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a b s t r a c t

With the increasing requirements for power system transient stability assessment, the research
on power system transient stability assessment theory and methods requires not only qualitative
conclusions about system transient stability but also quantitative analysis of stability and even
development trends. Judging from the research and development process of this direction at home and
abroad in recent years, it is mainly based on the construction of quantitative index models to evaluate
its transient stability and development trend. Regarding the construction theories and methods of
quantitative index models, a lot of results have been achieved so far. The research ideas mainly focus
on two categories: uncertainty analysis methods and deterministic analysis methods. Transient stability
analysis is one of the important factors that need to be considered. Therefore, this paper proposed an
optimized algorithm based on deep learning for preventive control of the transient stability in power
systems. The proposed algorithm accurately fits the generator’s power and transient stability index
through a deep belief network (DBN) by unsupervised pre-training and fine-tuning. The non-linear
differential–algebraic equation and complex transient stability are determined using the deep neural
network. The proposed algorithm minimizes the control cost under the constraints of the contingency
by realizing the data-driven acquisition of the optimal preventive control. It also provides an efficient
solution to stability and reliability rules with similar safety into the corresponding control model.
Simulation results show that the proposed algorithm effectively improved the accuracy and reduces
the complexity as compared with existing algorithms.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The power system is a strategic system for national economic
evelopment, and its stable operation guarantees the energy sup-
ly needed for economic development. With the development of
y country’s economic level, the level of electricity consumption

s increasing, the scale of the system is increasing, the network
tructure is more complex, the operating point of the system
s getting closer to the stability limit, and the requirements for
he prevention and control of power system stability are getting
igher and higher. Transient instability is often the main cause
f large-scale power system accidents. Effective power system
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transient stability assessment and accident prevention measures
are the key to solving this problem (Narciso and Martins, 2020;
Mocanu et al., 2019; Alsafasfeh et al., 2020; Martin et al., 2019;
Kang et al., 2020).

Traditional transient stability calculations usually use time-
domain simulation plus appropriate criteria, which have the ad-
vantages of accurate calculation and high reliability. However,
the model contains nonlinear differential–algebraic equations,
which are complicated and takes a long time to calculate, which
is difficult to meet the requirements of online calculation (Liu
et al., 2020, 2019; Alsafasfeh et al., 2019c,b). Artificial intelligence
algorithms can establish the mapping relationship between data
input and output through learning, and the calculation speed is
fast, so it is used for transient stability assessment and avoid
complex time-domain equation solving (Alsafasfeh et al., 2019a;
Shakerighadi et al., 2020; Kang et al., 2017; Bhui and Senroy,
2017; Shiwei et al., 2019; Yousefian et al., 2017; Li et al., 2018a;
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hetye et al., 2016). Literature (Hu et al., 2019) uses data pre-
rocessing algorithms such as feature variable selection, cluster
nalysis, and maximum entropy discrete method to reduce the
ata dimension and then applies the association classification
ethod for temporary stability evaluation. Literature (Au et al.,
019) proposed a temporary stability evaluation method based on
he synthesis of multiple support vector machines (SVM), which
ntegrated multiple sets of high-accuracy SVM evaluation results
o reduce the rate of misjudgment.

In the literature (Hu et al., 2019; Au et al., 2019), although
ethods such as data preprocessing and joint judgment of multi-
le good models are used to improve accuracy, they are all based
n human feature extraction. The models have incomplete feature
xtraction and feature extraction errors, resulting in low evalua-
ion accuracy. Literature (Hou et al., 2018a) uses a combination
odel of probabilistic neural network and radial basis network

or transient stability evaluation and critical removal time estima-
ion. However, its neural network model has a small number of
etwork layers, and its ability to mine and learn the inherent laws
f the data is limited, and it has the problems of low accuracy
nd poor convergence. Literature (Zhang et al., 2018) uses stacked
utoencoders to achieve the two functions of feature extraction
nd transient stability evaluation while using sparse technology
nd Dropout technology to improve generalization capabilities.
ompared with machine learning and neural network methods,
he deep learning model has the advantages of automatic feature
xtraction, strong abstraction ability, and good convergence. Its
etwork structure is deeper and it is more conducive to discover-
ng the internal laws of data. However, the literature (Zhang et al.,
018) only proposed a transient stability evaluation method and
id not combine the deep learning method with the generator
ctive output control strategy to solve the transient instability
ontrol problem of the power system. Preventive control refers
o the identification of the current system state before the sys-
em fails, the potential failure risk of the system is discovered
n advance, and the system is adjusted to a state where the
ystem can still operate stably after the failure by adjusting the
enerator output and changing the load size (Mahdi and Genc,
018). Combining preventive control with transient stability, a
ransient stability preventive control (TSPC) is proposed to ensure
hat the system runs in a state that meets the requirements
f transient stability (Yan et al., 2015). Literature (Xie et al.,
020) uses trajectory sensitivity to analyze the corresponding
elationship between the trajectory changes of generator power
ngle and active power output and system stability to improve
he transient stability of the system, but the process requires mul-
iple time-domain simulation calculations and calculation time
t is difficult to meet the requirements of online applications.
iterature (Yousefian et al., 2017) uses a neural network model
ombined with short-term memory to determine the transient
tability of the system. The neural network model and stability
argin are used in the preventive control sensitivity model to

ealize preventive control. Literature (Wawrzyniak et al., 2020)
dds a neural network model based on literature (Shiwei et al.,
019) to increase the speed of generating preventive control
trategies. Literature (Passaro et al., 2014) combined BP network
nd genetic algorithm to generate transient stability evaluation
odel, and embedded it in particle swarm algorithm to evaluate

he transient stability of preventive control strategy. The BP net-
ork used in the literature (Passaro et al., 2014) has only 3 layers,
hich is difficult to fit complex nonlinear equations. Although it

s combined with a genetic algorithm to improve the accuracy of
odel evaluation, it is necessary to repeatedly try different initial

raining points and model structures, which reduces the speed
f model training. Literature (Darbandi et al., 2020) uses two-

tage SVM for transient stability assessment, but only uses linear
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Fig. 1. Illustrations of Latin Hypercube Sampling and simple random sampling.

equations obtained by linear SVM for preventive control. The
transient stability boundary of the system is simply equivalent
to a high-dimensional plane. The model is relatively simple and
difficult to guarantee The accuracy of system preventive control
and optimal strategy.

Aiming at the above problems, a deep learning-driven power
system transient stability preventive control evolutionary algo-
rithm is proposed. First, establish a set of power system transient
stability estimators based on a deep confidence network, and
its network structure. Compared with the traditional neural net-
work, the structure has a deeper scale. It can learn the deeper
internal laws of the measurement data and the stability mar-
gin under the condition of unmanned feature extraction to fit
the mapping relationship between generator output and tran-
sient stability and has the convergence advantages of strong
ability and good generalization. After the training of the transient
stability, the estimator is completed, it is different from tradi-
tional machine learning methods which are usually used for state
mapping and matching identification. In this paper, the trained
transient stability evaluator is embedded as a non-explicit ‘‘box-
constraints’’ for evolution. In the iterative optimization process
of the algorithm, the expected failure was realized under the set
constraint, the data-driven retrieval technology of power gener-
ation rescheduling prevention control optimization strategy to
minimize the control cost can also provide a method reference
for similar security, stability, and reliability rules embedded in the
corresponding control strategy model and efficient solution.

2. Transient stability evaluation based on deep belief network

2.1. Optimal power flow model with transient stability constraints

Traditional power system transient stability calculations use
the transient stability constraint optimal power flow (TSCOPF)
model (Li et al., 2020; Wu et al., 2021; Guangchao et al., 2017),
which adds transient stability constraints based on the optimal
power flow model. The purpose of the model is to solve the
optimal operating point of the system when all the constraints of
the power system are met so that the objective function reaches
the optimal value. The mathematical expression of TSCOPF is as
follows.

2.1.1. Objective function
The objective function of TSCOPF is to minimize the total cost

of power generation which is expressed as

min f (x) =

∑
i∈Sg

(
aGiP

2
Gi + bGiPGi + cGi

)
(1)

here f (x) is the total cost of power generation; Sg is the gener-
tor set; PGi contributes power to the generator; aGi , bGi , and cGi
re cost factors.
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Table 1
Samples of DL model.
Sample Label value

n is the number of generators
k is the number of samples
l is the number of preset failures

⎧⎪⎪⎨⎪⎪⎩
P1
G1, . . . , P

1
Gn

.

.

.

Pk
G1, . . . , P

k
Gn

⎧⎪⎪⎨⎪⎪⎩
min

(
TSI11, . . . , TSI

1
l

)
.
.
.

min
(
TSIk1, . . . , TSI

k
l

)

Fig. 2. Restricted Boltzmann machine structure.

.1.2. Equality constraints

The node filling power balance equation is expressed as

PNi = PDi − Vi
∑n

j=1 Vj
(
G0
ij cosαij + B0

ij sinαij
)

QNi = QDi − Vi
∑n

j=1 Vj
(
G0
ij sinαij − B0

ij cosαij
) i = Sn (2)

where PNi and QNi are node active and reactive filling power; PDi
and QDi are node active and reactive output power; Vi and Vj are

he node voltage amplitudes; αij is the phase angle difference of

ode voltage; Gij and Bij are the real and imaginary parts of the
ode admittance; Sn is the set of nodes.
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2.1.3. Inequality constraints
The stable operation constraints are expressed as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Pmin
Gi ≤ PGi ≤ Pmax

Gi , i ∈ Sg
Qmin
Gi ≤ QGi ≤ Qmax

Gi , i ∈ Sg
Vmin
i ≤ Vi ≤ Vmax

i , i ∈ Sn
Pmin
ij ≤ Pij ≤ Pmax

ij , (i, j) ∈ S1

(3)

where Pmax
Gi and Pmin

Gi are the upper and lower limits of the
generator’s active power output; Qmax

Gi and Qmin
Gi are the upper

and lower limits of reactive power output; Vmax
i and Vmin

i are the
upper and lower limits of node voltage; Pmax

ij and Pmin
ij are the

upper and lower limits of the line thermal stability constraints;
S1 is the line set.

2.1.4. Transient stability constraints
The expressions for transient stability constraints are

expressed as:
dx
dt

= f (x, y, λ) (4)

h (x, y, λ) = 0 (5)

where x is the state variable; y is the algebraic variable; λ is the
control variable. Eq. (4) is a differential equation whereas Eq. (5)
is an algebraic equation.

Eqs. (4) and (5) include the solution of nonlinear differential–
algebraic equations in the calculation process, the calculation
complexity is high, the calculation time is long, and there are
many fault sets in the large power grid, which doubles the dif-
ficulty of calculation, and it is difficult to meet the transient
Fig. 3. Structure of deep belief network.
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f

Fig. 4. Deep belief network-based transient stability analysis.

Table 2
Expected failure set.
Fault number System fault line

39 node system 68-node system 140-node system

1 2-3 1-2 16-17
2 3-4 1-30 17-18
3 3-18 2-3 2-33
4 4-5 2-25 2-3
5 4-14 3-4 3-4
6 5-6 3-18 5-31
7 16-17 4-5 9-30
8 16-21 42-51 7-15
9 16-24 48-40 29-30
10 17-27 4-14 32-35

Table 3
Comparison of accuracy.
Test system Accuracy of transient stability estimator (%)

10-machine 39-node system 98.3
16 machine 68 node system 97.8
48 machine 140 node system 97.5

stability online, Therefore, the transient stability estimator based
on DBN is proposed for calculation requirements.

2.2. Sample generation

2.2.1. Transient stability coefficient
Select TSI as the transient stability evaluation index. TSI re-

lects the maximum power angle difference of the generator
2116
during the transient state. The Transient Security Assessment
Tool (TSAT) based on angle margin algorithm that calculates the
TSI (Jovica, 2016; Gautam et al., 2009; Cipriano et al., 2018; Sajadi
et al., 2017). The mathematical expression of TSI is:

TSI =
360 − δmax

360 + δmax
× 100 (6)

where δmax is the maximum power angle difference between
any two generators in the system. When TSI > 0, the system
is transiently stable, and the larger the TSI value, the higher the
system transient stability; when TSI < 0, the system is transiently
unstable.

2.2.2. Latin hypercube sampling and predicted failure set
Latin Hypercube Sampling (LHS) is used to generate a sam-

ple space where the generator’s active power output fluctuates
within a certain range, and according to the principle of active
power balance and load power factor constant, the load active
and reactive power fluctuates with the generator’s active power.
LHS divides the sample value range into N equal parts accord-
ing to the number of samples N, and randomly selects a point
in each equal part, so that the sample spreads over the entire
sample space and has a certain degree of randomness. Fig. 1
shows the comparison between LHS and simple random sampling
(SRS) (Shiwei et al., 2016).

It can be seen from Fig. 1 that LHS is more evenly distributed
than SRS samples, and the sample data generated by LHS is more
conducive to improving the generalization ability of the transient
stability estimator.

Select several lines as the expected fault set, and select one of
them as the fault line in each time-domain simulation calculation.
At the same time, the fault type is selected as a three-phase
short-circuit fault to ensure that the deep learning model can
evaluate the TSI corresponding to the most serious fault in all
fault situations.

2.2.3. Transient stability calculation and inertial center transforma-
tion

Combine all generator output samples and expected fault lines
in sequence, as the initial conditions of time-domain simulation,
use the power system toolbox (PST) for time-domain simulation
calculation, record the generator power angle changes, and calcu-
late TSI (Li et al., 2018b; Youness et al., 2019; Yagami et al., 2020;
Ray, 2017; Mylonas et al., 2020; Sabo et al., 2020).

When recording the power angle curve, take the center of in-
ertia (COI) as the reference line to perform COI transformation on
the rotor angle δi of each generator. The mathematical expression
is:

δCOI = δi − δ0 (7)

δ0 =
1
MT

∑
i∈Sg

Miδi (8)

MT =

∑
i∈Sg

Mi (9)

where δCOI is the generator power angle after COI conversion; δ0
is COI; Mi is the generator inertia constant (Minye and Lingling,
2016; Cheema and Mehmood, 2020; Mujcinagic et al., 2020;
Dakovic et al., 2020; Tabora and Smith, 1972).

2.2.4. Deep learning model samples
In the case of the same generator output, it is expected that

each fault in the fault cluster corresponds to one TSI. To ensure
the transient stability requirements for any fault line and fault
type, the smallest TSI value is selected as the effective output of
this generator. The corresponding TSI constitutes the sample data
for training the transient stability estimator.

The sample data is shown in Table 1.
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Fig. 5. Proposed DL algorithm process.
Fig. 6. Proposed algorithm flowchart.
2.3. Deep belief network

DBN is composed of a multi-layer restricted Boltzmann ma-
chine (RBM) and a fully-connected layer, which has the advan-
tages of automatic feature extraction, strong nonlinear represen-
tation, robustness, etc. Compared with the neural network model,
it has a deeper model structure and better abstraction ability,
which can extract more complex internal laws of the power
system. Therefore, DBN is used to evaluate the transient stability
of the power system.
2117
2.3.1. Restricted Boltzmann machine
RBM is a randomly generated neural network, including 1

visible layer and 1 hidden layer. Neurons in the same layer are
independent of each other, while neurons in different layers are
bidirectionally connected. When training RBM, information flows
in two directions, and the weights in the two directions are the
same, and the biases are different. The RBM structure is shown in
Fig. 2.
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RBM is a probability distribution model based on energy. The
odel consists of an energy function and a probability distri-
ution function based on the energy function. For a given state
ector (h, v), the energy function of RBM is

(v, h) = −aTv − bTh − hTWv (10)

here v is the visible layer unit matrix; h is the hidden layer unit
atrix; a is the bias matrix of the visible layer unit; b is the bias
atrix of the hidden layer unit set matrix; W is the connection
eight matrix between the visible layer unit v and the hidden

ayer unit h.
The joint probability distribution function of v and h in RBM

is

P (v, h) =
1
Z
e−E(v,h) (11)

here Z =
∑

v,h e
−E(v,h) is called the normalization constant of

he partition function.
Since the partition function is difficult to handle, the max-

mum likelihood gradient approximation is used to derive the
onditional distribution from the joint distribution:(
hj = 1|v

)
= sigmoid

(
w : ,jvj + bj

)
(12)

P
(
vj = 1|h

)
= sigmoid

(
w : ,jhj + aj

)
(13)

here sigmoid = 1/
(
1 + e−x

)
is the activation function.

The training objective of RBM is to minimize the loss function,
which is

L (W , a, b) = −

m∑
i=1

ln
(
P

(
v(i))) (14)

2.3.2. Deep belief network
DBN has composed of multiple layers of RBM and a layer of

the fully connected layer. Its structure is shown in Fig. 3. DBN
model training is divided into two stages. The first stage is pre-
training. Each layer of RBM uses unlabeled sample data for greedy
layer-by-layer unsupervised learning. Through pre-training, the
DBNmodel is near the optimal solution, which solves the problem
that deep neural networks cannot be trained due to gradient loss
or gradient explosion. The second stage is to use labeled sample
data to train the model as a whole, through stochastic gradient
descent. Algorithm and backpropagation make the weights and
biases fine-tuned based on pre-training to achieve the best fitting
effect (Lan et al., 2007).

The energy function and joint probability function of DBN are:

E
(
v, h1, h2, h3)

= −vTW 1h1
− h1TW 2h2

− h2TW 3h3 (15)(
v, h1, h2, h3)

=
1
Z
e−E

(
v,h1,h2,h3

)
(16)

The learning rate decay method, mean square error (MSE),
and L2 regularization are used in the model training process. The
method of learning rate attenuation can improve the learning
speed in the early stage of training, and improve the evaluation
accuracy rate in the later stage of training; the gradient of MSE
loss decreases as the loss decreases. When the loss approaches 0,
the gradient is very small. At the end of the training, the MSE is
more absolute than the mean absolute error (MAE) calculation re-
sults are more accurate; L2 regularization can prevent the model
from overfitting. The mathematical expressions are:

Lr = Lr ×
1

1 + D × E
(17)

SE =
1
m

m∑
(Φ (xi) − yi)2 (18)
i=1

2118
Fig. 7. Comparison of output power through LHS.

Fig. 8. Accuracy comparison of the proposed and existing algorithms.

f (x) = min

⎡⎣ 1
m

m∑
i=1

(Φ (xi) − yi)2 + λ

n∑
j=1

ωj
2

⎤⎦ (19)

where Lr is the learning rate; D is the learning rate attenuation
coefficient; E is the number of training; Φ(x) is the DBN model; xi
is the training set; yi is the tag value corresponding to xi; m is the
number of training set samples; n is the number of DBN layers;
ωi is the weight coefficient; λ is the regularization parameter.

2.4. DBN model training

The active power output of the generator in the sample data
is used as the DBN input vector, and TSI is used as the corre-
sponding label value to learn the nonlinear mapping relationship
between the two. After training, the transient stability constraint
represented by the DBN model can be expressed as

Φ
(
Ppre
G1 , Ppre

G2 , . . . , Ppre
Gn

)
> 0 (20)

where Ppre
G is the active power output of the generator given

by the preventive control; Φ (PG) is the trained DBN model. Its
input is the active power output of all generators in the system,
and the output is the TSI evaluated by the model. When the
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Fig. 9. Generator power comparison with and without the proposed algorithm.

evaluated TSI > 0, the DBN model considers the system transient
state under this active output. On the contrary, it is considered
that the system is transiently unstable, and preventive control is
required. The training process of the DBN-based power system
transient stability estimator is shown in Fig. 4.

3. DBN-driven transient stability preventive control

3.1. NSGA-II algorithm optimization goal

NSGA-II is developed from the NSGA algorithm and has the
dvantages of low computational complexity, high population
iversity, fast running speed, and good solution set convergence
Hou et al., 2018b). NSGA-II is a multi-objective optimization
lgorithm that can find optimization results that satisfy multiple
onstraints at the same time. In this paper, NSGA-II has 4 opti-
ization objectives, namely: preventive control and adjustment
ost, power flow constraint, stable operation constraint, and tran-
ient stability constraint (Nezamabad et al., 2019). The NSGA-II
lgorithm will consider the calculation results of 4 optimization
argets at the same time and give the optimal preventive control
trategy. The cost function of the NSGA-II algorithm is:

in Fcost =

∑
i∈Sg

(CUi |∆PUi| + CDi |∆PDi|) (21)

∆PUi =

{
Ppi − POi, Ppi > POi
0, Ppi ≤ POi

(22)

∆PDi =

{
0, Ppi ≥ POi
Ppi − POi, Ppi < POi

(23)

where CUi increases the cost of generator output; CDi reduces the
cost of generator output; POi is used to prevent and control the
generator output; Ppi is the generator’s output after preventive
control; ∆PUi is the increased value of generator output; ∆PDi is
the reduced value of generator output.

3.2. DBN-NSGA-II preventive control algorithm

Embed PandaPower and DBN-based transient stability estima-
tor in the NSGA-II algorithm to form the DBN-NSGA-II preventive
control algorithm. Use PandaPower to judge the current con-
straints and stable operation constraints of the population, and
the transient stability estimator to evaluate the individual TSI. In

the case of DBN with high accuracy, the output of the DBN model

2119
can be regarded as the TSI in the case of this active work. The
way the transient stability estimator is embedded in NSGA-II is
shown in Fig. 5.

The calculation process of the DBN-NSGA-II algorithm is shown
in Fig. 6.

3.3. Usability improvement

In each iteration of the NSGA-II algorithm, all population in-
dividuals are substituted into the objective function, the corre-
sponding results are calculated, and fast non-dominated sorting is
performed according to the size of the results. The computational
complexity of the NSGA-II algorithm is

O
(
mN2)

∼ O
(
mN3) (24)

where m is the number of objective functions; N is the population
size, the population increases, and the computational complexity
increases from 2 to 3 times.

In this model, the transient stability of the system is the
primary indicator and must be above a certain stability threshold.
Therefore, after the transient stability estimator obtains the indi-
vidual TSI value, individuals whose TSI value is less than a certain
stability threshold are eliminated. In the subsequent iteration
process, due to the rapid reduction of the population size, the
NSGA-II algorithm can quickly complete the iteration. At the same
time, considering the conservativeness of prevention and control,
the critically unstable samples are marked as needing control
intervention, and 50 is selected as the threshold for screening
population individuals. At this time, the accuracy of transient
stability assessment can reach 100%.

4. Case analysis

4.1. Sample set construction

A 10-machine 39-node system, a 16-machine 68-node system,
and a 48-machine 140-node system were selected to verify the
performance of the algorithm. Select 10 lines of all lines in each
system as the expected fault lines, and set the three-phase to
short-circuit faults in the middle of the lines to form the expected
fault set. The expected failure set is shown in Table 2.

Because of the expected fault concentrated fault lines and
fault types, the active power output of the generator is set to
fluctuate in the range of 90% to 110%. Using Latin hypercube
sampling to generate 1000 kinds of generator active output, and
according to the principle of active power balance and load power
factor constant, the system load active and reactive power will
fluctuate as the total generator active output changes. Combine
these 1000 types of generator active power output conditions
with 10 expected fault lines concentrated with expected failures
to form 10,000 types of expected failure data. Use PST to perform
time-domain simulation calculation on the expected fault data,
set the fault removal time to 0.1s, and the total simulation time
to 20 s to solve the corresponding TSI. Each generator output
corresponds to 10 TSIs, the smallest TSI among the 10 TSIs is
screened, and the generator output together forms 1000 sample
data for training the transient stability estimator. Fig. 7 shows the
Latin hypercube sampling results of generators 30, 31, and 32 in
the 39-node system.

It can be seen from Fig. 7 that the data in the sample space
formed by generators 30, 31, and 32 are evenly distributed
throughout the entire sample space, which is beneficial to im-
prove the generalization ability of the transient stability estima-
tor.
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Fig. 10. Angular comparison of the power with and without the proposed algorithm for 7 and 10 faults.
able 4
ost comparison.
Power generation Before prevention and control After prevention and control Active effort adjustment Unit tone Single machine Total adjustment

Machine Power output (MW) Power output (MW) Section size (MW) Cost-saving Cost-saving Cost

1 258.6 265.6 6.9 10 69.0
2 599.0 610.8 11.7 10 117.0
3 629.7 672.0 42.4 10 424.0
4 675.6 658.1 −17.5 5 87.5
5 519.5 471.9 −47.6 5 238.0
6 642.8 630.8 −11.9 5 59.5 1805
7 610.3 588.1 −22.1 5 110.5
8 496.7 556.2 59.5 10 595.0
9 852.5 836.4 −16.1 5 80.5
10 976.8 922.0 −4.8 5 24.0
Table 5
Comparison of the TSI with and without control for the proposed and reference Jovica (2016).
Fault
number

Before and after control

39 node system 68 node system 140 node system

Before After Before After Before After

Ref.
Jovica
(2016)

Proposed Ref.
Jovica
(2016)

Proposed Ref.
Jovica
(2016)

Proposed Ref.
Jovica
(2016)

Proposed Ref.
Jovica
(2016)

Proposed Ref. Jovica (2016) Proposed

1 66.8 68.7 68.3 69.5 70.1 71.8 74.1 75.2 −98.4 −97.0 69.5 70.3
2 67.1 68.9 68.7 69.4 69.9 71.6 73.8 74.8 −97.2 −96.1 65.3 66.2
3 67.2 68.9 68.4 69.3 70.8 72.6 74.4 75.5 66.5 67.2 69.6 70.5
4 67.6 69.5 69.5 70.2 70.9 72.7 74.5 75.6 65.3 66.4 68.5 69.2
5 67.9 68.8 68.8 69.4 70.2 71.9 73.8 74.8 65.3 66.4 68.5 69.2
6 68.1 69.0 68.9 69.5 70.3 72.0 73.9 74.9 67.3 68.1 68.8 69.7
7 −107.4 −99.7 69.3 69.9 70.3 72.0 74 75.0 66.9 67.6 68.9 70.0
8 67.9 68.6 69.2 69.6 −61.5 −57.9 59.8 61.6 67.2 67.9 68.8 69.7
9 68.5 69.3 69.5 70.0 −82.7 −76.2 58.4 60.6 66.1 67.0 68.7 69.4
10 −104.5 −98.3 68.7 69.5 70.3 72.0 74 75.0 67.1 68.0 68.8 69.7
2120



Q. Su, H.U. Khan, I. Khan et al. Energy Reports 7 (2021) 2113–2124

8
t
o
d

Fig. 11. Angular comparison of the power with and without the proposed algorithm for 8 and 9 faults.
Table 6
Applicability improvement comparison.
Test
System

Population
Size

Algorithm TSI Cost control
USD

Calculation
Time (s)

Amount of
power not
delivered to
the system
(MW)

Cost of
wasted
power
(USD)

10-machine
39-node
system

2000 DBN-NSGA-II 87.2 1921 4840.00 6.3 213
Improved DBN-NSGA-II 86.3 1805 13.90 3.2 103

1000 DBN-NSGA-II 52.5 1999 957.00 4.7 176
Improved DBN-NSGA-II 71.5 2053 4.03 2.5 93

500 DBN-NSGA-II 88.4 1960 201.00 3.9 123
Improved DBN-NSGA-II 62.1 2240 1.90 2.1 84

16 machine
68 node
system

2000 DBN-NSGA-II 59.6 9032 4952.00 7.2 274
Improved DBN-NSGA-II 63.9 11287 35.70 4.5 145

1000 DBN-NSGA-II 60.0 8011 1028.00 6.8 242
Improved DBN-NSGA-II 63.3 10931 7.88 3.9 123

500 DBN-NSGA-II 59.8 9180 223.00 6.2 204
Improved DBN-NSGA-II 63.5 11955 2.41 3.3 95

48 machine 140
node system

2000 DBN-NSGA-II 64.3 10931 5443.00 7.8 289
Improved DBN-NSGA-II 64.1 10643 36.30 4.7 151

1000 DBN-NSGA-II 64.6 10959 999.00 7.2 274
Improved DBN-NSGA-II 64.8 13532 8.70 3.7 103

500 DBN-NSGA-II 64.8 10690 209.00 6.1 218
Improved DBN-NSGA-II 63.5 12672 2.43 2.8 94
4.2. Performance evaluation of transient stability estimator

Divide the 1000 sample data into a training set containing
00 data and a test set containing 200 data, use the training set
o train the transient stability estimator, and verify the accuracy
f the model through the test set. The recognition accuracy of
ifferent test systems is shown in Table 3.
2121
Construct two artificial neural networks (ANN) models. The
first ANN has 3 layers, the number of neurons is 10, 100, and
1, denoted as ANN3, and the second is 4 layers. It adopts the
same network structure as DBN and The number of neurons, the
number of neurons is 10, 100, 50, 1 in order, and it is recorded
as ANN4. Taking the 10-machine 39-node system as the test
system, under the same conditions of calculation tools, optimizer,
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Fig. 12. Angular comparison of the power with and without the proposed algorithm for faults 1 and 2.
activation function, and loss function, the accuracy of the three
models under different iteration times is counted, and the result
is shown in Fig. 8.

It can be seen from Fig. 8 that DBN has the fastest convergence
speed and the best evaluation results compared with the other
two ANNs. The result in Fig. 8 shows the role of the DBN model
pre-training. Through pre-training, the DBN model reaches the
vicinity of the optimal solution. After the overall model training,
the best fitting effect can be quickly obtained.

4.3. Analysis of the results

The DBN-based transient stability evaluator is embedded in
the NSGA-II algorithm to perform transient stability preventive
control on the output of transient unstable generators. The output
comparison before and after the prevention control of the 39-
node system is shown in Fig. 9, and the adjustment cost of the
prevention control is shown in Table 4.

Finally, PST is used to verify the preventive control strategy,
and the time-domain simulation method is used to calculate the
TSI before and after the preventive control under each expected
failure. The comparison of the TSI before and after the preventive
control of each test system is shown in Table 5. It can be seen
from Table 5 that the transient instability faults before preven-
tive control become transiently stable after preventive control.
The transiently stable faults before preventive control remain
transiently stable, and the TSI has increased slightly, indicating
that the strategy has been appropriately increased. Temporary
stability margin of the system for full fault set.

Fig. 10 shows the power angle curve before and after the
preventive control of the 39-bus system under fault 7 and fault

10.

2122
Fig. 11 shows the power angle curve before and after the pre-
ventive control of the 68-bus system under fault 8 and
fault 9.

Fig. 12 shows the power angle curve before and after the
preventive control of the 140-node system under fault 1 and fault
2.

From the comparison of power angle curves before and after
preventive control in Figs. 10–12, it can be seen that through
predictive control, the system returns from transient instability
to transient stability.

4.4. Applicability improvement result analysis

Considering the conservativeness of prevention and control,
the critically unstable samples are marked as needing control
intervention, and 50 is selected as the threshold for screening
population individuals. At this time, the assessment accuracy
of the transient stability evaluator can reach 100%. Therefore,
to improve the DBN-NSGA-II algorithm, in the iterative process,
the stability threshold is selected as 50, that is, the TSI > 50
prevention control strategy is considered to be transiently stable,
and the corresponding individual is retained in the offspring,
while TSI < 50 individuals are eliminated, through a certain cost
increase, to ensure the reliability of preventive control strategies.
The calculation time of TSI, adjustment cost, and prevention
control strategy before and after the applicability improvement is
compared for different test systems in different population sizes,
as shown in Table 6. It can be seen from the results in Table 6
that using the improved DBN-NSGA-II algorithm while keeping
the TSI and cost within a good range, the computing time can be
greatly improved, and better preventive control can be obtained
within a few seconds. Strategies to meet the requirements of
online prevention and control.
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. Conclusion

Different from traditional machine learning algorithms, which
re mostly used for state identification and evaluation, this pa-
er proposes a power system transient stability prevention con-
rol evolutionary algorithm embedded in a deep confidence net-
ork, using the combination of NSGA-II algorithm intelligent
ptimization and deep confidence network accurate identification
o achieve The rapid and stable search for the optimal strategy of
ransient stability prevention and control for the expected failure
et is presented. Through the analysis of numerical examples, the
ollowing conclusions are obtained:

(1) The DBN-based transient stability estimator can accurately
it the mapping relationship between generator output and TSI,
nd greatly increase the speed of transient stability evaluation to
eet online evaluation requirements.
(2) The DBN-driven power system transient stability preven-

ive control evolutionary algorithm embeds the transient stability
valuator as a non-explicit ‘‘black box constraint’’ in the itera-
ive optimization process of evolutionary calculation, and realizes
he expected failure set the constraint to control the cost The
ata-driven search technology of the minimum-targeted power
eneration rescheduling preventive control optimization strategy
eets the requirements of online preventive control.
The deep learning-driven evolutionary algorithm for transient

tability prevention and control proposed in this paper combines
eep learning and evolutionary algorithms to provide a new tool
or online decision-making for transient stability prevention and
ontrol, and can also embed similar safety, stability, and reliability
ules. Provide method reference in corresponding control strategy
odel.
In the next stage of research, we will consider the oscilla-

ion mode, transient energy, and various kinds of standby con-
traints, as a whole, take into account the proposed calculation
ramework, and continue to conduct applicability testing and
mprovement.
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