
Received January 2, 2021, accepted January 14, 2021, date of publication January 18, 2021, date of current version February 2, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3052311

Systematic Mapping Study on Security
Approaches in Secure Software Engineering
RAFIQ AHMAD KHAN 1, SIFFAT ULLAH KHAN 1, HABIB ULLAH KHAN 2,
AND MUHAMMAD ILYAS 1
1Software Engineering Research Group, Department of Computer Science and IT, University of Malakand, Chakdara 18800, Pakistan
2Department of Accounting and Information Systems, College of Business and Economics, Qatar University, Doha, Qatar

Corresponding author: Habib Ullah Khan (habib.khan@qu.edu.qa)

This work was supported in part by the Qatar National Library, Doha, Qatar, and in part by the Qatar University under Grant
IRCC-2020-009.

ABSTRACT In themodern digital era, software systems are extensively adapted and have become an integral
component of human society. Such wide use of software systems consists of large and more critical data
that inevitably needs to be secured. It is imperative to make sure that these software systems not only
satisfy the users’ needs or functional requirements, but it is equally important to make sure the security
of these software systems. However, recent research shows that many software development methods do
not explicitly include software security measures during software development as they move from demand
engineering to their final losses. Integrating software security at each stage of the software development
life cycle (SDLC) has become an urgent need. Tackling software security, various methods, techniques,
and models have been suggested and developed, however, only a few of them provide strong evidence for
building secure software applications. The main purpose of this research is to study security measures in the
context of the development of secure software (SSD) during the study of systematic mapping (SMS). Based
on the inclusion and exclusion criteria, 116 studies were selected. After the data extraction from the selected
116 papers, these were classified based on the quality assessment, software security method, SDLC phases,
publication venue, and SWOT analysis. The results indicate that this domain is still immature and sufficient
research work needs to be carried out particularly on empirically evaluated solutions.

INDEX TERMS Software security, secure software development, secure software engineering, software
development life cycle, security approaches, systematic mapping study.

I. INTRODUCTION
Over the last two decades, the software industry observed
phenomenal growth, and the same is continued at a rapid
pace. Software is now an important aspect of our lives and
it seems almost impossible to find a field that does not have
the use of software in their day to day business. The world
in every aspect has been modernized by an immense use of
software systems.

On the contrary, misuse of software can lead to heavy
economic loss in the financial sector, sabotage in the com-
munication sector, critical data theft in databases, and misuse
of software in the missile controlling system can endanger
human life. Rapid developments in information and commu-
nication technologies (ICTs) have made software security a

The associate editor coordinating the review of this manuscript and

approving it for publication was Sedat Akleylek .

key concern, such as the Internet of Things (IOT) and the
Internet of Every Things, the advancement of Internet-based
software systems, cloud computing, social networking, and
location-based services. Therefore, software programs grow
in size, complexity, inclination, and connectivity.

In addressing both the technological and human aspects
involved, there is a growing need for understanding Secure
Software Engineering (SSE) methods. SSE is about building
software that can deal with potentially aggressive attacks,
maintaining basic security features: privacy, integrity, and
access to sensitive assets [1]–[3]. Also besides, new business
paradigms, versatile customers’ requirements, rapid advance-
ment in ICTs, and new regulations are constantly making
a software application to evolve accordingly [4]. SSE rec-
ommends that software security is an important factor to
be taken into account during the start of the software life
cycle (SDLC) [5]. To build and deploy a secure software

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 19139

https://orcid.org/0000-0002-5983-9981
https://orcid.org/0000-0003-0339-7915
https://orcid.org/0000-0001-8373-2781
https://orcid.org/0000-0003-2531-6485
https://orcid.org/0000-0001-7005-6489


R. A. Khan et al.: Systematic Mapping Study on Security Approaches in SSE

system, we need to integrate security features into our life
cycle of application development and align current SSE
methods [6], [7].

Most businesses view security as a post-development
process [8]. Security isn’t considered at some point in the
pre-development phase [9]. There is no approval for the
method to be used, we still have little understanding of
the need for secure software development. There are also
few facts about the effectiveness of existing approaches to
dealing with real problems and a limited view of how they
contribute to the assessment of safety concerns [10]. Threats
put systems at greater risk for major losses that can be dif-
ficult to recover [11]. The majority of software programs
are designed and deployed without attention to protection
desires [12], [13]. Hidden attacking risks within or outside
the organization are emerging day-by-day, results in huge
financial loss, as well as confidentiality and credibility losses
by putting the availability and integrity of organizational
data at risk [14], [15]. The coding phase of SDLC is more
prone to error, as the programmer leaves some errors unin-
tentionally, which increases software vulnerability to more
attacks [11], [16]. Such vulnerabilities can be the denial
of services, code execution, memory corruption/data loss,
cross-site scripting (XSS), improper access control, SQL
injection, integer overflow, buffer overflow, and the format
string, etc., [12], [17].

Based on the above evidence, we can conclude that pro-
tecting software programs in the development stages isn’t
sufficient and there is a great need to locate higher approaches
and ways to protect software programs. This paper provides
a systematic study of maps (SMS) based on our pre-defined
process and the proposed model [18], [19] to highlight
the existing security measures for building secure software.
It is reported that the findings, in our study reported in
this paper, will have an impact on the body of information
by providing a tax on the SSE-related research topic that
may invite researchers to focus on further research in this
field.

We investigate the outcome of this mapping study to
provide a reference direction for interested and vigilant
researchers to address and explore new research trends and
gaps in the subject domain. The findings of the SMS may
assist the practitioners by providing a deep insight into the
subject domain about security approaches, security limita-
tions, and unresolved specific and general issues.

To achieve the aforementioned objectives, this SMS
addresses the following research questions (RQs):

RQ1. What is the state-of-the-art in Secure Software
Engineering?

To answer RQ1, we have analyzed the literature based on
the following sub-questions:

RQ1.1:What are the existing security methods, imple-
mented by software development organizations that return the
largest competitive edge?

RQ1.2: Which particular SDLC phase has been most
discussed and addressed in the literature?

RQ1.3:What is the SWOT analysis of security approaches
in secure software development?

RQ1.4: What are the popular venues for secure software
development?

The rest of the paper is organized as follows: Section II
presents the concepts of software security, section III presents
the relevant work, and section IV describes the research
methodology. The outcomes of the SMS are discussed in
section V according to the research questions. Section VI rep-
resents the implications for results and practice. Section VII
gives the findings and future work. Finally, in section VIII,
the risks to validity are addressed.

II. SOFTWARE SECURITY
This section introduces the concept of software security for
future discussion that will serve as context building.

A. THE CONCEPTS OF SOFTWARE SECURITY
Let’s take a look at some of the software security concepts as
stated in the literature:
• ‘‘The idea of engineering software that continues to
function correctly under malicious attack [7], [20]’’.

• ‘‘The process of designing, building, and testing soft-
ware for security [21], [22]’’.

• ‘‘Software security is the process of discussing an
application to discover risks and vulnerabilities of the
application and its data [23]’’.

• ‘‘Software security is a system-wide issue that takes
into account both insecurity mechanisms (such as access
control) and design for security (such as a robust design
that makes software attack difficult)’’ [24].

• ‘‘Software security is about building secure software:
designing software to be secure, making sure that soft-
ware is secure, and educating software developers, archi-
tects, and users about to build secure things [25]’’.

• ‘‘Defends against software exploit by building software
to be secure in the first place mostly be getting by
the design right (which is hard) and avoiding common
mistakes (which is easy) [26]’’.

• ‘‘Software security is the ability of the software to
resist, tolerate and recover from events that intentionally
threaten its dependability [27]’’.

Security in various terms has been described by vari-
ous researchers. In the above concepts, the important thing
to remember is that most of the definitions speak about
‘‘building secure software’’ instead of ‘‘securing software’’.
Building secure software involves designing and securely
implementing the software while securing software tries to
develop the software first and then enforce security measures
to make it secure.

B. SOFTWARE SECURITY REQUIREMENTS
Software security has remained a neglected area, from the
earliest generations of software development. But that does
not mean that the problem has never been raised before;
however, it was misunderstood, taken lightly, misjudged, and

19140 VOLUME 9, 2021



R. A. Khan et al.: Systematic Mapping Study on Security Approaches in SSE

not done as it should have been. During the entire software
development life cycle, software security is an essential fac-
tor that needs to be addressed [18]. In general, security is
characterized as a non-functional requirement, and, for this
reason, security checks are usually carried out during the
final of SDLC [9], [28], [29]. It means that software secu-
rity requires proper care even in the first stage of software
development [9], [15], [28].

Today, Internet-enabled applications, the removal of bugs
in the form of buffer overload, and incompatible error man-
agement are major issues in software security [22], [30].
Millions of people do business by different means every day,
such as the Internet, ATM, cell phone, email, etc. The soft-
ware is used by people who remember that it is reliable and
trustworthy and that the services they perform are secure. But
if this includes security gaps, then how can they be considered
secure? Security in software has become an important part
of daily life. Due to budget constraints and software release
time in the market, many developers consider security as a
subsequent thinking problem that may have poor software
quality [9]. Software security was considered part of software
testing in the early days, but over time, it has been shown that
security is not a backward concern and it is very important
to consider how software engineers can incorporate security
into the early stage of SDLC [28].

To this end, this study aims to analyze the process of
software development from the perspective of each SDLC
phase and to attempt to define key security measures to be
used to make the most secure applications in all stages of the
SDLC.

C. QUALITIES OF A SECURE SOFTWARE
Secure software is about building software that can with-
stand strong attacks, maintaining basic security structures:
confidentiality, integrity, and access to sensitive assets [31].
These three security structures are called the CIA [32]. Any
software that enlists the CIA can be considered as secure
software [32]. Software security characteristics are defined as
‘‘the degree towhich a product or system protects information
and data so that persons or other products or systems have
the degree of data access appropriate to their types and levels
of authorization’’ [33]. Features of secure software are con-
fidentiality, integrity, denial, accountability, and authenticity.
Other aspects of software security are as follows [33]:
• Secure Data Transport
• Protect Database Storage
• Authorized Data Access
• Secure Authorization
• Internal / output authentication
• Power of Evidence
• Complete Access
• Alternative Identification
• Accessibility Management capabilities
• Session Management Powers
• Secure User Management

III. BACKGROUND
Have you ever tried to find the cause of insecure software?
Who is responsible for unsafe software? Service analysts do
their best to find operational and non-operational require-
ments that meet customer needs. System designers are doing
their best to find the most powerful design. Developers are
doing their best to improve the app in a very efficient way.
Testers do their best to detect software crashes. From demand
inquiries to software development, from software testing to
maintenance, the entire project team has put all its efforts into
the SDLC to ensure quality software but instead of all these
efforts, the software is still produced with risks and numerous
security errors.

In addition to the extensive efforts made to build secure
software and everyone is playing their part to the best of their
ability; makes you wonder where these security errors came
from? To answer this query, we need to suppose carefully,
have we pointed out security to this point? Is security taken
into consideration at any level of SDLC? I’m afraid the
solution is nearly a large ‘NO’ at all. Engineers only broaden
particular requirements (overall performance necessities) and
ignore safety requirements. But it will be more beneficial
if they take the security requirements in the earlier phases
and following the same in the requirement gathering phases;
such as design, development, and testing. And once they
incorporate the security at all stages of SDLC, the software
developed by adapting the security measures will produce
more secure software.

Security activities during the requirement phase serve three
purposes [13], [23]: Initial security requirements are iden-
tified and implemented. Second, with the security require-
ments in hand, the project team understands and recognizes
the importance of security. Finally, with the needs of security
in the hands, budget, resources, and time of security activities
in future stages can be better estimated.

During the design phase, the project team focuses on iden-
tifying the attacker’s interests, potential access points, and
critical security areas, etc. [34], [35]. The next step is to iden-
tify the threats running on the software. All the security data
collected in the design phase so far goes into the threatening
model. Threatening models can be considered an important
milestone in terms of secure software [36]. Does the security
building function provide full details of how the software can
be attacked? What can be attacked? What areas of attack are
attractive? What kind of threats work etc. [37]. According
to this information, the security structure is continuously
updated to include security.

The implementation phase plays a twofold role from a
security perspective [38], [39]: First, it avoids security errors
entering the software, and secondly, detects existing software
errors. The first role is done by writing a secure code. The
second role of detecting security errors begins with static
analysis by automated tools. After automatic analysis, a man-
ual update is performed. After that, the software is fully
functional and ready to go to the testing phase.

VOLUME 9, 2021 19141



R. A. Khan et al.: Systematic Mapping Study on Security Approaches in SSE

After implementation, the software is sent to the testing
team. The tests were performed mainly on test cases gen-
erated during test planning [40]. The testing team identifies
security errors, reports to the development team, and the
development team corrects them in this code [40], [41]. The
testing phase ends when all test cases are conducted, and
retrospective testing of all sensitive areas has taken place [42].

Like any other form of testing, security testing involves
determining who should do it and what activities they should
undertake. Because security testing involves two approaches,
the question of who should do it has two answers. Standard
testing organizations using a traditional approach can perform
functional security testing [43]. For example, ensuring that
access control mechanisms work as advertised is a classic
functional testing exercise. On the other hand, traditional
QA staff will have more difficulty performing risk-based
security testing. The problem is one of expertise. First, secu-
rity tests (especially those resulting in complete exploits)
are difficult to craft because the designer must think like an
attacker [43]. Second, security tests don’t often cause direct
security exploits and thus present an observability problem.
A security test could result in an unanticipated outcome that
requires the tester to perform further sophisticated analysis.
Bottom line: risk-based security testing relies more on exper-
tise and experience than we would like [43].

Before the release of the software, a security review was
performed [44]. The purpose of the review is to identify the
remaining security errors. The developing team corrects code
against security errors identified in the review report. After
a review, a security audit was conducted, and according to
such an audit report, management decided to issue a soft-
ware [45]. After such a release, the software is ready for
shipment.

After release and distribution, the software is commercially
used. Later, a decision was made to rectify non-critical safety
errors [46]. So another code is changed to remove these
security errors in the form of a patch. The patch is then applied
to the software after testing and the patch is released [47].

Because of this, to address the software system security
various models, practices, strategies, and methods have been
proposed and developed to improve security procedures in the
stages of SDLC [9], [24], [32], [48]. To effectively address
security issues that exist during the application process, it is
necessary to consider secure considerations in all develop-
ment processes that minimize the threats of critical secu-
rity requirements or to identify critical errors in software
development [24].

Some security approaches aim to assist the software engi-
neers in evaluating security risks; such as Attack Trees [49],
combining goal-orientation and use-case modeling, which
is an effective method of software requirement engineer-
ing [50], Secure Tropos, a security-oriented extension to
the goal-driven requirements engineering methodology [51],
whereas others allow the software engineers to address
these risks by reusing design decisions [52] or sustaining
the decision making process [36]. Other software security

approaches are McGraw’s Secure Software Development
Life Cycle (SSDLC) process [22], Microsoft Software Devel-
opment Life Cycle (SDL) or Trustworthy Computing Secu-
rity Development Life Cycle [53], Security Requirements
Engineering Process (SREP) [54], Aprville and Pourzandi’s
Secure Software Development Life Cycle process [55],
Core security requirements artifacts [56], Comprehensive,
Lightweight Application Security Process (CLASP) [57],
Haley and his colleagues’ framework [58], and SecurityQual-
ity Requirements Engineering (SQUARE) [59].

OWASP Security Verification Standard (ASVS) version
3.0 is a community effort to establish a framework of secu-
rity requirements and controls that focus on normalizing
the functional and non-functional security controls required
when designing, developing, and testingmodernweb applica-
tions [60]. The ASVS is a list of application security require-
ments or tests that can be used by architects, developers,
testers, security professionals, and even consumers to define
what a secure application is [60].

ISO/IEC 27001:2005 covers all types of organizations
(e.g. commercial enterprises, government agencies, not-for-
profit organizations) [61]. It specifies the requirements for
establishing, implementing, operating, monitoring, review-
ing, maintaining, and improving a documented Information
Security Management System within the context of the orga-
nization’s overall business risks. It specifies requirements
for the implementation of security controls customized to
the needs of individual organizations or parts thereof. It is
designed to ensure the selection of adequate and proportion-
ate security controls that protect information assets and give
confidence to interested parties.

Browser identity indicators, including URLs and
EV certificates, are supposed to help users identify phishing,
social engineering, and other attacks, but prior lab studies
and surveys suggested that older browser identity UIs are
not effective security tools [62]. Modern browser identity
indicators are not effective. To design better identity indi-
cators, we recommend that browsers consider focusing on
active negative indicators, explore using prominent UI as an
opportunity for user education, and incorporate user research
into the design phase [62].

We conclude that the most relevant contributions with
such goals are the work carried out by Nabil et al. [24],
Silva et al. [63], and Guiena et al. [64]. The authors
in [24], identified and classified the available software secu-
rity approaches in SDLC. To identify and mitigate the soft-
ware security threats, Silva et al. [63], covered the current
technologies. For the ubiquitous system, Guiena et al. [64]
identified 132 approaches, address issues in various phases
of the software engineering cycle. Most of the stud-
ies addressed maintenance/evolution, implementation, and
feedback phases.

The main focus of our study is to cover the most relevant
SSE models, frameworks, methods, processes, metrics, and
topics in the existing literature. The result can be used as a
reference guide and direction for future research.

19142 VOLUME 9, 2021



R. A. Khan et al.: Systematic Mapping Study on Security Approaches in SSE

FIGURE 1. Stages of SMS process.

IV. RESEARCH METHODOLOGY
The main purpose of the SMS is to provide formal ways to
integrate the information found in simple basic lessons with
a set of map questions [65]. SMS is a literature study that
focuses on selecting and combining all high-quality research,
related to a specific topic and provides a complete summary
of current texts applicable to specific map queries [66]. Com-
pared to a systematic literature review (SLR), SMS were per-
formed on a wide range of research questions to identify gaps
in a particular research area. It also identifies gaps in existing
subjects and determines trends in future studies [67]–[69].
SMS, therefore, maintains a great imminent value in the field
of software engineering by providing a general view of the
literature in this particular domain.

According to Felderer and Carver [70], the method of
conducting SMS consists of three main stages: planning,
conducting, and reporting. The goal of these phases is
to classify, analyze and interpret, based on the strength
of their evidence, all available studies relevant to a spe-
cific subject, to draw conclusions, and finally provide
recommendations [65], [68]–[70]. The various stages used in
performing SMS are shown in Figure 1.

A. RESEARCH QUESTIONS
In Table 1, the research questions (RQs) are discussed along
with their key motivations.

B. SEARCH STRATEGY
A search using a search string composed of keywords specific
to this study was carried out to address the RQs and applied
to many academic electronic libraries and search engines.

1) SEARCH STRING
The first step is to establish the search string, and the param-
eters for PICO (Population, Intervention, Comparison, and
Outcomes) have been reported in the literature [65], [71].

C. RESEARCH QUESTIONS
In Table 1, the research questions (RQs) are discussed along
with their key motivations.

D. SEARCH STRATEGY
A search using a search string composed of keywords specific
to this study was carried out to address the RQs and applied
to many academic electronic libraries and search engines.

1) SEARCH STRING
The first step is to establish the search string, and the param-
eters for PICO (Population, Intervention, Comparison, and
Outcomes) have been reported in the literature [65], [71].
• Population: Secure software development
• Intervention: Software Security
• Comparison: Due to the exploratory study, the Compar-
ison is not relevant and so excluded.
Outcomes: Security Approaches

The search string was constructed on connecting the fea-
tures of PICO by Boolean AND and OR connectors:

((‘‘software security’’ OR ‘‘software privacy’’ OR ‘‘secure
software’’ OR ‘‘software protection’’ OR ‘‘software safety’’)
AND (‘‘Software Engineering’’ OR ‘‘Software Development
lifecycle’’ OR ‘‘SDLC’’ OR ‘‘Software security Model’’))

2) LITERATURE RESOURCES
We run the search string in various online digital libraries
such as IEEE Xplore, ACM, Springer Link, Science Direct,
andWiley Online Library. In Google Scholar, we also run this
search string. Table 2 displays the number of search results
per search engine/database.

E. STUDY SELECTION CRITERIA
The search strings were inspired by similar researches [24],
[34], [69], [72]–[75] and also from the authors’ suggestions.
Initially, the search string was added to the metadata of the
selected libraries without affecting the title, abstract, and
keyword constraints. The first author retrieved each paper
and detailed informationwas documented about each relevant
paper. The other authors were asked to review the articles
using their title and abstract, to base the previous steps.

Based on SMS guidelines, the following inclusion and
exclusion criteria have been established [65].

1) INCLUSION CRITERIA
• IC1: Papers in the area of software security.
• IC2: Papers related to SDLC.
• IC3: The paper focuses on one or several security
approaches from SSD perspectives.

2) EXCLUSION CRITERIA
• EC1: Papers that are not published in journals, confer-
ences, workshops, or symposiums.

• EC2: Papers that aren’t available in English.
• EC3: A research that is not in the Software Engineering
domain.

VOLUME 9, 2021 19143



R. A. Khan et al.: Systematic Mapping Study on Security Approaches in SSE

TABLE 1. Research questions and main motivation.

TABLE 2. Search string results per database.

FIGURE 2. Search and selection process.

• EC4: Papers with workshop summaries.
• EC5: The studies which occur several times in the final
set (duplicated studies)

• EC6: Books, web pages, and magazine articles are
excluded.

The summary of the search process is shown in Figure 2.
In total, 556 papers relating to security approaches for SSD
were found after the implementation of the inclusion criteria.
After the removal of duplicate papers from various sources
of the same paper, the remaining papers were 476. Finally,
upon applying the exclusion criteria throughwhichwe further
removed 360 studies, we selected 116 papers as net studies.
The paper IDs and titles of the 116 papers finally selected are
listed in Appendix-A.

F. QUALITY ASSESSMENT
Quality assessment is the main activity that increases the
strength of a study. To enhance the quality of our work, a short

questionnaire was therefore designed to assess the quality of
candidate papers.

Senior researchers at the Software Engineering Research
Group, University of Malakand (SERG_UOM), in Pakistan,
distribute and fill out the questionnaire. The scoring plan
applied in Appendix A (a, b, c, and d columns) is presented
below:

a) The paper was published in a recognized and stable
journal or conference. This question was ranked by consid-
ering the computer science conference ranking in Computing
Research Education (CORE)∗, 2018, and Journal Citation
Reports (JCR)∗∗, 2018 lists.

Conferences, workshops, and symposiums were assigned
to one of the following categories:
• A1- Flagship conference, a leading venue in a discipline
area. ‘‘Very relevant (+2)’’

• A - Excellent conference and highly respected one in a
discipline area. ‘‘Relevant (+1.5)’’

• B - Good conference and well regarded one in a disci-
pline area. ‘‘Somewhat Relevant (+1)’’

• C - Other ranked conferences that meet minimum stan-
dards. ‘‘Not relevant (+0.5)’’

• No ranking (+0), One not presenting CORE ranking.
The JCR2 published by Thomson Reuters3 offers annual

rankings of science and social science journals in the subject
categories relevant to the journal, based on Impact Factor (IF)
results. In each subcategory, quartile rankings are obtained

1∗ http://portal.core.edu.au/conf−ranks/

2∗∗ https://www.scimagojr.com/journalrank.php?category=1710

3∗∗http://mjl.clarivate.com/cgi-bin/jrnlst/jlsearch.cgi?PC=MASTER&
Error=1

19144 VOLUME 9, 2021



R. A. Khan et al.: Systematic Mapping Study on Security Approaches in SSE

from each journal by occupying the quartile of the IF distri-
bution in the same subject category.

Q1 - Denotes the top 25% of the IF distribution. ‘‘Very
relevant (+2)’’
• Q2 – Denotes middle and high positions (between top

50% and top 25%). ‘‘Relevant (+1.5)’’
• Q3 –Denotes Middle-low position (top 75% to

top 50%). ‘‘Somewhat Relevant (+1)’’
• Q4 –Denotes the lowest position (bottom 25% of the IF

distribution). ‘‘Not relevant (+0.5)’’
• No ranking (+0), One not in the JCR list.
a) The primary interest of the paper is the security

approach used in the SSD context. Yes (+1), Partially
(+0.5), and No (+0).

b) The paper presents and/or explicitly assesses an
approach as a solution to deal with software security
risks. The study obtains the full score (Yes (+1)) if
it presents a new approach, (Partially (+0.5)) if it
presents an existing approach, and (No (+0)) if it does
not present any solution to deal with software security
risks.

c) The study is empirical and presents relevant data for
our SMS. The results and conclusions of the study
are strengthened by empirical evidence and it pro-
vides important and reliable information about future
research and practice [76]. Yes (+1), Partially (+0.5),
and No (+0).

The classification scheme and its finding are presented in
Appendix A.

G. DATA EXTRACTION AND SYNTHESIS
Wehave extracted the following data from each article of final
selection (116 papers):
• Paper-ids and Publication Title (presented in
Appendix-A)

• Security Methods (RQ1.1, presented in Table 3 )
• SDLC Phase discussed and covered (RQ1.2, presented
in Section V, Subsection B, Figure 3)

• SWOT Analysis of Security Approaches (RQ1.4,
presented in Section V, Subsection C)

• Publication Channel (RQ1.4, presented in Section V,
Subsection D, Table 4, 5)

• Quality Assessment of Papers (presented in
Appendix-A)

• Paper Titles (presented in Appendix-B)
• Paper Publication Year (presented in Appendix-A)
• Research Method used in Paper (presented in
Appendix-A)

• Security Approach Types discussed in Paper (presented
in Appendix-A)

V. RESULTS AND DISCUSSION
To answer the research questions presented in Section IV,
we have shared the results of this study in these sections as:
Appendix A shows that 78.5 percent of studies ranked

either higher than or equal to the average score of 2.5 points.

Systematic reviews, therefore, emphasize that evaluating the
quality of the study selection is important. The quality assess-
ment is an important step in gaining a general view of the
consequences of the paper on the subject [77].

A. WHAT ARE THE SECURITY METHODS IMPLEMENTED
BY SOFTWARE DEVELOPMENT ORGANIZATIONS THAT
RETURN THE LARGEST COMPETITIVE EDGE?
To answer RQ1.1, we extracted data by considering the pres-
ence of each SSE method. The results of the collected data
according to this question are highlighted in Table 3.
In this SMS ‘‘Software security measurement and anal-

ysis’’ is the most cited (29%) category. CORAS [78]
is the most popular method in this category. CORAS
works as a model-driven method used towards the defen-
sive risk analysis. Another most cited (6%) SSE method
in this category is ‘Appropriate-and-Effective-Guidance-for-
Information-Security (AEGIS)’. AEGIS [79] also works as a
software engineering method to create secure systems based
on security requirements identification upon context used,
modeling, and risk analysis.
The term ‘‘Privacy-preserving Technology’’ has the

next highest frequency value (26%). In this category
‘‘SecureUML’’ and ‘‘UMLsec’’ is the most cited (17%)
SSE methods, where SecureUML is an approach aim-
ing to bridge the gap amongst the security-modeling-
languages and design-modeling-languages, whereas UMLsec
works as a UML extension allowing the characteristics of
security-relevant to access control and confidentiality [84].
The next highest frequency value, in the study, is ‘‘Soft-

ware testing’’ methods (24%). In this category ‘‘Software
static analysis’’ with a frequency 7 is the most popular soft-
ware testing methodology. Another dominant category in this
study is ‘‘Secure requirement engineering’’ (16%). Table 3
shows that 10 studies in this SMS considered the ‘‘Secu-
rity Quality Requirement Engineering (SQUARE) method’’.
For eliciting and documenting the security requirements,
the SQUARE method is used [80].

B. WHICH PARTICULAR SDLC PHASE HAS BEEN MOST
DISCUSSED AND ADDRESSED IN THE LITERATURE?
This research question focus to find those studies in which
a particular software development life cycle phase covered
the security aspect. According to our findings, the phase
of SDLC where the security aspect is considered may vary
from study to study. Figure 3 shows that 32% of studies
in our SMS highlighted software security methods in the
design phase of the SDLC. This is typically from the fact
that the vulnerabilities of design level works as the major
sources of security risks in software systems [86], [87]. 50%
of software defects are usually identified and detected in
the designing phase of SDLC [81]. For developing secure
software systems, the design phase of SDLC works as the
basis in this regard [87]. Reducing the risks at this phase may
minimize the efforts in other phases. It is mandatory for a
software designer to properly check the aspect of security

VOLUME 9, 2021 19145



R. A. Khan et al.: Systematic Mapping Study on Security Approaches in SSE

TABLE 3. Secure software engineering methods.

19146 VOLUME 9, 2021



R. A. Khan et al.: Systematic Mapping Study on Security Approaches in SSE

TABLE 3. (Continued.) Secure software engineering methods.

FIGURE 3. Frequency of software security studies in SDLC.

during this phase and immediately make the necessary
changes that will ultimately improve the overall security.
Software security attributes play a key role in security
design [37]. These attributes help to enhance software secu-
rity and also help to ensure software quality [82].

In this study, we have noted that 26% of studies consid-
ered software security across the whole SDLC. This fact
is rising due to the integration of security in all phases of
SDLC, which is a challenging issue in most organizations.
We argued that the consideration of security should be an
effective input towards the other phases of SDLC i.e. from
requirements gathering to designing, implementation, test-
ing, and deployment. For designing, building, and deploying
secure software, it is essential to adapt the current software
engineering practices and methodologies for the inclusion of
specified security-related activities.

Figure 3 portrays that 22% of the selected studies consid-
ered the security of software in the testing phase of SDLC.
The most lengthy, complex, and expensive phase of SDLC
is software testing [83]. Software testing is a vital activity
for increasing the quality of software development projects.
It is a core phase for software development, but to test the
programs thoroughly is not always the core subject under
software engineering education [91]. Due to this shortfall,
the software developers frequently treat the software test-
ing as a liability which finally affects the overall quality of
software. One underlying reason is that standardized testing
mechanisms are frequently perceived as boring and challeng-
ing as compared to the creative coding phase and design
activities [91].

The security testing technique is one of the most sig-
nificant, effective, and commonly applied measures for the
improvement of software security, used to identify the vul-
nerabilities and to ensure the functionality of security. For
the identification of threats that might compromise security,
threat modeling is a systematic way in this regard and it
has been considered a well-known accepted practice by the
software testing industry [92].

Figure 3 shows that 12% of studies in this SMS high-
lighted security approaches in the coding phase of the
SDLC. Deployed software is continuously under the attack of
hackers exploiting vulnerabilities for decades and an increase
is being noticed in these attacks [39], [84]. The antiviruses,
intrusion detection mechanisms, and firewalls are not enough

VOLUME 9, 2021 19147



R. A. Khan et al.: Systematic Mapping Study on Security Approaches in SSE

to solve this problem. Each phase of SDLCmust include vari-
ous suitable security defenses, analysis, and countermeasures
that result in further secure released code [85], [86]:
• Encrypt the files and copies. Storing data in encrypted
form helps all output and backup versions of databases
to be secured. Data Sunrise Data Encryption is the only
way to do so.

• Auditing all the servers and copies. Using so helps you
see who’s been trying to get access to confidential info.

• Using the Intrusion Detection System (IDS) network.
• It is recommended that a stringent access and privilege
management policy be enforced and maintained.

• Don’t give client staff excessive rights and revoke
expired rights in time.

• Secure coding is the practice of developing computer
software in a way that guards against the accidental
introduction of security vulnerabilities.

• Secure coding standards are rules and guidelines used to
prevent security vulnerabilities. Used effectively, these
security standards prevent, detect, and eliminate errors
that could compromise software security.

• Validate input. Validate input from all untrusted data
sources

• Heed compiler warnings
• Architect and design for security policies
• Keep it simple
• Default deny
• Adhere to the principle of least privilege
• Sanitize data sent to other systems
• Practice defense in depth
• Use effective quality assurance techniques

It is therefore needed from requirement-to-design-to-
implementation-to-testing and deployment, software security
necessarily is integrated throughout SDLC to provide the
secure and best software to the user community.

We have noted that 12 out of 116 (10%) studies in the
SMS have discussed security methods in the requirement
phase of SDLC. Nowadays, where most software in the cloud
and web-based, facing a diversity of stakeholders with entan-
gled requirements, the development of secure software is a
complex task.

During software development, security is often neglected.
Nowadays, the researcher’s emphasis to include the
security aspects in every phase of software develop-
ment during SDLC, specifically at the early phases.
Goel et al. [95], suggests Security-Requirements-Elicitation-
and-Assessment-Mechanism (SecREAM) holds the security
issues that appear at the start of software development.
Mead [87] provides a mechanism for measuring the security
requirements engineering process, aligned with the method
of Security-Quality- Requirements-Engineering (SQUARE).
Similarly, in the maintenance phase of SDLC, we aimed
to find any security-related mechanism in the software.
Song-Kyoo [88] suggested the stochastic type maintenance
method for the security of software through the use of a closed
Queuing-model of unreliable backups.

C. WHAT IS THE SWOT ANALYSIS OF SECURITY
APPROACHES IN SECURE SOFTWARE DEVELOPMENT?
Each of the above approaches contributes to its benefits and
limitations in a specific domain. In the following subsections,
we presented the SWOT (Strength, Weakness, Opportunity,
Threat) analysis of security approaches in details:

1) MODELS
a: SSD-CMM: Systems Security Engineering Capability
Maturity Model
Strength: SSD-CMMcovers all phases of the software devel-
opment process.

Weakness: It does not guarantee good results:
• Appraisal similarities.
• You need to properly understand the model and how to
use it.

• It does not remove the need for testing/evaluation.
• Understanding how SSE-CMM contributes to the vali-
dation.

Opportunity: SSE-CMM looks for the following security
features:
• Operational security
• Information security
• Network security
• Physical security
• Staff security
• Administrative security
• Communication security
• Security of meetings.

Threats:
• Requires great Investment
• Requires commitment at all levels
• The need to translate PAs into the context of the organi-
zation

b: Building Security In Maturity Model (BSIMM) [89]
Strength: The BSIMM project provides SSDL maturity and
control risk

Weakness: Not secure for all uses.
Opportunity: It provides an opportunity concerned with

measuring a large number of vendors to manage security risks
and threats

Threats: IT does nothing to guarantee that any particular
vendor product is secure

c: Misuse case modeling [90]
Strength: It focuses on security from the beginning of the
design process and provides early design decisions.

Weakness:
• Its main weakness is that it is simple.
• It needs to be combined with powerful tools to establish
an adequate project implementation plan.

Opportunity: It allows us to provide equal weight for opera-
tional and non-operational needs (e.g. requirements, platform
requirements, etc.), which may not be possible with other
tools.

19148 VOLUME 9, 2021



R. A. Khan et al.: Systematic Mapping Study on Security Approaches in SSE

Threats: Lack of structure and semantics.

d: Secure Tropos Methodology [91]
Strength: This approach incorporates the requirement
engineering concepts of need such as character, purpose,
planning, and security engineering concepts such as threat,
security issues, and security approach under a cohesive
security protection process.

Weakness: Modeling IS and Business assets are
confusing.

Opportunity: It is a way to develop security-conscious
software to support the analysis and development of secure
and reliable software programs.

Threats: Do not include modeling constructs to model the
attacker’s intention and the threat impacts.

e: McGraw’s Secure Systems Development Life
Cycle (SSDLC) model [22]
Strength: SSDLC is a step-by-step method of developing
information systems. Typical tasks include:
• Budget cutting
• Collecting business needs
• Modeling and
• Writing user documentation

Weakness: Documentations are expensive and time-
consuming to make. It’s also hard to keep right now.

Opportunity: SSDLC provides security in developing
information systems.

Threats: Secure software development (SSD) activities for
implementation: None

f: RBAC: Role-Based Access Control Model [92]
Strength: Restricting the access of the system to registered
users. Mandatory access control (MAC) or Discretionary
Access Control (DAC) can be enforced.

Weakness:
• It would be difficult if you try to build a complicated
role for a large organization as there will be thousands
of workers with few positions that can trigger a role
explosion.

• Some restrictions can be made on accessing certain
device activities using RBAC, but you cannot limit
access to certain data.

• You can delegate permissions and privileges to user
functions, but not to operations and objects.

Opportunity:
• Reduce administrative work and IT support.
• With RBAC, when an employee is hired or changes
their job, you can decrease the need for paperwork and
password changes.

• Maximizing operational efficiency.
• RBAC offers a streamlined approach that is logical in
the definition.

• Improving compliance.
Threats:
• Role Explosion

• Security Risk Tolerance
• Scalability and Dynamism
• Expensive and
• Difficult Implementation

2) FRAMEWORKS
a: Trustworthy Computing Security Development Life Cycle
or Microsoft Software Development Life Cycle (MS SDL) [93]
Strength:MS SDL is policy compliant system that:
• Assesses security policy compliance
• Meets security policy
• Provides code security training
• Establishes security requirements
• Conducts a final security review, and
• Executes an incident response plan

Weakness: The process is not perfect and is still evolving.
Opportunity:
• MS SDL performing dynamic analysis
• Establish design requirements
• Using threat modeling, and
• Approved tools

Threats: The process may either to reach perfection or to
cease evolving in the foreseeable future.

b: KAOS: Knowledge acquisition in automated
specification Framework [94]
Strength: It offers a comprehensive and soundway of arrang-
ing security requirements and using a graphical way of resolv-
ing security risks.

Weakness:
• One of the problems associated with KAOS with the
transformations between models of different approaches
is information loss.

• There is no graphical concrete syntax in the statement
part of the acquisition language that would represent
the different concepts and links supported by the meta-
model.

• Deontic logic extensions are not well incorporated into
the statement sublanguage to support a deeper level of
systematic reasoning regarding agent capabilities and
assignment of responsibilities.

• More explicit support should also be given to coopera-
tion and communication among agents.

Opportunity: In different fields such as mechanics,
telecommunications, healthcare, KAOS finds its applica-
tion and can therefore be used for any kind of information
system.

Threats: Lack of inbuilt mechanism for evaluating secu-
rity risks.

c: SECTET: Model-Driven Security Engineering
framework [95]
Strength: This approach allows the automated generation of
security policies and workflow used on the target framework
for the configuration of security services.

VOLUME 9, 2021 19149



R. A. Khan et al.: Systematic Mapping Study on Security Approaches in SSE

Weakness: This method does not currently use as a user
interface to write high-level security policies.

Opportunity: Moreover, the main benefits of this
approach are the separation of security-enhanced business
modeling, security modeling, code creation, and system exe-
cution.

Threats: Lack of high-level security policies

3) METHODS
a: SQUARE: Security Quality Requirements Engineering
method [96]
Strength: It integrates security considerations into the early
stages of SDLC.

Weakness: SQUARE did not achieve the following activ-
ities:
• The identification of users of the software.
• Detection of possible device attackers.
• Recognition of the attacker’s interest in a piece of soft-
ware’s resources/assets.

• Detection of the capabilities of the attacker.
Opportunity: SQUARE offers a way for information tech-
nology systems and applications to elicits, categorize, and
prioritize security requirements.

Threats: Lack of identification of an illegal access

b: SecureUML, and UMLsec [97]
Strength: UMLsec makes it possible to model security fea-
tures related to confidentiality and access control.

Weakness: UMLsec is guided by security criteria, how-
ever, it does not mean to model them explicitly.

Opportunity: The goal of SecureUML is to bridge the gap
between languages for security modeling and languages for
design modeling.

Threats: Only permitted activities were executed.
There is no required unique restriction language in

UMLsec.

c: CORAS: Combine methods for risk analysis and
semiformal description methods [98]
Strength: For modeling risks and unwanted actions,
the CORAS profile provides advanced case diagrams for
usages.

Weakness: CORAS just draw threat scenarios/diagram.
Opportunity: It encourages engagement and cooperation

between various groups of stakeholders involved in a risk
assessment.

Threats: CORA’s threat modeling tool has no risks/threats
analysis facilities.

d: AEGIS: Appropriate and effective guidance for
information security [99]
Strength: Identification of properties, abuse cases, opera-
tional context, and support for simulation of security require-
ments.

Weakness: Secure software development (SSD) activities
for implementation: None

Opportunity: For the creation of stable and functional
systems, AEGIS offers essential resources

Threats: There are no SSD security assurance activities
and Usage in the Industry is also not reported

e: OCTAVE (The Operationally Critical Threat, Asset, and
Vulnerability Evaluation) [100]
Strength: Decisions are focused on the risks of confidential-
ity, the credibility of sensitive data-related assets

Weakness: It may still be useful outside of their bound-
aries, the result cannot be guaranteed.

Opportunity: Organizational risks are calculated by
OCTAVE and focus on strategic and functional aspects.

Threats: Lack of trust.

f: Petri nets [36]
Strength: For modeling attacks, we can use the Petri net.
Weakness: Petri net model has weaknesses in its inability

to test an unbounded position for exactly a particular marking
and to take action on the result of the test.

Opportunity: It is one of several mathematical modeling
languages for the description of a distributed system. The
continuity of events has become increasingly common.

Threats: Due to its concurrency, it increases the complex-
ity of operations.

4) PROCESSES
a: Aprville and Pourzandi’s Secure Software Development
Life Cycle Process [55]
Strength: This process provides:
• Identification of high-level security
• Modeling of threats
• Specification of security requirements, and
• Risks analysis

Weakness: Usage in the Industry: Not reported
Opportunity:
• Avoiding vulnerabilities of buffer overflow and a format
string

• Usage of established security algorithms
• Usage of secure programming language

Threats: This process mostly does not use the artifacts of
SSD activity In the later stage of software development.

b: Software Security Assessment Instrument(SSAI) [101]
Strength: SSAI detects vulnerabilities and also provide mit-
igation practices for it.

Weakness: No SSD activities for design, implementation.
Usage in the industry is none.

Opportunity:
• SSAI mitigate vulnerabilities
• It provides a list of scanning tools for the security code.
• It offers potential security checklist items to guide soft-
ware development.

Threats: This process also mostly does not use the artifacts
of SSD activity In the later stage of software development.

19150 VOLUME 9, 2021



R. A. Khan et al.: Systematic Mapping Study on Security Approaches in SSE

TABLE 4. Articles by their journal and conference rank.

TABLE 5. Top publication venues of identified articles.

D. WHAT ARE THE POPULAR VENUES FOR SECURE
SOFTWARE DEVELOPMENT?
Table 4 presents information about the total score of
the selected articles based upon their considerations from
Computing Research Education (CORE)∗2018 and Journal
Citation Reports (JCR)∗∗2018 lists.
The table data shows that 64% of the selected papers in

our study are published in Q1-Q4 journals and Core A∗-C
conferences. The remaining 36% of articles are published
in well-reputed conferences and journals; however, some of
them have no ranking in the CORE 2018 and JCR lists. The
detailed score for each of the selected studies is available in
Appendix B.

Table 5 shows the distribution of selected studies based
on publication types. Journals, conferences, workshops, and
symposiums are the four main publication types with 43.9%
(57 studies), 36.2% (42 studies), 7.7% (9 studies), and
6.9% (8 studies) of the selected studies respectively. Overall,
116 publications’ venues are identified that cover various
areas of computer science; such as software engineering,
software security, and networking, etc. It means that such
a domain has received large attention from the researchers.
We observed that ‘‘Information and Software Technology’’,
‘‘Software System Model’’, ‘‘Journal of System and Soft-
ware’’, ‘‘Computer Standards and Interfaces’’, and ‘‘Security
and Communication Networks’’ are the most recurring publi-
cation venues for security approaches for SSD topic. We also
explored that ‘‘International Conference onAvailability, Reli-
ability, and Security’’ and ‘‘International Conference on Soft-
ware Engineering (ICSE)’’ is the most frequent source of
worthy publications to the topic concerned. It demonstrates
the importance of software security research in software engi-
neering and other related fields.

VI. IMPLICATIONS FOR RESEARCH AND PRACTICE
The findings of this research contribute to the SSD context
from various perspectives. Initially, they provide a clearer
understanding of the security practices and methods used
in the SSD environment for the academic community and
explain differences in areas where security approaches are
ineffective or inadequate. This knowledge will open opportu-
nities for SSD researchers to solve problems and design new
security techniques that can minimize the impact of security
risks and threats in the development of secure software. Sec-
ondly, the development of applications participating in highly
distributed projects would provide an overview of current
approaches aimed at promoting their efforts and recognizing
those most likely to meet their needs. The guidelines taken
from the conclusions of this SMS for researchers and practi-
tioners are as follows:
• Practitioners, such as software developers and project
managers, are eager to learn about the latest research
on the subject, along with researchers interested in
SSD project management. They need to study the pub-
lished articles more from the ‘‘Information and Software
Technology’’, ‘‘Software System Model’’, ‘‘Journal of
System and Software’’, ‘‘Computer Standards and Inter-
faces’’, and ‘‘Security and Communication Networks’’
journals. Similarly, it will be more beneficial for them
to read the published articles from the proceedings
of the ‘‘International Conference on Availability, Reli-
ability, and Security’’ and ‘‘International Conference
on Software Engineering (ICSE)’’ and its affiliated
workshops and symposiums. In short, we can say
that the above venues are important sources to study
the security approaches in SSD. Similarly, researchers
are encouraged to submit their high-quality research

VOLUME 9, 2021 19151



R. A. Khan et al.: Systematic Mapping Study on Security Approaches in SSE

TABLE 6. Classification of selected studies based on data extraction.

19152 VOLUME 9, 2021



R. A. Khan et al.: Systematic Mapping Study on Security Approaches in SSE

TABLE 6. (Continued.) Classification of selected studies based on data extraction.

VOLUME 9, 2021 19153



R. A. Khan et al.: Systematic Mapping Study on Security Approaches in SSE

TABLE 6. (Continued.) Classification of selected studies based on data extraction.

papers to these journals and conferences in the SSD
domain.

• The outcome of this SMS suggests a lack of empirical
evidence of the different suggested solutions. In the
study, only 30.12% of the security approaches have been
empirically validated.

Researchers are encouraged to review their security meth-
ods using experiments, case studies, and ordinary litera-
ture review on the first choice of research methods to
obtain stronger qualitative and quantitative outcomes and
to build approaches that can fulfill the demands of SSD
projects.
• As shown in Appendix A and B, many approaches are
intended to enhance the security in SSD. Practitioners,
particularly software developers and designers may use

such approaches to care about the security in SSD.While
working in this domain, we put a suggestion that practi-
tioners might cooperate with researchers in applying the
security approaches in their practice.

• The SSD domain is still immature and sufficient
research work is required, as this area has not been
reached a solution-oriented stage, particularly on empir-
ically evaluated solutions.

VII. THREATS TO VALIDITY
The validity of the study is concerned with its findings being
trustworthy. The limitations are listed as follows for this SMS:
• Construct Validity

The construct validity refers to the degree of the analysis
to which the operational measures represent what the RQs

19154 VOLUME 9, 2021



R. A. Khan et al.: Systematic Mapping Study on Security Approaches in SSE

TABLE 7. Titles of the final selected papers.

VOLUME 9, 2021 19155



R. A. Khan et al.: Systematic Mapping Study on Security Approaches in SSE

TABLE 7. (Continued.) Titles of the final selected papers.

19156 VOLUME 9, 2021



R. A. Khan et al.: Systematic Mapping Study on Security Approaches in SSE

TABLE 7. (Continued.) Titles of the final selected papers.

expect to respond. Two variables can be easily defined in this
SMS as a challenge to the construct validity. The research
string used in the study is one, while the digital libraries
checked are the other. We conducted a systematic search
using a wide variety of words in the sample to further expand
the research scope. For the validity to include the maximum
relevant literature, the keywords of the study were included
after detailed discussion and recommendations by the two
authors. The choice of digital libraries for the studies was
another risk to construct validity. The identifying of five
digital libraries as the key sources in such a domain mitigated
this risk.
• Internal Validity

In internal validity, the classification and decision to allo-
cate a specific security approach to a particular category
and method of software development may be evaluated. The
classification was suggested to minimize this effect and the
categorization process was performed by the two authors,
while the final results were checked by the third one. More-
over, to allow the conclusions drawn from the results to
be replicated, the steps and activities in this scheme have
been clearly defined. The internal validity risks have been
minimized such that all interested readers are encouraged to
freely see the data retrieved from the papers of the studies
displayed.
• Conclusion Validity

The validity of the conclusion is the degree to which the
assumptions made about the relationships are rational and
concerned with the potential to reproduce these results. The
possibility of conclusion validity was a factor in such SMS
that could lead to the conclusion of incorrect findings of a
relationship in the data observed. Each step of the data col-
lection, extraction, and analysis was validated by a systematic
process and periodic reviews carried out by the participating
researchers to reduce this threat. The explanation behind this
move was that for similar research, the same procedure was
done in the literature.
• External Validity

External validity includes how much it is possible to gen-
eralize the outcomes of a study. To diminish this threat,
the ratio of security models, frameworks, methods, processes,
guidelines, metrics, and tools have been included in this work.

VIII. CONCLUSION AND FUTURE WORK
At each level of SDLC, incorporating software protection is
now a primary need for secure software development. SSE
advocates that the security of software is an essential factor
that should be evaluated during the early stages of SDLC [5].
We need to incorporate security features into our application
development life cycle and adapt the latest SSE approaches
to build and deploy a secure software system [6], [7].

We conclude from the above discussion that it is not good
enough to secure the software system in post-development
phases and there is a dire need to figure out better ways and
means to secure the software system. It is our conviction
that this paper will contribute by offering a taxonomy for the
SSE-related research subject and will provide a breakdown
of papers in the same field on each topic. The taxonomical
and demographical information on a particular research topic,
presented in this paper, will invite more opportunities to
promote further research in this field.

We investigate the outcome of this mapping study to
provide a reference direction for interested and vigilant
researchers to address and explore new research trends and
gaps and the subject domain. This study will provide a deep
insight into the subject domain that could enrich and more
update the software practitioners about security approaches,
security limitations, and unresolved specific and general
issues. After the final selection and analysis of 116 arti-
cles were selected and these were classified based on secu-
rity approaches according to the quality assessment, soft-
ware security method, SDLC phase has been most discussed
and addressed, publication venue, and SWOT analysis. The
results indicate that this domain is still immature and suffi-
cient research work needs to be carried out particularly on
empirically evaluated solutions.

Also, we plan to develop a Software Security Assur-
ance Model (SSAM) [18] to assist vendor organizations
to assess their readiness for secure software development.
We will develop the SSAM model by using the output of
future RQs, supervisor inputs, and guidance from existing
studies [102]–[111]. The model will produce numerous eval-
uation reports, such as a list of security measurements and
their solutions to be used in each phase of the SDLC by
GSD vendor organizations. Our main aim is to answer the

VOLUME 9, 2021 19157



R. A. Khan et al.: Systematic Mapping Study on Security Approaches in SSE

following research questions (RQs) in the future to achieve
the above-mentioned goals:

RQ1: What are the security threats to the development of
secure software products, as described in the literature and
industrial survey, to be avoided by GSD vendor organiza-
tions?

RQ2: What are the practices to be implemented by GSD
vendor organizations, as defined in the literature and indus-
trial survey, to build secure software products?

RQ3: Is the proposed SSAM model practically robust in
helping GSD vendor organizations in assessing their readi-
ness to build secure software?

APPENDIX A
See Table 6.

APPENDIX B
See Table 7.

ACKNOWLEDGMENT
The findings achieved herein are solely the responsibility
of the authors. In addition to this, all members of the Soft-
ware Engineering Research Group, University of Malakand
(SERG_UOM) are obliged to do so in general and both
Dr. Nasir Rashid and Ghulam Murtaza in particular, for their
reviews and suggested improvements.

REFERENCES
[1] J. C. S. Núñez, A. C. Lindo, and P. G. Rodríguez, ‘‘A preventive secure

software development model for a software factory: A case study,’’ IEEE
Access, vol. 8, pp. 77653–77665, 2020.

[2] S. V. Solms and L. A. Futcher, ‘‘Adaption of a secure software develop-
ment methodology for secure engineering design,’’ IEEE Access, vol. 8,
pp. 125630–125637, 2020.

[3] M. Z. Gunduz and R. Das, ‘‘Cyber-security on smart grid: Threats
and potential solutions,’’ Comput. Netw., vol. 169, Mar. 2020,
Art. no. 107094.

[4] E. K. Szczepaniuk, H. Szczepaniuk, T. Rokicki, and B. Klepacki, ‘‘Infor-
mation security assessment in public administration,’’ Comput. Secur.,
vol. 90, Mar. 2020, Art. no. 101709.

[5] L. Bracciale, P. Loreti, A. Detti, R. Paolillo, and N. B. Melazzi,
‘‘Lightweight named object: An ICN-based abstraction for IoT device
programming and management,’’ IEEE Internet Things J., vol. 6, no. 3,
pp. 5029–5039, Jun. 2019.

[6] M. Zhang, X. D. C. D. Carnavalet, L. Wang, and A. Ragab, ‘‘Large-scale
empirical study of important features indicative of discovered vulnerabil-
ities to assess application security,’’ IEEE Trans. Inf. Forensics Security,
vol. 14, no. 9, pp. 2315–2330, Sep. 2019.

[7] G. McGraw, ‘‘Six tech trends impacting software security,’’ Computer,
vol. 50, no. 5, pp. 100–102, May 2017.

[8] J. Li, Y. Zhang, X. Chen, and Y. Xiang, ‘‘Secure attribute-based data
sharing for resource-limited users in cloud computing,’’ Comput. Secur.,
vol. 72, pp. 1–12, Jan. 2018.

[9] A. Sharma and M. P. Kumar, ‘‘Aspects of enhancing security in software
development life cycle,’’ Adv. Comput. Sci. Technol., vol. 10, no. 2,
pp. 203–210, 2017.

[10] M. Essafi, L. Labed, and H. B. Ghezala, ‘‘Towards a comprehensive view
of secure software engineering,’’ in Proc. Int. Conf. Emerg. Secur. Inf.,
Syst., Technol., 2007, pp. 181–186.

[11] R. Syed,M. Rahafrooz, and J. M. Keisler, ‘‘What it takes to get retweeted:
An analysis of software vulnerability messages,’’ Comput. Hum. Behav.,
vol. 80, pp. 207–215, Mar. 2018.

[12] A. K. Srivastava and S. Kumar, ‘‘An effective computational technique for
taxonomic position of security vulnerability in software development,’’
J. Comput. Sci., vol. 25, pp. 388–396, Mar. 2018.

[13] D. Mellado, C. Blanco, L. E. Sánchez, and E. Fernández-Medina, ‘‘A sys-
tematic review of security requirements engineering,’’Comput. Standards
Interfaces, vol. 32, no. 4, pp. 153–165, Jun. 2010.

[14] I. Velásquez, A. Caro, and A. Rodríguez, ‘‘Authentication schemes and
methods: A systematic literature review,’’ Inf. Softw. Technol., vol. 94,
pp. 30–37, Feb. 2018.

[15] Y. Lee and G. Lee, ‘‘HW-CDI: Hard-wired control data integrity,’’ IEEE
Access, vol. 7, pp. 10811–10822, 2019.

[16] Z. A. Maher, H. Shaikh, M. S. Khan, A. Arbaaeen, and A. Shah, ‘‘Factors
affecting secure software development practices among developers—An
investigation,’’ in Proc. ICETAS, 2018, pp. 1–6.

[17] G. E. Rodríguez, J. G. Torres, P. Flores, and D. E. Benavides, ‘‘Cross-
site scripting (XSS) attacks and mitigation: A survey,’’ Comput. Netw.,
vol. 166, Jan. 2020, Art. no. 106960.

[18] R. A. Khan and S. U. Khan, ‘‘A preliminary structure of software
security assurance model,’’ in Proc. 13th Int. Conf. Global Softw. Eng.,
Gothenburg, Sweden, 2018, pp. 137–140.

[19] K. S. U. Khan, R. Ahmad, and I. M. Yazid, ‘‘Systematic mapping study
protocol for secure software engineering,’’ in Proc. Asia Int. Multidisci-
plinary Conf. (AIMC), 2019, pp. 367–374.

[20] G. McGraw, ‘‘From the ground up: The DIMACS software security
workshop,’’ IEEE Secur. Privacy, vol. 1, no. 2, pp. 59–66, Mar. 2003.

[21] G. Hatzivasilis, I. Papaefstathiou, and C. Manifavas, ‘‘Software security,
privacy, and dependability: Metrics and measurement,’’ IEEE Softw.,
vol. 33, no. 4, pp. 46–54, Jul. 2016.

[22] G. McGraw, ‘‘Software security,’’ IEEE Secur. Privacy, vol. 2, no. 2,
pp. 80–83, Aug. 2004.

[23] R. M. Parizi, K. Qian, H. Shahriar, F. Wu, and L. Tao, ‘‘Benchmark
requirements for assessing software security vulnerability testing tools,’’
in Proc. COMPSAC, 2018, pp. 825–826.

[24] N. M. Mohammed, M. Niazi, M. Alshayeb, and S. Mahmood, ‘‘Explor-
ing software security approaches in software development lifecycle:
A systematic mapping study,’’ Comput. Standards Interfaces, vol. 50,
pp. 107–115, Feb. 2017.

[25] N. R.Mead andG.McGraw, ‘‘A portal for software security,’’ IEEE Secur.
Privacy Mag., vol. 3, no. 4, pp. 75–79, Jul. 2005.

[26] G. Hoglund, and G. McGraw, Exploiting Software. Boston, MA, USA:
Addison-Wesley, 2004, pp. 1–44.

[27] D. Verdon and G. McGraw, ‘‘Risk analysis in software design,’’ IEEE
Secur. Privacy Mag., vol. 2, no. 4, pp. 79–84, Jul. 2004.

[28] N. S. A. Karim, A. Albuolayan, T. Saba, and A. Rehman, ‘‘The prac-
tice of secure software development in SDLC: An investigation through
existing model and a case study,’’ Secur. Commun. Netw., vol. 9, no. 18,
pp. 5333–5345, Dec. 2016.

[29] Y. Mufti, M. Niazi, M. Alshayeb, and S. Mahmood, ‘‘A readiness
model for security requirements engineering,’’ IEEE Access, vol. 6,
pp. 28611–28631, 2018.

[30] M. Ammar, G. Russello, and B. Crispo, ‘‘Internet of Things: A survey on
the security of IoT frameworks,’’ J. Inf. Secur. Appl., vol. 38, pp. 8–27,
Feb. 2018.

[31] X. Hu, Y. Zhuang, Z. Cao, T. Ye, andM. Li, ‘‘Modeling and validation for
embedded software confidentiality and integrity,’’ in Proc. 12th Int. Conf.
Intell. Syst. Knowl. Eng. (ISKE), Nanjing, China, Nov. 2017, pp. 1–6.

[32] M. Khari, Vaishali, and P. Kumar, ‘‘Embedding security in software
development life cycle (SDLC),’’ in Proc. Int. Conf. Comput. Sustain.
Global Develop. (INDIACom), 2016, pp. 2182–2186. [Online]. Available:
https://ieeexplore.ieee.org/document/7724651

[33] H. Xu, J. Heijmans, and J. Visser, ‘‘A practical model for rating software
security,’’ in Proc. IEEE 7th Int. Conf. Softw. Secur. Rel. Companion,
Jun. 2013, pp. 231–232.

[34] B. B.Mayvan, A. Rasoolzadegan, and Z. G. Yazdi, ‘‘The state of the art on
design patterns: A systematic mapping of the literature,’’ J. Syst. Softw.,
vol. 125, pp. 93–118, Mar. 2017.

[35] S. P. Kadam and S. Joshi, ‘‘Secure by design approach to improve security
of object oriented software,’’ in Proc. INDIACom, Mar. 2015, pp. 24–30.

[36] D. Xu and K. E. Nygard, ‘‘Threat-driven modeling and verification of
secure software using aspect-oriented Petri nets,’’ IEEE Trans. Softw.
Eng., vol. 32, no. 4, pp. 265–278, Apr. 2006.

[37] R. Kumar, S. A. Khan, and R. A. Khan, ‘‘Analytical network process for
software security: A design perspective,’’CSI Trans. ICT, vol. 4, nos. 2–4,
pp. 255–258, Dec. 2016.

[38] S. Janakiraman, K. Thenmozhi, J. B. B. Rayappan, and R. Amirtharajan,
‘‘Lightweight chaotic image encryption algorithm for real-time embed-
ded system: Implementation and analysis on 32-bit microcontroller,’’
Microprocessors Microsyst., vol. 56, pp. 1–12, Feb. 2018.

19158 VOLUME 9, 2021



R. A. Khan et al.: Systematic Mapping Study on Security Approaches in SSE

[39] T. Diamantopoulos, K. Thomopoulos, and A. Symeonidis, ‘‘QualBoa:
Reusability-aware recommendations of source code components,’’ in
Proc. MSR, 2016, pp. 488–491.

[40] Y.-H. Tung, S.-C. Lo, J.-F. Shih, and H.-F. Lin, ‘‘An integrated security
testing framework for secure software development life cycle,’’ in Proc.
18th Asia–Pacific Netw. Oper. Manage. Symp. (APNOMS), Oct. 2016,
pp. 1–4.

[41] B. S. Clegg, J. M. Rojas, and G. Fraser, ‘‘Teaching software testing
concepts using a mutation testing game,’’ in Proc. ICSE-SEET, 2017,
pp. 33–36.

[42] M. Felderer and F. Elizabeta, ‘‘A systematic classification of security
regression testing approaches,’’ Int. J. Softw. Tools Technol. Transf.,
vol. 17, no. 3, pp. 305–319, Jun. 2015.

[43] B. Potter and G. McGraw, ‘‘Software security testing,’’ IEEE Secur.
Privacy, vol. 2, no. 5, pp. 81–85, Sep. 2004.

[44] J.-P. Arcangeli, R. Boujbel, and S. Leriche, ‘‘Automatic deployment of
distributed software systems: Definitions and state of the art,’’ J. Syst.
Softw., vol. 103, pp. 198–218, May 2015.

[45] R. Colomo-Palacios, E. Fernandes, P. Soto-Acosta, and X. Larrucea,
‘‘A case analysis of enabling continuous software deployment through
knowledge management,’’ Int. J. Inf. Manage., vol. 40, pp. 186–189,
Jun. 2018.

[46] S. Velmourougan, P. Dhavachelvan, R. Baskaran, and B. Ravikumar,
‘‘Software development life cycle model to improve maintainability of
software applications,’’ in Proc. 4th Int. Conf. Adv. Comput. Commun.,
Aug. 2014, pp. 270–273.

[47] V. Midha and A. Bhattacherjee, ‘‘Governance practices and software
maintenance: A study of open source projects,’’ Decis. Support Syst.,
vol. 54, no. 1, pp. 23–32, Dec. 2012.

[48] V. A. Uzunov, B. E. Fernández, and F. Katrina, ‘‘Engineering security into
distributed systems: A survey of methodologies,’’ J. Universal Comput.
Sci., vol. 18, no. 20, pp. 2920–3006, 2012.

[49] Z. Aslanyan, F. Nielson, and D. Parker, ‘‘Quantitative verification and
synthesis of attack-defence scenarios,’’ in Proc. IEEE 29th Comput.
Secur. Found. Symp. (CSF), Lisbon, Portugal, Jun. 2016, pp. 105–119.

[50] T. H. Nguyen, J. Grundy, and M. Almorsy, ‘‘Integrating goal-oriented
and use case-based requirements engineering: The missing link,’’ in Proc.
ACM/IEEE 18th Int. Conf. Model Driven Eng. Lang. Syst. (MODELS),
Ottawa, ON, Canada, Sep. 2015, pp. 328–337.

[51] V. G. Vassilakis, H. Mouratidis, E. Panaousis, I. D. Moscholios, and
M. D. Logothetis, ‘‘Security requirements modelling for virtualized 5G
small cell networks,’’ in Proc. 24th Int. Conf. Telecommun. (ICT),
Limassol, Cyprus, May 2017, pp. 337–362.

[52] F.-B. Eduardo, Security Patterns in Practice: Designing Secure Architec-
tures Using Software Patterns, 1st ed. Hoboken, NJ, USA: Wiley, 2013.

[53] S. Lipner and H. Michael. The Trustworthy Computing Security
Development Lifecycle. Accessed: Mar. 3, 2019. [Online]. Available:
https://msdn.microsoft.com/en-us/library/ms995349.aspx

[54] D. Mellado, E. Fernandez-Medina, and M. A. Piattini, ‘‘Common criteria
based security requirements engineering process for the development
of secure information systems,’’ Comput. Standards Interfaces, vol. 29,
no. 2, pp. 244–253, 2007.

[55] A. Apvrille and M. Pourzandi, ‘‘Secure software development by exam-
ple,’’ IEEE Secur. Privacy Mag., vol. 3, no. 4, pp. 10–17, Jul. 2005.

[56] J. D. M. Charles, B. Haley, and B. Nuseibeh, ‘‘Core security require-
ments artifacts,’’ Dept. Comput., Fac. Math. Comput., Open Univ.,
Milton Keynes, U.K., Tech. Rep. 2004/23, 2004. [Online]. Available:
http://computing.open.ac.uk

[57] G. Dan. Build Security in Introduction to the CLASP Process. [Online].
Available: http://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-
practices/requirements/548.html

[58] C. B. Haley, R. Laney, J. Moffett, and B. Nuseibeh, ‘‘Security require-
ments engineering: A framework for representation and analysis,’’ IEEE
Trans. Softw. Eng., vol. 34, no. 1, pp. 133–152, Jan./Feb. 2008.

[59] N. R. Mead, E. D. Hough, and T. R. Stehney, II, ‘‘Security quality
requirements engineering (SQUARE) methodology,’’ Softw. Eng. Inst.,
Carnegie Mellon Univ., Tech. Rep. CMU/SEI-2005-TR-009, 2005.

[60] J. Manico, OWASP, Application Security Verification Standard 3.0.1,
2016, pp. 1–70.

[61] Information Technology—Security Techniques—Information Security
Management Systems—Requirements, document ISO/IEC 27001:2005,
International Organization for Standardization, 2005, pp. 1–34.

[62] C. Thompson, M. Shelton, E. Stark, M. Walker, E. Schechter, and
A. P. Felt, ‘‘The Web’s identity crisis: Understanding the effectiveness of
website identity indicators,’’ in Proc. USENIX, 2019, pp. 1715–1731.

[63] P. Silva, R. Noël, M. Gallego, S. Matalonga, and A. Hernan, ‘‘Software
development initiatives to identify and mitigate security threats—A sys-
tematic mapping,’’ in Proc. CibSE, 2016, pp. 1–15.

[64] A. S. Guinea, G. Nain, and Y. Le Traon, ‘‘A systematic review on the
engineering of software for ubiquitous systems,’’ J. Syst. Softw., vol. 118,
pp. 251–276, Aug. 2016.

[65] K. Petersen, S. Vakkalanka, and L. Kuzniarz, ‘‘Guidelines for conducting
systematic mapping studies in software engineering: An update,’’ Inf.
Softw. Technol., vol. 64, pp. 1–18, Aug. 2015.

[66] A. K. Barbara, B. D. Budgen, and O. P. Brereton, ‘‘Using mapping studies
as the basis for further research—A participant-observer case study,’’ Inf.
Softw. Technol., vol. 53, no. 6, pp. 638–651, 2011.

[67] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, ‘‘Systematic literature reviews in software engineering—A
systematic literature review,’’ Inf. Softw. Technol., vol. 51, no. 1, pp. 7–15,
2009.

[68] J. Morán, C. Riva, and J. Tuya, ‘‘Testing MapReduce programs: A sys-
tematic mapping study,’’ J. Softw. Evol. Process, vol. 31, no. 3, p. e2120,
Mar. 2019.

[69] R. E. Lopez-Herrejon, S. Illescas, and A. Egyed, ‘‘A systematic mapping
study of information visualization for software product line engineering,’’
J. Softw. Evol. Process, vol. 30, no. 2, p. e1912, Feb. 2018.

[70] M. Felderer and J. Carver, ‘‘Guidelines for systematic mapping stud-
ies in security engineering,’’ in Empirical Research for Software Secu-
rity: Foundations and Experience. Boca Raton, FL, USA: CRC Press,
Jan. 2018.

[71] D. Budgen, M. Turner, P. Brereton, and B. Kitchenham, ‘‘Using mapping
studies in software engineering,’’ in Proc. PPIG, 2008, pp. 195–204.

[72] S. Y. Chadli, A. Idri, J. N. Ros, J. L. Fernández-Alemán, J. M. C. de Gea,
and A. Toval, ‘‘Software project management tools in global software
development: A systematic mapping study,’’ SpringerPlus, vol. 5, no. 1,
p. 2006, Nov. 2016.

[73] M. El Bajta, A. Idri, J. Nicolás, J. Fernández-Alemán, and A. Toval,
‘‘Software project management approaches for global software devel-
opment: A systematic mapping study,’’ Tsinghua Sci. Technol., vol. 23,
no. 6, pp. 690–714, Dec. 2018.

[74] C. Wang, M. Daneva, M. Sinderen, and P. Liang, ‘‘A systematic mapping
study on crowdsourced requirements engineering using user feedback,’’
J. Softw. Evol. Process, vol. 31, no. 10, p. e2199, Oct. 2019.

[75] A. Manjavacas, A. Vizcaíno, F. Ruiz, and M. Piattini, ‘‘Global software
development governance: Challenges and solutions,’’ J. Softw. Evol. Pro-
cess, vol. 32, no. 10, p. e226, Oct. 2020.

[76] D. Šmite, C. Wohlin, T. Gorschek, and R. Feldt, ‘‘Empirical evidence
in global software engineering: A systematic review,’’ Empirical Softw.
Eng., vol. 15, no. 1, pp. 91–118, Feb. 2010.

[77] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil,
‘‘Lessons from applying the systematic literature review process within
the software engineering domain,’’ J. Syst. Softw., vol. 80, no. 4,
pp. 571–583, Apr. 2007.

[78] M. S. Lund, B. Solhaug, and K. Stolen,Model-Driven Risk Analysis: The
CORAS Approach. Berlin, Germany: Springer, 2011, pp. 1–79.

[79] I. Flechais, M. A. Sasse, and S. M. V. Hailes, ‘‘Bringing security home:
A process for developing secure and usable systems,’’ in Proc. NSPW,
2003, pp. 49–57.

[80] N. R.Mead, Identifying Security Requirements Using the Security Quality
Requirements Engineering (SQUARE) Method (Integrating Security and
Software Engineering). Pittsburgh, PA, USA: Carnegie Mellon Univ.,
Dec. 2005, pp. 1–21, doi: 10.4018/9781599041476.ch003.

[81] V. Maheshwari and M. Prasana, ‘‘Integrating risk assessment and threat
modeling within SDLC process,’’ in Proc. ICICT, 2016, pp. 1–5.

[82] S. Moyo and E. Mnkandla, ‘‘A novel lightweight solo software devel-
opment methodology with optimum security practices,’’ IEEE Access,
vol. 8, pp. 33735–33747, 2020.

[83] S. U. R. Khan, I. U. Rehman, and S. U. R. Malik, ‘‘The impact of test case
reduction and prioritization on software testing effectiveness,’’ in Proc.
Int. Conf. Emerg. Technol., 2009, pp. 416–421.

[84] R. Kumar, S. K. Pandey, and S. I. Ahson, ‘‘Security in coding phase of
SDLC,’’ in Proc. 3rd Int. Conf. Wireless Commun. Sensor Netw., 2007,
pp. 118–120.

[85] R. C. Seacord, Secure Coding in C and C++. Reading, MA, USA:
Addison-Wesley, 2013.

[86] A. Mousa, M. Karabatak, and T. Mustafa, ‘‘Database security threats and
challenges,’’ in Proc. ISDFS, 2020, pp. 1–5.

[87] N. R. Mead, ‘‘Measuring the software security requirements engineering
process,’’ in Proc. IEEE 36th Annu. Comput. Softw. Appl. Conf. Work-
shops, Jul. 2012, pp. 583–588.

VOLUME 9, 2021 19159

http://dx.doi.org/10.4018/9781599041476.ch003


R. A. Khan et al.: Systematic Mapping Study on Security Approaches in SSE

[88] K. Song-Kyoo, ‘‘Design of enhanced software protection architecture by
using theory of inventive problem solving,’’ in Proc. IEEE Int. Conf. Ind.
Eng. Eng. Manage., Dec. 2009, pp. 978–982.

[89] BSIMM: Building Security In Maturity Model. Accessed: Mar. 5, 2019.
[Online]. Available: https://www.bsimm.com/

[90] G. Sindre and A. L. Opdahl, ‘‘Eliciting security requirements with misuse
cases,’’ Requirements Eng., vol. 10, no. 1, pp. 34–44, Jan. 2005.

[91] H. Mouratidis, P. Giorgini, and G. Manson, ‘‘When security meets soft-
ware engineering: A case of modeling secure information systems,’’ J. Inf.
Syst., vol. 30, no. 8, pp. 609–629, 2005.

[92] D. Basin, J. Doser, and T. Lodderstedt, ‘‘Model driven security: From
UML models to access control infrastructures,’’ ACM Trans. Softw. Eng.
Methodol., vol. 15, no. 1, pp. 39–91, 2006.

[93] S. Lipner, ‘‘The trustworthy computing security development lifecy-
cle,’’ in Proc. 20th Annu. Comput. Secur. Appl. Conf. (ACSAC), 2004,
pp. 1–12.

[94] A. van Lamsweerde and E. Letier, ‘‘Handling obstacles in goal-oriented
requirements engineering,’’ IEEE Trans. Softw. Eng., vol. 26, no. 10,
pp. 978–1005, 2000.

[95] M. Alam, J.-P. Seifert, and X. Zhang, ‘‘A model-driven framework for
trusted computing based systems,’’ in Proc. EDOC, 2007, p. 75.

[96] N. R. Mead and T. Stehney, ‘‘Security quality requirements engineering
(SQUARE) methodology,’’ ACM SIGSOFT Softw. Eng. Notes, vol. 30,
no. 4, pp. 1–7, Jul. 2005.

[97] T. Lodderstedt, D. Basin, and J. Doser, ‘‘SecureUML: A UML-based
modeling language for model-driven security,’’ in Proc. Int. Conf. Unified
Modeling Lang., 2002 pp. 426–441.

[98] M. S. Lund, B. Solhaug, and K. Stølen,Model-Driven Risk Analysis—The
CORAS Approach. Berlin, Germany: Springer, 2011, pp. 1–358.

[99] I. Flechais, C. Mascolo, and M. A. Sasse, ‘‘Integrating security and
usability into the requirements and design process,’’ Int. J. Electron.
Secur. Digit. Forensic, vol. 1, no. 1, pp. 12–26, 2007.

[100] C. J. Alberts, A. J. Dorofee, J. F. Stevens, and C. Woody, Introduction
to the OCTAVE Approach. Pittsburgh, PA, USA: Carnegie Mellon Univ.,
Software Engineering Institute, 2003, pp. 1–37.

[101] D. P. Gilliam, T. L. Wolfe, J. S. Sherif, and M. Bishop, ‘‘Software
security checklist for the software life cycle,’’ in Proc. WET ICE, 2003,
pp. 243–248.

[102] W. Ren, O. Ma, H. Ji, and X. Liu, ‘‘Human posture recognition using a
hybrid of fuzzy logic and machine learning approaches,’’ IEEE Access,
vol. 8, pp. 135628–135639, 2020.

[103] A. Agrawal, M. Alenezi, R. Kumar, and R. A. Khan, ‘‘Measuring
the sustainable-security of Web applications through a fuzzy-based
integrated approach of AHP and TOPSIS,’’ IEEE Access, vol. 7,
pp. 153936–153951, 2019.

[104] F. A. Al-Zahrani, ‘‘Evaluating the usable-security of healthcare software
through unified technique of fuzzy logic, ANP and TOPSIS,’’ IEEE
Access, vol. 8, pp. 109905–109916, 2020.

[105] R. Kumar, A. I. Khan, Y. B. Abushark, M. M. Alam, A. Agrawal, and
R. A. Khan, ‘‘An integrated approach of fuzzy logic, AHP and TOPSIS
for estimating usable-security of Web applications,’’ IEEE Access, vol. 8,
pp. 50944–50957, 2020.

[106] R. Kumar, A. I. Khan, Y. B. Abushark, M. M. Alam, A. Agrawal, and
R. A. Khan, ‘‘A knowledge-based integrated system of hesitant fuzzy
set, AHP and TOPSIS for evaluating security-durability of Web appli-
cations,’’ IEEE Access, vol. 8, pp. 48870–48885, 2020.

[107] M. Alenezi, A. Agrawal, R. Kumar, and R. A. Khan, ‘‘Evaluating perfor-
mance of Web application security through a fuzzy based hybrid multi-
criteria decision-making approach: Design tactics perspective,’’ IEEE
Access, vol. 8, pp. 25543–25556, 2020.

[108] R. Kumar, A. Baz, H. Alhakami, W. Alhakami, M. Baz, A. Agrawal,
and R. A. Khan, ‘‘A hybrid model of hesitant fuzzy decision-making
analysis for estimating usable-security of software,’’ IEEE Access, vol. 8,
pp. 72694–72712, 2020.

[109] A. K. Pandey, A. I. Khan, Y. B. Abushark, M. M. Alam, A. Agrawal,
R. Kumar, and R. A. Khan, ‘‘Key issues in healthcare data integrity:
Analysis and recommendations,’’ IEEE Access, vol. 8, pp. 40612–40628,
2020.

[110] M. Zarour, M. T. J. Ansari, M. Alenezi, A. K. Sarkar, M. Faizan,
A. Agrawal, R. Kumar, and R. A. Khan, ‘‘Evaluating the impact of
blockchain models for secure and trustworthy electronic healthcare
records,’’ IEEE Access, vol. 8, pp. 157959–157973, 2020.

[111] A. Agrawal, A. K. Pandey, A. Baz, H. Alhakami,W.Alhakami, R. Kumar,
and R. A. Khan, ‘‘Evaluating the security impact of healthcareWeb appli-
cations through fuzzy based hybrid approach of multi-criteria decision-
making analysis,’’ IEEE Access, vol. 8, pp. 135770–135783, 2020.

RAFIQ AHMAD KHAN received the M.Phil.
degree in computer science with a specialization
in software engineering from the University of
Malakand, Pakistan, under the research supervi-
sion of Dr. S. U. Khan, where he is currently
pursuing the Ph.D. degree.

His research interests include software secu-
rity, empirical software engineering, systematic
literature review, requirements engineering, green
computing, software testing, agile software devel-

opment, and global software engineering. He has authored several papers in
well-reputed international conferences and journals, including ICGSE and
IEEE ACCESS.

SIFFAT ULLAH KHAN received the Ph.D. degree
in computer science from Keele University, U.K.,
in 2011.

He was the Head of the Department of Software
Engineering, University of Malakand, Pakistan,
for three years, where he was also the Chairman of
the Department of Computer Science and IT and is
currently an Associate Professor in Computer Sci-
ence. He is also the Founder and the Leader of the
Software Engineering Research Group, University

of Malakand. He has successfully supervised ten M.Phil. and four Ph.D.
scholars. He has authored over 100 papers, so far, in well-reputed inter-
national conferences and journals. His research interests include software
outsourcing, empirical software engineering, agile software development,
systematic literature review, software metrics, cloud computing, require-
ments engineering, and green computing/IT. He received the Gold Medal
(Dr. M. N. Azam Prize 2015) from the Pakistan Academy of Sciences in
recognition of his research achievements in the field of computer (software).

HABIB ULLAH KHAN received the Ph.D. degree
in management information systems from Leeds
Beckett University, U.K. He is an Associate
Professor ofMISwith the Department of Account-
ing and Information Systems, College of Busi-
ness and Economics, Qatar University, Qatar.
He has nearly 20 years of industry, teach-
ing, and research experience. His research inter-
ests include IT adoption, social media, Internet
addiction, mobile commerce, computer mediated

communication, IT outsourcing, big data, and IT security.

MUHAMMAD ILYAS received the Ph.D. degree
in computer science from the University of
Malakand, Pakistan, where he is currently an
Assistant Professor with the Computer Sci-
ence and IT Department. His research interests
include software outsourcing, empirical software
engineering, systematic literature review, cloud
computing, requirements engineering, and green
computing/IT.

19160 VOLUME 9, 2021


