]2.

Clearly, this quantity will result in different behaviors for
the symmetric state (related to bosonic evolution) and
the antisymmetric one (related to fermionic evolution),
the exact connection with the particle statistics being
detailed in Eq. (A12). Moreover it will be strongly af-
fected by the presence of disorder.
In Fig. 6 we report the variance (11) calculated for 100-
step quantum walks in presence of static (red squares)
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and space-dependent dynamic (blue dots) disorder, with
different values of the maximum disorder strength, av-
eraged on 100 random distributions. Without disorder
(Φmax = 0) the ballistically spreading wavepacket shows
a large expansion induced by quantum interference af-
ter 100 steps. In a system with dynamic disorder (blue
squares), decoherence reduces the expansion of the wave
packet to the level of a diffusive classical particle (black
solid line).
Differently, static disorder (red dots) leads to a stagna-
tion of the spread due to the Anderson localization effect
and hence an even smaller variance. The variance expo-
nentially decreases as the disorder strength increases and
in general as the number of steps grows. By comparing
the two behaviors reported in Fig. 6 , we may notice that
the presence of static disorder tends to localize the distri-
bution faster than the space-correlated dynamic disorder,
since, for each value of disorder strength, the variance in
presence of space-dependent disorder is lower than the
variance obtained in the dynamic-disordered scenario.
We infer from Fig. 6a that the maximal localizing inter-
val is [0, π], irrespective of the particle statistics. This is
the same interval we used in all the previous simulations.
These results clearly demonstrate how the amount and
kind of disorder influence the expansion of the particle
wave packet.

-+

(a) (b)

FIG. 6: Transition of the mean position variance Var(±)(xM )
of Eq. (11) of symmetric (a) and antisymmetric (b) states
from ballistic quantum walk to diffusive or subdiffusive evo-
lution after 100 steps due to dynamic (blue dots) and static
(purple squares) disorder with increasing disorder strength
Φmax. Every data point is averaged over 100 configurations
of disorder and the error bars represent the standard devia-
tion. The black solid line marks the variance of the classical
random walk (RW).

Let us now consider the variance of a quantum walk in
the presence of uncorrelated dynamic disorder (blue dots
in Fig. 7) and a stepwise increase of the dynamic disor-

der strength Φ
(D)
max once fixed the static disorder strength

to its highest value Φ
(S)
max = π. From Fig. 7 it is pos-

sible to rate the dynamic disorder strength necessary to
extend the localized states and realize in this way a con-
trolled Anderson transition. The mobility edge is defined
as the critical value of disorder strength for which the
variance reaches the level of classical random walk (black
solid line). For values of ΦDmax below the mobility edge
the variance decreases because static disorder dominates,
thus localizing the particle wave packet.

-

RW
RW

+

(a) (b)

FIG. 7: Transition of the mean position variance Var(±)(xM )
of Eq. (11) of symmetric (a) and antisymmetric (b) states
from subdiffusive quantum walk to diffusive evolution after
100 steps due to dynamic disorder (blue dots) with increasing

dynamic disorder strength Φ
(D)
max once fixed the static disorder

strength Φ
(S)
max = π. The mobility edge is Φ

(D)
max

∼= π/2. Every
data point is averaged over 100 configurations of disorder and
the error bars represent the standard deviation. The black
solid line marks the variance of the classical random walk
(RW).

VI. TRANSPORT PROPERTIES AND
FRACTALITY

In this section we study how transport properties
of particles are connected to the fractality of the sys-
tem. Fractals are mathematical objects with a Hausdorff-
Besicovitch dimension which is not an integer [15, 25].
Fractals are best constructed in a recursive way and their
limiting curve is of infinite length, although it is confined
to a finite region of the plane. The best way to charac-
terize them is by using their fractal dimension d. When
calculating this quantity we notice the striking property
of self-similarity: every fractal curve is similar to the frac-
tal curve of a part of itself or, in other words, it is said
to be a scale invariant.

Classical random walks are self-similar only in a sta-
tistical sense [15]. For these objects a fractal dimension
d is still easily defined by the scaling of their fractal mass
M with their linear size L, M ≈ Ld. As a consequence,
classical random walks are statistical fractals with Haus-
dorff dimension d = 2 [15]. Conversely, quantum walks
are not fractals not even in statistical sense: because of
their quantum nature, their fractal dimension is d = 1.

Particle transport in a lattice has been widely investi-
gated in the framework of quantum walk [15, 28, 41]. One
of the most important physical parameters describing a
random walk is the mean-square displacement covered
by the walker once it has passed through t steps. This
quantity is proportional to the variance of the center of
mass of Eq. (11). In uniform Euclidean systems, the
mean-square displacement of a random walker is propor-
tional to the time, for any number of spatial dimensions
agreeing with Fick’s law [15]. Random walks describe the
probabilistic evolution of a classical particle in a struc-
tured space resulting in a diffusive transport. In contrast,
endowing the walker with quantum mechanical proper-
ties typically leads to a ballistic spread of the particle’s
wave function [41].
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FIG. 8: Trend of mean position variance Var(±)(xM ) of Eq.
(11) up to 100 steps of bosonic (a) and fermionic (b) quan-
tum walk in different scenarios. For disorder-free case (blue
dots) we observe a ballistic spread (full behavior shown in the
insets). The evolutions with space-correlated dynamic (pur-
ple squares) and uncorrelated (green triangles) disorder are
clearly diffusive. Lastly, under the condition of static disor-
der (yellow diamond) the variance starts to saturate after few
steps and the dynamics shows the onset of Anderson local-
ization. The parameters used in simulation are equivalent to
the simulational settings used for Figs. 2,3,4,5. Every data
point for the four kinds of disordered quantum walks is av-
eraged over 100 configurations of disorder. Error bars have
been omitted for clarity.

However, in disordered systems, Fick’s law is not valid
in general. Rather, we may recall the localization behav-
ior as anomalous diffusion [15]:

〈
x2(t)

〉
∝ t

2
d . Note that

classical Fick diffusion with d = 2 can be considered as
an anomalous diffusion with respect to the quantum case
with d = 1.
The observed slowing down of the transport is caused
by the delay of the diffusing particles in the dangling
ends, bottlenecks and backbends existing in the disor-
dered structure. Examples of disordered systems for
which anomalous diffusion has been observed are perco-
lation clusters [13, 14], fractal lattices [15], classical and
quantum random walks [11, 41].

In Fig. 8 we report step by step the variance

Var(±)(xM ) of Eq. (11) of the center of mass in all
the previous four quantum walk scenarios (the disorder
strength is maximum), for symmetric and antisymmetric
input states.
First we notice that, due to the symmetry of the states,

bosons diffuse faster than fermions reaching higher vari-
ance values. Moreover, by computing polynomial fits of
these curves we obtain the correct trends of the mean-
squared displacement and the fractal dimensions, for the
two-particle quantum walk with bosonic and fermionic
input states. In the disorder-free case the quantum
walk has fractal dimension d ≈ 1; therefore the diffu-
sion, characterized here by the positional probability dis-

tribution variance, is ballistic Var(±)(xM , t) ∝ t2. In
presence of dynamic and fluctuating disorder, the frac-
tal dimension is d ≈ 2 therefore the motion is diffusive
Var(±)(xM , t) ∝ t. Finally, in the case of static disor-
dered quantum walks the fractal dimension is d ≈ 3.4

and the trend is subdiffusive Var(±)(xM , t) ∝ t0.6, thus
leading to particle stagnation.

VII. SHANNON ENTROPY AND MUTUAL
INFORMATION

An alternative method to measure the position fluctu-
ation with the variance is provided by the joint Shannon
entropy of the two walkers position probability distribu-
tion P (±,sym)(x, y) which via Eq.(11) describe the statis-
tics in the Bosonic (resp. Fermionic) case. This is

H(X,Y ) ≡ −
∑
x,y

P (±,sym)(x, y) log2 P
(±,sym)(x, y).

(12)
This quantity varies with the number of steps in a similar
way for symmetric and antisymmetric particles, however
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FIG. 9: Joint Shannon entropy (12) up to 100 steps of
symmetric (solid curves) and antisymmetric (dashed curves)
quantum walk in different conditions. We may observe how
the increase of entropy is slowed when passing from the or-
dered (blu curves) to the disordered case, saturating in the
case of static disorder (red curve). For each type of disorder

the distribution P (−,sym)(x, y) entropy is always lower than

the entropy of P (+,sym)(x, y) one. Each data point for the
three kinds of disordered quantum walks is averaged over 50
configurations of disorder. Error bars have been omitted for
clarity.
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values of H(X,Y ) obtained at each step depend on the
particle statistics. In particular we may observe from
Fig. 9 that the distribution P (−,sym)(x, y) share a joint
entropy lower than the one shared by the distribution
P (+,sym)(x, y), and this happens in presence of any kind
of disorder. Shannon entropy, that we may consider as
the amount of information gained by increasing the num-
ber of steps of the QW, depends on the type of disorder
the walker undergoes during the walk.

As reported in Fig. 10 we also calculated another quan-
tity, the mutual information. The mutual information
content of X and Y measures the amount of common in-
formation about the spatial position of the two particles
and its expression reads:

I(±)(X : Y ) = H(X) +H(Y )−H(±)(X,Y ) (13)

= 2H(X)−H(±)(X,Y ),

where H is the Shannon entropy associated with the sin-
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FIG. 10: Mutual information (13) up to 100 steps of the

quantum walk for (a) the distribution P (+,sym)(x, y) and (b)

the distribution P (−,sym)(x, y) in the disorder-free case (blue
line), dynamic disordered (purple line) and static disordered
case (yellow line). Mutual information decreases as the num-
ber of steps increase. At each step the mutual information
for bosons is lower than the one for fermions. Every data
point for the three kinds of disordered quantum walks is aver-
aged over 50 configurations of disorder. Error bars have been
omitted for clarity.

gle particle marginal (A10) [notice that it does not de-
pend upon the symmetry of the input state, see Appendix
A].

We may observe in Fig. 10 that this quantity reaches
an asymptotic value in the disorder-free case and in pres-
ence of static disorder, while it slowly decreases in pres-
ence of dynamic disorder. In presence of this type of
disorder, indeed, the distribution tends to the classical
one, so we may imagine that one particle loses informa-
tion about the position of the other one since they tend
to behave like independent walkers. Both the symmetric
and the antisymmetric distributions exhibit this behav-
ior, however symmetric particle systems share a mutual
information lower than the one shared by antisymmetric
particles. This may be naively understood by observ-
ing that, since the antisymmetric distribution is related
to fermionic behavior, due to Pauli exclusion principle,
fermions can’t occupy all possible two-particle positions:
this corresponds to a residual mutual knowledge between
the two particles.

VIII. CONCLUSIONS

In this paper, we presented a theoretical analysis of
two non-interacting bosons and fermions travelling in a
discrete-time quantum walk. By varying the parame-
ters of the system, transport properties have been stud-
ied. Then the interplay between quantum coherence and
the presence of dephasing disorder has been investigated,
with particular attention to entanglement and disorder-
assisted transport effects. By introducing suitable static
disorder in the walk we have simulated the absence of
diffusion in a periodic lattice. In these conditions, the
onset of Anderson localization has been observed. Fur-
thermore, decoherence deriving from dynamic disorder
has been investigated, simulating the transition between
quantum and classical world.
Finally we have presented how fluctuating disorder can
lead to a deeper comprehension of the Anderson transi-
tion.
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Appendix A: Polarization and Statistics

Given the state (7) the probability of detecting a pho-
ton in position x and the other in position y irrespectively

of their polarization writes

P (±)(x, y, t) =


∣∣〈x,H|〈y, V |Ψ(±)(t)〉

∣∣2 +
∣∣〈y, V |〈x,H|Ψ(±)(t)〉

∣∣2 i > j ,∣∣〈x,H|〈x, V |Ψ(±)(t)〉
∣∣2 x = y ,

(A1)

where |x,H〉 and |x, V 〉 describe a photon emerging from the output port x of the setup with horizontal and vertical
polarization respectively. Explicitly this is

P (±)(x, y, t) =



∣∣ψA(x, t)ψB(y, t)± ψA(x, t)ψB(y, t)
∣∣2 for x > y , 2

∣∣ψA(x, t)ψB(y, t)
∣∣2 for (+)

0 for (−)

for x = y ,

(A2)

where for C = A,B we introduced the single particle
amplitude probabilities,

ψC(x, t) = 〈x|ψC(t)〉 . (A3)

(we stress that to avoid double counting, P (±)(x, y, t) is
defined only for x ≥ y).

The probabilities defined above correspond to the
probabilities one would get if the particles were indis-
tinguishable and obeyed to the Bosonic/Fermionic statis-
tics. This is a consequence of two facts: i) while in Eq. (7)
the two particles are distinguishable in terms of their po-
larization degree of freedom, the measurement we con-
sider is transparent with respect to this degree of freedom
(we do not distinguish whether the emerging photon is
H or V ); ii) the vector |Ψ(±)〉 is symmetric (resp. anti-
symmetric) for particle (i.e. polarization) exchange. To
see this explicit observe that in first quantization, having
identified the polarization with the particle indexes, we
have that |Ψ(+)(t)〉 define a proper state of two Bosons.
The probability of detecting one of the two particles in
position x and the other in y(< x), can then be obtained
by projecting |Ψ(+)(t)〉 in the Bosonic state which repre-
sents such final configuration (i.e. the symmetric vector

(|x,H〉|y, V 〉+ |y,H〉|x, V 〉)/
√

2),

P (BOS)(x, y) =
∣∣∣ [ 〈x,H|〈y, V |+ 〈y,H|〈x, V |√

2

]
|Ψ(+)〉

∣∣∣2
=
∣∣ψA(x)ψB(y) + ψA(x)ψB(x)

∣∣2 = P (+)(x, y) , (A4)

(hereafter the time has been neglected for easy of nota-
tion). Similarly the probability of detecting both parti-

cles in x is given by

P (BOS)(x, x) =
∣∣∣〈x,H|〈x, V | |Ψ(+)〉

∣∣∣2 (A5)

= 2
∣∣ψA(x)ψB(y)

∣∣2 = P (+)(x, x) .

The same conclusions applies for Fermions. Indeed in
this case one has

P (FER)(x, y) =
∣∣∣ [〈x,H|〈y, V | − 〈y,H|〈x, V |]√

2
|Ψ(−)〉

∣∣∣2
=
∣∣ψA(x)ψB(y)− ψA(y)ψB(x)

∣∣2 = P (−)(x, y) , (A6)

for x > y, while of course

P (FER)(x, x) = 0 = P (−)(x, x) . (A7)

A compact way to express the above quantities is
by means of the symmetric version of the distributions
P (±)(x, y), i.e. the quantities

P (±,sym)(x, y) = P (±,sym)(y, x) (A8)

=

∣∣ψA(x)ψB(y)± ψA(y)φB(x)
∣∣2

2
.

The functions P (±,sym)(x, y) are normalized when inte-
grated over the whole domain of x and y, i.e.

∑
x,y

P (±,sym)(x, y) =
∑
x,y

∣∣ψA(x)ψB(y)± ψA(y)ψA(y)
∣∣2

2

= 〈ψA|ψA〉〈ψB |ψB〉 ± |〈ψA|ψB〉|2 = 1 . (A9)
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and posses identical marginals, i.e.

P (sym)(x) =
∑
y

P (±,sym)(x, y)

=

∣∣ψA(x)
∣∣2 +

∣∣ψB(x)
∣∣2

2
± Re[ψA(x)ψB(x)∗〈ψB |ψA〉]

=

∣∣ψA(x)
∣∣2 +

∣∣ψB(x)
∣∣2

2
, (A10)

(notice that in writing the last identities of Eq. (A9) and
(A10) we explicitly used the fact that |ψA〉 and |ψB〉 are
orthonormal states: these vectors are in fact associated
with two single particle trajectories entering the system
from two distinct ports of the interferometer). Accord-
ingly we can write

P (BOS)(x, y) = 2P (+,sym)(x, y) for x > y ,

P (BOS)(x, x) = P (+,sym)(x, x) for x = y ,

P (FER)(x, y) = 2P (−,sym)(x, y) for x > y ,

P (BOS)(x, x) = P (−,sym)(x, x) = 0 for x = y .

(A11)

In particular the expectation value of any two particle
observable Ω which is symmetric under particle exchange
can be expressed in terms of P (±,sym)(x, y). Indeed, indi-
cating with Ω(x, y) = Ω(y, x) the spatial representation
of Ω, the following identity holds:

〈Ω(BOS)〉 =
∑
x≥y

P (BOS)(x, y)Ω(x, y)

=
∑
x,y

P (+,sym)(x, y)Ω(x, y) ,

〈Ω(FER)〉 =
∑
x≥y

P (FER)(x, y)Ω(x, y)

=
∑
x,y

P (−,sym)(x, y)Ω(x, y) . (A12)

1. Single particle detection probabilities

From the above equation one can easily compute the
probability of finding a particle in position x. In par-

ticular for Bosons one may introduce the probability

P
(BOS)
>1 (x) of finding at least one particle in position x

and the probability P
(BOS)
1 (x) of having exactly one par-

ticle in position x. These quantities in general differ and
can be expressed as

P
(BOS)
>1 (x) =

∑
y(<x)

P (BOS)(x, y) +
∑
y(>x)

P (BOS)(y, x)

+P (BOS)(x, x)

= 2
∑
y

P (+,sym)(x, y)− P (+,sym)(x, x)

= 2P (sym)(x)− P (+,sym)(x, x) , (A13)

P
(BOS)
1 (x) =

∑
y(<x)

P (BOS)(x, y) +
∑
y(>x)

P (BOS)(y, x)

= 2P (sym)(x)− 2P (+,sym)(x, x) . (A14)

We stress that neither P
(BOS)
>1 (x) nor P

(BOS)
1 (x) coincide

with the marginal distribution P (sym)(x) of (A10). In

particular, differently from the latter, neither P
(BOS)
>1 (x)

nor P
(BOS)
1 (x) are necessarily normalized to 1 when sum-

ming over x (this is due to the fact that when summing
over x we are unavoidably including double counting of

events). In the Fermionic case P
(FER)
>1 (x) and P

(FER)
1 (x)

coincides due to Pauli exclusion principle. In this case we
have

P
(FER)
1 (x) =

∑
y(<x)

P (FER)(x, y) +
∑
y(>x)

P (FER)(y, x)

= 2
∑
y

P (−,sym)(x, y) = 2P (sym)(x) ,(A15)

which up to a constant normalization factor coin-
cides with the marginal of the symmetric distribution
P (−,sym)(x, y).
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