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A B S T R A C T

Recently, a growing interest has been dedicated towards developing and implementing low-cost energy
efficiency solutions in buildings. Accordingly, non-intrusive load monitoring has been investigated in various
academic and industrial projects for capturing device-specific consumption footprints without any additional
hardware installation. However, its performance should be improved further to enable an accurate appliance
identification from the aggregated load. This paper presents an efficient non-intrusive load monitoring
framework that consists of the following main components: (i) a novel fusion of multiple time-domain features
is proposed to extract appliance fingerprints; (ii) a dimensionality reduction scheme is introduced to be
applied to the fused time-domain features, which relies on fuzzy-neighbors preserving analysis based QR-
decomposition. The latter can not only reduce feature dimensionality, but it can also effectively decrease the
intra-class distances and increase the extra-class distances of appliance features; and (iii) a powerful decision
bagging tree classifier is implemented to accurately classify electrical devices using the reduced features.
Empirical evaluations performed on three real datasets, namely ACS-F2, REDD and WHITED collected at
different sampling rates have shown a promising performance, according to the accuracy and F1 score achieved
using the proposed non-intrusive load monitoring system. Reported accuracy and F1 score have reached both
100% for the WHITED dataset, 99.79% and 99.76% for the REDD dataset, and up to 99.41% and 98.93% for
the ACS-f2 dataset, respectively. The outstanding performance achieved using the proposed solution determines
its effectiveness in collecting individual-appliance consumption data and in promoting energy saving behaviors.
1. Introduction

Building sector represents a major energy consumer, which actively
participates in the extensive and increasing energy demands. It is in
charge of up to 39% of all greenhouse gases and carbon emissions.
This percentage could be increased in regions having extreme dry,
subtropical desert climates, as the case in the middle east, in which
buildings could be responsible of consuming up to 70% of the produced
energy [1]. From another side, monitoring energy consumption in the
buildings is of utmost importance to promote energy efficiency and
reduce carbon emissions. It is part of the smart grid field, which is a
hot applied energy topic, where recent trends in artificial intelligence,
Internet of things (IoT) and feature extraction play a major role in
developing low-cost solutions using existed power grids [2].

In this context, smart grids have received a great attention in recent
years due to their promising effectiveness in saving energy and reduc-
ing carbon emission [3,4]. The use smart-meters with the development
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of powerful and intelligent algorithms to monitor energy consumption
and collect statistics are the core of the smart grid technology [5]. Con-
sequently, enormous efforts are presently being put in place to increase
the energy efficiency of domestic and commercial infrastructures using
the knowledge of power grids [6,7]. Recent works have demonstrated
that residential and public buildings are responsible for more than 40%
of global electricity usage, in which 20% can be preserved through
adopting the knowledge of smart grids [8,9].

In addition, using new technologies such as smartphones and smart
meters for load monitoring and behavioral change can assist end-
users to build a better energy consumption profile. This is possible
by triggering personalized recommendations at the right-moment at an
appliance-level and addressing them to the end-user [10,11]. However,
even if the extensive use of smart meters can help picking up specific
energy consumption footprints at a household, the cost of such instal-
lation is prohibitive and it is combined with hardware equipment and
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enormous effort [12,13]. Non-intrusive load monitoring (NILM) is a
strong alternative for designing a powerful, precise and scalable load
monitoring in residential sector that is easy to deploy with no extra
cost. In addition, the gains of NILM can not be limited to only end-users,
but it can also contribute in enhancing operational efficiency, helping
providers to minimize operational costs, and improving public health
and well-being [14,15].

Developing an efficient NILM system requires making use of a
feature extraction module that can capture the particular consumption
fingerprint of each electrical device along with a powerful classi-
fier [16,17]. The feature extraction process can hence help in reducing
the distances between appliances pertaining to the same class [18].
Building such a feature descriptor is hard to achieve since the power
consumption signal has various characteristics that should be consid-
ered [19,20]. To that end, the fusion of multiple descriptors is among
the ambitious solutions that help in developing an efficient descriptor
owing to the fact that it combines different properties of various
descriptor features and thus leading to a better feature representation,
which improves the accuracy and F1 score of the classification.

Moving forward, identifying appliances connected to the smart grid
at a high accuracy is of utmost importance in order to provide end-
users with accurate appliance-level consumption footprints, and hence
helping them in correctly analyzing and adjusting their consumption
behaviors. To that end, in this paper, an effective NILM procedure is
proposed to address the above-mentioned challenges and offer precise
device-specific consumption data to end-users, in which 100% accuracy
and 100% F1 score have been attained on worldwide household and
industry transient energy dataset (WHITED), 99.79% accuracy and
99.76% F1 score have been achieved under reference energy disag-
gregation dataset (REDD), and up to 99.41% accuracy and 98.93%
F1 score have been reached under appliance consumption signatures
version 2 (ACS-f2) dataset. Overall, the main contributions of this
framework can be summarized as follows:

• A simple yet effective multi-descriptor fusion is proposed, which
provides a high device recognition performance using the joint-
use of various time-domain (TD) descriptors. Accordingly, the
proposed fusion of time-domain features, namely FTDF, fuses
features of various descriptors generated from the current window
and those collected from previous windows for a more efficient
appliance recognition. In this respect, the regional variation of
the power consumption properties is correlated to the semi-global
variation as drawn off using the TD analysis of the past windows.

• A dimensionality reduction technique named fuzzy-neighbors pre-
serving analysis (FNPA) based QR-decomposition (FNPA-QR) is
applied to the FTDF feature vectors derived in the first stage.
The FNPA-QR has the particularity of being able to decrease the
intra-class distances and increase the extra-class distances of the
appliance features.

• A decision bagging tree (DBT) classifier is implemented aiming at
effectively classifying the electrical devices using the FTDF based
FNPA-QR features.

• A brief hierarchical taxonomy with a comprehensive overview of
recent strategies based on appliance features is provided as well.

• The proposed NILM framework is validated on three realistic
power consumption databases, namely the REDD, ACS-F2 and
WHITED having different sampling frequencies to check its ro-
bustness in different scenarios. Furthermore a comprehensive
comparison is carried out versus recent NILM systems on the
REDD dataset. In addition, the proposed solution is experimen-
tally validated under different computing devices to prove its
application in real-world scenarios.

The paper is organized as follows. In Section 2, we provide a
omprehensive overview of NILM systems based on a feature-based
axonomy. In Section 3, the different modules of the proposed NILM
rchitecture are presented in detail. In Section 4, the numerical results
2

of the proposed NILM solution are assessed and compared to recent
NILM approaches. Moreover, the proposed solution is validated experi-
mentally using different computing devices. Finally, the findings of this
work are summarized in Section 5 and future directions are discussed
as well.

2. Related works

2.1. Feature based taxonomy

Appliance feature extraction plays a prominent role towards infer-
ring the energy consumption footprints of each device. This step is
responsible for extracting a fine-grained and unique signature of each
appliance from its power consumption data. Therefore, the extracted
features help in identifying particular properties of each device, which
thus can be employed for classification and identification [21,22]. Gen-
erally, appliance fingerprints correspond to measurable parameters that
supply appliance-specific data drawn from physical measures. Three
main categories of non-intrusive appliance features can be found in
the state-of-the-art: steady-state fingerprints, transient-state signatures
and non-conventional characteristics. A hierarchical categorization is
performed in Fig. 1 to summarize the appliance feature types used for
NILM process.

2.1.1. Steady state features
Steady-state patterns include characteristics derived from electrical

devices, particularly at their stationary periods (i.e. there are no transi-
tions between two states), which means they are working at a regular
electricity usage level. Most importantly, a steady-state fingerprint
represents properties picked up during the analysis performed between
two consecutive and operative steady-states. This kind of feature is
most probably related to the change in power usage and voltage–
current (V–I) trajectory. Typically, this type of characteristics can be
categorized into four sub-groups as follows:

• Power change analysis: techniques belonging to this category are
mainly focusing on collecting real and reactive power with a
view of providing the most distinguishing characteristics of each
device [23]. To capture such properties, the power usage level is
estimated at a specific time sampling rate [24,25].

• Time–frequency analysis: it has been widely adopted in various
energy applications, in which feature extraction is required. It
helps in capturing pertinent power features by analyzing their
time–frequency presentations. Specifically, in the context of NILM,
it has been deployed to overcome overlapping issues and provide
fine-grained representations of power consumption signals [20,
26]. Various time–frequency descriptors have been used to im-
plement NILM systems, among them the wavelet transform [27],
multi-scale wavelet packet tree [28], S-transform [29] and spatio-
temporal pattern network [30].

• V-I trajectory features: a set of pertinent characteristics is de-
rived from the waveform of the V-I trajectory. This form por-
trays relevant properties, among others, the asymmetry [31,32],
wave-shape representation [33,34], slope change and enclosed
area [31].

• Harmonic features: these methods focus on studying harmonics of
electrical appliances currents using a frequency analysis [35,36].
In addition, they can generate supplementary data on appli-
ances’ properties and hence help in improving the classification
performance [37].
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Fig. 1. Hierarchical categorization of NILM systems based on feature extraction schemes.
.1.2. Transient state features
In some scenarios, two different devices can have similar energy

onsumption records and hence reducing the discrimination ability of
lassifiers to identify either appliance. In this regard, analyzing the
ransient states, i.e. the consumption scenario of a device when shifting
rom a steady state to another one can produce crucial data. We can
ind the following sub-categories:

• Transient power: transient power data are collected to represent
each device. In [20,38], a transient event-detection approach is
proposed for determining the operating schedule, finding prop-
erties of the physical behaviors of the loads connected to the
electrical network and thereby modeling the electrical appliances.

• Under-current waveforms: this kind of features is used together
with other characteristics to model device signatures [39,40].

• Interference features: interferences generated by the domestic
devices connected to the electrical wires can also be used as
unique fingerprints to identify the appliances [41].

.1.3. Non conventional features
The third group of appliance characteristics is denoted as non-

onventional, since this class incorporates all features that do not
ertain to the groups mentioned previously. This category of features
an be also decomposed to the following sub-classes:

• Statistical features: this type of feature focuses mainly on col-
lecting statistical parameters and further using statistical models
to represent appliances footprints [42]. NILM systems relying on
the use of statistical features are called non-event based detec-
tion techniques since they deploy statistical models to separate
the main loads into appliance-specific fingerprints, such as hid-
den Markov models (HMMs) [43,44], probabilistic models [45],
higher-order statistics (HOS) [46] and factorial HMMs [25,40].

• Graph signal processing (GSP) features: they aim at representing
the stochastic properties of signals using graphs [47]. In fact,
GSP is a hot research topic relies on the fact that power signals
can be represented with generic data representation forms via
the use of graphs. This leads in a better description of geomet-
ric structures of power signals [48,49]. Different NILM frame-
works have been proposed based on graph-based filtering [50],
graph shift quadratic form constraint [51] and graph-based event
detection [52].
3

• Sparse coding features: in this case, the energy disaggregation
framework is treated as a blind source separation problem and
recent sparse coding schemes are then applied to split an ag-
gregated power consumption signal into the specific appliance
based profiles [53]. Various NILM systems are recently proposed
based on deep sparse coding [54], Bayesian discriminative sparse
coding [55] and modeling appliance perturbations as sparse er-
rors [56].

2.2. Discussion

Although the traditional NILM techniques based on steady-state
and transient-state features have been widely studied in the state-
of-the-art, they still experience various limitations and imperfections.
For example, (i) most of them have modest appliance recognition
performance, (ii) capturing transient states can limit their detection
accuracy if multiple appliances are turning on/off simultaneously, and
(iii) Although their performance could be enhanced using deep learning
as demonstrated in [57], however, this makes their implementation
on embedded systems hard because of the complexity of deep neutral
networks. For non conventional NILM schemes, because they depend on
resolving complex probabilistic and stochastic models, their implemen-
tation on embedded platforms is not straightforward, even very hard to
achieve. Further, their performances are still less than state-of-the-art
and more investigation is required to improve them. Moreover, most
of the existing NILM systems are validated only on one dataset, which
cannot prove their efficiency on other datasets with distinct sampling
frequencies.

However, in this framework, we propose an NILM system that can
achieve high performance in identifying appliances. Specifically, the
proposed solution is built using a simple yet effective fusion of TD
features, an improved dimensionality reduction and a powerful DBT
classifier. This makes the proposed solution very effective in discrim-
inating between appliances from distinct appliance classes and on the
flip side has a good capability to reduce the distance between appli-
ances from the same category. Moreover, the proposed NILM system
has been validated on three different datasets with distinct sampling
frequency. Therefore, the proposed approach provides a set of benefits
that can be summarized as follows:

• Power consumption footprints in ACS-F2 [58] and WHITED [59]
datasets have been gathered from a large number of devices from
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distinct manufacturers (i.e. every device category encompasses
several devices from distinct brands). This enables the evaluation
of the proposed NILM system to identify a specific appliance
type even if the former is trained using data of other appliances
pertaining to the same class but from different manufacturers
(brands). Therefore, this helps in using our system for an unseen
house without the need to train it again since the probability of
having a new appliance that does not pertain to any appliance
classes used in the training step is very low. Moreover, this proves
also that there is no need to apply a transfer learning as it is the
case with other deep learning based solutions.

• While under REDD dataset [60], energy consumption footprints
have been gleaned from the same households’ appliances, but for
different days, in which each daily power consumption collected
from a specific appliance represents a new signature that can help
in its identification. Therefore, this proves that the end-user can
train the proposed NILM system using its own data (i.e. daily
power consumption could be collected and then used to train our
system).

• Both evaluation scenarios considered in this framework demon-
strate that the proposed NILM system can be generalized to an
unseen house or can also use the data of the end-user in the
training process. In this context, the evaluation studies conducted
in this paper help in consolidating the credibility of the propose
work.

• Furthermore, the use of DBT in our solution has been selected
since this kind of classifiers does not require a large amount of
data in the training step in comparison with other models, such
as deep neural networks (DNN), convolutional neural networks
(CNN) and generative adversarial networks (GAN). The latter
require large-scale datasets and hence their application for non-
intrusive load monitoring is not practical. While, for our solution,
it is possible to train the DBT classifier with much less data that
can easily be collected in a household.

. Proposed system

After gathering power consumption profiles from the aggregated
ircuit using a central sub-meter in a household, the NILM system
an afterward capture the consumption fingerprint of each device
onnected to the whole circuit. Accordingly, in the proposed solution,
n NILM architecture is implemented through the following main steps,
s indicated in Fig. 2.

.1. Data collection and pre-processing

With reference to the data collection process, three major properties
an affect the NILM platform and they are summarized as follows:
i) the nature of power that can be active or reactive; (ii) energy
onsumption resolution that can be translated as the lower power level
hat can be captured by the collection platform; and (iii) the sampling
requency that constitutes two main groups: the low-frequency and high
requency. The first class refers to sampling frequencies up to 1 kHz
hile the second group includes sampling rates above 1 kHz [61].

In other words, data acquisition and pre-processing phases refer to
he manner the power signals are gathered, the hardware implementa-
ion to capture data and also the process used to handle raw data. In
his direction, it is required to clean the data by checking for missing
bservations and thus replacing them by null values. In addition, either
n upsampling or downsampling process can be applied to the collected
ata as well as required by the developed application. In our case, we
se three realistic databases, namely, the ACS-F2, REDD and WHITED,
4

hey were gathered at 0.1 Hz, 0.33 Hz and 44 kHz, respectively.
3.2. Energy disaggregation

The major concern of energy disaggregation relies on splitting the
whole power signal into various fine-grained elements. In a household,
the outputs are the specific load usage profiles of every distinct device.
Therefore, the aim is to recognize each device and detect how much
energy it consumes. The power aggregation 𝑝𝐴 of 𝑁 appliances in a
time interval 𝑇 , is given as:

𝑝𝐴(𝑡) = 𝑝𝑛(𝑡) +
𝑁
∑

𝑖=1
𝑝𝑖(𝑡), 𝑡 ∈ {1, 𝑇 } (1)

ith 𝑝𝑖 represents the power of the device 𝑖 and 𝑝𝑛 depicts the power
of noise generated by the electric interferences.

However, in order to split the aggregated power signal into fine-
grained elements, an event detection step should be performed. Since
the primary objective of this paper relies on designing a novel feature
extraction descriptor and dimensionality reduction strategy using a
powerful classifier to identify appliances, in the event detection stage
we just use the edge detector module [62] implemented in the NILMTK
platform [63] to extract power events, from which the relevant features
will then be extracted.

To extract power events, the aggregated power signal is fed into an
edge detector, namely a transient-passing step change detector, which
is based on estimating the first derivative of power signals. Thus, it
captures the times and lengths of all steplike changes. In this regard, an
edge detection using first derivative has been applied to the aggregated
appliance power signal 𝑝𝐴 to extract its power event 𝑒, as follows:

𝑒 = abs
(

𝑑𝑝𝐴
𝑑𝑡

)

≅ abs
(

lim
𝛥𝑡→0

𝑝𝐴(𝑡 + 𝛥𝑡) − 𝑝𝐴(𝑡 − 𝛥𝑡)
𝛥𝑡

)

(2)

where 𝛥𝑡 = 1 is used in our case and abs refers to the absolute operator.
Specifically, this detector divides the aggregated power signals into

two kinds of periods, defined as steady power and transient power.
Following, the variations between the steady states and transient period
help to define the step-changed length. Accordingly, the time of the
first observation in every transient period and its associated magnitude
gives a time-stamp to separate between power events pertaining to
different appliances. The whole power event vector is represented as
𝑒 = [𝑒1, 𝑒2,… , 𝑒𝑁 ] and each 𝑒𝑖 (𝑖 = 1, 2,… , 𝑁) refers to the event vector
representing the individual appliance 𝑖.

3.3. Feature extraction

After detecting the power events using the edge detector in
NILMTKL [62,63], the feature extraction techniques are then applied
to each power event vector separately to derive the appliance based
signatures.

3.3.1. Time-domain (TD) descriptors
With the view of describing the TD feature descriptors used under

our framework, the detected power event vector of each 𝑖th individual
appliance, denominated as: 𝑒𝑖(𝑗), where 𝑗 = 1, 2,… , 𝜁 and 𝜁 refers to
the length of the power event vector, is fed into the feature extrac-
tion module with the intention of deriving their TD peculiarities. A
windowing process is applied to each power event vector 𝑒𝑖, where a

indow length 𝑉 is utilized and the TD property 𝑃 (𝑘) of each window
(𝑘 = 1, 2,… , 𝐾 and 𝐾 represents the whole number of extracted
indows) is then collected as follows:

• Root mean square feature (RMSF) [64]

𝑃𝐹1(𝑘) = 𝑃𝑅𝑀𝑆𝐹 (𝑘) =
𝑉
∑

𝑗=1

√

1
𝑉
(𝑒𝑖𝑗 )2 (3)
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Fig. 2. Block diagram of the proposed NILM system.
• Mean absolute deviation feature (MADF) [65]

𝑃𝐹2(𝑘) = 𝑃𝑀𝐴𝐷𝐹 (𝑘) =
𝑉
∑

𝑗=1

1
𝑉

|

|

|

𝑒𝑖𝑗 − 𝜇||
|

(4)

where 𝜇 represent the central tendency,
• Integrated absolute magnitude feature (IAMF) [65]

𝑃𝐹3(𝑘) = 𝑆𝐼𝐴𝑀𝐹 (𝑘) =
1
𝑉

𝑉
∑

𝑗=1

(𝑒𝑖𝑗 )
2

2
sgn(𝑒𝑖𝑗 ) + 𝜇 (5)
5

• Waveform length feature (WLF) [64]

𝑃𝐹4 = 𝑃𝑊𝐿𝐹 = log

(𝑉 −1
∑

𝑗=1

|

|

|

𝑒𝑖𝑗+1 − 𝑒𝑖𝑗
|

|

|

)

= log

(𝑉 −1
∑

𝑗=1

|

|

|

𝛥𝑒𝑖𝑗
|

|

|

)

(6)

• Zero crossing feature (ZCF) [66]

𝑃𝐹5(𝑘) = 𝑃𝑍𝐶𝐹 (𝑘) =
𝑉
∑

𝑗=2

|

|

|

sgn(𝑒𝑖𝑗 ) − sgn(𝑒𝑖𝑗−1)
|

|

|

(7)

• Slope sign change feature (SSCF) [67]

𝑃𝐹6(𝑘) = 𝑃𝑆𝑆𝐶𝐹 (𝑘) =
𝑉 −1
∑

𝑓 [(𝑒𝑖𝑗 − 𝑒𝑖𝑗−1) × (𝑒𝑖𝑗 − 𝑒𝑖𝑗+1)] (8)

𝑗=2
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Fig. 3. Block diagram of the proposed fusion of TD features (FTDF) scheme.
where

𝑓 (𝑒𝑖) =
{

1 if 𝑒𝑖 ≥ threshold
0 otherwise

(9)

• Auto-regressive feature (ARF) [67]

𝑃𝐹7(𝑘) = 𝑃𝐴𝑅𝐹 (𝑘) =
𝑉
∑

𝑗=1

( 𝐴
∑

𝑎=1
𝑏𝑎𝑒

𝑖
𝑗−𝑎 +𝑤𝑗

)

(10)

where 𝑒𝑖𝑗−𝑎 are the previous samples of the power consumption
signal, 𝑤𝑗 is a white noise and 𝐴 represents the auto-regressive
(AR) model order and 𝑏 the weights. Under this framework 𝐴 = 15
is considered.

After extracting the power features 𝑃 (𝑘) from different sliding win-
dows using an overlapping process, these data are concatenated to
form the whole feature vector of the power consumption signal 𝑃𝐹 =
[𝑃 (1), 𝑃 (2),… , 𝑃 (𝐾)].

It is worth noting that the first five TD descriptors, 𝑃𝐹1–𝑃𝐹5 have
the advantage of being simple and fast to execute. Further, the four
first descriptors 𝑃𝐹1–𝑃𝐹4 usually have good performance in extracting
pertinent feature as it will be demonstrated through this framework.
For the 𝑃𝐹6 and 𝑃𝐹7 descriptors, they have the characteristic of being
more complex in comparison to the other descriptors although they
provide moderate performance.

The aforementioned descriptors have been selected in this study to
extract the features of appliance power signals because they are well-
known descriptors used to extract TD features. In addition, they present
a low time complexity in comparison with other frequency-domain
of time-scale descriptors. They have been widely used to extract the
pertinent characteristics of other types of signals such as electrocar-
diogram (ECG), electroencephalogram (EEG) [64], Myoelectric [65].
Moreover, their performance can be more improved if a fusion strategy
is considered since these descriptors will complement each other to
design an efficient descriptor.

3.3.2. Fusion of TD features (FTDF)
In this section, a data fusion strategy named FTDF is developed

using the outputs of four TD descriptors from those described in the
previous section. To describe the estimation of the final fusion vector,
we take the example of the first four descriptors 𝑃 , 𝑃 , 𝑃 and 𝑃 .
6

𝐹1 𝐹2 𝐹3 𝐹4
We proceed in the same manner if the other descriptors are selected,
i.e. 𝑃𝐹5, 𝑃𝐹6 and 𝑃𝐹7. First, for each disaggregated signal 𝑒𝑖, the selected
descriptors are grouped into two couples, in which each couple includes
two different feature descriptions that are extracted using two distinct
descriptors. Following, these two couples are applied on two different,
overlapping windows (the first couple of descriptors is applied to the
current window while the second one is applied to its previous, over-
lapping window). Moving forward, the cross-correlation is measured
between each couple. In theory, the cross-correlation between two TD
vectors 𝑃𝐹1 and 𝑃𝐹2 is defined as:

𝑅𝑖
𝑃𝐹1𝑃𝐹2

= 𝐸{𝑃𝐹1(𝑢 + 𝑚)𝑃 ∗
𝐹2(𝑢)} = 𝐸{𝑃𝐹1(𝑢)𝑃 ∗

𝐹2(𝑢 − 𝑚)} (11)

where −∞ < 𝑢 < ∞, ()∗ represents the complex conjugation, and 𝐸
is the expected value operator. In practice, 𝑢 = 1, 2,… , 𝑈 , in which 𝑈
represents the length of 𝑃𝐹1 and 𝑃𝐹2 and 𝑚 = 1, 2,… , 2×𝑈−1, therefore
the relative cross-correlation �̂� is estimated as follows:

𝑅𝑖
𝑃𝐹1𝑃𝐹2

(𝑚) =

⎧

⎪

⎨

⎪

⎩

𝑈−𝑚−1
∑

𝑢=0
𝑃𝐹1(𝑢 + 𝑚)𝑃𝐹2(𝑢) 𝑚 ≥ 0

𝑅𝑖
𝑃𝐹2𝑃𝐹1

(−𝑚) 𝑚 < 0

(12)

Next, the generated output correlation 𝐶1 is given as:

𝐶 𝑖
1(𝑚) = 𝑅𝑖

𝑃𝐹1𝑃𝐹2
(𝑚 − 𝑈 ), 𝑚 = 1, 2,… , 2𝑈 − 1 (13)

We then proceed with the same manner to estimate 𝐶2 the correlation
between 𝑃𝐹3 and 𝑃𝐹4. Finally, a multiplication fusion is applied using
the obtained correlation vectors 𝐶 𝑖

1 and 𝐶 𝑖
2, which is defined as

𝐶 𝑖 = 𝐶 𝑖
1 × 𝐶 𝑖

2 (14)

where × is the multiplication operator.
The flowchart of the proposed FTDF approach is depicted in Fig. 3,

where the variation of the power signal at each window is obtained
using two different, overlapping windows. Explicitly, the correlation
from the current window obtained using two different descriptors is
fused with the correlation generated from the previous overlapping
window using two other descriptors, and so forth.

3.4. Dimensionality reduction using FNPA-QR

After extracting the TD features, the dimensionality reduction based
on FNPA-QR is applied, which is a variant of fuzzy-linear discriminant
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Algorithm 1: The FNPA-QR algorithm used to represent the feature
ectors in the new feature projection space.
Result: 𝑌 ′

𝑖 : the reduced version of the feature vector 𝑌𝑖
. Consider 𝑌𝑖 to be as the feature vector 𝐶 𝑖 obtained using the FTDF
o represent a specific disaggregated signal, which has a length of 𝑚
amples.
. Set the desired number of reduced samples 𝑟 and 𝑌 to be the
atrix including 𝑁 feature vectors from 𝑁 different appliances (each

olumn is a feature vector) ;
hile 𝑖 ≤ 𝑁 do

1. Estimate the within-class-scatter (WCS) array 𝑌𝑊 as:

𝑌𝑊 =
(

𝑌 𝐷𝑌 − 𝑌𝑊 𝑌 𝑇 ) = 𝑌 𝐿1𝑌
𝑇 (15)

where 𝐿1 = 𝐷 −𝑊 represents the Laplacian. 𝑊 is a symmetric
array that encompasses the WCS patterns and 𝐷 constitutes a
diagonal array in which its inputs represent the column sums of
𝑊 (or row sums because 𝑊 is symmetric);
2. Estimate the between-class-scatter (BCS) array 𝑌𝐵 as:

𝑌𝐵 = (𝑀𝐸𝑀𝑇 −𝑀𝐵𝑀𝑇 ) = 𝑀𝐿2𝑀
𝑇 (16)

where 𝑀 is the mean matrix of total patterns. 𝐿2 = 𝐸 − 𝐵, 𝐵 is a
symmetric array that includes the BCS patterns, and 𝐸 represents
a diagonal array, its inputs are column/row sums of 𝐵;
3. Estimate the transformation matrix 𝐇𝐹𝑁𝑃𝐴−𝑄𝑅 as follows

𝐇𝐹𝑁𝑃𝐴−𝑄𝑅 = arg𝐦𝐚𝐱𝐭𝐫𝐚𝐜𝐞
( 𝐇𝑇 𝑌𝐵𝐇
𝐇𝑇 𝑌𝑊 𝐇

)

(17)

4. Apply the QR-decomposition to calculate the new
transformation matrix 𝑄, in which 𝐻 = 𝑄 ×𝑅, where 𝑅 represents
an upper-triangular array and 𝑄 defines an orthogonal array that
satisfies 𝑄𝑄𝑇 = 𝐼 , where 𝐼 is an identity matrix.
5. Make 𝐇𝐹𝑁𝑃𝐴−𝑄𝑅 = 𝑄 and project the feature matrix with the
transformation matrix as follows:

𝑌 ′
𝑖 = 𝐇𝐹𝑁𝑃𝐴−𝑄𝑅 × 𝑌𝑖 (18)

where the initial feature vector 𝑌𝑖 has 𝑚 samples, the reduced
vector feature 𝑌 ′

𝑖 has 𝑟 samples and 𝐻𝐹𝑁𝑃𝐴−𝑄𝑅 is a matrix with a
size of 𝑚 × 𝑟.

end

analysis (FLDA) [68]. The latter has been used to study the class
relationship between samples, however the main drawback of FLDA
is related to the fact that it could not find out the regional geometric
structure of samples. Accordingly, in discriminant analysis, the regional
arrangement is more prominent in comparison to the global one [69–
71]. In addition, the discrimination ability between samples pertaining
to different groups can be improved if the local structure is preserved.

To that end, the FNPA-QR introduces a novel feature projection
scheme that can map the samples into a new subspace through ana-
lyzing neighboring samples. Consequently, it makes adjacent samples
with the same label more close and in contrast, turns the adjacent
patterns with different labels to be far away. In this regard, FNPA-QR
keeps the contribution of data points to different classes. Algorithm 1
summarizes the main steps used to implement the FNPA-QR algorithm.
Eq. (15) points out that 𝑌𝑊 aims at minimizing the gap among samples
of the same group when projecting them, and thereby it can preserve
the neighborhood.

3.5. Decision Bagging Tree (DBT) classifier

The DBT model is a powerful classifier that did not receive its
merit in practice. The importance of DBT comes from the fact that
it can achieve a high classification performance by using a fusion of
7

Fig. 4. Flowchart of the DBT algorithm used to identify appliances.

various weak classifiers. Specifically, this model builds upon an idea of
combining multiple weak classifiers in order to develop a strong model.
Put differently, these weak classifiers complement one another to im-
prove the classification performance. Further, based on a recent work
described in [12], in which the DBT algorithm is tested for another
application that focuses on the detection of anomalous power consump-
tion, this model has been very successful and has outperformed other
classification models.

Fig. 4 explains in detail the steps required to implement the DBT
classifier. If we consider a training set 𝑌 = 𝑌1, 𝑌2,… , 𝑌𝑟 that refers to
the feature vector of an appliance extracted using FNPA-QR and let
assume the total number of rounds is 𝑇 . After initializing the training
round 𝑡 = 0, the initial training group is divided into 𝑔 new sub-groups
and then the weak classifiers are trained in each sub-group. Following,
𝑔 decision tree prediction functions are collected 𝐷1,𝑡, 𝐷2,𝑡,… , 𝐷𝑔,𝑡.
Moving forward, if 𝑡 ≤ 𝑇 , the previous steps are repeated. Otherwise,
the predictions of class labels 𝑙1, 𝑙2,… , 𝑙𝑔 are generated using a majority
vote process.
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4. Experimental results

Different evaluation stages are performed in order to validate the
proposed NILM system. In this section, we outline each stage separately
starting by describing the properties of power consumption databases.

4.1. Datasets description

Before validating the proposed system, we briefly describe the
characteristics of the databases investigated for the validation process:

• ACS-f2: is the second version of the appliance consumption sig-
nature repository. It encompasses the electricity consumption
footprints of various electrical device categories using 0.1 Hz
sampling frequency [58]. To validate the proposed NILM system,
11 appliance classes from the ACS-F2 are selected randomly and
being used in this framework.

• REDD: Collects load usage footprints of six domestic buildings
at a device-specific level and aggregated-level [60]. A sampling
frequency of 0.33 Hz has been deployed for a period of 3–19
days to glean the energy usage fingerprints of various domestic
appliances.

• WITHED: includes the power consumption signatures of the de-
vice start-ups collected from up to 110 electrical devices, catego-
rizing up to 47 appliance groups. For each appliance category, a
set of power consumption fingerprints is collected from different
appliance manufacturers and all of them are gathered at a sam-
pling rate of 44 kHz [59]. In this framework, we use 11 appliance
categories to validate the proposed system.

The accuracy and F1 score metrics have been considered in this
ramework to evaluate the performance of the proposed method and
uarantee an objective performance inspection, they are measured as
ollows [72]:

𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(19)

1𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(20)

here 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃 and 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 . 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 and 𝐹𝑁
epict the number of true positives, true negatives, false positives and
alse negatives, respectively.

.2. Event detection

To demonstrate how the edge detector can effectively detect power
vents of individual appliances for the aggregated power consumption
ignal, Fig. 5 portrays an example of a main consumption collected from
ouse 1 under REDD dataset for a whole day, in addition to various

ndividual power event vectors. The latter is extracted from the main
ower consumption signal to represent a set of appliances defined as:
ven, stove, washing dryer, kettle and vacuum cleaner. It is clearly seen
hat the power consumption of each appliance has a specific consump-
ion form and power range. This helps in facilitating the task of the DBT
lassifier to identify device-specific events and effectively differentiate
etween the various appliances contributing to the main consumption.
oreover, each individual appliance event vector is portrayed in a way

o have the same length as the aggregated signal, in which the transient
ycle represents the most relevant information that distinguishes an
ppliance others.
8

Table 1
Performance of different descriptor combinations used to implement the FTDF scheme
in terms of the accuracy and F1 score.

Descriptor ACS-F2 REDD WHITED

Combination Accuracy F1 score Accuracy F1-score Accuracy F1 score

𝑆𝐹1 , 𝑆𝐹2 , 𝑆𝐹3 , 𝑆𝐹4 99.41 98.93 100 100 100 100
𝑆𝐹2 , 𝑆𝐹3 , 𝑆𝐹4 , 𝑆𝐹5 92.12 91.71 94.95 94.67 91.63 91.08
𝑆𝐹3 , 𝑆𝐹4 , 𝑆𝐹5 , 𝑆𝐹6 93.97 93.75 95.23 94.59 91.31 90.46
𝑆𝐹4 , 𝑆𝐹5 , 𝑆𝐹6 , 𝑆𝐹7 79.53 79.36 81.76 81.2 78.63 78.69
𝑆𝐹1 , 𝑆𝐹3 , 𝑆𝐹5 , 𝑆𝐹7 89.28 88.7 90.85 90.63 88.91 88.49

4.3. Performance of the fusion of TD features (FTDF)

With a view to evaluating the performance of the proposed FTDF,
the obtained results in terms of the accuracy and F1 score are com-
pared to those extracted from the various TD descriptors described in
Section 3.3.1. A segmentation based on an overlapping rate of 1/4 the
window size is utilized for all the descriptors during this study.

Fig. 6 portrays the comparison of the accuracy and F1 score per-
formances of FTDF against the other TD feature extraction schemes,
according to a window size ranging from 64–4096 for both the REDD
and WHITED datasets and 4–256 for the ACS-F2. The obtained results
witnessed the superiority of the proposed FTDF in the three cases, the
best performance can be obtained for a window length of 3072 for
both REDD and WHITED while for the ACS-F2 the best performance
can be reached with a window length of 128. This can be justified by
the fact that through aggregating several weak descriptors using the
proposed fusion architecture, a powerful descriptor is designed that
improves feature discrimination ability and thus optimizes the classifi-
cation process. Therefore, this is the main advantage of the this fusion
process. Furthermore, the slight difference between the results collected
from the WHITED, REDD and the ACS-F2 is due to the fact that these
datasets are quite different and use different sampling rate and further
different signal length. The WHITED and ACS-F2 collect just the power
consumption signatures of each device for a very short duration while
the REDD gathers energy usage footprints of each appliance for the
whole day.

In order to evaluate which descriptor fusion can provide the best
performance in terms of the accuracy and F1 score, the results of
different descriptor combinations have been assessed. In each combina-
tion, four descriptors divided into two couples are used, in which the
correlation of each descriptor couple is measured, then the obtained
correlations are fused, as discussed in Section 3-C2. Table 1 depicts
the accuracy and F1 score obtained for five study cases. It is clearly
seen that the combination (𝑆𝐹1, 𝑆𝐹2, 𝑆𝐹3, 𝑆𝐹4) that refers to the fusion
of the MADV, IAVF, RMSF and WLF descriptors provides the best
performance. Specifically, up to 100% of both the accuracy and F1
score have been reported for the WHITED dataset, 99.79% accuracy
and 99.76% F1 score have been achieved under the REDD database,
and up to 99.41% accuracy and 98.93% F1 score have been reached
under the dataset, respectively.

Fig. 7 presents a performance comparison of the proposed NILM
system when different fusion strategies are considered. It is clearly
evident that the multiplication strategy achieves better accuracy and F1
score under the three datasets of the case study. For example, under the
REDD dataset and using the multiplication-based fusion, 3.94% accu-
racy and 4.57% F1 score gains have been achieved in comparison with
the concatenation scheme, while up to 1.98% accuracy and 2.21% F1
score improvements have been attained versus the summation strategy.

4.4. Comparison with other dimensionality reduction

Under the dimensionality reduction stage, the performance of the
presented appliance identification based FNPA-QR system is validated

with reference to other feature projection schemes, including principal
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Fig. 5. Example of extracted power events of different individual appliances: (a) aggregated power, (b) oven, (c) stove, (d) washing dryer, (e) kettle and (f) vacuum cleaner.
component analysis (PCA) [73], linear discriminant analysis (LDA) [73]
and FLDA [68]. Table 2 depicts the accuracy, F1 score and compu-
tational complexity of the proposed technique based on FNPA-QR in
comparison to other dimensionality reduction approaches. The outputs
are collected using Python 3.7 running on a laptop having a Core
i7-85500 with 32 GB RAM and 1.97 GHz.

It is easily witnessed that by using the FNPA-QR the accuracy and
F1 score are highly improved in comparison to other feature projection
schemes. However, the time complexity is increased and this is due
to the fact that FNPA-QR uses a fuzzy process along with the QR
decomposition. Fortunately, considering the optimal outputs that have
been realized by the proposed approach based FNPA-QR with reference
to the accuracy and F1 score, the time complexity issue can be easily
9

resolved by using powerful processors or optimizing the FNPA-QR
algorithm.

4.5. Comparison with other classifiers

We perform a performance comparison of the DBT classifier versus
other machine learning models, including support vector machines
(SVM), K-nearest neighbors (KNN), decision trees (DT) and DNN, which
operate by reference to different classification parameters and when the
FTDF is considered as well. Table 3 illustrates the accuracy and F1 score
outputs obtained for ACS-F2, REDD and WHITED datasets. A window
length of 128 is considered for the ACS-F2 while for both REDD and
WHITED, a window length of 3072 is reserved. It is clearly shown that
the DBT outperformed the other classifiers with respect to the accuracy
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Fig. 6. Accuracy and F1 score variations according to the window length for; (a) and (b): the ACS-F2, (c) and (d): the REDD and (e) and (f): the WHITED, respectively.

Fig. 7. Performance of the proposed solution using different fusion strategies in terms of: (a) accuracy and (b) F1 score.
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Table 2
Performance of FNPA-QR versus other techniques in terms of the accuracy, F1 score
and time complexity.

Dataset Performance PCA LDA FLDA FNPA-QR

Accuracy (%) 78.35 83.17 92.94 99.41
ACS-F2 F1 score (%) 76.61 82.49 92.71 98.93

Time (s) 0.0035 1.81 0.71 0.85

Accuracy (%) 86.3 92.65 95.22 99.79
REDD F1 score (%) 85.78 92.42 94.86 99.76

Time (s) 0.09 34.3 15.2 22.5

Accuracy (%) 83.57 91.26 94.17 100
WHITED F1 score (%) 83.29 90.76 93.9 100

Time (s) 0.021 8.8 3.8 4.4

and F1 score. This superiority is related to the fact that by using
multiple weak classifiers, the DBT develops a strong learning process
leading to an accurate classification ability. Furthermore, the DBT has
the same properties of being very speed and less time complexity
demanding as the weak classifiers.

Moreover, the proposed solution based on the DBT classifier has
been evaluated under three datasets with distinct sampling frequencies.
This gives more credibility to our framework since it demonstrates that
the proposed NILM architecture can work at any frequency range and
its performance is not depending on the sampling frequency, in contrast
to other NILM systems, in which their performance can significantly
vary when the sampling frequency is varied from a level to another
(through changing the dataset). As illustrated in Table 3, e.g. using
SVM (Linear Kernel), the accuracy is 94.05%, 93.74% and 98.31%
under the ACS-F2 (0.1 Hz), REDD (0.33 Hz) and WHITED (44 kHz)
datasets, respectively. For the KNN (K = 10/Cosine dist), the F1 score
ates are 94.43%, 96.5% and 87.93% under the ACS-F2, REDD and
HITED datasets, respectively. Consequently, it is worth mentioning

hat the performance highly varies when the frequency sampling has
een changed.

.6. Comparison with recent NILM systems

In this section, a comparison of the proposed system versus various
ecent NILM frameworks is conducted under the REDD dataset. Differ-
nt, parameters are evaluated, including (i) the feature based class, (ii)
he nature of the feature, (iii) the machine learning process, (iv) the
umber of appliance categories used in the validation process, (v) the
chieved accuracy and F1 score. Table 4 summarizes the outcomes of
he comparison study, in which it is clearly shown that the proposed
olution outperforms the other techniques considered in this study.

Finally, it is worth noting that the empirical evaluations considered
n this framework have provided us the opportunity to illustrate the
arious benefits of our algorithm in comparison with various existing
echniques. For instance, using ACS-F2 and WHITED datasets to train
he proposed approach can cover almost all existing domestic appli-
11

nces usually used in households, and hence there is no need to train it
again when it is applied to real-world applications. In the worst case,
these datasets can easily be updated with new appliance signatures
if there is a new appliance, which is not included in the training
datasets. Furthermore, it is of significant importance to mention that
the use of DBT in our solution has been selected because this kind of
classifier does not require a large amount of data in the training step
in comparison to other models, such as DNN, CNN and GAN. The latter
require large-scale datasets and are usually computationally intensive
and hard to implement on low-cost computing platforms. Thus, their
application for non-intrusive load monitoring is not practical. While,
for our solution, it is possible to train the DBT classifier with markedly
less data that can easily be collected in a household.

Moreover, the proposed scheme provides several practical advan-
tages, since it has been used in different scenarios. Considering three
different datasets with distinct characteristics to evaluate the proposed
solution was mainly planned to demonstrate its benefits. Therefore,
the proposed scheme does not rely on only using the acquisition
of consumption data of single electrical appliances because the pro-
posed solution has been tested on both scenarios: first, in ACS-F2 and
WHITED datasets the training is conducted using appliance-level sig-
natures stored in these datasets before testing the proposed algorithm
on aggregated data. Second, in REDD dataset aggregated consumption
signals are used to train our algorithm after detecting the events and
extracting the features. Accordingly, the proposed scheme provides
promising results in both scenarios, which demonstrates that it can be
applied easily in practical scenarios. In addition, these datasets have
been gathered from different countries, i.e. REDD and ACS-F2 datasets
have been collected in USA and Switzerland, respectively, while the
WHITED dataset has been gleaned from several households located
in different regions around the world. Therefore, this has helped in
discussing the performance of proposed solution from the viewpoints
of different countries.

4.7. Experimental validation

To evaluate the capability of implementing the proposed NILM
solution for real applications, it has been implemented under (i) a
laptop having a Core i7-85500 with 32 GB RAM and 1.97 GHz, and
(ii) a Jetson TX1 platform that has an NVIDIA Maxwell GPU with 256
NVIDIA CUDA Cores and 16 GB [79]. Accordingly, the proposed algo-
rithm has been implemented to extract device-specific data gathered in
ACS-F2 and REDD datasets, respectively, using Python 3.7. Following,
we have collected the computational costs and investigate the real-
time capability of the our solution. Table 5 presents the performance
obtained in terms of the training and test times on the laptop the
Jetson TX1, where the multicore central processing unit (CPU) and
graphics processing unit (GPU) are considered. First, it is worth noting
that the computational times recorded on ACS-F2 are much lower
than those achieved under REDD, this is mainly due to the fact that
the appliance signatures is ACS-F2 have been collected for short time
periods, while under REDD, they have been gleaned for the whole day
Table 3
Accuracy and F1 score of the proposed DBT model based FTDF and FNPA-QR compared to other classifiers.

ML Classifier ACS-F2 REDD WHITED

algo parameters Accuracy F1 score Accuracy F1 score Accuracy F1 score

SVM Linear Kernel 94.05 93.74 95.51 95.2 98.31 98.09
SVM Quadratic kernel 92.22 91.57 93.48 93.03 90.83 86.17
SVM Gaussian kernel 94.63 93.6 95.38 95.29 93.41 90.91
KNN K = 1/Euclidean distance 97.24 97.19 98.06 98.05 96.49 93.73
KNN K = 10/Weighted Euclidean dist 96.21 95.94 98.14 98.1 95.43 92.82
KNN K = 10/Cosine dist 94.75 94.43 96.66 96.5 92.08 87.93
DT Fine, 100 splits 98 97.69 99.1 99.04 93.87 91.98
DT Medium, 20 splits 93.49 93.87 96.61 93.89 94.07 90.86
DT Coarse, 4 splits 92.91 89.82 94.33 92.17 91.8 88.62
DNN 50 hidden layers 96.17 95.88 98.22 98.21 97.02 96.97
DBT 30 learners, 42k splits 99.41 98.93 99.79 99.76 100 100
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Table 4
Comparison of the proposed solution with other recent NILM frameworks under REDD dataset in terms of: NILM class, feature, learning scheme, # appliance categories, accuracy
and F1 score.

Work NILM class Feature Learning # appliance Accuracy F1 score
scheme categories (%)

[74] Sparse coding Multi-Label Sparse Representation Unsupervised 5 – 68.01
[75] DNN Recurrent neural network (RNN) Supervised 8 95 62.87
[76] Sparse coding Ttransform learning formulation Unsupervised 7 75.5 –
[50] Graph signal processing Graph-based filtering Unsupervised 8 76.08 69
[77] DNN Autoassociative Neural Network Supervised 5 98.7 95.3
[78] Time/frequency analysis Delta of the V–I trajectory Supervised 10 95.23 96.43
Our Time/frequency analysis Fusion of TD descriptors Supervised 8 99.79 99.76
Table 5
Computational time of the proposed NILM solution using the experimental validation.

ACS-F2 REDD

Training Testing Training Testing

Laptop Jetson TX1 Laptop Jetson TX1 Laptop Jetson TX1 Laptop Jetson TX1

CPU GPU CPU GPU CPU GPU CPU GPU

32.35 94.11 36.15 0.071 0.27 0.084 93.31 283.63 119.37 0.19 0.83 0.25
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periods. Second, it has been clearly shown that the laptop has the
best performance for both ACS-F2 and REDD datasets. In addition, the
Jetson TX1 with GPU has also achieved low computational costs, which
have markedly been inferior than those of the Jetson TX1 with CPU.
Overall, these results prove that the proposed NILM solution could be
implemented in real-time applications because less than 1 s is required
to identify appliance-level consumption data for both the laptop and
Jetson TX1.

5. Conclusion

This article presented a promising non-intrusive load monitoring
method for capturing appliance-level consumption patterns enjoying
affordable, easy implementation, and potential scalable commercial-
ization. The performance analysis of the proposed non-intrusive load
monitoring system with the ACS-F2, REDD and WHITED datasets gath-
ered at 0.1 Hz, 1 Hz and 44 kHz, respectively, are considered in this
framework. The results of the evaluation study were encouraging with
accuracies ranging from 99.41% for the ACS-F2 to 100% for both
the REDD and WHITED databases. Moreover, the superiority of the
proposed fuzzy-neighbors preserving analysis based QR-decomposition
scheme was also demonstrated by comparing their performance to
other dimensionality reduction techniques even if it slightly increased
the computational time.

From the hardware implementation perspective, it has been demon-
strated that our solution could be implemented on different comput-
ing devices, e.g. a laptop or a multi-core embedded platform, and
the computational cost is mainly related to the length of the power
consumption signatures. Considering the case of ACS-F2 dataset, the
computational cost of the proposed non-intrusive load monitoring sys-
tem was relatively low because the power consumption signatures of
appliances have been recorded for short time periods. However, for
the case of REDD dataset, the computational time has comparatively
been increased. This was mainly due to the fact that in REDD dataset,
each appliance consumption footprint has been gleaned for a one-day
period. All in all, a real-time application could be supported ob both a
laptop or a multi-core computing device since less than 1 s is required
to identify individual appliances.

Finally, it is worth noting that our future work will be devoted to
developing (i) an energy-efficiency recommender system that analyzes
specific appliance consumption patterns collected using the proposed
NILM approach, and (ii) a smartphone application to provide end-users
with convincing, habit-transforming energy-saving recommendations
and visualizations.
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