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In the last decade, extended efforts have been poured into energy efficiency. Several energy consumption
datasets were henceforth published, with each dataset varying in properties, uses and limitations. For
instance, building energy consumption patterns are sourced from several sources, including ambient con-
ditions, user occupancy, weather conditions and consumer preferences. Thus, a proper understanding of
the available datasets will result in a strong basis for improving energy efficiency. Starting from the
necessity of a comprehensive review of existing databases, this work is proposed to survey, study and
visualize the numerical and methodological nature of building energy consumption datasets. A total of
thirty-one databases are examined and compared in terms of several features, such as the geographical
location, period of collection, number of monitored households, sampling rate of collected data, number
of sub-metered appliances, extracted features and release date. Furthermore, data collection platforms
and related modules for data transmission, data storage and privacy concerns used in different datasets
are also analyzed and compared. Based on the analytical study, a novel dataset has been presented,
namely Qatar university dataset, which is an annotated power consumption anomaly detection dataset.
The latter will be very useful for testing and training anomaly detection algorithms, and hence reducing
wasted energy. Moving forward, a set of recommendations is derived to improve datasets collection, such
as the adoption of multi-modal data collection, smart Internet of things data collection, low-cost hard-
ware platforms and privacy and security mechanisms. In addition, future directions to improve datasets
exploitation and utilization are identified, including the use of novel machine learning solutions, innova-
tive visualization tools and explainable mobile recommender systems. Accordingly, a novel visualization
strategy based on using power consumption micro-moments has been presented along with an example
of deploying machine learning algorithms to classify the micro-moment classes and identify anomalous
power usage.
� 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
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1. Introduction

Recent studies have shown that buildings are in charge of more
than 40% of power consumption demand and greenhouse gas
emissions around the world. Indeed, this steady growth in energy
consumption has been closely tied to the increasing number of
population and the rising levels of prosperity [1,2]. Moreover, even
climate conditions in certain regions of the world obliged house-
holds to call for more energy for heating, cooling, cooking and
refrigeration needs. Business buildings, principally offices and uni-
versity structures, are also viewed as structures exhibiting high
power consumption [3,4]. Consequently, the expansion of power
usage and carbon emission as well as expensive energy prices in
the above mentioned environments has made energy preserving
a vital goal for various public authorities of all governments in
order to accomplish efficient energy reduction [5–9].

The building energy sector has recently attract the attention of
various public energy efficiency initiatives to accomplish greater
energy sustainability. Additionally, a clear correlation is found
between household energy consumption and user behavior [10–
14]. Every day, new appliances are installed and used in house-
holds resulting in an incredible rise of power demand. Monitoring
the power usage of these appliances is dependably the initial step
towards energy preserving. From this point of view, understanding
and controlling user consumption behavior is also a key parameter
to help householders reduce energy costs. According to the ongo-
ing evolution of the Internet of Things (IoT), the use of smart
meters for monitoring electricity consumption is expanding expo-
nentially [15–17]. The up-and-coming generation of energy saving
systems should be more effective, easy to follow and more chal-
lenging in order to improve end-user behavior.

As of now, as well as other research areas, energy, environment
and sustainable development research topics are encountering the
urgency of developing openly accessible datasets. In fact, power
consumption datasets progressively come to be more consistent
when estimating the precision of power monitoring techniques
and perceiving how good they may behave under realistic circum-
stances. Consequently, checking the precision of outputs in real
scenarios is critical in this research area [18–20]. Moreover, simu-
lated database does not reasonably fit realistic datasets as ‘‘an
experimental database or repository would ordinarily have unpre-
dictable and unexplained complication nature that is laboriously
anticipated and most of the time can be laboriously hard to man-
age [21,22]”. On that account, Energy scientists have proved that
it is important to have open access databases that provide aggre-
gated power consumption as well as appliance based consumption
for the various devices that constitute the overall consumption
[23].

Moreover, end-users behavior is responsible of wasting more
than 20% of the total energy consumed in buildings, and hence it
is a key element in energy consumption [24–26]. Therefore, it is
of paramount importance to: (i) design real consumption datasets;
(ii) deploy novel platforms and smart-meters to collect granular
and appliance-specific data, which have the means or incentive
for sharing consumption data with end-users; and (iii) develop
tools that help end-users in understanding their energy consump-
tion footprints, such as innovative visualizations, and further
implement novel strategies that help them in improving their
behavior and reduce wasted energy [27], e.g. via deploying recom-
mender systems. In this context, seeking to study how to save
energy and understand power consumption behaviors in buildings,
various datasets have been collected globally. They provide a big
amount of information and create an immense quantity of readings
about daily power usage and user behavior. Therefore, the use of
machine learning (ML) algorithms becomes essential for handling
large-scale datasets and extracting meaningful features from col-
lected data. This can assist in many applications including forecast-
ing power demand, energy efficiency and electricity preserving,
appliance recognition, cost prediction, and other things in relation
to energy usage [28–30]. In this respect, any ML algorithm for
building power consumption deals with information drawn from
smart meters and solar panels during the different periods of the
day. This huge quantity of data including multivariate time series
is of utmost importance to ML algorithms because future usage
can be effectively anticipated [31–33]. In other words, ML algo-
rithms can forecast such data and help in developing energy effi-
ciency frameworks proficiently.

Extremely inspired by the rising relevance of public datasets,
we opted to give a general review of up to 31 existing datasets in
the field of building power consumption. Presently, householders,
firms and public authorities are confronting difficulties to guaran-
tee the energy efficiency and reduce usage costs. The use of a large
number of appliances increases the energy demand, cost and car-
bon emissions as well. In this context, we present in this paper a
deep overview of various power consumption datasets, their tax-
onomy and classification. The taxonomy is adopted to examine
existing datasets, what kind of information they provide, their
applications, their benefits and their limitations. To the best of
our knowledge, this is the first framework that provides a compre-
hensive and universal survey of building energy consumption
datasets, their applications and future trends. Following, discus-
sions and important findings are presented via analyzing and com-
paring the features of existing datasets, their data collection
platforms and related modules. Moreover, a novel dataset, namely
Qatar university dataset (QUD) is proposed to answer the chal-
lenges and issues raised from the analytical study. Afterward, valu-
able future orientations to improve the quality of power
consumption datasets and enrich their content are discussed, in
which a set of recommendations to use novel hardware devices
and platforms are described. Moreover, future direction to improve



Fig. 1. Standard representation of power consumption dataset collection system with its associated modules.
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datasets exploitation and hence improve energy saving are also
identified. To summarize, this paper presents a set of novel contri-
butions, which can be listed as follows:

� Reviewing up to 31 building power consumption datasets,
describing their properties and highlighting their pros and cons
via adopting a multi-perspective comparison based on various
parameters.

� Proposing a taxonomy of building power consumption datasets
to assess the existing repositories based on their applications an
characteristics.

� Analyzing data collection platforms used to record power con-
sumption datasets and related modules used for data transmis-
sion, data storage and privacy concerns.

� Presenting a novel dataset called QUD that responds to various
issues raised in the analysis of state-of-the-art datasets. QUD
can be used for different applications, among them detecting
of anomalous power consumption.

� Providing a list of valuable future orientations for (i) improving
datasets collection mainly through the use of novel hardware
platforms, and (ii) improving datasets exploitation via adopting
innovative tools such as visualization strategies and explainable
recommender systems.

The rest of this paper has been organized into four sections. Sec-
tion 2 reviews up to 31 existing building power consumption data-
sets and describes their usage contexts, properties, advantages and
limitations. Section 3 presents a comprehensive discussion about
the different characteristics of existing power consumption data-
sets. In addition, a novel dataset called QUD is presented which
presents new functionalities. In Section 4, challenging orientations
and future directions that should be followed in order to improve
datasets collection and enhance datasets exploitation are
described. Section 5 concludes the paper with a set of proposals
for improving the quality of power consumption datasets and
highlights future works. Finally, a list of abbreviations and nomen-
clatures used in this paper is presented in the Appendix.
2. Overview of building power consumption datasets

Several datasets can be found in literature and each one has its
specific characteristics, making it difficult to select a database for
treating energy efficiency issues. To this end, this work makes a
deep comparison between all datasets based on various specifica-
tions, such as the period and region of collection, sampling rate,
number of monitored houses, number of deployed sub-meters, col-
lected features and release date. As a matter of fact, existing real-
istic datasets are divided into two major groups; appliance-level
datasets versus aggregated-level based databases. The first group
class provides sub-meter readings of appliance-by-appliance con-
sumption. This kind of data is used for various applications, includ-
ing energy saving [34], appliance recognition [35], occupancy
detection [36,37] and preference behavior [38,39]. The second class
group focuses on collecting overall consumption profiles of differ-
ent buildings. It can be employed for energy disaggregation, energy
efficiency, and further predicting energy consumption. Fig. 1 illus-
trates a flowchart of a dataset collection process along with its
associated modules, required to pre-process, analyze and interpret
power consumption patterns. This is a general representation that
can be used for different applications.
2.1. State of the art of existing datasets

To fit realistic scenarios of daily power usage and test energy
efficiency solutions, scientists and specialists of smart energy mon-
itoring systems need power consumption databases, in which
developed algorithms can be evaluated in advance. Different data-
bases have been collected and shared publicly. Under this section
we review up to 31 power consumption datasets that are proposed
in literature in addition to our novel dataset named QUD. We spec-
ify briefly the characteristics of each dataset and registered fea-
tures in terms of current (I), voltage (V), active power (P),
reactive power (Q), apparent power (S), normalized power (Np),
energy (E), frequency (f), phase angle (/), power factor (pf), energy
cost (EC), weather (Wt), Temperature (T), humidity (H), occupancy
(O) and light level (L).

In [40–45], large-scale datasets are formed, namely, HES,
IHEPCDS, UMSM, SustData, REFIT and Dataport, respectively. While
HES, IHEPCDS, UMSM and Dataport assembled energy consump-
tions patterns at a minutely level, SustSata and REFIT reported
power usage profiles over intervals in seconds. All these databases
provide consumption records at the appliance-level for long peri-
ods of monitoring. For example; in HES and UMSM data are raised
for a period of one year, in REFIT and SustData energy patterns are
accumulated for 213 days and 1114 days, respectively. Further, dif-
ferent features are gathered during the experimental campaign,
such as I, V, P, Q, S f and T. REFIT has also the particularity of pro-
viding EC in $. Dataport repository [45] is also quite similar to
UMSM database, since it captures energy usage at the same sam-
pling intervals of 239 households but for a short collection period
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of two months. Dataport repository is also quite similar to UMSM
database, since it captures energy usage at the same sampling
intervals of more than 1200 households for a long collection per-
iod, which is more than 4 years.

In [46], OCTES is proposed, which is similar to REFIT. It records
P, / and EC ($). In addition, data are collected in a shorter investi-
gation period. A bigger examination size and information are
recorded at a comparable rate to REFIT. It lists the power consump-
tion of each house; nonetheless, other pieces of information about
the houses are not provided except their geological position. The
case study specied in this work depicts the utilization of a sauna
in one home; as though, this data isn’t shared publicly. Conse-
quently, a presumption should be put with regards to the energy
usage. In addition to power consumption, REFIT provides also read-
ings about temperature, light, and motion patterns expanded with
dwelling reviews specifying; size, age, warming sort, isolation,fab-
rication type and details about the tenants or occupants, job
description and age.

In [47], Tracebase database includes power consumption pat-
terns of various devices, which enables to examine disaggregation.
The readings are collected at a sampling rate of 1 s. This dataset can
be utilized for energy efficiency applications. However, it can not
be employed for appliance recognition, preference detection or
energy disaggregation since no data are provided about the devices
being investigated and their properties. It gathers data of 43 dis-
tinct appliances, in which every one has various recordings from
several days and several households. Furthermore, date and time
records, P and Np are provided at a sampling frequency of 8 s.

In [48–51], AMPds1, AMPds2, ECB and PSD are proposed,
respectively, which are minutely power datasets. Overall, AMPds1
and AMPds2 repositories are deemed as largely used databases,
which compiled information of one and two years, accordingly,
with a sampling rate of 1 min. In fact, energy consumption of 11
appliances is observed using 21 sub-meters. On the other side,
ECB that provides electricity consumption benchmarks of 25
domestic residents located in Victoria State in south-eastern Aus-
tralia is released. Consumption patterns were extracted from the
aggregated circuit and for individual appliances over a duration
of two years and at a sampling rate of 30 min. Further, consump-
tion footprints of device-event labels from 10 homes in Austin,
USA, were assembled.

In [52,53] authors released MEULPv.1 and MEULPv.2 datasets,
respectively. MEULPv.1 gives energy consumption readings of 12
Canadian households. Data were recorded at 1-min sampling rates
at both the aggregated and appliance levels. A total of 8 appliances
are monitored during the data collection process. Meanwhile,
MEULPv.2 provides one year monitoring of 23 households using
a sampling rate of 1 min that designates aggregated and
appliance-based consumptions as well.

In [21,54], RAE and GREEND databases are proposed, in which
data are collected at a frequency of 1 Hz. The RAE is the initial ver-
sion of an energy consumption repository that includes 1 Hz
recordings for aggregated and sub-metered levels of two house-
holds. Besides power information, T and H records from a house’s
indoor regulator are incorporated. On the other side, GREEND is
proposed to describe detailed energy consumption patterns col-
lected through an experimental campaign via assessing electricity
usage of various individual appliances in Austria and Italy. During
the collection campaign, eight households are monitored, where
each one contains up to nine different individual devices. The
power usage patterns at a device-level are gleaned at a resolution
of 1 Hz through a period of six months.

In [55–57], ECO, IWAE and DRED that capture energy informa-
tion at 1 Hz sampling intervals are nominated, accordingly. ECO is
an entire measurement campaignmanaged in order to collect com-
prehensive information of consumption patterns in six Swiss
homes through an eight months duration. During the collection
campaign, I, V, and p are collected from aggregated circuits and a
set selected appliances at a sampling frequency of 1 Hz. Through
the IAWE campaign, measurements were performed in a pilot
household with three floors in Delhi in order to measure power,
water and environmental profiles. Data are collected for a duration
of 73 days from May to August 2013. In addition, 33 sub-meters
are deployed through the whole house. DRED is publicly launched
to capture energy, occupancy patterns and environmental data of
one pilot house in the Netherlands. Sensor units are installed to
measure aggregated energy consumption and appliance level elec-
tricity usage. In fact, 12 different domestic appliances are sub-
metered at sampling intervals of 1 min while 1 Hz sampling rates
are used to gather aggregated consumption.

In [58], DISEC is launched, in which various data are collected
for 19 apartments at an Indian faculty housing complex during
284 days. Different features, such as P and Wt, are collected in a
30 s sampling intervals and then aggregated to 15 min, 30 min
and 60 min intervals. As well, Wt variations are updated through
measuring atmospheric conditions from nearly station
measurements.

In [59,60], two hourly electricity consumption datasets are pro-
posed. The first one called CRHLP includes energy patterns of 16
residential and commercial buildings monitored at every hour for
a period of one year. Additionally, solar radiation and meteorolog-
ical records are also collected. The second one, namely HUE, cap-
tures long-term energy usage profiles from five households with
a sampling frequency of 1 h. Furthermore, while device-level con-
sumptions from house 1 are collected for a period of two years
with sampling intervals of one minute, data from house 2 are
extracted for a one year period with a resolution rate of 1 Hz. In
[61], UK-DALE is proposed, which summarizes the current and
voltage profiles of three houses at sampling intervals of 16 kHz
and two houses at sampling frequencies of 1 Hz. Moreover, pat-
terns of individual devices of five other households are collected
at a sampling rate of 6 s for various periods varying from 39 to
655 days.

In [62–64], REDD, BLUED and BLOND datasets are proposed.
Energy consumption records are captured at a sampling fre-
quency of more than 10 kHz. The monitoring process, by con-
trast, is conducted for only a few weeks. For example, in
REDD, six households are monitored, where the aggregated elec-
tricity consumption is measured at a sampling rate (15 kHz).
Also, electricity consumption reviews of up to 24 devices are
monitored at sampling intervals of 0.5 Hz. Furthermore, load pat-
terns of other 20 appliances are observed at a frequency of 1 Hz
while BLUED resumes the current and voltage readings of an
individual household in Pittsburgh, Pennsylvania, USA. Data are
listed at a sampling frequency of 12 kHz over a period of one
week. For BLOND, it aims to capture continuous power con-
sumption data. It delivers voltage and current records at the
aggregated and device levels. This database includes data from
53 devices that represent 16 appliance groups. It englobes two
main repositories; (i) BLOND-50 that in turn has consumption
data obtained at sampling intervals of 50 kSps for grouped cir-
cuits and 64 kSps for individual devices; and (ii) BLOND-250 that
entails usage patterns for a period of 50 days gathered using
sampling rates of 250 kSps at the aggregated-level and 50 kSps
at the appliance-level.

In [65], PLAID expresses power consumption profiles for more
than 56 specific domestic equipments that represent about 11
appliance categories. Data are captured at a sampling frequency
of 30 kHz that is judged among the highest resolution frequency
used in existing building power consumption datasets when col-
lecting load profiles. In addition, energy consumption information
is captured for a period of three months during the summer of
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2013 and the measurement campaign has been carried on in Pitts-
burgh, Pennsylvania, USA.

ACS-F1 [66] and BERDS [67] datasets that monitor load patterns
at a comparable sampling rate are proposed. ACS-F1 records the
amount of energy used in a set of households at an appliance-
level. In this context, electricity sub-meters were employed to
measure the energy consumption of 100 house devices that repre-
sent 10 appliance classes. Power sub-metering is managed at sam-
pling intervals of 10 s for a period of only one hour. This database is
especially suitable for appliance recognition applications. On the
other side, BERDS collects energy consumption outlines at 20 s
sampling rates for a period of one year.

In addition, QUD is presented in this framework, which is based
on an appliance-based collection campaign. It can be used for dif-
ferent purposes, such as the energy saving, anomaly detection and
energy demand prediction. QUD is collected using a system that
incorporates sub-metering modules registering power consump-
tion footprints in terms of P and other indoor climate conditions,
including O, T, H and L. The data are recorded with sampling inter-
vals ranging from 3 s to 30 min. The collection process will be
spread over a one year period, while three months of data record-
ing have been already completed.

2.2. Taxonomy

Power consumption datasets are split into two main groups:
Appliance-level versus aggregated-level. The first one traces power
consumption arrangements of individual devices. The second one
provides the whole power consumption of households. Datasets
can also be classified based on different aspects including applica-
tion purposes or the nature of buildings, where data are acquired
among which households, commercial buildings, academic build-
ings, industrial, etc. Fig. 2 details the global taxonomy of various
building power consumption datasets found in the literature.

2.3. Applications (A)

Using detailed power consumption readings and based on the
nature of data collection procedures at appliance or aggregated
levels, existing datasets could be exploited for various applications
including, but not restricted to, energy saving, appliance recogni-
tion, occupancy detection, user preference detection, abnormal
detection, energy disaggregation and energy demand prediction.

A1. Energy saving: Investigating the building sector in terms of
energy saving which is a principal element of its environmental
and financial effects is of utmost importance. Consequently, energy
saving is the most popular application of building power consump-
tion datasets [68–70]. It can effectively reduce energy bills and
decrease carbon dioxide emissions. It is made out of the following
four stages: (1) the dataset collection stage, in which information is
reaped from various sources, including energy sub-meters, ambi-
ent condition sensors and climate sources. The information gath-
ered from these heterogeneous sources is saved in a specific
dataset; (2) the pre-processing step, in which the information
stored in the first step is pre-processed before utilizing various
ML strategies. the pre-processing includes data cleaning, data
resampling, features and events extraction and normalization; (3)
The learning stage, in which ML algorithms are utilized to learn
functions and models; and (4) The adoption of visualizations and
recommendations phase, in which visualization tools are first
adopted to provide end-users with interpretation of their con-
sumption patterns. Following, specific recommendations or direc-
tives are derived in order to promote energy efficiency behaviors.
Since the energy saving application is very relevant, we focus in
this paper on studying how to improve systems developed in this
direction along with related applications.

A2. Appliance recognition: Appliance recognition systems can
help detecting operating conditions of devices using collected
power usage patterns, and thoroughly recognizing the nature of
each appliance [71]. In [72], a model was designed to detect the
device activity and then to associate activities with devices using
collected data. Analyzing power signals and checking relations
among activities can assist detecting unattended devices, which
use energy power without taking part the domestic’s activities.
In [73], in order to fit realistic conditions, experiments are usually
conducted on a set of building power consumption databases, such
as ACS-F1, PLAID, BLUED and UK-DALE.

A3. Occupancy detection: Solutions presented in this area
detect individuals’ occupancy in each specific part of a building
based on power consumption profiles, as well as other environ-
mental specifications, such as the temperature, humidity, luminos-
ity and carbon dioxide emissions [74]. Dataset patterns are
inspected before using ML approaches to derive the occupancy of
the monitored part. Generally, occupancy is detected in two stages;
(i) the presence or absence of individuals is investigated; and (ii)
the number of individuals in the monitored building/room is then
calculated [75–77]. In [78], a set of ML models as well as their
boosting forms are developed and tested to detect occupancy using
collected data from the AMPds2 measurement campaign.

A4. Preference detection: Methods described in this class deal
with evaluating individual preferences through analyzing energy
usage profiles. Most approaches treat the thermal comfort,
although there are other arrangements that address visual comfort.
Works released in this area investigate information-driven
methodologies from anML point of view and yielded arrangements
that determine the preferences (e.g. the habits related to appliance
usage) even through getting reports from individuals, i.e. informa-
tion labeling or via observing the historic behavior of end-users to
construe (in a straightforward manner) their consumption priori-
ties or contexts that satisfy their well-being [38,79].

A5. Energy disaggregation: Energy disaggregation is the issue
of segregating the overall power consumption record into particu-
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lar signals, in which each one represents an individual consump-
tion of each electrical device [80–83]. This is valuable since getting
separated power consumption of each appliance helps individuals
to save energy and provide consumers with indexes on how to
make appropriate actions [84]. Most of existing energy disaggrega-
tion frameworks resolving the problem of non-intrusive load mon-
itoring (NILM) attempt to segregate the overall energy
consumption without utilizing separate meters for each appliance
[85–89]. For this specific application, REDD, BERDS, REFIT, AMPds1
and AMPds2 datasets are reputed among the famous repositories
used for energy disaggregation.

A6. Demand prediction:ML algorithms generate precise power
demand forecasts and they can be selected by public authorities
and project managers instrumenting energy-efficiency procedures
[90–94]. For domestic households, academic and industrial build-
ings, if the power demand could be predicted using ML strategies,
directives and mechanisms that should be followed in advance can
be established with a view of reducing load consumption of equip-
ments and appliances inside these infrastructures[95–98]. More-
over, even if most the above presented databases (Section 2.1)
are used for energy forecasting, we can find in the literature other
datasets that are only designed for the specific problem of load and
energy price forecasting, such as GEFCom2012 [99] and GEF-
Com2014 [100].

A7. Anomaly detection: With the progressive widespread use
of smart-meters and smart sensors to monitor load usage in house-
Table 1
Features comparison of existing building power consumption datasets.

# Acronym Country Period #Homes #sub-m

1 REDD [62] Massachusetts,
USA

119 days 6 24

2 HES [40] England, UK 1 year 26/251 23
3 IHEPCDS [41] Paris, France 47 months 1 3
4 UMSM [42] Massachusetts,

USA
1 year 400 8

5 Dataport [45] USA 4 years +1200 70
6 MEULPv1 [52] Canada 1 year 11 8
7 BLUED [63] Pennsylvania, USA 1 week (Oct) 1 Agg
8 TraceBase [47] Darmstadt,

Germany
N/A 15 158 (43

classes
9 PSD [51] Austin, USA 1 week 10 /
10 CRHLL [59] USA 1 year 16 10
11 IAWE [56] New delhi, India 73 days (May–

Aug)
1 33 (10

12 ACS-F1 [66] Switzerland 1 h (2 sessions) / 100 (10
13 AMPds1 [48] Vancouver, Canada 1 year 1 21
14 BERDS [67] Berkely, USA 1 year / 4 group
15 ECODS [55] Switzerland 8 months 6 /
16 ECB [50] Australia 2 years 25 Aggreg
17 PLAID [65] USA 3 months

(Summer)
11 60

18 SustData [43] Portugal 1144 50 24
19 AMPds2 [49] Vancouver, Canada 730 days 1 21
20 UK-DALE [61] England, UK 655 days 4 5 (H4),
21 DRED [57] Netherland 6 months (Jul–

Dec)
1 13

22 GREEND [54] Italy & Austria 6 months 8 9
23 REFIT [44] England, UK 213 days 20 9, Agg
24 OCTES [46] Scotland, UK 4–13 months 33 Agg
25 COOLL [110] France 2 h 1 46 (12
26 MEULPv2 [53] Canada 1 year 23 5 group
27 RAE [21] Canada 72 days 1 24
28 DISEC [58] New Delhi, India 284 19 /

29 BLOND [64] Germany 213 days 1 53 (16
30 HUE [60] B. Columbia,

Canada
3 years 5 /

31 ENERTALK
[111]

Seoul, South Korea 122 days 22 1–7 (Ag

32 QUD Doha, Qatar 3 months–1 year 3 4
holds, the utilization of power consumption observations as a solu-
tion to detect abnormal usage of energy is absolutely fascinating.
Specifically, early detection approaches can be deployed to identify
a large set of failures. In addition, recent works illustrate that for
example, anomalous in lighting appliances can be responsible of
2–11 % of the whole power consumption of households and com-
mercial structures [101]. Furthermore, detecting faults or anoma-
lies can permit analysts to comprehend energy consumption
behavior of end-users and to be conscious of unpredictable energy
usage values [102,103]. Various data mining approaches have been
explored and deployed to detect anomalous events during energy
usage process [104–109]. In addition, it is worthy to mention that
there is an absence of annotated datasets dedicated to power con-
sumption anomaly detection.

However, in order that a dataset could be correctly and effi-
ciently used for a specific application, it should respect some speci-
fic requirements. For energy disaggregation, datasets should
include both aggregated and appliance-level consumption finger-
prints to compare the results obtained from disaggregation solu-
tions with individual patterns. To conduct a user preference
detection or even an occupancy detection, datasets should encom-
pass appliance-level power consumption because it is difficult
even impossible to infer user preferences from aggregated data.
In addition, for occupancy detection, it is also required that con-
sumption and ambient condition should be gleaned from individ-
ual appliances and from various parts of the building. For
eters Features Sampling rate Applications Release

I, V, P 3 s A1,A5 2011

I, V, P, T 10 min A1,A6 2011
I, V, P, Q 1 min A1,A6 2012
I, V, P, f, S 1 min A1 2012

P 1 min A1 /
P 1 min A1,A5 2012
I, V, switch events 12 kHz A2,A5 2012

)
P, Np 1–8 s A1,A 2012

P 1 min A2 2012
P 1 h A1,A6 2013

classes) I, V, P, f, S, E, U 1 Hz A1,A6 2013

types) I, V, P, Q, f, U 10 s A2 2013
I, V, P, Q, S, pf, F 1 min A1,A2,A5 2013

s P, Q, S 20 s A1 2013
I, V, U 1 Hz A1 2014

ated P 1 Hz A5,A6 2014
I, V 30 kHz A2 2014

I, V, P, Q, S 2 s/ 10 s A1 2014
I, V, P, S, F, pf 1 min A1,A2,A5 2014

53 (H1) P, Aggregated P 6 s/ 6 kHz (Agg) A1 2015
P, T, H, Ws, Pr, Agg 1 min/ 1 Hz (for Agg) A1,A3,A4 2015

P 1sec Hz A1,A5 2015
P, pf, T, O, L, EC ($ ) 8 s A5 2015
P, EC ð$Þ 7 s A5 2015

groups) I, V 100 kHz A2 2016
s P 1 min A1 2017

O, V, P, Q, S, f, E 1 Hz A1,A6 2018
P, Wt 30 s/15, 30, 60 min

(Agg)
A1,A5 2018

groups) I, V, P 6.4 kSps/54 kSps (Agg) A1,A2 2018
p 1 h, H1(1 min), H2

(1 Hz)
A1 2019

g) p 1 Hz, 15 Hz A1,A5 2019

P, H, T, O 3 s–30 min A1,A3,A4,A7 2019
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anomaly detection, it is of utmost importance that it includes
labels annotating normal and anomaly consumption footprints to
train developed algorithms. Lastly, for energy demand prediction,
collecting power consumption at appliance-level or aggregated
level will be appreciated, however, the collection period should
be long to be useful.

2.4. Characteristics comparison of existing datasets

Aiming to extract representative outputs and relevant interpre-
tations, a deep comparison study of existing building power con-
sumption datasets is conducted in this section. Various dataset
properties are investigated, which have a great importance when
collecting data for developing energy efficiency solutions. Table 1
presents a comparative investigation of existing power consump-
tion datasets. The analysis is built based on various characteristics
that were collected in each dataset, including the region and period
of collection, number of monitoring houses, number of monitoring
appliances per house, collected features, sampling rate and release
year. Additionally, we check and compare collected features for
each database.

2.5. Data collection platforms

Data collection platforms used to glean big energy consumption
fingerprints are significantly impacting the energy efficiency sys-
tems. Specifically, sensing devices and attached platforms have a
big role in gathering and safely storing data in appropriate data-
bases. In this line, in this subsection, we focus on inspecting differ-
ent architecture platforms used in the literature to collect energy
consumption datasets and their properties, including wireless
capability, data logging process and data storage. In addition,
because of the nature of collected data and their public access
capability, privacy concerns are of utmost importance when pro-
ducing datasets. Specifically, transmitting and sharing individuals’
real-time power usage footprints and further their identities are
probably quite harmful. To that end, it is important to investigate
if the connections to the servers are secure or not in the presented
dataset platforms. It is worthy to mention that in this section we
focus on analyzing hardware architectures and related modules
for only the datasets from Table 1, which present a description of
their implemented platforms.

In [43], a power consumption monitoring and feedback plat-
form is deployed, which is based on the use of sensors and a note-
book for recordings data, storing them on MongoDB database,
performing calculations and providing feedback to end-users. In
[44], readings from several smart appliances are collected and
transmitted using a commercial communication gateway called
Vera3 smart home controller. The latter uses an encryption proto-
col to transmit data before their storage in a MySQL database. In
Table 2
Example of data collection platforms and their properties used in different datasets.

Dataset Platfom Wireless
capability

REDD Laptop + smart meters yes
GREEND Raspberry/BeagleBone yes
SustData Laptop + smart meters non
REFIT Vera3 smart home controller Vera3 yes

+ smart plugs
AMPDS Obvius AcquiSuite EMB A8810 non
RAE Raspberry Pi 2B + sub-meters yes
UK-DALE Nanode (Atmel ATmega328P) yes
ENERTALK ENERTALK PLUG yes
QUD NodeMCU + Raspberry Pi 4B yes

+ smart sensors
[49], electricity footprints are gleaned using industrial meters
and transmitted using a commercial platform named Obvius
AcquiSuite EMB A8810, which includes many feature, among them
the security provision. After that, they are stored offsite on a
MySQL database server. In [54], platforms based on Raspberry Pi
or BeagleBone along with a Plugwise Basic kit4 are used, in which
collected data from sensing outlets are transmitted via a Zigbee
network. Collected data are then stored on via a remote storage
on a MySQL server without considering privacy concerns. In [62],
a wireless plug monitoring device with an off-the-shelf system
are used to collect power consumption data before transmitting
them to central server. To keep the privacy of end-users, REDD
dataset has focused only on hiding the identity of end-users and
without deploying any secure protocol for data transmission.

In [21], power consumption readings of several appliances are
wirelessly gathered using a data acquisition platform based on a
Raspberry Pi 2B. Then, data are locally stored on an USB drive. In
[61], a Nanode platform is used to wirelessly collect consumption
data from individual appliance monitors and current transformers.
Following, gleaned data are stored in a Nanode base station. It is
worthy to mention privacy issues have not been considered. In
[111], consumption records are acquired using a commercial plug,
namely ENERTALK PLUG, which includes a microcontroller unit to
process and save them in a device storage unit. After that, they are
wirelessly transmitted to a data collector server. Finally, data are
saved on a NoSQL Hadoop database server.

In this framework power consumption is measured using sub-
meters components such as NodeMCU and SEN-11005 current
transformer. Furthermore, occupancy patterns, luminosity, tem-
perature and humidity data are also recorded using smart-
sensors and then transmitted wirelessly using Raspberry Pi 4
Model B platform. The latter includes a No SQL CouchDB server
that is used to store the gathered data using the JavaScript Object
Notation (JSON). JSON represents a vastly used text format for data
exchange, which keeps data structure without adding notation
overhead. Table 2 summarizes the properties of hardware plat-
forms used to collect different datasets, including wireless capabil-
ity, data logging process, data storage and privacy consideration.
3. Discussion and important findings

3.1. Discussion

Under this framework, a large number of building power con-
sumption databases have been described, reviewed and evaluated
according to different parameters as indicated in Table 1. In what
follows, we derive pros and cons of each dataset, based on what
has been discussed in the previous lines. This can adequately
guides us to map recommendations for enriching and improving
energy consumption databases.
Data logging Data storage Privacy
consideration

– Hard drive no
JSON MySQL server no
JSON MongoDB server no
JSON MySQL server yes

SQL MySQL server yes
XML Local storage (USB drive) no
JSON Nanode base station no
Hadoop NoSQL Hdoop database no
JSON No-SQL CouchDB server no



Table 3
Micro-moments assumption and labeling

Micro-moment Label Description

Good usage 0 Non-excessive usage
Turn on 1 Switching on a device
Turn off 2 Switching off a device
Excessive

consumption
3 Consumption >95% of device’s maximum active

power consumption level
Consumption

when outside
4 Device consumption without the presence of the

end-user
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� The biggest databases in terms of length and period of study are
UMSM, HES, SustData and REFIT. Otherwise, for the case of HES,
the observing period is too short and the sampling frequency of
2 min is a bit big. The same for UMSM, where data are gathered
at a sampling rate of 1 min. Therefore, these datasets are inad-
equate for energy disaggregation as it will be difficult to differ-
entiate between individual devices and occurrences. In contrast,
these two repositories provide properties data about monitored
homes, among others, the nature of building, size and rooms
number and occupants number. Moreover, even if SustData
and REFIT use a sampling rate of 8 s and 10 s, this is still not
enough when conducting a real-time monitoring.

� In some databases, e.g. PLAID, REDD and BLUED, high frequency
monitoring is proceeded for only a few number of houses. This
draws upon the prerequisites of energy disaggregation, where
comprehensive characteristics catching transitory behavior
can be extracted when high frequency collection is explored.

� The majority of databases were gathered in the USA and
Canada, under a 120 V voltage and European nations under
230 V. It can be deduced from Table 1 that the existing data-
bases are collected in 13 different countries which are located
in four continents; inter alia, America, Europe, Asia and Aus-
tralia. In this context, these real databases have been produced
in distinct climate zones, which cover humid regions (UMSM,
REDD, BLUED), humid semitropical (IAWE), marine west coast
atmosphere (UK-DALE,HES, AMPds1, REFIT, Tracebase, BLOND,
IHEPCDS and OCTES), Mediterranean weather (BERDS) and arid
zone (ECB ad QUD).
However, no databases from Africa countries have been gath-
ered under this investigation since there is no work in the liter-
ature who treat this topic in such countries. Moreover, to the
best of the authors knowledge, QUD is the first dataset in the
Middle East, where ordinarily 240 V voltage is used. Also, some
collected particularities; for instance, the climate and environ-
mental data depend on the location of the monitoring
campaign.

� The number and nature of monitored appliances, just like the
number of observed houses essentially restrain the final usage
of databases. In particular, a high number of houses and appli-
ances is required for statistical inspections. In this case, UMSM,
Dataport, OCTES, TraceBase, REFIT and HES are the most
suitable databases. Plus, some datasets supervise various
houses through multiple time intervals leading to difficulty
and even impracticality while comparing between different
homes. More than that, the setting under which domestic
equipments are employed throughout the day is a basic opera-
tor for analyzing the complexity of the usage. This way, exper-
imental campaign should be conducted in real conditions such
as households, laboratories, or offices as opposed to simulated
environments.

� Some databases collect short-term energy consumption and
only deliver records of real power, this is the case of COOLL,
PSD, ACS-F1 and BLUED. Eventually, seasonal energy usage atti-
tude can not be captured for short-term periods. In this aspect,
making use of these databases to track power consumption
behavior of end-users is not suitable.

� A number of databases, among them UMSM, IAWE, ACS-F1,
AMPds1, RAE and DRED have furnished a set of electric param-
eters, including I, V, P, Q, E, f and /. Additionally to these
records, other conditions such as T, O and L are also reported
in QUD and REFIT datasets. The latter provides also analytic
information notably related to the monitored electrical appli-
ances and integrates statistics about daily activities in dwelling
and residential environments, as well. This endows better a
interpretive depth comparable to identical repositories (REDD,
BLUED, GREEND).
� Most of the studied datasets did not capture the exogenous con-
ditions, such as the weather temperature, humidity, which can
affect effectively the energy consumption. However, while the
REFIT dataset has identical properties to OCTES and ACS-F1
datasets, it is also different because it adds other environmental
data including the temperature, light, and motion patterns. In
addition, household reviews are also reported, which include
the surface, age, heating system, insulation, nature of buildings
along with other data specifying the number of individuals, job
quality and age. In this context, quantitative statistics gleaned
from the reviews with occupants’ statistics offer more possibil-
ities to researchers to study the influence of other parameters
on energy consumption.

� There is a lack of available publicly annotated power consump-
tion datasets to train/learn anomaly detection algorithms, in
which power consumption variables are clearly labeled as nor-
mal or anomalous. Specifically, all the investigated datatsets in
this framework except QUD do not encompass labels that iden-
tify normal or abnormal consumption, and thereby they can
only be used to train unsupervised anomaly detection algo-
rithms because they do not require annotated datasets.

� Privacy and security concerns have not seriously been consid-
ered in most of the existing datasets. This is due to the fact that
conventional meters required to be physically accessed and
they registered power consumption for longer time periods
(i.e. the real-time monitoring was not considered).

3.2. Qatar university dataset (QUD)

Using the pros and cons of the state-of-the-art datasets pre-
sented in the previous section, a measurement campaign has been
conducted in the Qatar university energy lab to glean QUD repos-
itory. Specifically, in order to compensate the undersupply of
appliance-level datasets dedicated for energy efficiency and anom-
aly detection in power consumption, a real-time micro-moment
laboratory has been developed to gather accurate power usage
footprints. Put simply, QUD is a set of consumption records from
different installed electrical devices (e.g. air conditioner, heating
system, desktop and light lamps) in addition to contextual data;
including humidity, temperature, room occupancy and ambient
light intensity. To the best of our knowledge, QUD is the first data-
set in the Middle East, in which consumption data are collected at
an ordinarily 240 V voltage. This dataset have multiple usage sce-
narios such as detecting consumption abnormalities, testing rec-
ommender systems and assessing innovative visualization tools.
Moreover, it is worth noting that QUD is among the first annotated
repositories dedicated for anomaly detection in power
consumption.

Therefore, the time-series data representing power consump-
tion footprints for two appliances are registered along with corre-
sponding cubicle occupancy, indoor temperature, indoor humidity,
and luminosity. In order to label QUD consumption observations,
the micro-moment paradigm is used which helps in identifying
the moments of good or anomalous usage. Specifically, the
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micro-moments are deployed to come up with accurate statistics
about consumers [10,34]. Using this dataset, the power consump-
tion observations are labeled via the use of five micro-moment
classes according to a set of standards out of the yielded appliance.
These five micro moments are defined as; ‘‘good usage”, ‘‘turn on”,
‘‘turn off”, ‘‘excessive power consumption”, and ‘‘consumption
when outside”. The last two micro-moments represent anomalous
consumption behaviors that are leading to much wasted energy.
Table 3 describes the micro-moment classes and labels used in
QUD (QUD can be accessed through: http://em3.i-know.org/data-
sets/). In addition, it is worthy to mention that the micro-
moment ‘‘consumption when outside” is limited to a set of appli-
ances, such as air conditioners, televisions, light lamps, desktops/
laptops, and fans, in which the end-user should be present during
their operation to not be considered as an anomalous consumption
[112].

4. Future directions

After analyzing, comparing and capturing pros and cons of
existing datasets, a set of important orientations that can improve
data collection and enrich datasets’ content are identified. In addi-
tion, other directions to improve datasets exploitation are
described as well. Fig. 3 summarizes the future directions that
are identified to improve both datasets collection and exploitation.

4.1. Improving the dataset collection

In order to develop powerful energy efficiency systems, it is of
paramount importance to improve dataset collection procedures
and hence enhance the content of collected data. In this respect,
the following recommendations and directions can be establish:

4.1.1. Multi-modal data collection
Multi-modal data collection means merely collecting more than

one type of data to accomplish an efficient energy saving task or
other related applications. Specifically, power consumption in
buildings depends on multiple factors, which should be gleaned
together power consumption footprints in order to design compre-
hensive datasets [113,114]. Fig. 4 summarizes the principal param-
eters impacting the power consumption in buildings and
contributing in the multi-modal data collection.

D1. Occupancy patterns: Domestic residents utilize more
energy when they’re occupied. Even this may appear glaringly evi-
dent, collecting occupancy data is a serious matter that must be
inspected when searching for wasteful energy aspects in house-
holds. Specifically, we ensure that these structures consume less
power when unoccupied. Individuals in households influence
power consumption for the most part via lighting, cooling, heating
and other plug loads. Analyzing power consumption for the dura-
tion of the day demonstrates an immediate relationship amongst
occupancy and power usage. For the moments when individuals
are in a household, different rooms are conditioned or heated to
an agreeable temperature. Of course, normal day-by-day activities
need also power usage. The effect of individuals utilizing energy in
a household is the reason we underscore the relevance of individ-
uals turning off unused appliances or other devices in unoccupied
rooms [115,116]. In this regard, the use of occupancy sensors is
highly recommended in households or other buildings such as
offices, laboratories or campus buildings to sense when someone
is present or not and then turn off the appliances accordingly. By
this way, a lot of energy can be preserved when the absence of
individuals is confirmed.

D2. User behavior: Comprehending and improving individual
power consumption behavior is among the successful approaches
to reduce energy demand and encourage energy preserving. In fact,
user behavior can be responsible of about 20–50% of the consump-
tion level [117,118]. Therefore, collecting and inserting data about
end-users’ behaviors in the energy efficiency model can signifi-
cantly decrease wasted energy. This can be done through gathering
information related to their preferences and habits [119–121].

D3. Weather data: Relation between weather circumstances
and power consumption has been proved in several works [122–
124]. As a matter of exemplification, peak energy demand during

http://em3.i-know.org/datasets/
http://em3.i-know.org/datasets/
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heat waves is widely seen in so many hot countries. For that rea-
son, gathering weather data is regarded as crucial while investigat-
ing user behavior. Over and above, existing and newly built
households will certainly undergo the impact of climate change.
Accordingly, collection and measurement of new energy consump-
tion databases of these houses ought to consider weather patterns
that integrate certain repercussions of climate change, rather than
only considering historical climate information [125–127].

D4. Energy cost: Estimating the cost of household power con-
sumption and providing this data to end-users can motivate them
improving their behavior [128]. Forecasting the user’s electricity
bill and integrating energy price signals in energy efficiency appli-
cations can effectively increase power saving [129–131] since it
helps the consumer to cognitively bridge the gap between con-
sumption and cost. Moreover, collecting energy price profiles at
the appliance level makes it unambiguous for the user which appli-
ance raises more the cost. As a result, the consumer can relatively
behave in order to reduce wasted energy.

4.1.2. Smart IoT data collection
Conventional meters are not able to gather the type of granular

and device-level data, however, this becomes possible today with
smart meters. In this line, in order to achieve target requirements
in relation to data accuracy and further supporting real-time data
collection and analysis, deploying smart meters and Internet of
things (IoT) sensors to ensure a smart IoT data collection strategy
is of paramount importance [132]. This helps in optimizing the
communication, storage and computing resources.

4.1.3. Low-cost hardware platforms
In order to reduce the cost of datasets collection, the use of

hardware platforms, enabling more cost-effective and powerful
alternatives to process and transmit collected data is a high prior-
ity, such as the Raspberry PI 4 (RPI4) model B [133], ODROID-XU4
[134] and Jetson TX1 [135]. Those platforms can monitor energy
consumption data along with collecting other essential contextual
information, which ultimately results in a larger pool of data.

4.1.4. Privacy and security consideration
To preserve the end-users’ privacy, power consumption foot-

prints and end-users personal information should be protected.
Personal data related to end-user specific power consumption pat-
terns can be exploited to identify and supervise behavior patterns
inside buildings (households or public structures). This is possible
since electrical devices e.g. the microwave, air condition, washing
machine, dishwasher, etc. can be detected and recognized from
their power consumption fingerprints [2]. Therefore, personal data
related to consumption signatures may be deployed to carry out
real-time surveillance of end-users. In this regard, the data collec-
tion process must encourage producing challenging datasets and
make power consumption statistics available to end-users and
energy providers while respecting end-users’ personal privacy
and security. To that end, adopting robust techniques to remove
personal information is a must, including encryption, steganogra-
phy and aggregation.

4.2. Improving the dataset exploitation

Almost energy efficiency systems are built and validated using
energy consumption datasets, which make them very important.
Further, with the increasing amount of data collected in each data-
base, the need for challenging solutions that can extract compre-
hensive information is becoming inevitable [136]. In this section
we present three main directions, which can be investigated to
ameliorate energy saving initiatives. It is worthy to mention that
although the following directions are from a consumer’s perspec-
tive, however, they are valuable for both consumers and energy
providers. Specifically, they are generally developed by the latter
and deployed to the benefit of end-users to help them in optimiz-
ing their energy usage. In addition, as discussed in Section 1, con-
sumers are responsible for wasting more than 20% of the total
energy consumed in buildings [24–26].

4.2.1. Mobile recommender systems
Lastly, it is noticed that mobile smart devices are becoming an

indispensable part of our daily life. Unlike earlier mobile phones
that provide limited functionality, smart phones can do a variety
of very useful jobs. With the widespread usage of smartphones
and the fast growing of the internet and network facilities, a mas-
sive amount of data is produced. Consequently, modern societies
have started the age of Big Data through successfully discovering
users’ possible demand and preferences. This has raised the neces-
sity for data scientists and energy management stakeholders to
conduct studies on mobile recommender systems for controlling
users’ energy efficiency [137].

Recommendation systems are commonly deployed to polish the
use of smartphones and to assist in dealing with the large amount
of data through establishing appropriate advices using recommen-
dation schemes and contextual information. In this regards, the
role of recommender systems will be essential to promote energy
efficiency and help end-users understanding and improving their
consumption footprints [138]. More specifically, every particular
recommender application is generally elaborated with an explicit
context in mind with the aim of solving in some sense the data
overloading issue due to the large-scale datasets of power con-
sumption. The effectiveness of a mobile recommender system
has been demonstrated through real-use applications in academic
buildings [137], in which a context-aware based recommender app
is developed to help in supporting end-users to transform their
energy consumption habits.

Furthermore, the architecture of recommendation systems that
is usually based on interactional models, graphic user interfaces
and recommendation engines makes them productive and useful
to deal with energy efficiency applications [139]. To summarize,
the use of mobile recommender systems is recommended to
improve power consumption datasets exploitation via:

� Developing explainable recommender systems can be very sup-
portive to improve data exploitation with a view to replacing
inefficient energy habits with efficient ones. An explainable rec-
ommender system aims at providing end-users with tailored
recommendations, followed by explanations about them
[140]. Explanations refer to the motivations behind the recom-
mendation or to the benefits from providing the recommended
action or advice. They can enhance the persuasiveness of the
system, end-users’ understanding and satisfaction and provide
an immediate reward to them.

� Developing intelligent mobile home monitoring systems using
collected data to provide information and monitoring options
to the end-user to help him control its load usage, visualize con-
sumption statistics and compare them to those of other users,
and further predict the overall charge of monthly bills [141].

4.2.2. Visualization for understanding user behavior
Visualization is seen to be the most effective way to assimilate

increasingly large datasets with the aim of interactively and per-
fectly conveying insights to end-users, consumers, and stakehold-
ers in general. Recent tools, methods, and softwares leveraged for
visualization of energy consumption require further improvements
to remain more important in a planet with larger low-carbon emis-
sions. Moreover, they are required to sensitize energy-consuming
behavior in an approachable and stimulating way. In this context,
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Fig. 5. Time-series power consumption of a television and its micro-moments scatter plot from DRED: top) time-series power consumption, and bottom) micro-moments
scatter plot at a sampling rate of 3 min.
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we present in this section an example of a novel visualization
approach based on micro-moments analysis. Fig. 5 displays a
time-series energy consumption of a television and its micro-
moments scatter plot at sampling intervals of 3 min, recorded in
DRED dataset. This novel visualization strategy is presented as an
example, in which energy usage micro-moment classes of 2 days
are captured and plotted, defined as: good usage (class 0), exces-
sive usage (class 3) and consumption while outside (class 4). Users
can seamlessly get the plots at different sampling rate starting
from the milliseconds.

As it can be deduced, tracing micro-moments through time pat-
terns facilitates identifying moments of abnormal consumption
and then makes it easy to establish precise guidelines helping to
reduce energy waste. Moreover, this helps end-users understand-
ing their consumption footprints, increasing their awareness, and
hence triggering them to improve their behavior through the use
of tailored recommendations. In addition anomalous consumption
behaviors can be identified when an adequate visualization tool is
adopted, e.g. the micro-moments visualization, and hence end-
users can improve their behaviors based on the detected anomaly.
Moreover, it is worth noting that the use of the micro-moments
paradigm to detect anomalous consumption can be enlarged to
identify other kinds of anomalies, e.g. detecting abnormal con-
sumption of an air conditioner while doors/windows are open via
considering other information sources. Therefore, end-users will
be provided with the appropriate notifications and advices, i.e.
close doors/windows to reduce wasted energy.

In addition, a set of valuable recommendations and future
directions towards designing effective visualizations aiming to
increase end-users energy awareness is summarized as follows:

� Visualizations need to catch the attention of their users via
using bright colors, contrasts and varied views, where some-
things are changing constantly. More importantly, they should
implement colors that are legible for people with color vision
deficiencies [142].



Table 4
List of abbreviations and nomenclatures used in this paper.

Acronym Description Nomenclature Description

UMSM UMass Smart* Microgrid I current
IHEPCDS Individual household electric

power consumption data set
V voltage

IHEPCD Household electricity survey P active
power

REFIT Personalized retrofit decision
support tools for UK homes

Q reactive
power

ORBEET Opportunities for community
groups through energy storage

S apparent
power

AMPds1 Almanac of minutely power
dataset version 1

Np normalized
power

ECB Electricity consumption
benchmarks

E energy

PSD Pecan street dataset f frequency
MEULPv.1 Measured end-use electric Load

profiles version 1
/ phase angle

RAE Rainforest automation energy pf power
factor

GREEND Green dataset EC energy cost
ECO Electricity consumption and

occupancy
Wt weather

RDED Dutch residential energy
dataset

T temperature

IWAE Indian dataset for ambient
water and energy

H humidity

DISEC Dataset on information
strategies for energy
conservation

O occupancy

CRHLP Commercial and residential
hourly load profiles dataset

L light level

HUE Hourly usage energy dataset
UK-DALE UK domestic appliance-level

electricity
REDD Reference energy

disaggregation dataset
BLUED Building-level fully labeled

electricity disaggregation
dataset

BLOND Building-level office
environment dataset

PLAID Plug Load Appliance
Identification Dataset

ACS-F1 Appliance consumption
signatures version 1

ENERTALK Energy talks
DRED Dutch residential energy

dataset
REFIT Retrofit decision support tools

for UK homes
OCTES Opportunities for community

groups through energy storage
COOLL Controlled On/Off Loads Library
MEULPv.2 Measured end-use electric Load

profiles version 2
BERDS Berkeley energy disaggregation

dataset
CRHLP Commercial and residential

hourly load profiles dataset
IoT Internet of things
LDA Linear discriminant analysis
SVM Support vector machine
KNN K-nearest neighbors
DT Decision tree
EBT Ensemble bagged tree
DNN Deep neural networks
MLP Multilayer perceptron
LR Logistic regression
NILM Non-intrusive load monitoring
JSON JavaScript Object Notation
SQL Structured query language
ML Machine learning
GANs Generative adversarial

networks
(EM)3 Endorsing energy efficiency

with micro-moments
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� Visualizations also need to employ comparisons between
different time period consumptions to stimulate energy
users’ reflection and learning. Individuals are highly moti-
vated in preserving power usage through making compar-
ison of their current consumption to their own previous
consumptions.

� Fragile long time-series aggregated systems for visualizing
energy consumption are better to be avoided. By nature, the
human being’s mind can not always memorize all what
they do in each second or which appliance do they use more
in their daily routine. Hence, it was concluded by many studies
that:
a. Collecting appliance-level consumption data is highly

needed for consumers to cognitively decode their consump-
tion data and to finally make a decision towards changing
their behavior [143].

b. Instantaneous short-time intervals are the best way to aid
the consumer to easily figure out at what instance their
energy cost increased [144]. This makes it possible for the
users to ameliorate their behavior and to notice the direct
effect from it.

� 3D visualizations of households with real-time energy con-
sumption statistics can impart better contextual understanding
to homeowners and help them control practices shaping their
consumption. In relation, it is also crucial to support that by
exploring the deployment of other emerging technologies,
including virtual and augmented reality, interactive visualiza-
tions and wall sized presentations.

4.2.3. ML algorithms of large-scale datasets
Another important direction that can improve the quality

and exploitation of power consumption datasets relies on
deploying ML algorithms, which can help significantly in reduc-
ing energy consumption and thereby decreasing energy costs
and carbon dioxide emissions [145,146]. Therefore, boosting
novel progresses and challenges with regard to ML models is
of paramount importance. In this context, several directions
could be identified in which ML play a major role when shifting
to more sustainable end energy efficiency environment, among
them:

� The use of generative models, such as generative adversarial
networks (GANs), which can tremendously improve the quality
of collected data via completing incomplete power consump-
tion signals (due to data loss occurred during the collection
step) and hence leading to a better exploitation of the produced
datasets in different applications [147].

� The use of deep learning models to identify consumption
anomalies via classifying the micro-moment classes of
end-users’ power consumption [34]. These algorithms assist
in analyzing consumption footprints to detect abnormal
consumption related to ‘‘excessive consumption” and ‘‘con-
sumption when outside”. After defining the micro-
moments described in Section 4.2.2, Deep neural networks
(DNN) and other ML algorithms with different configuration
parameters could be deployed, including logistic regression,
linear discriminant analysis (LDA), support vector machine
(SVM), K-nearest neighbors (KNN), decision Tree (DT) and
ensemble bagged tree (EBT. The selection of the appropriate
ML model is mainly based on ensuring the best compromise
between the identification performance and computational
complexity. Therefore, this results in a better exploitation
of the collected datasets for identifying abnormal power
consumption.
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5. Conclusion

Existing building power consumption datasets have been
reviewed together with their merits and drawbacks within the
lines of this work. Comprehensive comparisons between these
datasets have been conducted in terms of different factors and
data collection platforms that categorize each of these. Based on
the fruitful analysis gleaned from these comparisons, a novel
annotated dataset has been presented, namely QUD, which can
be very useful for power consumption anomaly detection since
it includes labels of good and anomalous usage. Moreover, we
came with recommendations and future directives for improving
the quality and the content of future power consumption data-
sets. Thus, a set of relevant orientations have been identified as
follows:

� Adopting a multi-modal data collection, which is based on
gathering various data sources because the energy consump-
tion is affected by different factors. Therefore, data should
be gathered from several geographical positions with regard
to ambient conditions, atmospheric and environmental
resources, occupation patterns, user preferences and energy
cost.

� Adopting smart IoT data collection strategies to collect data
from various IoT sensors at a low sampling rate, which leads
therefore to developing real-time and scalable energy saving
systems.

� Collecting more annotated anomaly detection datasets in order
to encourage testing and developing anomaly detection algo-
rithms. Overall, detecting anomalous power consumption plays
a major role in reducing wasted energy.

� Producing comprehensive databases by reference to the level of
consumption (especially at the appliance-level) and the dura-
tion of the collection campaign (i.e. collecting data for the entire
seasonal periods of the year) while respecting end-users per-
sonal privacy and security

� Formulating protocols and standards to characterize building
power consumptions datasets that can help make unified meta-
data strategies and terminologies, facilitating the comparisons,
and rigorously understanding the state-of-the-art.

In addition, genuine initiatives to improve datasets exploitation
and utilization have been identified in this framework. Conse-
quently, a novel visualization strategy has been presented based
on the micro-moments analysis, which enables people to compre-
hend their own power usage footprints, and accordingly interpret
their electricity consuming behavior. Moreover, it helps them
easily getting statistics on their actual power consumption. More-
over, another example of using ML algorithms has been introduced
to classify power consumption micro-moments and detect anoma-
lous usage, such as ‘‘excessive consumption” or ‘‘consumption
while outside”. These two behaviors are responsible for wasting a
large amount of energy. Consequently, it will be part of our future
work to improve datasets exploitation and help promoting energy
efficiency through:

� The use of novel ML algorithms, including deep learning and
generative adversial networks (GAN), which can effectively deal
with imbalanced and large-scale datasets.

� The development of innovative visualization tools that can cog-
nitively improve end-users comprehension of their consump-
tion behavior. Therefore, interactive visualization tools will be
integrated into smart power consumption dashboards that per-
mit individuals to engage with, apprehend their energy usage
and translate them into positive actions throughout their every-
day life.
� The deployment of explainable recommender systems in order
to trigger action recommendations at the correct moment, espe-
cially if appropriate hardware materials are used to collect and
analyze data in a real-time manner.
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Abbreviation description of the power consumption datasets
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paper are summarized in Table 4.
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