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Abstract

Nonintrusive load monitoring (NILM) is the de facto

technique for extracting device‐level power consumption

fingerprints at (almost) no cost from only aggregated

mains readings. Specifically, there is no need to install an

individual meter for each appliance. However, a robust

NILM system should incorporate a precise appliance

identification module that can effectively discriminate

between various devices. In this context, this paper pro-

poses a powerful method to extract accurate power fin-

gerprints for electrical appliance identification. Rather

than relying solely on time‐domain (TD) analysis, this

framework abstracts the phase encoding of the TD

description of power signals using a two‐dimensional

(2D) representation. This allows mapping power trajec-

tories to a novel 2D binary representation space, and then

performing a histogramming process after converting

binary codes to new decimal representations. This yields

the final histogram of 2D phase encoding of power sig-

nals, namely, 2D‐PEP. An empirical performance

evaluation conducted with three realistic power con-

sumption databases collected at distinct resolutions

indicates that the proposed 2D‐PEP descriptor achieves
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outperformance for appliance identification in compar-

ison with other recent techniques. Accordingly, high

identification accuracies are attained on the GREEND,

UK‐DALE, and WHITED data sets, where 99.54%,

98.78%, and 100% rates have been achieved, respectively,

using the proposed 2D‐PEP descriptor.

KEYWORD S

appliance identification, classification, feature extraction,
nonintrusive load monitoring, phase encoding

1 | INTRODUCTION

In smart grid, energy efficiency is mainly based on the adoption of intelligent strategies to
reduce wasted energy. Smart metering plays an essential role in developing a reliable smart grid
to promote energy saving in buildings via the use of smart meters.1‐3 However, the deployment
of a large number of smart meters to monitor electrical appliances can increase significantly the
implementation cost of the smart grid, and thereby the cost of the implementation can tre-
mendously surpass the energy cost that will be saved when installing these smart meters.4,5 To
that end, the solution to this issue is via adopting a smart low‐cost monitoring, called non-
intrusive load monitoring (NILM) or energy disaggregation as well.6

NILM is the process of identifying individual device consumption footprints in a given
building from the aggregated power consumption taken at the overall power entry without the
need to install a smart meter for each appliance.7,8 Device‐level consumption footprints in-
ferred by NILM can (i) provide end‐users statistics with personalized consumption of each
appliance through exploiting the aggregated power signal, without the need to install a smart
sensor for each device and (ii) help end‐users to comprehend their consumption behaviors and
provide them with information on how to act for promoting energy saving.9,10 Henceforth, this
allows a cutting down of their energy bills and constitutes a gain for the environment.11,12

Nonintrusive appliance recognition is among the core steps in designing a robust NILM
system. It is responsible for discriminating between the various appliances after segregating
aggregated power signals.13,14 To do so with adequate accuracy, the NILM system should
employ a robust feature extraction module followed by an appropriate powerful classifier.
Extended efforts have been dedicated to design robust feature extraction descriptors and dif-
ferent NILM systems can be found in the literature based on the nature of feature extraction
schemes they used.15

To design a powerful NILM system, this paper proposes a robust feature extraction de-
scriptor that can derive accurate fingerprints from power consumption signals. In this regard, a
set of contributions have been introduced in this framework, which can be summarized as
follows:

• First, by extracting time‐domain (TD) features of power signal using sliding windows, a local
processing is performed that can provide fined‐grained information from the limited
neighborhoods of each signal pattern.
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• Second, the obtained TD signal is then moved to two‐dimensional (2D) representation, which
provides more possibilities to encode and extract power features than 1D representations
because each signal sample in 2D space will be surrounded by eight close neighbors.

• Third, a local phase encoding process is performed on the frequency representation of the
obtained matrix using a block splitting process incorporating the neighborhood information.
Then, each block is mapped to a new 1D binary representation using a specific encoding
procedure. Next, the histogram of 2D phase encoding of power signals (2D‐PEP) is generated
through a histogramming process after converting the binary codes to decimal representa-
tions. The main advantage of the proposed encoding process is that it can not only improve
the discrimination ability of classifier models, but it also reduces enormously the dimensions
of the appliance signatures before identifying them via removing unnecessary information.

• Fourth, a nonintrusive load identification system is designed based on the proposed 2D‐PEP
descriptor, with reference to different machine learning (ML) classifiers, such as linear
discriminant analysis (LDA), principal component analysis (PCA), deep neural networks
(DNN), decision tree (DT), ensemble bagging tree (EBT), K‐nearest neighbors (KNN), and
support vector machine (SVM).

• Finally, the proposed solution is evaluated under three different data sets with distinct
frequency resolutions, in contrast to the most of NILM frameworks, which are generally
assessed on one data set. Moreover, the data sets considered in this framework are collected
at two completely different scenarios. For example, consumption footprints in the
GREEND16 and UK‐DALE17 data sets have been gleaned from the same household appli-
ances but for different days. While, in the WHITED data set,18 power consumption footprints
are collected for a large number of appliances but from distinct manufacturers (i.e., each
appliance class includes and ensemble of appliances from different brands). This helps in
evaluating whether our solution can recognize a specific appliance type even if the former is
trained using data of other appliances pertaining to the same class but from different
manufacturers (brands). In this context, the evaluation studies conducted in this paper help
in consolidating the credibility of the proposed work.

The remainder of this paper is structured as follows. An overview of nonconventional NILM
systems is introduced in Section 2 through presenting a taxonomy structure of these frame-
works based on the feature extraction analysis and learning models. Moreover, their limitations
and drawbacks are identified as well. In Section 3, detailed explanations of the proposed
appliance identification system, 2D‐PEP feature extraction, and learning models are presented.
Empirical results on public realistic databases are exhibited in Section 4 to evaluate the per-
formance of the proposed solution and compare it with recent NILM systems. Furthermore,
Section 5 draws the main findings and recommendations emerging from this framework.

2 | RELATED WORKS

2.1 | Feature extraction

Although traditional methods of feature extraction exist in the literature, such as steady‐
state and transient state‐based characteristics, the focus of this section is on studying
nonconventional techniques, which incorporate all feature techniques that do not pertain
to steady‐state or transient feature categories. Further, this section discusses mainly the
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feature extraction‐based categorization. Nonconventional NILM features can be decom-
posed into the following subclasses:

Statistical models: this type of feature addresses mainly the collection of statistical para-
meters and further the use of statistical models to represent appliances' footprints. By Guedes
et al,19 higher‐order statistics drawn from current loads are deployed for modeling appliance
load fingerprints. By Krull et al,20 virtual stochastic sensors are utilized to derive domestic
appliance consumption footprints, in which the accurate intervals of turning on/off each ap-
pliance are taken into consideration. By Kong et al,21 the NILM issue is resolved by means of
hidden Markov models (HMM). The latter are applied to segregate the main power con-
sumption into various appliance‐level data after generating an HMM model for each appliance
class. By Liu et al,22 individual appliance load fingerprints are determined via computing the
probabilities of consumption events usually recorded during the operation of an ensemble of
appliances. Accordingly, a mixture of Bernoulli distributions is deployed to measure those
probabilities. By Ji et al,23 the authors use a maximum a posteriori rule to draw device‐specific
consumption signatures through the use of recursive fuzzy c‐Means and HMM models.

Graph signal processing (GSP): is an in‐demand research field aiming at describing the
stochastic properties of power consumption signals by means of graph theory. By He et al,24 the
authors introduce an event‐based graph technique for extracting the fine‐grained fingerprints
of appliance loads, and further for minimizing the learning time and reducing the computation
cost of conventional graph‐based solutions. By Li and Dick,25 various graph‐based multilabel
schemes are proposed to disaggregate the main consumption loads of households into in-
dividual appliance consumption footprints using a semi‐automatic approach. By Zhao et al,26

NILM performance is enhanced via the use of a generic GSP‐based method, which depends on
applying graph‐based filters. The latter can help in capturing on/off events through the sup-
pression of the noise generated from electrical devices.

Sparse coding: in this case, the energy disaggregation framework is treated as a blind source‐
separation problem and recent sparse coding schemes are then applied to split an aggregated
power consumption signal into specific appliance‐based profiles.27 By Singh and Majumdar,28 a
co‐sparse analysis dictionary learning is proposed to segregate the total energy consumption
into device‐level data and significantly shorten the training process. By Singh and Majumdar,29

a deep learning architecture is used for designing a multilayer dictionary of each appliance
rather than constructing one‐level codebook. The multilayer codebooks are then deployed as
features for a source‐separation algorithm to break down the aggregated energy signal. By
Rahimpour et al,30 an improved nonnegative matrix factorization is used to pick up perceptibly
valuable appliance‐level signatures from the aggregated mixture.

Binary encoding: most recently, binary descriptors have been investigated for the identifi-
cation of power signals. By Du et al,31 power fingerprints are derived by estimating the simi-
larity of voltage–current (V–I) shapes, encoding it using a binary dictionary and then extracting
graphical footprints that can be used for appliance identification. By Gao et al,32 V–I binary
representation is employed through converting the normalized V–I magnitude into binary
matrices using a thresholding process. More specifically, this approach relies on binary coding
of the V–I edges plotted in the new representation. These data are then fed into an ML classifier
to identify each appliance class. By Liu et al,33 a color encoder is proposed to draw V–I
signatures that can also be translated to visual plots. These footprints are then fed into a deep
learning classifier to identify each appliance. By Baets et al,34 a siamese‐neural network is used
that aims at mapping the V–I trajectories into a novel characteristic representation plan.
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Even though the aforementioned nonconventional feature extraction‐based NILM systems
have been attracted a significant attention in recent years to resolve the NLMI issue, most of
them are based on synthesis dictionary learning/coding methodologies that require large‐scale
data sets to learn the electric loads of different kinds of appliances. Therefore, this limits their
applicability in real‐world application scenarios. Moreover, for the case of statistical schemes,
they are generally constrained in a comparatively limited discrete state‐space. Thus, the im-
plementation and computational complexity of learning the electric loads are unmanageable
and the state‐space is usually growing exponentially. Consequently, the exponential space‐
complexity presents a serious drawback when extending the HMM process in the context of
time windows. Moreover, statistical models are generally relying on capturing transient states
of appliances' consumptions, which could decrease their performance if various devices are
switching on/off simultaneously.

2.2 | Learning models

Recently, much attention has been devoted to the use of deep learning models in the NILM
problem and other applications. Although the tough training procedure of deep learning
models, they operate appropriately in most of NILM scenarios, especially in comparison with
conventional ML models. Nevertheless, it is still earlier to employ existing deep learning
models in real‐world NILM systems and even in other realistic applications since they need
more improvements on different aspects, such as the optimization issue and acceleration of the
learning process. In this regard, various works have been proposed to make them more ade-
quate to real‐world applications.

Zheng et al35 introduce a two‐step learning procedure for the aim of optimizing the
feature boundary of deep convolutional neural networks (CNN), this results mainly in
overcoming the overfitting issue. By Chen et al,36 a scale‐ and context‐aware deep learning
model is proposed to disaggregate power signals. In this line, multiscale features and
contextual data are used to train the model after developing a multibranch structure,
which includes various branchwise gates and receptive field sizes for connecting the
branches in each subnetwork. By Zheng et al,37 a simple yet effective training method is
proposed, which relies on a layerwise and stochastic gradient descent scheme. This helps
in implementing DNN models in a simple way with low computation complexity, further
it enables to achieve a gradient‐based optimization of DNN objective functions. Moreover,
aiming at accelerating the learning process, a pruning scheme is introduced in Reference
[38], in which the model parameters of 2D deep CNN are reduced. By Zheng et al,39 the
performance of CNN models is improved using full‐stage information augmentation
strategy. This results in an implicit model ensemble that does not require extra model
training costs. Accordingly, information augmentation over the training and test steps
could help in optimizing the network in addition to improving its generalization
capability.

On the other side, since the deep learning models require a large amount of data to learn
the electric loads of several houses, it was very difficult to gather sufficient label data and
train the classifiers appropriately. To that end, several frameworks have been proposed
recently to deal with this problem. Liu et al33 propose a transfer learning method using
V–I trajectories, which can reduce the number of observed households while maintaining
acceptable performance. In this context, a DNN algorithm pretrained using a visual
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recognition repository is transferred for learning the V–I trajectories based on exploiting the
related knowledge between the two different fields. Although this approach could reduce
the training computation complexity, however its appliance identification performance still
needs to be improved further, especially for the case of some appliance classes, such as air
conditioners, light lamps, and hairdryers. By Gaur and Majumdar,40 instead of using
synthesis dictionary learning schemes, the implemented model has been trained with their
analysis equivalents. The latter can be trained on a moderate amount of data, in contrast to
synthesis‐based solutions, which require large‐scale data sets in the learning phase. By
D'Incecco et al,9 two schemes based on appliance transfer learning are proposed, in which
the latent characteristics learned by a complex device, such as a washing machine, are
transferred to a simple device, for example, kettle.

2.3 | Motivation of the proposed work

As described in the aforementioned subsections, although special attention has been given
recently to nonconventional NILM architectures, the latter requires additional enhancements
to increase their identification accuracies. In addition, most of the reviewed NILM systems are
only tested on one category of databases with a unique sampling frequency. In addition, most of
the binary encoding features‐based frameworks extract binary representations of the power
signals, which are then fed to deep learning networks classifiers to learn device‐specific data.
These classifiers are generally computationally intensive and hard to implement on low‐cost
computing platforms. However, in this paper, we propose a nonconventional solution that is
based on a novel descriptor. More specifically, power signals are converted to 2D representa-
tions to extract robust features based on a phase encoding using a block splitting process,
followed by a binary mapping and a decimal re‐encoding. Next, novel 1D histograms are
extracted from various blocks. Consequently, the final descriptors are represented as 1D short
histograms, which can reduce enormously the quantity of features used to learn EBT appliance
loads with EBT classifier. Explicitly, the proposed descriptor can not only enhance the dis-
crimination ability but it operates also as a dimensionality reduction approach, in which it
encodes efficiently the class‐specific appliance characteristics via eliminating the unnecessary
information.

On the other side, to the best of our knowledge, this is the first work that extracts appliance
features of power consumption signals after transforming them to 2D space. Moreover, the
proposed feature descriptor results in considerably better accuracy and F1 score rates than
state‐of‐the‐art techniques when it is applied on three well‐known data sets in this framework,
which have been collected using distinct frequency resolutions at completely different sce-
narios. Therefore, this allows one to establish more credibility to our work.

3 | PROPOSED SYSTEM

The main objective of the proposed scheme is to identify individual appliances from the ag-
gregated energy consumption using a new 2D feature extraction descriptor called 2D‐PEP. The
latter relies on encoding the phase of appliance power consumption signals after segregating
the main signal using an event detection approach. The extracted features from the detected
events are then fed into a classifier to identify each electrical device. The proposed appliance
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identification framework is represented in Figure 1. The rest of this section explains the
principal modules of the proposed methodology.

3.1 | Event detection

An event detection scheme is applied to the aggregated power signal sA collected from the main
supply to capture an individual event vector e e e e L= [ (1), (2), …, ( )]i for each appliance, with
M is the length of the event vector. Since we focus mainly in this framework on proposing a
novel feature descriptor, the event detection task has been conducted using the edge detector
described in the NILM toolkit.41

3.2 | Feature extraction

To collect a robust local description of each appliance, the proposed feature extraction algo-
rithm, namely, 2D‐PEP, is applied on each detected event vector ei to extract a feature histo-
gram that will be used in the classification step to efficiently recognize each appliance. The
proposed feature extraction algorithm is summarized in the following steps, while ≤i N with
N is the total number of event vectors:

Step 1. Extract the TD waveform SF of the event vector ei using a windowing process with a
window length n based on Equation (1) as follows:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑S k e e e( ) = log − = log Δ ,

i

n

i i

i

n

iF

=1

−1

+1

=1

−1

(1)

where k K= 1, 2, …, and K is the number of extracted windows. Following, collected S k( )F

are then concatenated to form the whole feature vector S S S S K= [ (1), (2), …, ( )]F F F F .

FIGURE 1 Architecture of the proposed appliance identification system. 2D, two dimensional
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Step 2. Reshape SF to 2D representation, denoted f y( ), where y represents the 2D position in
the novel matrix. This is to treat power signals as images, and hence more encoding
possibilities will be available since each power sample will be surrounded with
eight neighbors.

Step 3. Apply a linear filtering using short time Fourier transform (STFT). This helps in a
better analysis of the local frequencies since the STFT uses a windowing process. The
linear filtering is defined using Equation (2) as follows:

∫G f c dy v y z z v w( , ) = ( − ) ( , ) ,m

R
STFT 2

(2)

where v describes the 2D frequency, and c: →R C2 stands for complex valued filter op-
erator, which is defined by Equation (3) as follows:

c w ey v y( , ) = ( ) ,j πy v− 2 T

(3)

where j = −1 and →w y R R( ): 2 2 represents a window kernel of size a a× . Also,
m M= 1, 2, …, andM represents the number of kernels that can be scanned over the overall
matrix f y( ).

Step 4. Apply the binary encoding using the real (Re{·}) and imaginary (Im{·}) parts of the
differences between the central coefficient and its neighbors (as explained in Figure 2)
via adopting Equation (4) as follows:

( ) ( ){ } { }E G G Gy v y v y v( ( , )) = sgn Re ( , ) + 2sgn Im ( , ) ,m m
STFT
m

STFT (4)

where sgn() is defined using Equation (5) as follows:

⎧⎨⎩α
α

sgn( ) =
1 if > 0,

0 otherwise.
(5)

(This step aims at extracting and encoding phase information to construct efficient and
robust features.)

Step 5. The encoding outputs lead then to a 2‐bit integer presentation ( ∈E {0, 1, 2, 3}) for
individual frequency coefficient at each point y . If we consider J components, the total
number of bits/point is then J2 . The obtained data are then re‐encoded to a decimal
space using Equation (6) as follows:

∑ ⋅B E Gy y v( ) = ( ( , )) 2m

j

J

m
j

j

=1

2

2( −1) (6)

that is ranging in the [0 − 2 − 1]J2 interval and characterize the new phase representation at
position y .
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FIGURE 2 Block diagram explaining the proposed feature extraction algorithm (2D‐PEP). 2D‐PEP,
two‐dimensional phase encoding of power; STFT, short time Fourier transform; TD, time domain [Color figure
can be viewed at wileyonlinelibrary.com]

Step 6. After obtaining the feature vector B b b b= , , …,m
a1 2 2 from all a2 frequencies in the STFT

block, a histogramming procedure is then applied to extract an estimation of their sum. This
is via affecting a histogram bin (scalar) bm′ to every a2 samples using the summation
described in Equation (7) as follows (this step will act as a dimensionality reduction as well):

80 | HIMEUR ET AL.
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∑b b= .m

j

a

j′

=1

2

(7)

Step 7. Repeat Steps 3–6 via shifting the a a× kernel through the overall matrix f y( ) to
construct the entire feature vector (b b b, ,… , M1

′
2
′ ′ ). Following a normalization proce-

dure is finally conducted using Equation (8) as follows:

∑ ∑ ∑
B d d d

b

b

b

b

b

b
D y= Normal( ′( )) = , , …, = , , …, .i

M

m

M

m

M
M

m

M
M

2D‐PEP 1 2
1′

=1 1′

2′

=1 2′

′

=1 ′

(8)

A block diagram explaining the proposed 2D‐PEP algorithm is portrayed in Figure 2. It
describes how the encoding process is performed after (i) detecting electrical events, (ii) cap-
turing TD feature, (iii) transforming extracted features to 2D space, and (iv) conducting an
STFT using a kernel of size a a× . Following, the central sample (red) is compared with four of
its neighbors (green) using a subtraction process. Moving forward, obtained real and imaginary
values are encoded as binary bits using the sign function. This encoding process is adopted
because: (i) the phase information is robust to several manipulations, data loss or noise that can
affect the signals during the collection campaign,42 as it is demonstrated with the promising
performance obtained in terms of the accuracy and F1 score in Section 4; and (ii) the binary
encoding process of real and imaginary values is used to reduce the length of electric load
signatures and further to improve the discrimination ability of the proposed descriptor. Spe-
cifically, the latter operates not only as a feature extraction algorithm but also as a di-
mensionality reduction scheme, where it encodes efficiently the appliance class‐specific
features through eliminating the unnecessary information. Therefore, this helps in improving
the correlation ability between the appliances pertaining to the same class, and on the flipside
enhancing the discriminative ability between the appliances belonging to distinct classes. After
that, a transformation to the decimal space, a histogramming process, and finally a normal-
ization procedure are performed to extract the overall feature vector. This enables to normalize
the feature vectors extracted from either the same appliance category or from different groups,
and thereby avoids that appliance features have different ranges since the latter can lead to a
misclassification.

3.3 | Classification

After extracting the feature histograms D2D‐PEP of all the N appliances in a data set, a classifier
is deployed to identify each electrical device. In this context, various ML classifiers with dif-
ferent parameters settings are deployed to pinpoint the best one, including:

• LDA: is essentially defined as a dimensionality reduction technique, however, it also works
as a linear classifier.

• PCA: computes the principal components of every appliance category before designing a
classifier based on projecting the appliance features on the subgroups expanded by the
principal components associated with the various categories in each data set.
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• SVM: is built upon the theory of minimizing structural risk. It tries to retrieve the optimum
separation hyperplane, which can reduce the distance between the features pertaining to the
same appliance class. If the feature patterns cannot be separated linearly in the initial space,
the feature data are transformed into a new space with higher dimensions by making use of
kernel modules.

• KNN: to classify appliance feature patterns, this model computes the distance of a candidate
feature vector to detect K close neighbors. Their labels are analyzed and employed to affect a
class label to the candidate feature vector based on majority vote, and thus define the class of
the respective appliance.

• DT: consists of a root node and various internal‐nodes and leaf nodes. The main idea behind
this classifier is to split a complex problem into various simples ones and then approve a
progressive approach to fix the classification issue step by step.

• DNN: encompasses multiple hidden layers, each one is fully linked to the previous layer.
Usually, rectified linear units (ReLUs) are deployed at the output of the hidden layers except
the last layer to improve nonlinear discrimination. A Softmax function is also employed after
the last hidden layer to forecast the appliance category.

• EBT: is an ML architecture in which several weak learners are usually deployed in the
training/testing steps to classify patterns in various subsets of the initial set and then fuse
them to procure improved prediction performance through a bootstrap aggregation.

The overall classification performance is then reported on each overall database using a
10‐fold cross‐validation process.

4 | EXPERIMENTAL RESULTS

4.1 | Data sets description

Public databases, namely, the GREEND,16 UK‐DALE,17 and WHITED,18 are employed for
assessing the performance of the appliance identification system using the proposed feature
extraction based on the 2D‐PEP procedure. The selected data sets are collected at different
resolutions, that is, at both low and high frequencies to conduct a comprehensive study and
check the efficiency of the proposed solution when the frequency is changed.

The GREEND contains the electricity consumption signatures of several domestic ap-
pliances collected at a sampling frequency of 1 Hz from eight households in Italy and Austria.
Consumption profiles are recorded for time periods ranging from 6 to 12 months. To validate
the proposed system, we use the energy usage footprints gathered from a typical house that
include six different appliances. The UK‐DALE repository includes energy consumption
fingerprints of five UK households, in which the current and voltage data are gathered at a
sampling frequency of 16 kHz at the aggregated level and with a sampling rate of 6 s at the
appliance level across three houses, as well as 1 s at the aggregated level and 6 s at the
appliance level for two additional homes. In this framework, we focus on analyzing the
consumption footprints collected at 16 kHz. The WITHED includes the power consumption
signatures of the device start‐ups collected from 110 electrical devices, categorizing up to 47
appliance groups. For each appliance category, a set of power consumption fingerprints is
collected from various appliances from different manufacturers and all of them are gathered
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at a sampling rate of 44,000 Hz. In this framework, we use 11 appliance categories to validate
the proposed system end each class includes 15 consumption observations. Table 1 outlines
the observed devices and the number of observed days for both GREEND and UK‐DALE data
sets along with the observed devices and their number in each appliance category for
WHITED data set.

First of all, Figure 3 shows an example of six power signals from the WHITED data set, their
2D representations, and the final histograms collected using the proposed 2D‐PEP descriptor. It
is clear that by moving to a high‐dimensional space, the power signals are considered as images
and any image feature extraction technique can be applied accordingly.

4.2 | Effect of parameter settings on the classification

To assess the effect of different parameter settings on the final classification performance, we
evaluate how the window length n and the kernel size a a× affect the accuracy and F1 score of
the proposed NILM system. Figure 4 portrays obtained results when the window length n and
the kernel size a a× are varied. It has clearly been seen that for window length n = 5 and the
kernel size 5 × 5 provides the best accuracy and F1 score performance. Therefore, these
parameters are adopted in the rest of this framework, which can help in collecting a histogram
of M = 256 bins from each appliance event vector ei.

TABLE 1 Description of the observed devices in each data set and their characteristics

ACS‐F2 UK‐DALE WHITED

#
Device
category

# Observed
days #

Device
category

# Observed
days #

Device
category

# Observed
appliances

0 Coffee
machine

242 0 Dishwasher 205 0 Modems/
receiver

20

1 Radio 242 1 Refrigerator 205 1 CFL 20

2 Fridge/freezer 240 1 Washing
machine

205 2 Charger 30

3 Dishwasher 242 3 Microwave 205 3 Coffee
machine

20

4 Kitchen lamp 242 4 Stove 205 4 Drilling
machine

20

5 TV 240 5 Oven 205 5 Fan 30

6 Washer/dryer 205 6 Flatron 20

7 Air
conditioner

205 7 LED light 20

8 LED light 205 8 Kettles 20

9 Microwave 20

10 Iron 20

Abbreviations: CFL, compact fluorescent light; LED, light‐emitting diode; TV, television.
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4.3 | Correlation study

To clearly understand why the proposed feature extraction approach based on 2D‐PEP can
improve appliance identification, normalized correlation (NC) rates between power consumption
signals belonging to the same class are measured and compared in this section. To that end,

FIGURE 3 Example of power signals, their 2D representations, and their 2D‐PEP features from the
WHITED data set: (a) LED lamp, (b) Fridge, (c) Coffee machine, (d) Microwave, (e) Fan, and (f) Flatron.
2D‐PEP, two‐dimensional phase encoding of power; LED, light‐emitting diode [Color figure can be viewed at
wileyonlinelibrary.com]
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six appliance events e e e, , …,1 2 6 extracted from the aggregated power signal in the WHITED data
set are selected randomly from four appliance classes. Therefore, the NCs between the various
signals are thus measured to illustrate how the 2D‐PEP can help correlate signals pertaining to
the same class and decrease the distance between them as well. Figure 5 portrays the NC
estimated between different signals belonging to four appliance groups defined as: (a) coffee
machine, (b) LED lamp, (c) microwave, and (d) fan, when only the raw signals are considered
and then when the 2D‐PEP features are exploited. Accordingly, it is easily noticed that by using
the 2D‐PEP features, the NC is highly increased, its values are much higher than those obtained
from raw signals. This means that the 2D‐PEP can significantly help in correlating and reducing
the distance between the signals belonging to the same appliance class, thanks to the local phase
encoding process that can capture neighboring characteristics at the 2D representation and thus
give rise to a precise description.

4.4 | Classification performance

This section investigates the performance of the proposed appliance identification using various
classifiers with reference to the accuracy and F1 score metrics. In this line, the classifiers are

FIGURE 4 Effect of parameters settings on the classification performance: (left) accuracy and (right) F1 score
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deployed to identify appliance‐level fingerprints using different classifier parameters because
the latter can significantly influence the classification performance. For instance, KNN is
implemented with regard to different distance metrics that are used to measure the similarity of
appliance features, that is, Euclidean distance, weighted Euclidean distance, and cosine dis-
tance. Furthermore, the K parameter representing the number of nearest neighbors used in the
majority voting process is varied as well. For the case of DT, three different scenarios
are considered, defined as: fine (100 splits), medium (20 splits), and coarse (4 splits), in which
the number of splits (subsets) has been varied and their performance is assessed. For DNN, the
number of hidden layers is set to 50, because even if it is increased the performance remains the
same. This is also the same for the case of EBT, in which the number of learners is set to 30 and
the number of splits (subsets) is fixed to 42k since the best performance is obtained with these
parameters and their variation has very slight changes. Finally, SVM is implemented using
three different kernels, defined as linear, Gaussian, and quadratic, these kernels can sig-
nificantly impact the classification performance. Table 2 summarizes the results obtained on
the GREEND, UK‐DALE, and WHITED data sets using the aforementioned classifiers.

It is clearly shown that SVMwith the quadratic kernel provides the best results for the three data
sets. For example, 99.54% accuracy and 99.53% F1 score are obtained under GREEND while 100% is
obtained for both the accuracy and F1 score under WHITED. This is because SVM pertains to a class
of models that use a kernel‐based learning that can discriminate between feature vectors through

(A)

(B)

(C)

(D)

FIGURE 5 Normalized correlation (NC) of raw data and 2D‐PEP features extracted from various appliance
classes: (a) coffee machine, (b) LED lamp, (c) microwave, and (d) fan. 2D‐PEP, two‐dimensional phase encoding
of power; LED, light‐emitting diode [Color figure can be viewed at wileyonlinelibrary.com]
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analyzing the relations between feature patterns by considering the kernel trick. Moreover, it is
obviously seen that the performance of the other classifiers is significantly dropped in the case of
UK‐DALE and only SVM with the quadratic kernel can maintain a good performance. Specifically,
98.78% accuracy and 98.66% F1 score are obtained, which are much higher than the results achieved
with the other classifiers. All in all, the obtained results point out a good stability robustness of SVM
with the quadratic kernel under different data sets with distinct frequency sampling rates.

Furthermore, it is worth noting that both LDA and PCA perform well on GREEND and
WHITED while their performance has dropped under UK‐DALE. On the other hand, it is shown
that LDA slightly outperforms PCA under the three data sets. This is mainly due to the fact that
LDA is a statistical learning approach that takes the class labels into consideration when it learns
the appliance signatures. This allows one to accurately draw the boundaries around the clusters
of appliance categories. By contrast, PCA operates on eigenvalues and eigenvectors of the cov-
ariance matrix and ignores the class labels that help in maximizing the variance in each appli-
ance data set to capture the appropriate directions. Put differently, PCA could be considered as
just a summarization of the appliance signatures. All in all, LDA could work better than PCA
with large data sets, including various appliance classes (as it is the case with the three data sets
considered in this framework); while PCA may work better than LDA with small data sets having
less appliance signatures per class, as it is also demonstrated in Reference [43].

TABLE 2 The accuracy and F1 score results obtained using the proposed 2D‐PEP descriptor of different
classifiers

ML
model

GREEND UK‐DALE WHITED

Parameters Accuracy F1 score Accuracy F1 score Accuracy F1 score

LDA – 98.46 98.42 93.73 91.55 100 100

PCA – 98.21 98.05 93.37 90.92 99.31 98.89

KNN K= 1/Euclidean distance 98.62 98.60 94.46 91.90 100 100

KNN K= 10/weighted
Euclidean distance

98.46 98.44 91.65 89.76 99.16 99.3

KNN K= 10/cosine distance 99.01 98.94 94.71 92.38 99.16 98.23

DT Fine, 100 splits 97.95 97.91 77.6 67.47 96.66 96.29

DT Medium, 20 splits 98.18 98.19 69.39 58.89 95.41 93.20

DT Coarse, 4 splits 77.27 72.42 51.54 30.95 34.58 24.33

DNN 50 Hidden layers 78.14 77.56 72.27 69.67 73.95 73.09

EBT 30 Learners, 42k splits 98.09 98.02 88.81 82.33 98.33 98.15

SVM Linear kernel 98.39 98.39 91.45 84.86 98.33 98.30

SVM Gaussian kernel 98.55 98.54 92.31 89.65 97.5 97.76

SVM Quadratic kernel 99.54 99.53 98.78 98.66 100 100

Note: Bold values represent the best performance.

Abbreviations: 2D‐PEP, two‐dimensional phase encoding of power; DNN, deep neural networks; DT, decision tree; EBT,
ensemble bagging tree; KNN, K‐nearest neighbors; LDA, linear discriminant analysis; ML, machine learning; PCA, principal
component analysis; SVM, support vector machine.

HIMEUR ET AL. | 87

 1098111x, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/int.22292 by Q

atar U
niversity, W

iley O
nline L

ibrary on [31/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Figure 6 illustrates the confusion matrices of the appliance classification step obtained using
the proposed 2D‐PEP and SVM classifier with a quadratic kernel for the three databases
considered in the evaluation. From these plots, we can extract additional classification statistics
of each appliance, such as true‐positive, true‐negative, false‐positive, and false‐negative rates. It
can be observed that the proposed solution achieves high true‐positive rates for all the appli-
ances in three data sets. However, the performance is slightly declined in the case of the UK‐
DALE since this database is highly unbalanced where the number of instances differs highly
from an appliance category to another, as it may be viewed in Figure 6b.

4.5 | Comparison with other feature extraction schemes

To deeply investigate the performance of the proposed 2D‐PEP descriptor, its performance in
terms of accuracy, F1 score, and time computation has been compared with other well‐known

(A) (B)

(C)

FIGURE 6 Confusion matrix obtained using the 2D‐PEP feature with reference to the SVM classifier for
the (a) GREEND, (b) UK‐DALE, and (c) WHITED. 2D‐PEP, two‐dimensional phase encoding of power; CFL,
compact fluorescent light; LED, light‐emitting diode; SVM, support vector machine; TV, television [Color figure
can be viewed at wileyonlinelibrary.com]
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feature extraction schemes, usually deployed to extract pertinent characteristics of power sig-
nals. In this regard, various descriptors are considered in this comparative study, including root
mean square (RMS),44 S‐Transform,45 mean absolute deviation (MAD),46 multiscale wavelet
packet tree (MSWPT),13 slope sign change (SSC),47 discrete wavelet transform (DWT),48 and
autoregressive (AR).47 Table 3 presents the obtained results, in which it can be seen that the
2D‐PEP outperforms the other descriptors in terms of accuracy and F1 score with respect to the
data sets used in this framework. For the computational complexity, the different descriptors
have been implemented using Python 3.7 and running on a desktop, having a Core i7‐3770S
processor, 16 GB RAM and 3.1 GHz. The obtained time computation results demonstrate that
the execution time of 2D‐PEP is significantly lower than those required to run the RMS, MADF,
SSC, AR, and DWT descriptors, while it is very comparable to those required for running the
S‐Transform and MSWPT.

TABLE 3 Comparison of 2D‐PEP with other feature extraction descriptors

GREEND UK‐DALE WHITED Time
(s)Feature Accuracy F1 score Accuracy F1 score Accuracy F1 score

RMS 90.34 89.22 89.17 88.75 91.11 89.83 0.41

MAD 89.5 89.29 89.08 88.71 90.37 90.22 0.24

SSC 85.92 85.28 84.94 84.67 87.25 87.15 2.6

AR 90.86 90.01 90.34 89.89 91.79 91.72 13.52

DWT 91.7 90.55 90.46 89.6 92.66 92.68 0.33

S‐Transform 94.47 94.59 93.58 93.45 94.57 94.4 0.21

MSWPT 97.01 96.97 96.23 96.18 97.85 97.89 0.2

2D‐PEP 99.54 99.53 98.78 98.66 100 100 0.17

Abbreviations: 2D‐PEP, two‐dimensional phase encoding of power; AR, autoregressive; DWT, discrete wavelet transform;
MAD, mean absolute deviation; MSWPT, multiscale wavelet packet tree; RMS, root mean square; SSC, slope sign change.

TABLE 4 Comparison of the proposed solution with recent appliance identification systems

Reference Approach
Learning
scheme

# Appliance
classes Accuracy (%)

F1
score
(%)

31 Binary mapping of V–I Unsupervised 8 95.13 93.81

49 Multistate signature + DNN Supervised 6 95.7 95.1

50 Reactive power in DNN Supervised 5 – 76.1

51 Deep learning Supervised 8 94.73 93.29

52 Background filtering Semi‐
unsupervised

4 94.45 –

Our Histograms of 2D‐PEP Supervised 8 98.78 98.66

Abbreviations: 2D‐PEP, two‐dimensional phase encoding of power; DNN, deep neural networks.
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4.6 | Comparison with existing NILM systems

The performance of the proposed NILM system based on 2D‐PEP descriptor has been also
compared with existing techniques. Table 4 summarizes the outcomes of the comparative study
conducted under the UK‐DALE data set with regard to various parameters, including the (i)
deployed approach, (ii) learning model, (iii) number of appliance categories used in the vali-
dation process, and (iv) achieved accuracy and F1 score rates. It can clearly be seen that when
using the proposed solution, outstanding accuracy and F1 score results have been achieved, in
which the superiority of the 2D‐PEP‐based scheme is obvious. For example, more than 3% gain
of the accuracy and 3.5% of the F1 score have been reached in comparison with Reference
[49], and further more than 20% of F1 score has been achieved compared to Reference [50].

5 | CONCLUSION

In the present study, a powerful NILM system is introduced using a novel feature extraction
technique, which is based on extracting histograms of phase encoding of power con-
sumption signals using 2D representation, denoted as 2D‐PEPE. Robust feature signatures
are extracted that can highly minimize the distance between appliance features belonging
to the same category and on the flipside, maximize the margin between appliance features
pertaining to different groups. This is achieved through representing the TD version of
power signals into 2D space, conducting a novel local phase encoding process and then
generating histograms of binary feature vectors. Moving forward, to evaluate the perfor-
mance of the proposed system, a comprehensive assessment study has been conducted
through a series of tests. Consequently, promising appliance identification results have
been obtained on three different data sets (with distinct frequency resolutions) using SVM
classifier with the quadratic kernel, in which 99.54%, 98.78%, and 100% accuracy rates and
99.53%, 98.66%, and 100% F1 scores have been achieved on GREEND, UK‐DALE, and
WHITED data sets, respectively. Moreover, the proposed 2D‐PEP has the lowest compu-
tation cost in comparison with other state‐of‐the‐art descriptors.

However, although the proposed solution based on 2D‐PEP has presented promising
performance, it should be noted that its minor limitation is related to the use of a su-
pervised learning procedure since the latter necessitates the use of training data sets to
learn the electric load signatures of different kinds of appliances. Explicitly, this is not
unique for our approach, but for all supervised based NILM solutions. However, the
effectiveness of the proposed technique under the different data sets considered in this
article demonstrates that it can identify different appliances from distinct manufacturers,
that is, the case of the WHITED data set. Moreover, the results obtained from the
GREEND and UK‐DALE data sets indicate that the end‐user can collect its own data for a
specific period of time and use them to train the proposed NILM scheme before applying it
to online appliance identification tasks.

Finally, it will be part of our future work to focus on implementing an energy‐saving
recommender system based on analyzing the specific appliance‐level consumption data ob-
tained through this framework. Therefore, this will help in increasing the awareness of end‐
users via providing them with appliance‐specific consumption footprints and promoting their
behavioral change to a more sustainable and energy‐saving behavior.
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