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Abstract

This paper deals with the identifiability of an ARMAX system when the correlation

approach is adopted. In general, identifiability depends on both the parametrization

of the model class and on the informativeness of the data. Here, we focus on the

latter aspect and, therefore, a full-order model class is considered. The main goal

is to provide a counterexample to the uniqueness of the asymptotic estimate when a

persistently exciting input is adopted. This shows the somehow counterintuitive fact

that the identifiability of ARMAX systems within the correlation approach is related

to the “color” of the input.

1 Introduction

Consider the problem of identifying a model for the ARMAX system

So : Ao(z−1)y(t) = Bo(z−1)u(t) + Co(z−1)w(t), w(t) ∼WN(0, λ2w),
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based on a data record {u(1), y(1), . . . , u(N), y(N)} collected from So. Here,

WN(0, λ2w) denotes a white noise with zero mean and variance λ2w. It is also assumed

that w(t) is i.i.d. and that it has bounded moments of order 4 + δ for some δ > 0.

Moreover, w(t) is uncorrelated with u(t).

Identification is performed within the class of ARMAX(na,nb,nc) models

Mϑ =

{
y(t) =

B(z−1, ϑ)

A(z−1, ϑ)
u(t) +

C(z−1, ϑ)

A(z−1, ϑ)
ξ(t), ξ(t) ∼WN(0, λ2), ϑ ∈ Θ

}
,

where ϑ = [a1 · · · ana b1 · · · bnb
c1 · · · cnc ]

′,

A(z−1, ϑ) = 1 + a1z
−1 + . . .+ anaz

−na ,

B(z−1, ϑ) = b1z
−1 + . . .+ bnb

z−nb ,

C(z−1, ϑ) = 1 + c1z
−1 + . . .+ cncz

−nc ,

and Θ ⊆ Rn, n = na+nb+nc, is the set of the parameter vectors such that the roots of

znaA(z−1, ϑ) and of zncC(z−1, ϑ) belong to the interior of the unit circle in the complex

domain. We assume that:

1. So ∈ Mϑ, that is, ∃ ϑo ∈ Θ such that Ao(z−1) = A(z−1, ϑo), Bo(z−1) =

B(z−1, ϑo), and Co(z−1) = C(z−1, ϑo) (full-order parametrization);

2. there is no common factor to all of A(z−1, ϑo), B(z−1, ϑo), and C(z−1, ϑo).

As for the fitting criterion, consider the so-called correlation approach, which aims

at finding a model whose associated prediction error is as white as possible, [10, 13].

Precisely, letting

ŷ(t, ϑ) =

(
1− A(z−1, ϑ)

C(z−1, ϑ)

)
y(t) +

B(z−1, ϑ)

C(z−1, ϑ)
u(t)

be the optimal 1-step linear predictor for the model corresponding to ϑ, the parameter

estimate ϑ̂N is computed as the solution of the following system of equations1:

1

N

N∑
t=1

ε(t, ϑ)ζ(t, ϑ) = 0,

1If the solution is not unique, it is assumed that a tie-break rule is introduced.
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where ε(t, ϑ) = y(t) − ŷ(t, ϑ) is the prediction error and ζ(t, ϑ) is a n-long correlation

vector constructed based on data up to time t − 1. For instance, [10, 13], customary

choices for ARMAX models are

ζ(t, ϑ) = [y(t− 1) · · · y(t− na) u(t− 1) · · · u(t− nb) ε(t− 1, ϑ) · · · ε(t− nc, ϑ)]′, (1)

ζ(t, ϑ) = [u(t− 1) · · · u(t− na − nb) ε(t− 1, ϑ) · · · ε(t− nc, ϑ)]′, (2)

ζ(t, ϑ) = [u(t− 1) · · · u(t− nb) ε(t− 1, ϑ) · · · ε(t− na − nc, ϑ)]′. (3)

In the first case, ϑ̂N takes the name of pseudo-linear regression estimate, [10].

Letting Θ∗ be the set of solutions to the system of equations

E[ε(t, ϑ)ζ(t, ϑ)] = 0, (4)

it can be proven under mild assumptions that the distance between ϑ̂N and Θ∗ tends

to zero as N →∞, [10, 13]. Since ϑo belongs to Θ∗ as it can be easily verified, if Θ∗ is

a singleton, then ϑ̂N → ϑo, i.e. the estimated model tends to the true data-generating

system. If instead Θ∗ contains multiple points, the identifiability of ϑo is no longer

guaranteed, and this may cause severe problems in the assessment of the quality of the

obtained model as shown in [7, 8, 6, 9].

In general, the conditions under which Θ∗ is a singleton depend both on the model

class parametrization (roughly speaking, Θ∗ may not be a singleton because of over-

parametrization – see [1, 13, 10, 3, 2] for results along this line) and on the informa-

tiveness of the data (if u(t) = 0, ∀t, then it is clear that bo1 · · · bonb
cannot be retrieved

by any identification algorithm). In the present setup, however, the informativeness

of data is the sole significant aspect, being the model class globally identifiable at ϑo

according to [10, Definition 4.6].

For PEM (Prediction Error Methods) identification, the problem of the informative-

ness of the data has been studied in full detail, leading to the concepts of informative

enough data sequence and persistent excitation, [10, Definitions 8.1 and 13.2], which

give quite general conditions for Θ∗ to be a singleton. Moreover, in [5], methods have

been developed to design the input so as to reduce the presence of local minima and

improve the convergence of ϑ̂N to ϑo.
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As for the correlation approach, instead, the problem of the informativeness of data is

much more convoluted. If, on the one hand, the case of Instrumental Variable identifi-

cation, where one disregards the identification of C(z−1, ϑo), has been fully analyzed,

leading to many general conditions guaranteeing the identifiability of A(z−1, ϑo) and

B(z−1, ϑo), [12, 10], on the other hand, the case of ARMAX models here considered is

largely unexplored and, to the best of our knowledge, partial achievements are available

only. The following theorem, taken from [4], is one of the few available results.

Theorem 1 Let

ζ(t, ϑ) = [u(t− 1) · · · u(t− na − nb) ε(t− 1, ϑ) · · · ε(t− nc, ϑ)]′.

In the present setup, if u(t) ∼WN(0, σ2) with σ2 > 0, then Θ∗ = {ϑo}.

When the input is not white, one might expect that the same conclusion of Theorem 1

can be drawn by assuming that the input is persistently exciting2, in full analogy with

what happens in PEM identification. This leads to the following conjecture.

Conjecture 1 Let

ζ(t, ϑ) = [u(t− 1) · · · u(t− na − nb) ε(t− 1, ϑ) · · · ε(t− nc, ϑ)]′.

In the present setup, if u(t) is persistently exciting, then Θ∗ = {ϑo}.

In the next Section 2, we prove that Conjecture 1 is false by giving a counterexample

where Θ∗ is not a singleton even though u(t) is persistently exciting. Moreover, the

counterexample shows that Θ∗ may not be a singleton also when either the correlation

vector (1) or (3) is used. This shows that the identifiability of an ARMAX system

within the correlation approach may depend on the “color” of the input, even for stan-

dard choices of the correlation vector.

Paper structure. The counterexample is constructed and discussed in Section 2.

Some conclusions are eventually drawn in Section 3.

2Note that, thanks to the uncorrelation with w(t), the persistent excitation property implies that the

collected data sequence is also informative enough, see [10, Theorem 13.1].

4



2 A counterexample to Conjecture 1

Consider the ARMAX(0,1,3) models with A(z−1, ϑ) = 1, B(z−1, ϑ) = bz−1,

C(z−1, ϑ) = 1 + c1z
−1 + c2z

−2 + c3z
−3, and ϑ = [b c1 c2 c3]

′. The data-generating

system is

So : y(t) = bou(t− 1) + w(t) + co1w(t− 1) + co2w(t− 2) + co3w(t− 3).

where w(t) ∼ WN(0, 1). We let u(t) = e(t) + e(t − 1) = (1 + z−1)e(t), where e(t) ∼

WN(0, 1) and e(t) is independent of w(t). Note that u(t) is a persistently exciting

input. Finally, we consider

ζ(t, ϑ) = [u(t− 1) ε(t− 1, ϑ) · · · ε(t− nc, ϑ)]′ (5)

as correlation vector. Being na = 0, (5) simultaneously encompasses the three cases in

(1)–(3).

In the current setting, the system of equations (4) writes as

E[ε(t, ϑ)u(t− 1)] = 0, (6)

E[ε(t, ϑ)ε(t− i, ϑ)] = 0 i = 1, . . . , 3. (7)

The aim of this section is to show that equations (6) and (7) admit for some ϑo a solution

ϑ∗ which is not equal to ϑo. The counterexample is built indirectly: the parameter

vector ϑ∗ is fixed, and a ϑo not equal to ϑ∗ is sought such that ϑ∗ is a solution to (6)

and (7) when data are generated by the So corresponding to ϑo. It follows that, for the

found So, equations (6) and (7) admit at least two different solutions, namely, ϑ = ϑo

and ϑ = ϑ∗.

Preliminarily, note that, given a ϑ, the polynomial C(z−1, ϑ) can be represented in the

form

C(z−1, ϑ) = (1 + αz−1)(1 + βz−1)(1 + γz−1), (8)

where α, β, and γ may be complex. In the following, we will denote by ρ the vector

[b α β γ]′. Note that, given ρ, there is a unique ϑ such that equation (8) holds true,

while, given ϑ, vector ρ is uniquely determined up to a permutation of α, β and γ.
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Fix a real-valued ρ∗ = [b∗ α∗ β∗ γ∗]′ such that α∗ + β∗ + γ∗ = 2, |α∗| < 1, |β∗| < 1,

|γ∗| < 1 and α∗ 6= β∗ 6= γ∗, and let ϑ∗ be the corresponding parameter vector. We aim

at finding a ϑo not equal to ϑ∗ such that (6) and (7) admit this ϑ∗ as a solution.

First, consider equation (6). In the current example, the prediction error in correspon-

dence of ϑ∗ can be written as

ε(t, ϑ∗) =
(bo − b∗)
C(z−1, ϑ∗)

u(t− 1) +
C(z−1, ϑo)

C(z−1, ϑ∗)
w(t),

and, owning to the independence of u(t) and w(t), equation (6) writes

E
[ (bo − b∗)
C(z−1, ϑ∗)

u(t− 1) · u(t− 1)
]

= 0. (9)

The transfer function 1/C(z−1, ϑ∗) admits the following series expansion

1

C(z−1, ϑ∗)
=

1

(1 + α∗z−1)(1 + β∗z−1)(1 + γ∗z−1)

= 1− (α∗ + β∗ + γ∗)z−1 +
∞∑
k=2

hkz
−k

= 1− 2z−1 +
∞∑
k=2

hkz
−k,

where hk’s are suitable coefficients depending on α∗, β∗, γ∗. By substituting the latter

expression in the left-hand-side of equation (9), we obtain

E
[
(bo − b∗)

(
u(t− 1)− 2u(t− 2) +

∞∑
k=3

hk−1u(t− k)
)
· u(t− 1)

]
= (bo − b∗)

(
E[u(t− 1)2]− 2E[u(t− 2)u(t− 1)] +

∞∑
k=3

hk−1E[u(t− k)u(t− 1)]
)
,

which is indeed equal to 0 ∀ bo, because E[u(t − 1)2] = 2, E[u(t − 2)u(t − 1)] = 1

and
∑∞

k=3 hk−1E[u(t − k)u(t − 1)] = 0 (recall that u(t) = e(t) + e(t − 1)). Hence, the

conclusion is that equation (6) always admits ϑ∗ as a solution whatever ϑo is.

Turn now to the equations in (7). Since u(t) is independent of w(t), they can be

rewritten as

E
[ (bo − b∗)
C(z−1, ϑ∗)

u(t− 1) · (bo − b∗)
C(z−1, ϑ∗)

u(t− 1− i)
]

+ (10)

E
[C(z−1, ϑo)

C(z−1, ϑ∗)
w(t) · C(z−1, ϑo)

C(z−1, ϑ∗)
w(t− i)

]
= 0, i = 1, . . . , 3.

6



Taking into account the representation (8), the equations in (10) can be seen as a

system of equations in the unknown ρo, namely,

(bo − b∗)2


v1

v2

v3

 =


f1(α

o, βo, γo)

f2(α
o, βo, γo)

f3(α
o, βo, γo)

 , (11)

where we let

vi = E
[ 1

C(z−1, ϑ∗)
u(t− 1) · 1

C(z−1, ϑ∗)
u(t− 1− i)

]
and

fi(α
o, βo, γo) = −E

[C(z−1, ϑo)

C(z−1, ϑ∗)
w(t) · C(z−1, ϑo)

C(z−1, ϑ∗)
w(t− i)

]
.

Clearly, (11) is satisfied by ρo = ρ∗, which amounts to taking ϑo = ϑ∗.

Suppose first that [v1 v2 v3]
′ = 0.

In this case, when (αo, βo, γo) = (α∗, β∗, γ∗), (11) is satisfied no matter of the value of

bo. This means that (11) are satisfied e.g. by taking ρo = [bo α∗ β∗ γ∗]′ with bo = b∗+1.

Clearly, ρo 6= ρ∗ and it corresponds to a ϑo 6= ϑ∗, because bo = b∗ + 1 6= b∗.

Suppose now that [v1 v2 v3]
′ 6= 0.

The right hand side of (11) is a mapping from R3 to R3 that is continuously differen-

tiable (the coefficients of C(z−1, ϑo) “smoothly” depend on αo, βo, and γo, [10]). It

holds that

∂f1
∂αo

(α∗, β∗, γ∗) = E[
z−1

1 + α∗z−1
w(t) · w(t− 1)] = 1

∂f2
∂αo

(α∗, β∗, γ∗) = E[
z−1

1 + α∗z−1
w(t) · w(t− 2)] = −α∗

∂f3
∂αo

(α∗, β∗, γ∗) = E[
z−1

1 + α∗z−1
w(t) · w(t− 3)] = (α∗)2,

and, similarly,

∂f1
∂βo (α∗, β∗, γ∗) = 1 ∂f1

∂γo (α∗, β∗, γ∗) = 1

∂f2
∂βo (α∗, β∗, γ∗) = −β∗ ∂f2

∂γo (α∗, β∗, γ∗) = −γ∗

∂f3
∂βo (α∗, β∗, γ∗) = (β∗)2 ∂f1

∂γo (α∗, β∗, γ∗) = (γ∗)2.
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Hence, the Jacobian of [f1(α
o, βo, γo) f2(α

o, βo, γo) f3(α
o, βo, γo)]′ evaluated in

(α∗, β∗, γ∗) is given as follows:
∂f1
∂αo

∂f1
∂βo

∂f1
∂γo

∂f2
∂αo

∂f2
∂βo

∂f2
∂γo

∂f3
∂αo

∂f3
∂βo

∂f3
∂γo


(α∗,β∗,γ∗)

=


1 1 1

−α∗ −β∗ −γ∗

(α∗)2 (β∗)2 (γ∗)2

 ,
and is nonsingular because it is a Vandermonde matrix with α∗ 6= β∗ 6= γ∗. Eventually,

we have that 
f1(α

∗, β∗, γ∗)

f2(α
∗, β∗, γ∗)

f3(α
∗, β∗, γ∗)

 =


E[w(t)w(t− 1)]

E[w(t)w(t− 2)]

E[w(t)w(t− 3)]

 =


0

0

0

 .
The inverse function theorem – see [11, Theorem 9.24] – can be now invoked to assert

that there is an open neighborhood U of [α∗ β∗ γ∗]′ and an open neighborhood V of

[0 0 0]′ such that the mapping [f1(α
o, βo, γo) f2(α

o, βo, γo) f3(α
o, βo, γo)]′ is one-to-one

between U and V . This implies that ∀ [v1 v2 v3]
′ ∈ R3, ∀ ε ≥ 0, ε small enough,

∃ [αo βo γo]′ such that 
f1(α

o, βo, γo)

f2(α
o, βo, γo)

f3(α
o, βo, γo)

 = ε


v1

v2

v3

 .
Hence, by letting bo = b∗ ±

√
ε, ε > 0 small enough, a ρo = [bo αo βo γo]′ can be found

such that the system of equations (11) is satisfied and ρo 6= ρ∗. This ρo corresponds to

a ϑo that is different from ϑ∗ because bo = b∗ ±
√
ε 6= b∗.

Summarizing, for the given ϑ∗, a ϑo 6= ϑ∗ can be found such that equations (6) and

(7) admit ϑ∗ as a solution. Since ϑo is a solution to (6) and (7) too, this proves that

Θ∗ is not a singleton when data are generated in correspondence of the found ϑo.

Remark 1 It is perhaps worth noticing that the found ϑo is not an isolated singularity.

As a matter of fact, the given counterexample shows that for the input u(t) = e(t) +

e(t− 1), e(t) ∼WN(0, 1), there is a whole set of ϑo’s for which Θ∗ is not a singleton.

This set is obtained by considering all possible values of ε in the above construction and

by letting ρ∗ vary in all possible ways under the conditions α∗ + β∗ + γ∗ = 2, |α∗| < 1,
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|β∗| < 1, |γ∗| < 1, and α∗ 6= β∗ 6= γ∗. Also, the given argument can be easily extended

to the case where u(t) = e(t) + ke(t− 1), e(t) ∼WN(0, λ2e).

3 Conclusions

In this paper, we considered the identification of an ARMAX system by means of a full-

order model class and showed that identifiability may be not attained despite the use of

a persistently exciting input. The counterexample holds true in spite of the choice of the

correlation vector among some standard options, including the most common pseudo-

linear regression. Though the specificity of the counterexample does not allow one to

draw general conclusions about the applicability of the correlation approach, still, we

believe, this paper reveals some difficulties of this identification method that perhaps

deserve further investigation. To the best of our knowledge, whether a correlation

vector exists guaranteeing identifiability under a persistent excitation condition remains

an open problem. Similarly, the conditions securing identifiability for the correlation

vectors considered in this paper are not clear. The hope is that this paper may foster

further research along these directions.
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