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In this paper we describe a general and systematic approach to the centre-manifold
reduction and normal form computation of flows undergoing complicated bifurcations.
The proposed algorithm is based on the theoretical work of Coullet & Spiegel (SIAM
J. Appl. Maths, vol. 43(4), 1983, pp. 776–821) and can be used to approximate centre
manifolds of arbitrary dimension for large-scale dynamical systems depending on a
scalar parameter. Compared with the classical multiple-scale technique frequently
employed in hydrodynamic stability, the proposed method can be coded in a
rather general way without any need to resort to the introduction and tuning of
additional time scales. The method is applied to the dynamical system described
by the incompressible Navier–Stokes equations showing that high-order, weakly
nonlinear models of bifurcating flows can be derived automatically, even for
multiple codimension bifurcations. We first validate the method on the primary Hopf
bifurcation of the flow past a circular cylinder and after we illustrate its application
to a codimension-two bifurcation arising in the flow past two side-by-side circular
cylinders.
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1. Introduction
When a steady flow becomes linearly unstable owing to the variation of a control

parameter, a bifurcation process occurs due to the inherent nonlinearity of the
governing Navier–Stokes equations. As a result of this process, a new flow state
develops, either steady or unsteady, being usually characterized by an inferior degree
of symmetry with respect to the basic state. Classical examples are represented by
the flow between rotating cylinders (Taylor–Couette flow), convection in a fluid layer
heated from below (Rayleigh–Bérnard–Marangoni flow) and by the flow past a bluff
body such as a circular cylinder or a sphere. In the simplest case, when the flow
instability is driven by a single global mode, relevant information concerning the
frequency and the spatial pattern of the emerging flow state can be deduced from a
linear stability analysis. However, when two or more linear modes become unstable
for the same values of the control parameters, neither stability nor pattern selection
can be completely explained based solely on the linear approach. Such a condition,
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which corresponds to the occurrence of multiple codimension bifurcations, has been
found to characterize several flow configurations (Rehberg & Ahlers 1985; Tuckerman
2001; Marques, Lopez & Shen 2002; Meliga, Gallaire & Chomaz 2012; Marques,
Mellibovsky & Meseguer 2013; Tchoufag, Fabre & Magnaudet 2014).

Within the framework of nonlinear dynamical systems, the problem of mode
selection among competing instabilities can be tackled by means of the centre-
manifold approximation of the nonlinear dynamics (Charru 2011). In fact, it is
well known that in the neighbourhood of the bifurcation of a fixed equilibrium, the
essential dynamics is determined only by those modes which are marginally stable in
the linearized description, i.e. the critical modes. If all of the remaining modes are
stable and heavily damped, the state of the nonlinear system rapidly converges onto
a low-dimensional, attractive and invariant manifold in the phase space, the centre
manifold (Guckenheimer & Holmes 1983; Haragus & Iooss 2011). Once the original
system has been reduced to a centre manifold, the description of the dynamics can be
further simplified to its normal form while preserving its structural properties. This
reduction allows one to deduce relevant information of the system behaviour based on
the general normal-form theory and classification. For several physical systems, the
normal form structure can also be deduced a priori from symmetry considerations,
making use of the theory of groups (Crawford & Knobloch 1991).

Different methods have been described in the literature to build an approximation
to the centre manifold and to reduce it to its normal form, the two operations being
often treated as two successive distinct steps. Basically the various techniques can be
divided in two main classes, with respect to the computation of the centre manifold
(Kuznetsov 1998). Methods of the first class require the explicit computation of all
of the eigenvalues and eigenfunctions associated with the linearized vector field in
order to change the natural system state basis into the eigenbasis. This requirement
makes such techniques unaffordable for large-scale applications where the computation
of the whole spectrum of the linearized operator is prohibitively expensive. In contrast,
methods of the second class rely on the projection of the nonlinear state onto the
critical subspace. Hence, only direct and adjoint critical linear modes are needed: for
typical applications, a small number of such modes is present, thus making the latter
approach suitable for high-dimensional dynamical systems.

The projection approach lies at the heart of the method described by Coullet
& Spiegel (1983) and of that of multiple time-scales which has been used for a
long time in the field of hydrodynamic stability (Stuart 1971). In both cases, the
centre-manifold reduction and the normal-form computation are obtained within a
single step, thus avoiding the introduction of near-identity nonlinear transformations,
usually involved in the derivation of the normal form (Charru 2011). Based on the
common framework of asymptotic expansions, the flow state in the neighbourhood of
the critical threshold is approximated in power series of the bifurcation parameter and
of the renormalized critical mode amplitudes, the involved expansion procedure being
handled manually. Although on the one hand this can provide additional physical
insight by granting access step by step to the individual terms of the expansion and
to their dependence from low-order ones, on the other hand, however, this approach
becomes quite cumbersome at increasing orders of the approximation, especially in
the case of high-codimension bifurcations.

The aim of this paper is to illustrate a different technique with respect to that of
multiple scales to perform the weakly nonlinear analysis of bifurcating flows within
a global setting (Sipp & Lebedev 2007; Meliga et al. 2012). Compared with the
method of multiple scales, the proposed technique has the main advantage that it
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Centre-manifold reduction of bifurcating flows 111

can be fully automated by means of numerical computations in a rather general way
and for an arbitrary dimension of the critical subspace. Moreover, the additional
complications associated with the introduction of a slow time scale to separate the
motion onto the centre manifold from the fast-decaying stable dynamics are avoided.
For such purpose, the approach described by Coullet & Spiegel (1983) is recast into a
formulation which can be coded directly into a computer algorithm, without any need
to resort to symbolic computation. Then the method is applied to two examples of
bifurcating flows. In the first, the onset of the cylinder vortex shedding is considered,
for which both the normal-form (Landau) coefficients and the related nonlinear global
modes have been computed by various authors (Sipp & Lebedev 2007; Meliga &
Chomaz 2011). In the second, the codimension-two pitchfork-Hopf bifurcation which
characterizes the flow past two side-by-side circular cylinders is examined.

The paper is organized as follows. First, a brief reminder of the centre-manifold
and normal-form theory for finite-dimensional dynamical systems is given in § 2. In
§ 3 the centre-manifold reduction is introduced within an abstract, general framework
and a simple low-dimensional example is illustrated in § 3.2. The application to the
incompressible Navier–Stokes equations is discussed in § 4 and results obtained for
the above-mentioned flow configurations are described in §§ 4.2 and 4.3. Finally a
summary of the work is given in § 5.

2. Centre manifold and normal form: a brief review
Let us consider the generic autonomous finite-dimensional dynamical system

q̇=F(q), (2.1)

with q(t) ∈Rn and a related fixed point q0, i.e. F(q0)= 0. Without loss of generality
we can assume that q0 = 0. The nature of the fixed point q0 depends on the stability
of the linearized vector field around it

q̇= Lq, (2.2)

where L denotes the Jacobian of F evaluated for q = q0. Denoting with Λ(L) the
spectrum of L, q0 is called hyperbolic if Re(λ) 6= 0, ∀λ ∈ Λ(L). Hence, in the
hyperbolic case no marginally stable modes exist and the local stability of q0 follows
from that of the linearized system (2.2).

For a non-hyperbolic fixed point at least one eigenmode of L is found to be critical
and the invariant subspace Ec spanned by those eigenmodes which are marginally
stable is referred to as the critical or centre subspace. In this case it can be proved
that an invariant smooth manifold Vc also exists in the phase–space which has the
same dimension of Ec, the centre manifold. The centre manifold theory is of particular
interest when all the eigenvalues of L are stable except those lying on the imaginary
axis. In such a condition the local stability of q0 cannot be deduced from that of the
linearized system (2.2). At the same time it can be shown that starting from any given
initial condition, the trajectories of the nonlinear system asymptotically approach the
centre manifold (Guckenheimer & Holmes 1983). Therefore, the centre-manifold
approximation of the nonlinear dynamics naturally provides a low-dimensional
description of its asymptotic behaviour in a neighbourhood of q0. To better explain
this point let us rewrite the system (2.1) as follows:

q̇c = Lcqc + f c(qs, qc),

q̇s = Lsqs + f s(qs, qc),

}
(2.3)

where qc(t) ∈ Rnc and qs(t) ∈ Rn−nc , nc being the dimension of the critical subspace.
As already mentioned, usually nc� n for large-scale systems. The above formulation
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is simply derived from the decomposition of F(q) into its linear and nonlinear
part, i.e. F(q) = Lq + f (q) followed by a linear coordinate transformation in the
eigenbasis of L. This latter transformation allows q to be partitioned according to the
invariant subspaces Ec and Es, where Es denotes the subspace spanned by the stable
modes of L, i.e. its stable subspace. Correspondingly the spectrum of Lc lies on the
imaginary axis while all of the eigenvalues of Ls have strictly negative real part. The
nonlinear functions f c and f s are assumed to be smooth and at least quadratic near the
origin, i.e. in the neighbourhood of q0. Under these assumptions, the centre-manifold
theorem guarantees the existence of a smooth nc-dimensional manifold which can be
represented as a map q̃s = Υ (q̃c) from Ec to Es and which is tangent to Ec at the
origin, i.e. at the fixed point q0 (Guckenheimer & Holmes 1983). It is worthwhile to
remember that if F(q) belongs to the class C r, Vc belongs only to the class C r−1.
In addition Vc is not necessarily unique (Guckenheimer & Holmes 1983, p. 124).
More precisely, if more than one centre manifold exists with different maps Υ , all of
the resulting reduced-order systems are topologically equivalent in the neighbourhood
of q0 (Kuznetsov 1998). Therefore, in our discussion we will refer to ‘the’ centre
manifold rather than to ‘a’ centre manifold. Finally, as reported by Roberts (1997),
the computation of the centre-manifold reduction relies on the so-called approximation
theorem which guarantees that the map Υ can be approximated up to the same order
of accuracy at which (2.1) is satisfied.

Once the map q̃s = Υ (q̃c) has been introduced, the system dynamics onto Vc is
described by the low-dimensional system:

˙̃qc = Lcq̃c + f c(Υ (q̃c), q̃c). (2.4)

These equations are often referred to as the amplitude equations (Coullet & Spiegel
1983). When applied to the above set of equations, the derivation of the normal
form provides the simplest parametrization of the motion of the system onto the
centre manifold. Starting from (2.4), the normal-form computation usually involves
a sequence of near-identity nonlinear transformations needed to eliminate as many
nonlinear terms as possible from f c(Υ (q̃c), q̃c) up to a selected finite order while
preserving the linear part Lc. Of course, some nonlinear terms cannot be eliminated
by any coordinate change: these terms which rule the asymptotic behaviour of the
system dynamics are usually referred to as resonant terms. Indeed, as it will be made
clear in the description of the proposed method, these irreducible nonlinearities are
associated with the forced harmonic response q(t)= q̂ωc

eıωct of the linearized system
at one of its critical frequencies:

(L− ıωcI)q̂ωc
= ĥωc, (2.5)

where the harmonic forcing ĥωc arises from the nonlinear-mode interaction, I ∈ Rn×n

denotes the identity matrix and ıωc ∈Λ(Lc). To avoid confusion with the integer index
i, in this paper the imaginary unit is denoted by the special character ı . The special
case of a steady critical mode simply corresponds to ωc = 0. Note that L − ıωcI is
singular by definition which expresses the resonance condition. Therefore to compute
q̂ωc

, the Fredholm solvability condition must be enforced by introducing additional
degrees of freedom which are shown to correspond to the normal form coefficients. A
complete and rigorous discussion on this point can be found in the theoretical work
by Coullet & Spiegel (1983) and Elphick et al. (1987).

It should be noted that the computation of high-order normal forms can exploit
several techniques which focus on the automatic and efficient handling of the sequence
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of involved nonlinear transformations, see e.g. Zhang, Huseyin & Ye (2000), Hsu, Min
& Favretto (2001) and Yu & Yuan (2003). However, the description of such techniques
is beyond the scope of our discussion since, as already mentioned in § 1, the proposed
method allows one to derive directly the amplitude equations in their normal form.

3. Centre-manifold reduction
In this section the proposed centre-manifold reduction technique is described in

detail. With respect to the classical approach mentioned in § 2, the present method
allows the computation of the centre-manifold reduction in its normal form just within
a single step, without introducing any coordinate transformation in the eigenbasis of L.
Instead, only the knowledge of the critical subspace is required in order to project the
system dynamics onto Ec and its orthogonal complement Es (Kuznetsov 1998), thus
enabling the treatment of large-scale systems.

Let us consider the nonlinear dynamical system (2.1) where the dependency on
a real control parameter ε is introduced. In addition, for the sake of generality, we
rewrite (2.1) in the generalized form

Bq̇=F(q, ε), (3.1)

where B can be singular such as for the discretized incompressible Navier–Stokes
system in primitive variables. Splitting the nonlinear operator F into the linear part
L and nonlinear part f (q, ε) yields

Bq̇= Lq+ f (q, ε), (3.2)

where, under the assumptions introduced in § 2, f (0, 0) = 0. Note that the, possibly
nonlinear, dependence on ε is accounted for in f . Here the description of the
method is limited to the case of L being diagonalizable although an extension
to the non-diagonalizable case is possible. In the neighbourhood of the fixed
non-hyperbolic point q0 = 0 we known that the system dynamics asymptotically
evolves on the centre manifold whose dimension is equal to the dimension nc of the
critical subspace. Therefore, we can express q(t) as a function of a reduced system
state a(t)= (a1(t), a2(t), . . . , anc(t)) and of the bifurcation parameter ε

q(t)= q(a(t), ε). (3.3)

The components a` of a are called critical amplitudes and can be interpreted as
generalized coordinates describing the motion of the dynamical system on the centre
manifold which is ruled by the low-dimensional nonlinear equation

ȧ= g(a(t), ε). (3.4)

By virtue of the centre-manifold approximation theorem and based on the approach
proposed by Coullet & Spiegel (1983), we can then approximate the system dynamics
using the method of asymptotic expansions. In the neighbourhood of q0, both
q(a(t), ε) and g(a(t), ε) are expanded as infinite power series of a`(t) and ε,

q(t)=
∞∑

m=1

∑
|i|+k=m

q̂i,k ai(t)εk, (3.5)

g(a(t), ε)=
∞∑

m=1

∑
|i|+k=m

ĝi,k ai(t)εk, (3.6)
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where i= (i1, i2, . . . , inc) is a multi-index of nc integers with |i| =∑nc
`=1 i` and a is

raised to ith power according to

ai ≡
nc∏
`=1

ai`
` . (3.7)

In (3.5) the vector-valued coefficients q̂i,k represent the generalized nonlinear modes
which allow one to recover the full system state starting from the reduced state a(t).
Once the unknown expansion coefficients q̂i,k and ĝi,k have been determined, the time
evolution of dynamical system (3.1) on the centre manifold is obtained first by solving
(3.4) and then reconstructing q(t) using (3.5). Although different notation could be
used to handle the expansions in (3.5) and (3.6), the compact one adopted here is
particularly convenient since terms of equal order m= |m| + p are collected together.
We note in passing that, while in the multiple-scale formalism an expansion in powers
of the ε is first assumed, with the expansion in the critical amplitudes being derived
by construction (Charru 2011, p. 251), in the centre-manifold approximation formalism
(Coullet & Spiegel 1983; Elphick et al. 1987), the solution is expanded in polynomial
series of both the parameter and the critical amplitudes ab initio. It should also be
noted that the amplitudes have a slightly different meaning in the two formalisms, as
shown in § 4.2.

In order to compute the expansion coefficients q̂i,k and ĝi,k, the expressions (3.5)
and (3.6) are introduced in (3.1) and the terms with the same indices (i, k) are
collected, thus equating the coefficients of all similar monomials ai1

1 . . . ainc
nc
εk. As

will be made clear later on, this procedure leads to the solution of a sequence of
linear systems which correspond to the forced harmonic response of the linearized
dynamics to nonlinear interactions

(L− ıωB)q̂ω = ĥω. (3.8)

When the forcing occurs at one of the critical frequencies, a resonant term of the
expansions is generated. As already mentioned in § 2, only these terms contribute to
the normal form and therefore only the related coefficients ĝi,k in (3.6) are different
from zero, providing the required degrees of freedom to enforce the solvability
condition for the resonant linear systems (2.5).

3.1. Reduction procedure
The above introduced expansions for q(a, ε) and g(a, ε) are now truncated up to a
selected finite degree r̄ = |i| + p to address the problem numerically. The number of
terms of fixed degree m = |i| + p is expressed by the binomial fraction nm =

(nc+m
nc

)
.

Then the total number of terms up to the truncation order r̄ is nt =
∑r̄

m=1 nm.
By introducing (3.5) and (3.6) in (3.1) we obtain for the generic term (m, p)〈

B
r̄∑

m=1

∑
|i|+k=m

q̂i,k
˙(ai)εk

〉
m,p

= Lq̂m,p + 〈 f (q(a, ε), ε)〉m,p, (3.9)

where the notation 〈w(a, ε)〉m,p stands for the vector coefficient of the (m, p)th term
in the power series expansion of w(a, ε). For a wide class of finite-dimensional
dynamical systems, including many of those derived from the numerical discretization
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of partial differential equations (PDEs), the dependency of f on both q and ε is
exactly expressed in algebraic form by means of multivariate polynomials (usually
of small degree) in the components of q and in ε. More generally in the case
of transcendent functions, an approximate algebraic expression for f (q, ε) can be
derived by expanding in Taylor series in the neighbourhood of q= 0 and ε = 0. As
an example, for a generic quadratic nonlinearity we can write

{ f (q1, . . . , qn, ε)}i = Aiε + Bijqjε + Cijkqjqk + Diε
2, (3.10)

where the Einstein summation convention has been used along with the notation
{w}i = wi for the ith component of the vector w. By substituting (3.5) in (3.10), the
corresponding power series of f (q, ε) in the critical amplitudes and in ε is easily
derived:

{ f̂ m,p}i = δm,0
p,1

Ai + δm,0
p,2

Di + { f̂ (ε)m,p}i +
∑

i+n=m
q+k=p

Cij`{q̂i,q}j{q̂n,k}`, (3.11)

where

{ f̂ (ε)m,p}i =
{

0 for p= 0,
Bij{q̂m,p−1}j for p > 1,

(3.12)

and

δm,i
p,k
=
{

1 for (m, p)= (i, k),
0 otherwise.

(3.13)

It can be observed that no coupling among terms of the same degree can arise due to
the nonlinear term, since f is assumed to be at least quadratic in the neighbourhood
of the origin.

At this point, in order to reduce (3.9) to a pure algebraic linear problem, time
derivatives ˙(ai) are expressed using the chain rule

˙(ai)= dai

da
· ȧ= dai

da
· g(a, ε), (3.14)

where we made use of the notation

dai

da
≡
(

i1
ai

a1
, . . . , i`

ai

a`
, . . . , inc

ai

anc

)
. (3.15)

It is worthwhile to observe that this operation is analogous to the derivation with
respect to the slow time scale employed in the multi-scale approach (Coullet &
Spiegel 1983). By inserting the formulae (3.14) and (3.4) into the left-hand side of
(3.9), this latter is rewritten as follows〈

B
r̄∑

m=1

∑
|i|+k=m

q̂i,k

r̄∑
n=1

∑
|n|+j=n

ĝn,j ·
dai

da
an εk+j

〉
m,p

, (3.16)

which can be simplified to obtain

B
m̄∑

m=1

∑
|i|+k=m

nc∑
`=1

i`{ĝm−i+1`,p−k}` q̂i,k, (3.17)
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where m̄= |m| + p and the notation 1` has been introduced to indicate a multi-index
whose entries are all zero except for the `th one which is set equal to one.

3.1.1. Order m̄= 1
Let us consider the generic term (1m, 0). In this case f (q, ε) does not contribute to

the right-hand side of (3.9) which reduces to

Lq̂1m,0 − B
nc∑
`=1

q̂1`,0{ĝ1m,0}` = 0. (3.18)

For m= 1, . . . , nc we obtain a set of nc coupled homogeneous linear problems which
are underdetermined in the unknowns q̂1m,0 and ĝ1m,0. Therefore, for each system of
the form (3.18) we need to introduce nc auxiliary linear equations, even if, in order
to avoid trivial solutions, only nc − 1 can be chosen arbitrarily. In particular we can
observe that the coupling among these linear problems arises through the entries of
ĝ1m,0. If we assume that ĝ1m,0 = σmêm for m = 1, . . . , nc, each problem gets further
simplified in the form

Lq̂1m,0 − σmBq̂1m,0 = 0, (3.19)

which is a generalized eigenvalue problem for the linear matrix pencil (L,B) with the
eigenvalue σm ∈C and the eigenvector q̂1m,0. Since we know that Ec is tangent to Vc

at the origin, it can be deduced that the pairs (q̂1m,0, σm) for m = 1, . . . , nc exactly
correspond to the critical eigenpairs thus providing the linear approximation to the
centre manifold dynamics:

ȧm = ıωmam, m= 1, . . . , nc (3.20)

with ıωm ∈ Λ(Lc). For the critical eigenvectors, the additional notation ϕm = q̂1m,0 is
employed in the following. Critical adjoint eigenvectors ψm are also introduced:

LHψm + ıωmBHψm = 0, (3.21)

where (·)H denotes the complex-conjugate transpose and the normalization condition
ψH

i Bϕj = δij holds. The knowledge of the adjoint eigenmodes is indeed essential in
order to build up the projectors onto Ec and Es when enforcing the proper solvability
condition on the resonant systems.

To complete the computation of the first-order contributions to the expansions (3.5)
and (3.6), the term (0, 1) has to be considered. For such term, equation (3.9) reads
as

Lq̂0,1 =−f̂ 0,1 + BΦĝ0,1, (3.22)

where Φ = [ϕ1, . . . , ϕnc]. If at least one steady critical mode is present, the above
system corresponds to a steady resonance, L being singular. In this case the scalar
entries of ĝ0,1 provide the required degrees of freedom to enforce the solvability
condition on (3.22). As an example, let us suppose that only a single eigenvalue
lies at the origin of the complex plane, namely ωn̄ = 0. Based on the Fredholm
alternative theorem, the above linear system makes sense only when its right-hand
side is orthogonal to ψn̄. Such a condition can be guaranteed through a proper choice
of ĝ0,1. More precisely, only the n̄th entry of ĝ0,1 is actually needed while all of the
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Centre-manifold reduction of bifurcating flows 117

remaining elements can be set equal to zero. Indeed, by recognizing that the term
(0, 1) is resonant due to the n̄th eigenmode, only the n̄th entry of ĝ0,1 is expected to
be different from zero in the normal form of the amplitude equations, i.e. ĝ0,1= ĝ0,1ên̄
where ên̄ is the n̄th canonical base vector of Rnc . Once the compatibility condition
has been satisfied, the solution q̂0,1 of (3.22) is defined up to an arbitrary component
in the direction of ϕn̄ which can be fixed to zero by introducing the additional
condition ψH

n̄ Bq̂0,1 = 0. As a result of the above statements, the following bordered
(non-singular) linear system is derived:[

L −Bϕn̄
ψH

n̄ B 0

] (
q̂0,1
ĝ0,1

)
=
(
−f̂ 0,1

0

)
, (3.23)

which allows one to compute at once both q̂0,1 and the normal-form coefficient ĝ0,1.
More generally in the case of multiple eigenmodes at zero frequency, i.e. for ω` = 0
with `= 1, . . . , n0 and 1< n0 6 nc, the above system is replaced by its extended form[

L −BΦ0
Ψ H

0 B 0

] (
q̂0,1
ĝ0

)
=
(
−f̂ 0,1

0

)
, (3.24)

where Φ0=[ψ1, . . . ,ψn0], Ψ0=[ψ1, . . . ,ψn0] and ĝ0= (ĝ1, . . . , ĝn0) collects the entries
of ĝ0,1 associated with the resonant critical amplitudes at zero frequency

ĝ0,1 =
n0∑
`=1

ĝ`ê`. (3.25)

When ω` 6= 0 ∀` ∈ [1, nc], the term (0, 1) is non-resonant which allows one to set
ĝ0,1= 0 since it does not contribute to the normal form of the amplitude equations. In
this case, equation (3.22) reduces to

Lq̂0,1 =−f̂ 0,1, (3.26)

which uniquely determines q̂0,1.

3.1.2. Order m̄ > 2
Dealing with the computation of the centre-manifold reduction at a fixed order

m̄ > 2, it can be shown that the involved linear problems can be solved sequentially
only when proceeding at increasing order in the power of ε. For such purpose the
expression (3.17) has to be further manipulated and related details are relegated to
the appendix A. By exploiting such results and those obtained at order m̄ = 1, the
linear problem associated with the generic term (m, p) in the unknowns q̂m,p and ĝm,p
reads as

(L− cmB)q̂m,p − BΦĝm,p = ĥm,p, (3.27)

with cm=
∑nc

`=1 ı m`ω`. The right-hand side ĥm,p can be computed using the formula:

ĥm,p = −f̂ m,p + (1− δ0,p)B
nc∑
`=1

(m` + 1){ĝ0,1}` q̂m+1`,p−1

+B
m̄−1∑
m=2

∑
|i|+k=m

nc∑
`=1

i` {ĝm−i+1`,p−k}` q̂i,k. (3.28)
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We note that all of the expansion coefficients in the above expression have been
already computed at an order lower than m̄ (first and last term in (3.28)) or at the
same order according to the introduced ordering of the m̄-degree terms in increasing
power of ε (second term in (3.28)). A resonance condition for (3.27) clearly arises
when cm = ıωc, ωc being a critical frequency since the matrix L − cmB becomes
singular. If nωc critical modes have the same frequency ωc, namely ω`=ωc ∀`∈[1,nωc],
exploiting the same arguments introduced in § 3.1.1, (3.27) is replaced by the bordered
linear system [

L− ıωcB −BΦc
Ψ H

c B 0

] (
q̂m,p
ĝc

)
=
(

ĥm,p
0

)
, (3.29)

where Φc = [ψ1, . . . , ψnωc
], Ψc = [ψ1, . . . , ψnωc

] and again the introduced short-hand
ĝc defined as ĝc = (ĝ1, . . . , ĝnωc

) collects the involved normal-form coefficients, with
ĝm,p =

∑nωc
`=1 ĝ`ê`.

In the non-resonant case, i.e. for cm 6= ıω`, for all `= [1, nc], the coefficients ĝm,p
are set to zero and q̂m,p is uniquely determined as the solution of the non-singular
system

(L− cmB)q̂m,p = ĥm,p. (3.30)

3.1.3. Final remarks
It is worthwhile to note that two key steps in the above procedure allow one to

obtain the normal form of the centre manifold straight away.

(i) The coefficients q̂1m,0 of expansion (3.5) are chosen to correspond exactly to the
critical eigenvectors of L, thus uncoupling the linear terms of the expansions. This
also justifies the term ‘critical amplitudes’ which has been used for the functions
a`(t): at first order these functions are actually the amplitudes of the critical
eigenmodes and the same term is used by extension for higher-order terms.

(ii) The non-resonant coefficients in the expansion (3.6) are set to zero. Note that
this choice is possible since the corresponding linear systems to be solved
in order to compute the nonlinear modes q̂m,p, (3.30), are well posed and no
regularization procedure with the introduction of additional degrees of freedom
has to be applied.

3.2. Low-dimensional example
The centre-manifold reduction is now applied to a simple three-dimensional model
system borrowed from the work by Noak et al. (2003):

u̇=µu− v − uw,
v̇ =µv + u− vw,
ẇ=−w+ u2 + v2,

 (3.31)

with µ ∈ R being a small control parameter, i.e. |µ| � 1. This system has a fixed
point at the origin which becomes linearly unstable for µ > 0 owing to a pair of
complex-conjugate eigenvalues λ1,2=µ± ı that cross the imaginary axis. Thus, a Hopf
bifurcation occurs with the onset of the periodic solution

u(t)=√µ cos(t), v(t)=√µ sin(t), w=√µ, (3.32a−c)
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Centre-manifold reduction of bifurcating flows 119

which is asymptotically and globally stable. As shown by Noak et al. (2003), the
system trajectories rapidly approach the paraboloid w = u2 + v2 on which the limit
cycle takes place for µ> 0.

Given the system (3.31), we are interested in the centre-manifold approximation of
its behaviour for µ> 0 in the neighbourhood of the critical threshold µ= 0. As a first
step let us recast (3.31) in the form (3.2) with ε =√µ: u̇

v̇

ẇ

=
0 −1 0

1 0 0
0 0 −1

u
v

w

+
ε2u− uw
ε2v − vw
u2 + v2

. (3.33)

The matrix L has two marginally stable eigenvalues, i.e. λ=±ı , whose corresponding
eigenvectors are expressed by ϕ1,2=ψ1,2= (±ı/

√
2, 1/
√

2, 0)T with the normalization
condition ψH

i ϕj = δij. Indeed since L consists of a skew-symmetric 2× 2 diagonal
block plus a diagonal entry, the corresponding eigenvectors are orthogonal to each
other: thus for the same eigenvalue, the right and left eigenvectors are equal to each
other.

Let us now introduce the truncated centre-manifold expansions (3.5) and (3.6)
at order r̄ = 3. In the present case, the critical subspace has dimension nc = 2
and therefore a total of nr̄ = 19 terms has to be computed; the related multi-index
sequence is listed in table 1. The linear approximation to the centre manifold follows
straightforwardly from the knowledge of the critical subspace with q̂1`,0 = ϕ` and
ĝ1`,0 = λ`e` for ` = 1, 2. The linear term (m, p) = ((0, 0), 1) is non-resonant and
with reference to (3.26), q̂0,1 = 0 since f̂ 0,1 = 0. In fact, this term corresponds to
a first-order correction in the Taylor-series approximation of the fixed point q0(ε)

around ε = 0:

q0(ε)= q0(0)+
dq0

dε

∣∣∣∣
ε=0

ε + 1
2

d2q0

dε2

∣∣∣∣
ε=0

ε2 + · · · , (3.34)

where q0(0) = 0 and q̂(0,0),k = (1/k!)dkq/dεk|ε=0. However, since q0(ε) = 0 ∀ε, no
correction to the equilibrium solution occurs as ε is increased, with the terms q̂(0,0),2
and q̂(0,0),3 being identically equal to zero.

Dealing with the computation of second-order terms, we now consider the term
(m, k)= (2, 0, 0) which is non-resonant. This term corresponds to the forced harmonic
response of the linearized system at the frequency ω= 2ω0 = 2 and it is expected to
be equal to zero based on (3.32). With reference to (3.28), it can be observed that the
second contribution to this formula is always null due to the fact that ĝ0,1 = 0, while
the last contribution in (3.28) is involved only in the computation of terms of order
m̄ > 3. Therefore, for ĥ(2,0),0 we have

ĥ(2,0),0 =−f̂ (2,0),0 =
 û(1,0),0ŵ(1,0),0

v̂(1,0),0ŵ(1,0),0
−û(1,0),0û(1,0),0 − v̂(1,0),0v̂(1,0),0

= 0, (3.35)

and the solution of (3.30) results q̂(2,0),0 = 0. The same result holds for the its
complex-conjugate term with q̂(0,2),0 = 0 and ĝ(0,2),0 = 0. Then we examine the term
(m, k) = (1, 1, 0). This non-resonant term introduces a mean-field correction to the
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m̄= 1 m̄= 2 m̄= 3
s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

m1 1 0 0 2 1 0 1 0 0 3 2 1 0 2 1 0 1 0 0
m2 0 1 0 0 1 2 0 1 0 0 1 2 3 0 1 2 0 1 0
p 0 0 1 0 0 0 1 1 2 0 0 0 0 1 1 1 2 2 3

TABLE 1. Sequence of multi-indices (m, p) involved in the computation of the
centre-manifold reduction up to order r̄= 3 with nc = 2. The following notation has been
introduced: m= (m1,m2)

T, m̄= |m| and s ∈ S3 (see § 3.3).

equilibrium solution. For ĥ(1,1),0 we have

ĥ(1,1),0 =−f̂ (1,1),0 =
 û(1,0),0ŵ(0,1),0 + û(0,1),0ŵ(1,0),0

v̂(1,0),0ŵ(0,1),0 + v̂(0,1),0ŵ(1,0),0
−2û(1,0),0û(0,1),0 − 2v̂(1,0),0v̂(0,1),0

=−
0

0
2

, (3.36)

which leads to q̂(1,1),0 = (0, 0, 2)T. Finally, let us consider the term (m, p)= (1, 0, 1).
This term is resonant because of cm= ı1: indeed it corresponds to the forced linearized
response at the critical frequency. However, it can be shown that ĥ(1,0),1 =−f̂ (1,0),1 =
0. Therefore, the bordered system (3.29) admits the trivial solution ĝ(1,0),1 = 0 and
q̂(1,0),1 = 0.

At third order, the only non-zero contributions are given by the resonant terms
(m, p)= (2, 1, 0) and (m, p)= (1, 0, 2) along with their complex–complex conjugates.
For ĥ(2,1),0 we obtain the formula

ĥ(2,1),0 = −f̂ (2,1),0 + 2q̂(2,0),0{ĝ(1,1),0}1 + q̂(1,1),0{ĝ(2,0),0}1
+ q̂(1,1),0{ĝ(1,1),0}2 + 2q̂(0,2),0{ĝ(2,0),0}2, (3.37)

where besides f̂ (2,1),0, additional contributions stemming from the time-derivative
elimination are present. However, only f̂ (2,1),0 is different from zero with

f̂ (2,1),0 =
−û(1,0),0ŵ(1,1),0
−v̂(1,0),0ŵ(1,1),0

0

=
−i
√

2
−√2

0

=−2ϕ1. (3.38)

The solution of the corresponding bordered linear system is q̂(2,1),0 = 0 and ĝ(2,1),0 =
−2ê1. Finally for ĥ(1,0),2 the following expression is derived:

ĥ(1,0),2 = −f̂ (1,0),2 + 2q̂(2,0),0{ĝ(0,0),2}1 + q̂(1,1),0{ĝ(0,0),2}2
+ q̂(1,0),1{ĝ(1,0),1}1 + q̂(0,1),1{ĝ(1,0),1}2, (3.39)

where again only f̂ (1,0),2 = ϕ1 is non-zero, leading to q̂(1,0),2 = 0 and ĝ(1,0),2 = ê1.
By collecting the obtained results and taking into account the complex-conjugate

symmetry of the amplitude equations with a1= a∗2= a, the third-order centre-manifold
expansion can be written asu(t)

v(t)
w(t)

≈
 i/
√

2
1/
√

2
0

 a(t)+
−i/

√
2

1/
√

2
0

 a(t)∗ +
0

0
2

 |a(t)|2, (3.40)
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Centre-manifold reduction of bifurcating flows 121

with
ȧ= ıa+ ε2a− 2a|a|2. (3.41)

The linear term in the above amplitude equation can be exactly integrated by
introducing the change of variable a(t) = A(t)eı t leading to recover the well-known
complex Landau equation, i.e. the normal form of the considered Hopf bifurcation:

Ȧ= ε2A− 2A|A|2. (3.42)

Moreover, for this particular case, the computed third-order centre-manifold
approximation exactly reproduces the periodic solution (3.32). Indeed in the
asymptotic limit a(t)→ (ε/

√
2)eı t andu(t)

v(t)
w(t)

→
 2Re{ıa(t)/√2}

2Re{a(t)/√(2)}
|a(t)|2

=
ε sin(t)
ε cos(t)
ε2

. (3.43)

In (3.40), the periodic motion in the plane (u, v) is described by means of the
critical eigenvectors whose amplitude has been ‘renormalized’ under the action of
the nonlinear terms in (3.41). At the same time, the equation for w provides the
required mean-field correction which is expressed by the analytical second-order
centre-manifold graph w(u, v) = |a(t)|2 = (u2 + v2)/2. However, for the considered
model problem, this latter result is not completely general. More precisely it is related
to the particular choice made in the definition of ε, i.e. ε = √µ, which has been
introduced in (3.33). Indeed it can be shown that by performing the centre-manifold
reduction of the system (3.31) with ε being defined as ε = µ, equations (3.40) and
(3.42) are replaced byu(t)

v(t)
w(t)

≈
 i/
√

2
1/
√

2
0

 a(t)+
−i/

√
2

+1/
√

2
0

 a(t)∗ +
0

0
2

 |a(t)|2 −
0

0
4

 ε|a(t)|2, (3.44)

and
Ȧ= εA− 2A|A|2, (3.45)

respectively. Hence, the same normal form along with the same values of the
coefficients for A and A|A|2 are obtained, as one would expect. However, the last
term in (3.44) introduces a third-order correction to the centre-manifold equation
which prevents the recovery of the exact limit cycle solution (3.32) in the asymptotic
limit. It easy to verify that the same term appears as a fourth-order contribution in
the expansion (3.5) when using the definition of ε = √µ. Therefore, in this latter
case the possibility to recover the exact limit cycle solution at the third order is a
mere coincidence.

3.3. Implementation
As already mentioned, a key feature of the outlined method is the possibility to code
it into a general computer algorithm by means of numerical calculations only. In doing
that, some implementation issues arise for which useful guidelines are discussed below.
Finally the centre-manifold algorithm is summarized in Algorithm 1.
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Algorithm 1 Centre-manifold reduction

Require: r̄, nc, {ıω`, ϕ`,ψ`}nc
`=1

1: loop s= (ordt(1)+ 1) : (ordt(2)− 1) F Centre subspace approximation
2: m← mind(1 : nc, s), p← mind(nc + 1, s)
3: q̂m,p← ϕs

4: ĝm,p← ıωsês
5: end loop
6: if ∃ n̄ ∈ [1, nc] s. t.ωn̄ = 0 then F Term (0, 1)
7: LINEAR-SOLVER(Equation (3.24)) F Resonant system
8: STORE(q̂0,1, ĝ0,1)
9: else

10: LINEAR-SOLVER(Equation (3.26))
11: STORE(q̂0,1, ĝ0,1 ≡ 0).
12: end if
13: for m= 2 : r̄ do F Approximation at order m > 2
14: loop s= (ordt(m)+ 1) : ordt(m+ 1)
15: m← mind(1 : nc, s), p← mind(nc + 1, s)
16: ĥm,p←ASSEMBLE-RHS(s)
17: if ∃ n̄ ∈ [1, nc] s. t. cm = ıωn̄ then
18: LINEAR-SOLVER(Equation (3.29)) F Resonant system
19: STORE(q̂m,p, ĝm,p)
20: else
21: LINEAR-SOLVER(Equation (3.30))
22: STORE(q̂m,p, ĝm,p ≡ 0).
23: end if
24: end loop
25: end for

(i) Given the truncation order r̄ of the centre-manifold reduction, the set of integer
numbers Sr̄ ≡ [1, nr̄] is introduced to enumerate all of the terms in the truncated
expansions (3.5) and (3.6). A one-to-one mapping s↔ (m, p) is thus defined,
with s∈ Sr̄. In addition, for each order m the set Mm= {si}nm

i=1 of ordered indices
corresponding to the expansion terms of degree equal to m can be introduced:

si↔ (m, p) with |m| + p=m ∀si ∈Mm. (3.46)

The elements of Mm are ordered at increasing power of ε, i.e. p 6 q for
i 6 j ∀si, sj ∈ Mm with si ↔ (m, p) and sj ↔ (i, q). The mapping s→ (m, p)
and the family of sets Mm can be computed explicitly and stored once and for
all in integer arrays. A simple example of these data structures is described in
figure 1. The ordered sequences of multi-indices (m, p) associated with each set
Mm, m= 1, . . . , r̄, are stored as sequential column blocks in the two-dimensional
array mind of dimension (nc + 1) × nr̄. Therefore, the sth column of mind
provides the scalar entries of (m, p) for the sth term in the expansion, according
to adopted enumeration of all expansion terms. In particular, in the considered
example the first nc rows of mind contain the elements of m while the last
row provides the value of p. For a selected order m = |m| + p, the multi-index
sequence associated with Mm and stored in mind is accessed through the column
indices given by the sequence ordt(m) + 1, . . . , ordt(m + 1), ordt being an
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Centre-manifold reduction of bifurcating flows 123

2 3

+1

p

FIGURE 1. Implementation of the centre-manifold algorithm: an example of data structures
to handle the multi-index sequence associated with each ordered set Mm for m= 1, . . . , r̄.
In the considered example nc=3, with m= (m1,m2,m3). The block of multi-indices (m,p)
associated with terms of order m= |m| + p is accessed in mind through the sequence of
column indices given by ordt(m)+ 1, . . . , ordt(m+ 1).

+1

6 7

p

FIGURE 2. Implementation of the centre-manifold algorithm: example of data structures
to handle the computation of the coefficients f̂ m,p associated with a pure quadratic
nonlinearity in q in the expression of f (q, ε).

array of dimension 1 × (r̄ + 1). This is illustrated in figure 1 with reference to
terms of order m = 2. Conversely the implementation of the inverse mapping
(m, p)→ s (which is needed to compute the right-hand side ĥm,p) requires a
conditional loop on the elements of Mm=|m|+p as shown in Algorithm 2.
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Algorithm 2 Compute (m, p)→ s

1: function INVMIND(m, p)
2: s← 0
3: m←|m| + p
4: for z= (ordt(m)+ 1) : ordt(m+ 1) do
5: k← mind(nc + 1, z)
6: if k= p then
7: i← mind(1 : nc, z)
8: if i=m then
9: s← z

10: return s
11: end if
12: end if
13: end for
14: return s
15: end function

(ii) Additional data structures can be introduced to handle the computation of the
coefficients f̂ m,p. Let us consider the case of a pure quadratic nonlinearity which
is meaningful to the application to the Navier–Stokes equations. According to
(3.11) we have

{ f̂ m,p}i =
∑

i+n=m
q+k=p

Cij`{q̂i,q}j{q̂n,k}`, for i= 1, . . . , n, (3.47)

where summation over repeated indices is implied. Then let us introduce the
indices s, i, j∈ Sr̄ which correspond to the involved expansion terms in the above
expression:

s↔ (m, p), i↔ (i, q), j↔ (n, k), (3.48a−c)

and the set Ds of integer pairs (i, j) defined as follows:

Ds := {(i, j), i, j ∈ Sm−1 | i+ n=m and q+ k= p} (3.49)

where |m|> 1 is assumed. A family of sets Ds can be derived for all s ∈ Sr̄/{M1}
and stored once and for all in the pre-processing phase. As an example, for
s= nc+ 2, . . . , nr̄, the sequence of integer pairs in Ds can be stored as a column
block in the two-dimensional array qterms of dimension 2 × ns, where ns
denotes the total number of index pairs for all of the sets Ds. With reference to
figure 2, for a selected term of the expansion labelled with s̄, the corresponding
integer pairs collected in Ds̄ are accessed in qterms through the sequence of
column indices qind(s̄)+ 1, . . . , qind(s̄+ 1), where qind is an array of 1× nr̄
integers. The integer values extracted from qterms provide then access to all
data structures associated with the truncated expansion, such as the multi-index
data structure mind, through the introduced enumeration of all expansion terms.
Once provided with these data structures, the computation of each coefficient
f̂ m,p can be performed using a single loop on the index pairs stored in qterms,
as illustrated in Algorithm 3. The definition of these data structures and of
the outlined procedure can be extended to handle each term in the algebraic
expression of f (q, ε).
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Algorithm 3 Computation of f̂ m,p

Require: (m, p)
1: s̄←INVMIND(m, p)
2: f̂ m,p = 0
3: for z= (qind(s̄)+ 1) : qind(s̄+ 1) do
4: s1← qterms(1, z)
5: s2← qterms(2, z)
6: i← mind(1 : nc, s1), q← mind(nc + 1, s1)

7: n← mind(1 : nc, s2), k← mind(nc + 1, s2)

8: { f̂ m,p}i←{ f̂ m,p}i + Cij`{q̂i,q}j{q̂n,k}`
9: end for

(iii) When a real dynamical system is considered, both computing time and memory
storage can be saved by taking directly into account the conjugate symmetry
of the complex-valued terms of the expansion, i.e. those pairs of terms
{(m, p), (i, p)} which satisfy the relation i= Pm, P ∈Nnc×nc being a permutation
matrix defined as follows:

P ij =
{

1 if ωi =−ωj, with ϕi = ϕ∗j and ωi 6= 0
0 otherwise,

(3.50)

where (·)∗ is used to denote the complex conjugate. For such pairs, the expansion
coefficients are related by the conjugate-symmetry conditions

q̂∗m,p = q̂i,p, ĝ∗i,p = Pĝm,p. (3.51a,b)

Hence, these coefficients can be computed and stored only once. Moreover, the
elements of ĝm,p are different from zero only if the term (m, p) is resonant.

(iv) The numerical solution of bordered linear systems (3.24) and (3.29), although
being possible, should be avoided, especially for large-scale applications. As
a matter of fact the bordered structure results in a substantial increase of the
factorization fill-in when using LU solvers while for iterative solvers, a suitable
preconditioner must be introduced. More conveniently, resonant solutions can be
computed using the same solver employed for non-resonant systems, provided
that it can handle singular linear operators. This is the case of several freely
available linear-algebra packages, either based on the LU factorization or on
Krylov-subspace iterations (Heroux & Willenbring 2003; Balay et al. 2013). In
particular in the algorithm provided with the UMFPACK library by Davis (2004)
(which has been employed in our computations), during the factorization step the
LU solver is able to replace the singular matrix by a fictitious invertible linear
operator which is equivalent to the original matrix except for its restriction to
the null space where it is substituted by the identity.

Therefore, the computation of the solution of (3.29) breaks up in a two-step
regularization procedure. First, the array of the normal-form coefficients ĝc is
computed by projecting the first equation in (3.29) on the ker(L − ıωcB) ≡ Φc
through the adjoint eigenvectors Ψc which yields

ĝc =−Ψ H
c ĥm,p. (3.52)
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Then, the considered equation in (3.29) is recast in the form

(L− ıωcB)q̂m,p = ĥm,p + BΦcĝc = P⊥c ĥm,p, (3.53)

where P⊥c = (I − BΦcΨ
H

c ) is the orthogonal projector with respect to the resonant
eigenmodes, thus making the above singular system well-posed. If we denote by q̃m,p
the solution issuing from the LU solver, then the solution q̂m,p of (3.29) is obtained
by fixing to zero the component of q̃m,p on the subspace spanned by the columns of
Φc, i.e. q̂m,p = P⊥c q̃m,p.

Similarly, for Krylov solvers available within the package PETSc (Balay et al.
2013), a basis for the null space of the linear operator has to be provided in input
to the algorithm along with the system (3.53). In this case the solution issuing from
the solver already satisfies the second equation in (3.29), i.e. q̂m,p = q̃m,p, and thus
the orthogonalization step is not required.

4. Application to the incompressible Navier–Stokes equations

Let us examine the application of the proposed technique to the continuous
dynamical system described by the incompressible (non-dimensional) Navier–Stokes
equations

∂u
∂t
+ (u · ∇)u+∇p− 1

Re
∇2u= 0,

∇ · u= 0,

 (4.1)

where u(x, t) denotes the velocity vector field and p(x, t) the scalar pressure field.
The fluid motion is described in a region Ω of the physical space where the above
equations are supplemented by suitable initial and boundary conditions. In particular,
these latter are assumed to be time-independent in order to deal with an autonomous
dynamical system. For such a generic fluid system, the Reynolds number Re defines
the most obvious control parameter which is known to rule a large number of flow
instabilities. Notwithstanding, different and additional control parameters can be
introduced as well, appearing in the definition of the boundary conditions or being
hidden in the geometrical description of Ω . Although the proposed centre-manifold
reduction method has been introduced in § 3 within a finite-dimensional setting, it
can be extended to infinite-dimensional PDE systems (Haragus & Iooss 2011). Such
a formalism is preferred here to avoid dealing with specific details related to the
employed numerical set-up. Therefore, in the following, we will refer to continuous
quantities which are intended to be replaced by their discrete counterpart when
applying the procedure described in § 3. Once this parallelism has been established,
the reduction to the centre manifold requires first to recast (4.1) in the general form
(3.2). Let us suppose that q̃0 = (u0(x), p0(x)) is a steady-state solution of (4.1) for
Re= Re0, i.e.

(u0 · ∇)u0 − 1
Re0
∇2u0 +∇p0 = 0,

∇ · u0 = 0.

 (4.2)

The following auxiliary variables are introduced

ũ(x, t)= u(x, t)− u0(x), p̃(x, t)= p(x, t)− p0(x), (4.3a,b)
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Centre-manifold reduction of bifurcating flows 127

which satisfy the homogeneous form of the boundary conditions imposed for u0 and
p0. In addition the following definition of the control parameter ε is introduced

ε = (Re− Re0)/(Re Re0). (4.4)

Indeed this nonlinear transformation allows the dependency on the control parameter
to be exactly recast in a linear form. The alternative definition of ε2 = (Re −
Re0)/(Re Re0), which is often preferred in the multi-scale analysis (Sipp & Lebedev
2007; Meliga & Chomaz 2011), could be employed as well for Re>Re0. By inserting
(4.3) and (4.4) into (4.1), this latter is rewritten as follows

B
∂ q̃
∂t
=Lq̃+Q(q̃, ε), (4.5)

where q̃ is the auxiliary total flow field, i.e. q̃ = (ũ, p̃)T, and the linear operators B
and L are defined as

Bq̃=
(

ũ
0

)
, Lq̃=

−(u0 · ∇)ũ− (ũ · ∇)u0 + 1
Re0
∇2ũ−∇p̃

∇ · ũ

, (4.6a,b)

whereas the nonlinear operator Q(q̃, ε) reads

Q(q̃, ε)=−
(
(ũ · ∇)ũ+ ε∇2u0 + ε∇2ũ

0

)
. (4.7)

According to the assumptions made in §§ 2 and 3, the system (4.5) admits the trivial
equilibrium solution q̃ = 0 for ε = 0. Its restriction to the linear terms in q̃ clearly
corresponds to the set of linearized Navier–Stokes equations describing the evolution
of small perturbations around the steady base flow q̃0. Critical eigenpairs involved in
the centre-manifold reduction are thus identified as those linear global modes ξ(x, t)=
ξ̂(x)eσ t of the fluid system which are marginally stable, being non-trivial solutions of

σBξ̂ =Lξ̂ , (4.8)

with the additional condition Re(σ ) = 0. Critical adjoint global modes η(x, t) =
η̂(x)e−σ ∗t need to be introduced as well:

σ ∗Bη̂=L†η̂, (4.9)

where L† is the adjoint operator of L with respect to the following energy-based
Hermitian scalar product

〈q̃A, q̃B〉 =
∫
Ω

q̃∗A · q̃BdΩ. (4.10)

The direct and adjoint global modes are normalized such that 〈η̂A,Bξ̂A〉=1. For further
details on the global mode analysis and on their computation see the recent reviews
by Theofilis (2011) and Luchini & Bottaro (2014).

4.1. Numerical methods
In the following sections we describe the application of the centre-manifold reduction
to two different flow configurations, namely the flow past an isolated cylinder and the
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x

y

FIGURE 3. Sketch of the computational domain Ωc employed for numerical investigations
of the flow past an isolated cylinder.

flow past two cylinders arranged side-by-side with respect to the free stream. In both
cases the Navier–Stokes equations are made dimensionless using the cylinder diameter
D∗, the velocity of the free stream U∗∞, and the (constant) density ρ∗, the Reynolds
number being defined as Re = U∗∞D∗/ν∗, where ν∗ denotes the kinematic viscosity.
The Navier–Stokes equations have been spatially discretized in conservative form
on a rectangular computational domain Ωc. A standard second-order finite-difference
scheme is used on a Cartesian, smoothly varying staggered grid and the no-slip
boundary conditions on the solid surfaces are imposed using an immersed-boundary
method which preserves the second-order accuracy of the discretization (see Giannetti
& Luchini 2007, for further details).

With reference to figure 3, a Cartesian coordinate system is adopted with its origin
being located on the cylinder centre and its x-axis being aligned with the uniform
free-stream velocity. In such a reference system the velocity vector field is described
by means of its components u = (u, v). In our computational set-up, the solid body
is placed at a distance d1 = 50 from the inlet Γin and the upper and lower boundary,
Γtop and Γbottom, while the outlet Γout is located at a distance d2= 150 from the origin.
On Γout, (4.1) are supplemented with the boundary conditions −p+ 2Re−1∂u/∂x= 0
and ∂v/∂x = 0. On Γin, Γtop and Γbottom, the vorticity is set to zero as well as the
velocity component v. The computational domain is discretized using 600× 300 grid
points with a clustering near the cylinder surface. More precisely, a uniform mesh is
adopted in the small square subdomain [−1, 1] × [1, 1] enclosing the body, with the
finest mesh size being 1x=1y= 0.02.

For the numerical simulation of the flow past the two side-by-side cylinders, the
same domain size and boundary conditions are employed except on the boundaries Γin,
Γtop and Γbottom where the vorticity is set to zero and the flow perturbation produced
by the two cylinders on the incoming uniform stream is assumed to decay to zero as
the leading term of the potential flow around it. The two cylinder centres are aligned
on the y-axis and symmetrically positioned with respect to the x-axis. In this case,
the uniform subgrid is extended to the subdomain [−1, 1] × [−2.5, 2.5] and a total of
600× 450 grid points are employed. For further details see also Carini, Giannetti &
Auteri (2014a,b).
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In order to compute the centre-manifold approximation, both the base flow and the
related critical global modes are required. For each considered configuration, the basic
flow state is obtained by solving the steady version of (4.1) by Newton iterations.
Direct and adjoint global modes are then computed using the Krylov–Arnoldi
algorithm implemented in the ARPACK library (Lehoucq, Sorensen & Yang 1998)
based upon a shift-invert strategy. More precisely, a discrete adjoint approach is
adopted. In this way the proper boundary conditions for the adjoint problem are
accounted for automatically and the biorthogonality condition between direct and
adjoint eigenfunctions is satisfied up to machine precision in the discrete setting.

Direct numerical simulations (DNS) are performed by advancing in time the
spatially discretized nonlinear equations using the hybrid third-order Runge–Kutta/
Crank–Nicolson scheme of Rai & Moin (1991). The same scheme is also employed
for time integration of the amplitude equations (3.6) obtained from the centre-manifold
reduction. All of the required matrix inversions are handled by means of the sparse
LU solver provided with the software package UMFPACK (Davis 2004).

4.2. Flow past a circular cylinder
The two-dimensional flow past a circular cylinder has been extensively investigated
both experimentally and numerically owing to its practical and theoretical relevance
(Williamson 1996). For such flow, the primary instability occurs via a Hopf bifurcation
of the basic steady state at Re ≈ 47, leading to the onset of an alternate vortex
shedding with the formation of the so-called Bernard–von Kármán vortex street.
In the context of hydrodynamic stability, the bifurcating cylinder flow dynamics is
usually described by means of the Stuart–Landau equation:

dA
dτ
= λA−µA|A|2, (4.11)

where A(τ ) denotes the renormalized critical mode amplitude, τ = ε t represents the
‘slow’ time scale of its nonlinear evolution and λ, µ ∈ C are the so-called Landau
constants. The values of λ and µ have been computed by Sipp & Lebedev (2007)
and Meliga & Chomaz (2011) while performing a weakly nonlinear global analysis
of this flow using the classical multiple-scale approach.

In order to validate our technique, the centre-manifold reduction is applied to the
considered flow and obtained results are then compared with those described in the
previously cited works. By performing a linear stability analysis, critical values of the
Reynolds number and of the global mode frequency St0= Im(σ )/2π are found, Re0∼
46.51 and St0∼ 0.117, respectively, which are in good agreement with those computed
by Giannetti & Luchini (2007), Sipp & Lebedev (2007), Marquet, Sipp & Jacquin
(2008) and Meliga & Chomaz (2011). Since the Hopf bifurcation involves a conjugate
pair of critical eigenvalues, only a single amplitude equation will be considered in the
following as done in § 3.2. At order r̄= 4 we obtain

ȧ= g̃1(ε)a+ g̃2(ε)a|a|2, (4.12)

where
g̃1(ε)= ĝ(1,0),0 + ĝ(1,0),1ε + ĝ(1,0),2ε2 + ĝ(1,0),3ε3,
g̃2(ε)= ĝ(2,1),0 + ĝ(2,1),1ε.

}
(4.13)

The third-order form of the amplitude equation is simply derived by dropping the
terms ĝ(1,0),3ε3 and ĝ(2,1),1ε in the above expressions. The computed values of the
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ĝ(1,0),0 0.7333ı
ĝ(1,0),1 0.9099× 101 + 0.3238× 101ı
ĝ(1,0),2 0.1509× 103 − 0.1064× 103ı
ĝ(1,0),3 0.1862× 104 − 0.7884× 104ı
ĝ(2,1),0 −0.1588× 10−2 + 0.5762× 10−2ı
ĝ(2,1),1 0.2053− 0.1645× 101ı

TABLE 2. Centre-manifold reduction of the first Hopf bifurcation of the cylinder wake:
computed normal-form coefficients up to order r̄= 4.

λ Im(µ)/Re(µ)

Sipp & Lebedev (2007) 9.14+ 3.27i −3.42
Meliga & Chomaz (2011) 9.153+ 3.239i −3.32
Present 9.099+ 3.238i −3.63

TABLE 3. Landau constants λ, µ of the first Hopf bifurcation of the cylinder wake:
comparison of computed values with those reported by other authors.

normal-form coefficients are listed in table 2. The identification of the Landau
constants follows from the relation between a(t) and A(τ ) with

a(t)=√εA(εt) exp(iω0t). (4.14)

Therefore, λ = ĝ(1,0),1 and µ = −ĝ(2,1),0. Both λ and the ratio Im(µ)/Re(µ) are
intrinsic quantities, i.e. they do not depend on the adopted global mode normalization
since their appear in the expression of the limit-cycle frequency derived from the
normal-form analysis, as shown by Sipp & Lebedev (2007). A comparison with
the values computed by these latter authors and by Meliga & Chomaz (2011) is
reported in table 3: good agreement is observed with a small deviation affecting the
value of Im(µ)/Re(µ). In their work Sipp & Lebedev (2007) have shown that the
computation of µ is very sensitive to the downstream location of the outlet boundary
and in order to get converged results this boundary must be moved at least 50
diameters downstream of the cylinder position. This requirement is fulfilled by our
computational domain and, hence, the small discrepancy in the value of Im(µ)/Re(µ)
may be ascribed to the different numerical discretization.

Some of the computed nonlinear global modes ûm,p are illustrated in figure 4.
These modes exactly correspond to those reported by Sipp & Lebedev (2007) and
Meliga & Chomaz (2011) except for a scale factor which is due to a different choice
in the normalization of the critical eigenmodes. Consistently with their physical
interpretation the same spatial pattern is reproduced: as an example the mode û(0,0),1,
figure 4(a), provides the base-flow correction due to an ε increment of Re−1 while
the modes û(1,1),0, figure 4(b), and û(2,0),0, figure 4(c), represent the second-order
mean-flow correction and the second-harmonic interaction, respectively. In addition,
figure 4(d) shows the mode associated with the resonant term aε, i.e. û(1,0),1.

In the neighbourhood of Re0, the computed centre-manifold approximation
provides us with a reduced-order model of the unsteady cylinder wake. For
Re = 48 (ε = 6.7 × 10−4), the non-dimensional shedding frequency St associated
with the asymptotic limit-cycle solution of (4.12) is reported in table 4 for r̄ = 3
and r̄ = 4. As expected, these values match very well that computed from the
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FIGURE 4. (Colour online) Nonlinear modes appearing in the centre-manifold reduction
of the first Hopf bifurcation of the single cylinder wake, streamwise velocity component
(real part): (a) û(0,0),1; (b) û(1,1),0; (c) û(2,0),0; (d) û(1,0),1.

St C̄D C′L C′D
DNS 0.119 1.415 0.0296 5.171× 10−5

Centre-manifold, r̄= 3 0.121 1.428 0.0282 2.923× 10−5

Centre-manifold, r̄= 4 0.120 1.407 0.0293 4.478× 10−5

TABLE 4. Unsteady flow past a single circular cylinder at Re = 48 (ε = 6.7 × 10−4):
comparison of the aerodynamic coefficients and the Strouhal number obtained from DNS
with those computed from the centre-manifold reduction of the Hopf bifurcation at r̄= 3
and r̄ = 4. Here C̄D denotes the mean drag coefficient while C′L and C′D indicate the
maximum amplitude of the lift- and drag-coefficient fluctuations, respectively.

DNS which is also indicated. Once the asymptotic limit-cycle solution of (4.12)
has been derived, the approximation of the whole flow field at each time instant is
straightforwardly computed by exploiting (3.5). A comparison of the predicted values
of the aerodynamic coefficients with those obtained from DNS is also reported in
table 4. The phase diagrams of both the aerodynamic coefficients and the velocity
fluctuations sampled at three distinct points in the flow field are reported in figures 5
and 6, respectively. These results indicate that a good approximation of the fully
developed cylinder vortex shedding is obtained for r̄ = 4. In figure 7(a–c) the
streamlines of the centre-manifold-reconstructed flow field are compared with those
of the DNS snapshot computed at the same shedding phase: the same streamfunction
contour levels are employed in both cases, thus highlighting that vortical structures
in the near-wake region are well captured by means of the nonlinear global mode
superposition in (3.5). In contrast, in the far-wake region, spurious eddies affect the
reconstructed flow field as shown in figure 7(b–d). Such results suggest that while the
centre-manifold description is able to correctly reproduce the flow behaviour where
the self-sustained global instability develops, i.e. in the so-called wavemaker region
(Giannetti & Luchini 2007), it fails to adequately capture the flow dynamics in the
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FIGURE 5. Flow past a single cylinder at Re = 48: phase-portrait of the aerodynamic
coefficients over a time interval of 300 non-dimensional time units. Comparison between
DNS (black lines) and centre-manifold approximation of the flow at order r̄= 3 (dark grey
lines) and r̄= 4 (light grey lines).
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FIGURE 6. Flow past a single cylinder at Re = 48: phase portrait of the velocity field
sampled at (a) (xs, ys) = (1.5, 0), (b) (xs, ys) = (1.5, 1.5) and (c) (xs, ys) = (1.5, −1.5).
Comparison between DNS (black lines) and centre-manifold approximation of the flow at
order r̄= 3 (dark grey lines) and r̄= 4 (light grey lines).

far-wake region where nonlinear interactions of damped linear modes can still play
an important role.

4.2.1. Amplitude power-series convergence
A critical comparison of the obtained results with DNS data should take into

account the issue of convergence of the power series in the critical amplitudes while
varying the bifurcation parameter ε. The asymptotic behaviour of this power series
and the estimation of its radius of convergence can be investigated by exploiting the
capability to easily compute high-order amplitude equations provided by the proposed
method. For this purpose let us consider the general expression of the amplitude
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FIGURE 7. (Colour online) Flow past a single cylinder at Re = 48: streamlines and
vorticity fields computed at the same shedding phase indicated in figure 5 (grey–black
dots). Comparison between DNS (a)–(b) and centre-manifold approximation at order r̄=
4 (c)–(d). The same contour levels are employed in (a) and (c) for the streamline
representation.

equation associated with the Hopf bifurcation

ȧ= g̃1(ε)a+
∞∑

k=2

g̃k(ε)a|a|2(k−1), (4.15)

where in our approach the dependence of the normal-form coefficients on the
bifurcation parameter is also approximated in power series of the parameter itself,
as shown in (4.13) for third- and fourth-order centre-manifold approximations. For
a given value of the bifurcation parameter ε = ε̄, d|a|/dt → 0 as t → ∞ if an
asymptotic limit cycle solution exists for this solution. By denoting with %∞ the
asymptotic value approached by |a|, %∞ can be computed as a root of the real-valued
coefficient polynomial

Re(g̃1(ε))%∞ +
∞∑

k=2

Re(g̃k(ε))%
2κ−1
∞ = 0. (4.16)

Once the value of %∞ has been obtained, the limit-cycle circular frequency ω∞ is
given by

ω∞ = Im(g̃1(ε))+
∞∑

k=2

Im(g̃k(ε))%
2(κ−1)
∞ . (4.17)

At this point in order to estimate the range of values of ε for which the amplitude
power series converges, the expansions (3.5) and (3.6) are truncated at increasing
order r̄ of the centre-manifold approximation, and for each considered value of ε and
r̄, %∞ is obtained by computing the roots of the truncated form of (4.16). Obviously
only real positive roots make sense and when multiple, real, strictly positive solutions
are found, only the one which can be ‘continued’ from the third-order normal form is
considered. The present analysis has been applied to the cylinder wake by computing
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FIGURE 8. (Colour online) Centre-manifold reduction of the first Hopf bifurcation of the
cylinder wake: computed values of the limit cycle amplitude %∞ for different values of ε
and of the truncation order r̄ of the expansion series up to r̄= 10. For ε = 5× 10−4 and
r̄= 9 the limit cycle solution does not exist.

r̄ ε = 5× 10−4 ε = 2.5× 10−4 ε = 1× 10−4 ε = 5× 10−5 ε = 1× 10−5

3 0.119611 0.118156 0.117287 0.116998 0.116767
4 0.119390 0.118102 0.117278 0.116996 0.116767
5 0.116860 0.117842 0.117245 0.116988 0.116766
6 0.119212 0.117964 0.117251 0.116989 0.116766
7 0.120328 0.118168 0.117264 0.116990 0.116766
8 0.117445 0.118008 0.117260 0.116990 0.116766
9 — 0.117593 0.117254 0.116989 0.116766

10 0.123123 0.118121 0.117257 0.116990 0.116766

TABLE 5. Centre-manifold reduction of the first Hopf bifurcation of the cylinder wake:
computed values of the universal limit-cycle frequency St∞ = 2π/ω∞ for different values
of ε and of the truncation order r̄ of the expansion series up to r̄ = 10. Note that for
ε = 5× 10−4 and r̄= 9 the limit cycle solution does not exist.

the centre-manifold reduction of the related Hopf bifurcation up to r̄ = 10. The
obtained values of %∞ are reported in figure 8 indicating that the convergence radius
of the series in terms of ε, εc is rather small, with εc ≈ 10−4 (Re≈ 46.73 compared
with Re0= 46.51). Corresponding values of St∞= 2π/ω∞ are also reported in table 5.
Therefore, the computed centre-manifold approximation for Re= 48 falls outside the
radius of convergence of the series, a fact which could also explain the unphysical
flow-field reconstruction in the far-wake region.

4.3. Flow past two side-by-side circular cylinders
Despite the simple geometry, it is known that the flow past two circular cylinders in
side-by-side arrangement is characterized by the onset of various flow instabilities,
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depending on the Reynolds number and even more on the gap spacing between the
two cylinder surfaces g = g∗/D∗. A global stability analysis of this flow has been
performed by Akinaga & Mizushima (2005), Mizushima & Ino (2008) and more
recently by Carini et al. (2014a), showing that for different values of g and Re, the
steady symmetric base flow becomes linearly unstable due to different global modes
either associated with the onset of vortex shedding or with the occurrence of a steady
asymmetric flow characterized by the deflection of the fluid stream through the gap.
In particular, three codimension-two points have been found in the related bifurcation
diagram.

As a more demanding application of the proposed method, we compute the
centre-manifold approximation of the considered flow in the codimension-two
pitchfork-Hopf bifurcation point which is associated with the simultaneous criticality
of the steady antisymmetric (AS) mode and of the oscillatory (IP) mode of
in-phase, synchronized vortex shedding. According to the neutral curves reported
in Carini et al. (2014a) this point is located at (g0, Re0) = (0.725, 56.46). For
these values of the parameters, the computed critical eigenvalues corresponding
to the AS and the IP modes are σ1 = −2.1145 × 10−10 + 6.4185 × 10−17i and
σ2,3 = −4.8497 × 10−10 ± 0.6618i, respectively. These modes are depicted in
figure 9(a,b) by means of the u component of the velocity field (real part). In
this case two bifurcation parameters are present, namely ε1 = (Re − Re0)/(ReRe0)

and ε2 = g − g0. Although the proposed technique can be extended to deal with an
arbitrary number of parameters, in the present work only one of two bifurcation
parameters is considered at a time while the other is fixed to its critical value. Thus,
the centre-manifold reduction is repeated twice, once for ε = ε1 and then for ε = ε2.
However, the parameter g does not appear explicitly in the governing equations (4.1),
neither in the expression of the boundary conditions. For such a case where the
dependency on the bifurcation parameter is hidden in the domain definition or, more
generally, in the mathematical formulation of the governing equations, we can resort
to its Taylor-series approximation. This can be done by expanding F(·, ε) in the
neighbourhood of ε = 0

F(·, ε)≈F0(·)+ εFε(·)+ ε2Fε2(·)+ · · · (4.18)

where the nonlinear operators Fεk(·) are formally defined as follows

Fεk(·)= 1
k!

dkF(·, ε)
dεk

∣∣∣∣
ε=0

, (4.19)

and their action can be numerically computed by means of suitable finite-difference
formulas. As an example

dF(q, ε)
dε

∣∣∣∣
ε=0

≈ F(q, 1ε)−F(q, 0)
1ε

, (4.20)

with 1ε being a positive and small-enough ε increment. This has been done in the
present computations by exploiting our implementation of the immersed-boundary
technique, with the body surface being described analytically.

For the considered bifurcation, equation (3.4) can be reduced to a system of one
real-valued and one complex-valued equations since only one of the two amplitude
equations associated with the pair σ2,3 is considered. Let us denote with a1(t) the real
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FIGURE 9. (Colour online) Nonlinear modes appearing in the centre-manifold reduction
of the pitchfork-Hopf bifurcation at (g0, Re0) = (0.725, 56.46) in the flow past two
side-by-side cylinders: streamwise velocity component (real part): (a) û(1,0,0),0 (AS mode);
(b) û(0,1,0),0 (IP mode); (c) ûε1

(0,0,0),1; (d) ûε2
(0,0,0),1; (e) û(2,0,0),0; (f ) û(1,1,0),0; (g) û(3,0,0),0; (h)

û(1,2,0),0.

critical amplitude associated with the pitchfork branch and with a2(t) the complex one
related to the Hopf branch. Then the computed normal form at r̄= 3 reads

ȧ1 = g̃1,1(ε)+ g̃1,2(ε)a1 + g̃1,3(ε)a2
1 + g̃1,4(ε)|a2|2 + g̃1,5(ε)|a2|2a1 + g̃1,6(ε)a3

1,

ȧ2 = g̃2,1(ε)a2 + g̃2,2(ε)a1a2 + g̃2,3(ε)a2
1a2 + g̃2,4(ε)a2|a2|2,

}
(4.21)

where
g̃1,1(ε)= ĝ(0,0,0),1ε + ĝ(0,0,0),2ε2 + ĝ(0,0,0),3ε3,

g̃1,2(ε)= ĝ(1,0,0),1ε + ĝ(1,0,0),2ε2,

g̃1,3(ε)= ĝ(2,0,0),0 + ĝ(2,0,0),1ε,
g̃1,4(ε)= ĝ(0,1,1),0 + ĝ(0,1,1),1ε,
g̃1,5(ε)= ĝ(1,1,1),0,
g̃1,6(ε)= ĝ(3,0,0),0,


(4.22)
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ε1 ε2

ĝ(0,0,0),1 −7.1205× 10−4 5.5039× 10−6

ĝ(0,0,0),2 1.7490× 10−2 1.5968× 10−5

ĝ(0,0,0),3 −9.4191× 10−2 2.3925× 10−5

ĝ(1,0,0),1 6.0956 −4.7117× 10−2

ĝ(1,0,0),2 −1.3469× 102 −7.5918× 10−2

ĝ(2,0,0),0 1.6787× 10−6 1.6787× 10−6

ĝ(2,0,0),1 −8.1029× 10−5 −2.4073× 10−6

ĝ(0,1,1),0 1.4494× 10−6 1.4494× 10−6

ĝ(0,1,1),1 −9.0440× 10−5 7.3458× 10−6

ĝ(1,1,1),0 −1.2408× 10−2 −1.2408× 10−2

ĝ(3,0,0),0 −4.7903× 10−3 −4.7903× 10−3

TABLE 6. Centre-manifold reduction of the incompressible Navier–Stokes system at the
codimension-two bifurcation point in the flow past two side-by-side cylinders: computed
coefficients of the pitchfork-branch of the third-order normal form (4.21) (first equation)
for both ε = ε1 and ε = ε2.

ε1 ε2

ĝ(0,1,0),0 0.6618ı 0.6618ı
ĝ(0,1,0),1 1.4212× 101 + 6.3352ı 0.1750+ 0.2891ı
ĝ(0,1,0),2 2.5564× 101 − 2.3368× 102ı −0.5466− 0.2788ı
ĝ(1,1,0),0 1.1392× 10−5 + 2.5308× 10−5ı 1.1392× 10−5 + 2.5308× 10−5ı
ĝ(1,1,0),1 2.3611× 10−3 − 2.6340× 10−3ı 1.2941× 10−5 − 2.4604× 10−6ı
ĝ(2,1,0),0 −4.8763× 10−2 − 0.1083ı −4.8763× 10−2 − 0.1083ı
ĝ(0,2,1),0 −1.1397× 10−3 + 4.0353× 10−3ı −1.1397× 10−3 + 4.0353× 10−3ı

TABLE 7. Centre-manifold reduction of the incompressible Navier–Stokes system at the
codimension-two bifurcation point in the flow past two side-by-side cylinders: computed
coefficients of the Hopf branch of the third-order normal form (4.21) (second equation)
for both ε = ε1 and ε = ε2.

and
g̃2,1(ε)= ĝ(0,1,0),0 + ĝ(0,1,0),1ε + ĝ(0,1,0),2ε2,

g̃2,2(ε)= ĝ(1,1,0),0 + ĝ(1,1,0),1ε,
g̃2,3(ε)= ĝ(2,1,0),0,
g̃2,4(ε)= ĝ(0,2,1),0.

 (4.23)

The computed values of these coefficients for ε = ε1 and ε = ε2 are listed in tables
6 and 7. Some of the computed nonlinear global modes are illustrated in figure 9
by means of the u component of the inherent velocity field. The first-order base flow
correction, i.e. the mode û(0,0,0),1, is shown in figure 9(c,d) for ε = ε1 and ε = ε2,
respectively. In particular, the correction induced by a reduction of the gap size, i.e. a
negative ε2 variation, results in a reduction of the velocity through the gap, which
is consistent with the results reported by Mizushima & Ino (2008). The remaining
nonlinear modes in figure 9 are associated with other terms such as the second-order
coupling term a1a2 illustrated in figure 9(f ) and the third-order terms a3

1 and a1a2
2

illustrated in figures 9(g) and 9(h), respectively. All of these modes do not depend
on the choice of the bifurcation parameter.
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FIGURE 10. Streamlines of the steady asymmetric flow past two side-by-side circular
cylinders for g = 0.72 and Re = Re0: comparison between DNS (a) and centre-manifold
approximation (b) at r̄= 3. The same contour levels are employed in both figures.

It is worthwhile to note that the proposed algorithm can provide directly the normal
form unfolded with respect to those symmetries that are not explicitly enforced in the
dynamical system model. With respect to the case where the symmetry condition is
exactly satisfied, additional normal-form coefficients are found slightly different from
zero. This can be shown by examining the pure pitchfork branch of the considered
codimension-two bifurcation. Setting a2 = 0 in the first equation of (4.21) we obtain

ȧ1 = g̃1,1(ε)+ g̃1,2(ε)a1 + g̃1,3(ε)a2
1 + g̃1,6(ε)a3

1. (4.24)

The above normal form indicates that the pitchfork branch is imperfect. Indeed
the inherent symmetry with respect to the x-axis is not enforced at the discrete
level and small numerical errors are responsible for the coefficients g̃1,1(ε) and
g̃1,3(ε) being different from zero. However, in the neighbourhood of the bifurcation
point with |ε| � 1, these terms are negligible compared with the other terms of
(4.24) and they can be discarded, thus recovering the normal form of the generic
pitchfork. Asymptotically (4.24) reduces to a third-order polynomial equation in the
unknown a1: the three related roots ā1,0, ā1,− and ā1,+ can be interpreted as perturbed
solutions of the generic normal form due to the small deviation from the exact
symmetric condition. Indeed for ε2= 0.005, (g= 0.72), we obtain ā1,0= 1.161× 10−4,
ā1,− = −0.2164 and ā1,+ = 0.2166 to be compared with the values ā1,0 = 0 and
ā1,± = ±0.2165 computed using the generic normal form. The unfolded solution
ā1,+ can be used to approximate the steady asymmetric flow arising through the
pitchfork bifurcation. In figure 10 the centre-manifold reconstructed flow field at
r̄ = 3 is compared with the asymmetric steady solution of (4.1) computed by means
of Newton iterations for Re= Re0 and g= 0.72. The same stream-function levels are
employed in figure 10(a,b). Both the small gap-flow deflection and the recirculating
flow structures behind the two cylinders are accurately captured and a very good
agreement is obtained in terms of the aerodynamic coefficients which are listed in
table 8.

4.3.1. Codimension-two normal-form analysis
The obtained results can be used to investigate the phase–space portrait of the

considered flow in the neighbourhood of its codimension-two bifurcation point. Based
on classical bifurcation theory (Kuznetsov 1998), the following third-order normal
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CD,1 CD,2 CL,1 CL,2

DNS 1.473 1.488 0.389 −0.396
Centre-manifold 1.472 1.489 0.388 −0.396

TABLE 8. Steady asymmetrical flow for Re = Re0 and g = 0.72: aerodynamic force
coefficients of the two cylinders. Comparison between the solution of the steady
Navier–Stokes equations (DNS) and its centre-manifold approximation.

form is derived from (4.21):

ḃ= b(λ1(ε1, ε2)+ γ11b2 + γ12r2),

ṙ= r(λ2(ε1, ε2)+ γ21b2 + γ22r2),

φ̇ =ω(ε1, ε2),

 (4.25)

where b = |a1| and the polar-coordinate transformation a2(t) = r(t)eiφ(t) has been
introduced. In the derivation of the above equations, the generic form of the pitchfork
bifurcation is assumed, thus making possible to replace a1 by its modulus. The
coefficients γij are simply given by γ11= ĝ(3,0,0),0, γ12= ĝ(1,1,1),0, γ21=Re{ĝ(2,1,0),0} and
γ22 =Re{ĝ(0,2,1),0}. Their values do not depend on the definition of ε. In contrast, the
remaining coefficients in (4.25) are assumed to depend linearly on both bifurcation
parameters:

λ1(ε1, ε2)= ĝ(ε1)
(1,0,0),1ε1 + ĝ(ε2)

(1,0,0),1ε2,

λ2(ε1, ε2)=Re{ĝ(ε1)
(0,1,0),1}ε1 +Re{ĝ(ε2)

(0,1,0),1}ε2,

ω(ε1, ε2)= Im{ĝ(0,1,0),0} + Im{ĝ(ε1)
(0,1,0),1}ε1 + Im{ĝ(ε2)

(0,1,0),1}ε2,

 (4.26)

where the notation ĝ(εi)
m,p has been introduced to distinguish among normal-form

coefficients which are referred to a different definition of ε. These coefficients
provide indeed a linear estimate to the growth rate and frequency of the IP and AS
modes when moving away from criticality. A comparison of the growth rate and
frequency computed by the full linearized system and those obtained by the normal
form is illustrated in figure 11 for g= 0.7 and Re ∈ [55.5, 61], showing a good fit of
the actual eigenvalues, see figure 11(a,b).

The bifurcation diagram associated with the low-dimensional system (4.25) is
only determined by the first two equations, since the last equation in (4.25) simply
describes a rotation at the constant angular velocity ω in the plane b = 0 of the
inherent three-dimensional phase space. Since γ11γ22 > 0, the present situation
corresponds to the ‘simple’ case in the classification reported by Kuznetsov (1998).
For such case, the planar system for (b, r) can be conveniently rewritten as follows:

dξ1

dτ
= ξ1(λ1 − ξ1 − θξ2),

dξ2

dτ
= ξ2(λ2 − δξ1 − ξ2),

 (4.27)

where the time has been rescaled with τ = 2t and the new phase variables
ξ1(τ ) = −γ11b2 and ξ2(τ ) = −γ22r2 have been introduced along with the coefficients
θ = γ12/γ22 and δ = γ21/γ11 for convenience. Let us denote by ξ the reduced state
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FIGURE 11. Computed eigenvalues σ = λ+ ıω associated with the IP (black lines) and
AS modes (grey lines) for g= 0.7 and Re∈ [55.5, 61]: growth rate λ (a) and frequency ω
(b). Comparison between linear stability results (round dots) and normal-form calculations
in (4.21) (continuous lines).

vector ξ = (ξ1, ξ2)
T. For all values of the parameters the system (4.27) admits the

trivial equilibrium at the origin, i.e. ξ0 = 0 which corresponds to the symmetric
steady base flow. Two other trivial equilibria are found that are ξ1 = (λ1, 0)T and
ξ2 = (0, λ2)

T which correspond to the asymmetric steady flow and to the in-phase
vortex shedding limit cycle, respectively. In addition, a third non-trivial equilibrium
ξ3 may also exist in a small neighbourhood of the origin and for sufficiently small
values of the parameters. This latter solution corresponds to an asymmetric periodic
solution ξ3 being defined as

ξ3 =
(
−λ1 − θλ2

θδ − 1
+O(ε2

1 + ε2
2),

δλ1 − λ2

θδ − 1
+O(ε2

1 + ε2
2)

)T

. (4.28)

It is worthwhile to note that the above expression is valid since the condition
θδ − 1 6= 0 holds. Based on the computed values of the normal-form coefficients,
the system (4.27) falls in the subcase ‘I’ of the classification reported by Kuznetsov
(1998, § 8.6.2) and according to the related bifurcation diagram, the parameter plane
in the neighbourhood of the codimension-two bifurcation point can be partitioned
into six regions which are illustrated in figure 12. In the same figure the two thick
lines represent the neutral curve branches associated with the AS and the IP modes.
For each region a different phase-portrait is described:

(i) only ξ0 exists which is a stable node;
(ii) both ξ0 and ξ1 exist, ξ0 being a saddle and ξ1 a stable node;

(iii) both ξ0 and ξ2 exist, ξ0 being a saddle and ξ2 a stable node;
(iv) three equilibria exist: ξ0, ξ1 and ξ2, ξ0 being a source, ξ1 a saddle and ξ2 a stable

node;
(v) three equilibria exist: ξ0, ξ1 and ξ2, ξ0 being a source, ξ2 a saddle and ξ1 a stable

node;
(vi) four equilibria exist: ξ0, ξ1, ξ2 and ξ3, ξ0 being a source, ξ1 and ξ2 stable nodes

and ξ3 a saddle.
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FIGURE 12. Bifurcation diagram resulting from the analysis of the normal-form (4.25)
related to the considered codimension-two pitchfork-Hopf bifurcation (white dot) in the
flow past two side-by-side cylinders. Black thick lines indicate the neutral branches
associated with the AS and IP eigenmodes.

With reference to figure 12 a small discrepancy is observed in the position of
region (v) with respect to the results obtained from linear stability computations.
However this discrepancy should be interpreted based on the local character of the
above analysis. Notwithstanding its local validity, the above diagram still provides a
rationale to better understand the behaviour of the flow for a fixed gap spacing of
g= 0.7, close to the instability threshold. Indeed it is known that higher-codimension
bifurcations play an important role as ‘organizing centres’ of the system dynamics in
their neighbourhood in the parameter space (Wiggins 2003). For g = 0.7, the linear
stability analysis indicates that the primary flow instability is driven by the AS mode
for Re> 55.94 while the IP mode becomes unstable for Re> 57.53; this is illustrated
in figure 11(a) and in the diagram of figure 12. For Re= 57 the DNS shows that the
fluid system asymptotically evolves to the steady asymmetric flow, as illustrated by
the time traces of the drag coefficients of the two cylinders in figure 13(a). Therefore,
the supercritical pitchfork branch defines the primary bifurcation on the symmetric
equilibrium and further increasing the Reynolds number secondary instabilities are
expected to develop on top of the asymmetric steady flow. However, for Re = 60
the in-phase vortex-shedding limit cycle occurs, figure 13(b). Such a behaviour is
indeed consistent with the phase-portrait described for the considered values of
the parameters (region (vi)) for which, both the in-phase limit-cycle (ξ2) and the
asymmetric steady flow (ξ1) are stable nodes. The bifurcation scenario is confirmed
by means of additional DNS for different values of the parameters. In particular, for
g = 0.75 and Re = 60, when adding a small asymmetric perturbation to the base
flow, which is used as the initial condition of our simulations, the flow converges
to the asymmetric steady state whereas for the same value of g, the primary flow
instability is driven by the IP mode, figure 12. For such case the time traces of
the drag coefficients are reported in figure 13(c). In particular, the small oscillations
which are observed during the transient can be interpreted as the system trajectory
approaching the saddle point ξ3.
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FIGURE 13. DNS of the flow past two side-by-side cylinders: time history of the drag
coefficients of the two cylinders: (a) g= 0.7, Re= 57; (b) g= 0.7, Re= 60; (c) g= 0.75,
Re= 60.

5. Conclusion
In this paper a systematic approach to compute the centre-manifold reduction

of flows undergoing complex bifurcations has been described and applied to the
incompressible Navier–Stokes equations. The method relies on a power-series
expansion in the renormalized critical mode amplitudes and in the bifurcation
parameter, leading to the solution of a sequence of linear systems. The reduction
process results in a low-dimensional model of the bifurcated system dynamics based
on its normal-form description. The main advantage of the proposed technique with
respect to the classical multi-scale approach of hydrodynamic stability is that it can
be easily coded in a rather general form for large-scale applications and up to an
arbitrary order of truncation, without any need to resort to symbolic computations.
At the same time it allows for a general definition of the centre subspace and of the
bifurcation parameter. Useful guidelines for its numerical implementation have been
provided within the paper.

The proposed algorithm has been validated on the first Hopf bifurcation of the
cylinder wake by comparing the obtained results with those computed by other
authors as well as with DNS data. Then, the technique has been used to compute
the normal-form coefficients of the pitchfork-Hopf codimension-two bifurcation
characterizing the flow past two side-by-side cylinders where, besides the Reynolds
number, the geometrical parameter defined by the gap spacing between the two
cylinder surfaces is involved. For such case the phase portrait derived from the
analysis of the normal form provides a rationale to interpret the flow behaviour
observed in the DNS which cannot be completely explained based on the linear
stability results only.

The convergence of the amplitude power series with respect to the bifurcation
parameter has also been investigated for the first considered example, i.e. the cylinder
wake. In this case, it is shown that the estimated radius of convergence of the
amplitude power series remains vanishingly small. Although such a result could
motivate some criticism on the practical need for high-order normal forms, it cannot
be straightforwardly generalized to all flow configurations. Moreover, since it provides
the possibility of easily computing the bifurcation normal form at increasing orders,
the proposed method represents a useful tool to investigate the convergence properties
of the centre-manifold reduction for different flow configurations.

The observed behaviour for the cylinder-wake bifurcation clearly stimulates the
question of how to improve the robustness of the centre-manifold reduced-order
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system with respect to small but finite departures of the bifurcation parameter
from its critical value. From a geometrical point of view, this corresponds to the
problem of introducing a different parametrization of the dynamical system motion
on the centre manifold, with some of the properties and information associated with
the normal-form representation being unavoidably lost. However such a theoretical
investigation is beyond the scope of the present paper.

Appendix A. Derivation of (3.27) and (3.28)
Let us consider the expression (3.17) up to a given order m̄ with 2 6 m̄ 6 r̄

B
m̄∑

m=1

∑
|i|+k=m

nc∑
`=1

i`{ĝm−i+1`,p−k}` q̂i,k. (A 1)

This sum can be split into three different contributions stemming from linear terms,
terms of order m= 2, . . . , m̄− 1 and terms of order m̄:

B
nc∑
`=1

{ĝm,p}` q̂1`,0 + B
m̄−1∑
m=2

∑
|i|+k=m

nc∑
`=1

i`{ĝm−i+1`,p−k}` q̂i,k

+B
∑
|i|+k=m̄

nc∑
`=1

i`{ĝm−i+1`,p−k}` q̂i,k. (A 2)

The last contribution in the above expression can be further simplified since |m −
i + 1`| + |p − k| = 1 and two cases arise. If p − k = 1, then |m − i + 1`| = 0 which
is possible if and only if i = m + 1` since the elements of the multi-index must
be positive. Otherwise p = k and |m − i + 1`| = 1. Based on this observation, the
contribution from terms of order m̄ in (A 2) can be rewritten as follows

B
∑
|i|+k=m̄

nc∑
`=1

i`{ĝm−i+1`,p−k}` q̂i,k = B
∑
|i|=|m|

nc∑
`=1

i`{ĝm−i+1`,0}` q̂i,p

+ (1− δ0,p)B
nc∑
`=1

(m` + 1){ĝ0,1}` q̂m+1`,p−1 (A 3)

At a first glance the first term on the right-hand side of (A 3) seems to couple all of
the terms with |i| = |m|. However, it can be noted that

|i|= |m| ⇒ i=
{

m or
m− 1q + 1r, q, r s.t. 1 6 q 6 nc, 1 6 r 6 nc, r 6= q, mq > 0,

(A 4)
and according to this

B
∑
|i|=|m|

nc∑
`=1

i` {ĝm−i+1`,0}` q̂i,p

= B

 nc∑
`=1

m` {ĝ1`,0}` q̂m,p +
nc∑

q=1
mq>0

nc∑
r=1
r 6=q

nc∑
`=1

(m` − δq,` + δr,`) {ĝ1q−1r+1`,0}` q̂m−1q+1r,p
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= B

 nc∑
`=1

m` {ĝ1`,0}` q̂m,p +
nc∑

q=1
mq>0

nc∑
r=1
r 6=q

nc∑
`=1

δr,`(m` − δq,` + δr,`) {ĝ1q,0}` q̂m−1q+1r,p



= B

 nc∑
`=1

m` {ĝ1`,0}` q̂m,p +
nc∑

q=1
mq>0

nc∑
r=1
r 6=q

(mr + 1){ĝ1q,0}r q̂m−1q+1r,p



= B

 nc∑
`=1

m` {ĝ1`,0}` q̂m,p +
nc∑

q=1
mq>0

nc∑
r=1
r 6=q

(mr + 1) ıωq δq,r q̂m−1q+1r,p


=
(

nc∑
`=1

ı m`ω`

)
Bq̂m,p = cmBq̂m,p, (A 5)

which demonstrates the uncoupling among terms of order m̄ having the same index
p. Therefore, the only coupling which arises is due to the second term in (A 3); this
coupling can be easily removed by computing the expansion terms at increasing order
with respect to the power of ε. By exploiting the above results in (A 2), this latter can
be rewritten as

cmBq̂m,p + B
nc∑
`=1

{ĝm,p}`q̂1`,0 + B
m̄−1∑
m=2

∑
|i|+k=m

nc∑
`=1

i`{ĝm−i+1`,p−k}`q̂i,k

+ (1− δ0,p)B
nc∑
`=1

(m` + 1){ĝ0,1}`q̂m+1`,p−1, (A 6)

where only the first two terms depend (linearly) on the unknowns q̂m,p and ĝm,p
associated with the computation of the (m, p) term of the expansion. Finally, by
substituting (A 6) in (3.9), equations (3.27) and (3.28) are thus derived.
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