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Our goal is the automated parameterizing of battery cell models for model-based evaluation of ex-

perimental databases. The manual standard approach requires cell disassembly and individual meas-
urements on the various cell components [1]. Measurement techniques include, e.g., galvanostatic in-
termittent titration technique (GITT) [2] or impedance spectroscopy [3]. They are complicated by their 
long run-time and considerably noise sensitivity. 

Bayesian algorithms can directly incorporate the inherent uncertainties of model and measurement. 
The standard approach for parameterization is Markov-Chain Monte Carlo (MCMC) [4]. But with 1+1D 
battery cell models, their simulation time is too large for the tens of thousands of required samples. 

In this contribution, we extend Bayesian Optimization (BOLFI) [5] with Expectation Propagation (EP) 
[6] to create a black-box optimizer suitable for modular 1+1D battery cell models. The algorithm can 
exploit a partitioning of the experimental data into features that is motivated by physico-chemcial under-
standing. However, the algorithm does not rely on approximative formulas and can be applied to a broad 
range of techniques. This approach reduces the number of required simulations for four parameters 
from 100,000 [4] to about 500. Furthermore, we can estimate parameter uncertainties and inter-depend-
encies. As an example, we process GITT full-cell measurements of lithium-ion batteries to non-destruc-
tively characterize the diffusivities of both electrodes at the same time. 

 
Figure 1: Scheme of Bayesian Optimization 

 
Figure 2: automated fitting of anode diffusivity to GITT 
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