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Abstract: The immune system plays a critical role in bone homeostasis and, consequently, in the
pathophysiology of postmenopausal osteoporosis (OP) since estrogen deficiency induces the inflam-
masome and increases production of pro-inflammatory cytokines, such as IL-13 and IL-18. NLRP3
inflammasome complex genes have been related with bone homeostasis in cellular and animal
models. Here, we performed an association study evaluating SNVs (single-nucleotide variants) in
inflammasome NLRP3 pathway genes (NLRP3, CARDS, CASP1, IL-18, and IL-1j3) to assess whether
variants in these genes could be related to susceptibility to primary OP in postmenopausal women.
Methods: We genotyped 196 postmenopausal OP patients and 103 healthy controls using SNV-specific
Taqman® probes. Data and statistical analyses were performed using the SNPstats and GraphPad
Prism 8 software. Results: We showed an association between NLRP3 rs35829419 CA genotype
and lower bone mineral density (BMD) mean at the lumbar spine (p = 0.001); we also observed an
association between IL-1f3 1516944 AA genotype and higher BMD mean at the total hip (p = 0.009).
The IL-1 rs16944 GG was associated with lower alkaline phosphatase levels (ALP) (p = 0.009), and
the IL-18 rs1946519 AA was associated with lower vitamin D levels (p = 0.018). Additionally, OP
patients presented deficient vitamin D and parathyroid hormone (PTH). Conclusions: The NLRP3
inflammasome complex SNVs were associated with OP severity, possibly indicating these genes’
participation in bone metabolism and its dysregulation.

Keywords: osteoporosis; NLRP3; inflammasome; single-nucleotide variants; bone mineral density;

vitamin D

1. Introduction

Osteoporosis (OP) is a degenerative osteometabolic disease characterized by an imbal-
ance between the processes of bone formation, which leads to a progressive loss of bone
mineral density (BMD) and deterioration of bone microarchitecture, increasing skeletal
fragility and, consequently, the occurrence of fractures in OP patients [1]. With the pro-
gressive increase in population longevity, the prevalence of OP has risen significantly in
recent years [2]. Consequently, it is estimated that around 30% of these patients die due to
fractures or the development of morbidities and secondary diseases [3].

The immune system plays a critical role in bone metabolism and postmenopausal
OP pathophysiology. For example, the estrogen deficiency observed in women in post-
menopausal conditions induces both osteoclast differentiation and activity due to the higher
expression of nuclear factor kappa-B ligand (RANKL) and other pro-osteoclastogenic cy-
tokines, such as interleukin (IL)-1, IL-6, and tumor necrosis factor-« (TNF-), in the bone
marrow [4,5].
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In this context, the inflammasome acts a cytoplasmic multi-protein complex capable of
triggering an inflammatory cascade, induced by infectious agents or endogenous stimuli,
that activates caspase-1 (CASP1), which is responsible for generating bioactive forms of
IL-13 and IL-18 [6]. The complex assembly is initiated by nucleotide-binding domain
and leucine-rich repeat receptors (NLRs) or absent in melanoma 2 (AIM2)-like receptors
(ALRs) that mediate host recognition of pathogen-associated molecular patterns (PAMPs),
which are released during bacterial, viral, fungal, and protozoan infections, or by damage-
associated molecular patterns (DAMPs) released during cellular damage [7].

Additionally, nucleotide-binding oligomerization domain-like receptor family pyrin
domain-containing 3 (NLRP3) is the best characterized inflammasome of the NLR family,
consisting of the NLRP3 scaffold, the apoptosis-associated speck-like protein containing a
CARD (ASC) adaptor, and CASP1 [7,8]. NLRP3 inflammasome is activated by various stim-
uli, including PAMPs and DAMPs. Currently, a two-signal mechanism for NLRP3 inflam-
masome activation in macrophages has been proposed [8,9]. The priming signal (Signal 1)
occurs by priming stimuli of PAMPs or DAMPs, leading to activation of the transcription
factor nuclear factor-kB (NF-«kB) and subsequent upregulation of inflammasome-related
genes NLRP3 and pro-IL-13, which, unlike pro-IL-18, is not constitutively expressed in
resting macrophages [9,10]. The activation signal (Signal 2) is triggered by a variety of
stimuli following this priming step, including extracellular ATP, K+, pathogen-associated
RNA, and bacterial and fungal toxins and components that induce the assembly of NLRP3,
ASC, and pro-CASP1, leading to inflammasome activation [11,12]. Once activated, the
adaptor molecule ASC, which also contains a caspase activation and recruitment domain
(CARD) found in the effector enzyme pro-CASP], is recruited, resulting in the cleavage
of pro-CASP1 into CASP1. Activated CASP1 processes pro-IL-1p and pro-IL-18 into their
mature forms and promotes their release in the extracellular environment. At the same
time, the activated CASP1 fragment can induce cell pyroptosis [13].

Single-nucleotide variants (SNVs) in the inflammasome NLRP3 pathway (NLRP3
rs35829419; rs10754558; IL1p rs16944; IL18 rs1946519; CARDS rs2043211; and CASP1
rs61751523) have been associated with an increase in inflammation and different diseases,
including the autoinflammatory ones [14-17]. In this context, autoinflammatory diseases
have been associated with bone destruction or arthritis due to the regulation that inflam-
matory responses exert in the process of bone remodeling [18]. For example, Snouwaert
and colleagues [19] observed that mutation in the NLRP3 gene caused arthropathy and OP
in an NLRP3 gene humanized mice model. On the other hand, Detzen and colleagues [4]
observed that impaired skeletal development in knockout (Nlrp3—/—) mice resulted in
a shorter stature than in Nlrp3+/+ mice. Furthermore, these growth defects were associ-
ated with altered femur bone growth, characterized by a deficient growth plate and an
osteopenic profile of the trabeculae.

For its role in bone metabolism, we evaluated whether the SNVs known to have a
functional impact on the NLRP3 inflammasome (NLRP3 rs35829419; rs10754558; CASP1
rs61751523; IL-1(3 rs16944; IL-18 rs1946519; and CARDS rs2043211) were associated with
postmenopausal women OP. Additionally, we assessed all patients’ serum bone remodeling
markers, BMD, clinical features, and their relation to the SNVs investigated.

2. Materials and Methods
2.1. Subjects

This study included a total of 196 postmenopausal OP women and 103 postmenopausal
control individuals. All patients were recruited from the Rheumatology Division at Clin-
ical Hospital, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil.
Menopause was defined according to the World Health Organization (WHO) criteria as
amenorrhea for at least one year in women over 45 years old without any other pathology.
The OP diagnosis followed the WHO criteria based on the T-score of the BMD measurement
of the lumbar spine, femoral neck, and total hip, using dual-energy X-ray absorptiometry
(DXA) [20].



Genes 2022, 13, 2271

30f10

Following the WHO criteria, the control group included postmenopausal women
without a diagnosis of OP or osteopenia, according to DXA exam; without fracture history
after menopause; and no secondary OP in medical history, physical examination, or labora-
tory tests. Additionally, no subjects from the study were on hormone replacement therapy.
Individuals with cancer, diabetes, and other rheumatology diseases were excluded [21]. All
follow-up information was obtained directly from medical records.

The clinical and biochemical bone markers’ levels were evaluated for both patients
and control group: age at menarche (years), age at menopause (years), vitamin D (ng/mL),
calcium (mg/dL), alkaline phosphatase (ALP; U/L), phosphorus (mg/dL), parathyroid
hormone (PTH; pg/mL), and magnesium (mg/dL).

All the participants provided written informed consent approved by the local
Research Ethics Committee (CEP/CCS/UFPE No. 513/11), following the rules of the
1964 Helsinki Declaration.

2.2. SNVs Selection and Genotyping

Genomic DNA was extracted from peripheral blood leukocytes using the Wizard
genomic DNA purification kit (Promega, Madison, WI, USA), following the manufacturer’s
guidelines. SNVs within NLRP3 (rs35829419; rs10754558), CASP1 (rs61751523), IL-1f3
(rs16944), IL-18 (rs1946519), and CARDS (rs2043211) genes were selected according to
previous studies [22,23], following the 10% minimum allele frequency (MAF) according
to NCBI (National Center for Biotechnology Information). Genotyping was performed
using specific fluorogenic allele-specific TagMan probes (Applied Biosystems, Foster City,
CA, USA) on a ABI7500 real-time PCR system (Thermo Fisher, Madison, WI, USA). In
addition, 25 ng of DNA was amplified and genotyped using the following protocol: 95 °C
for 10 s, 40 cycles 95 °C for 30 s, 60 °C for 90 s, and final cycle at 60 °C for 60 s for
all TagMan probes utilized. The probes’ specifications are available at https:/ /products.
appliedbiosystems.com/ (accessed on 24 October 2022) (Assays ID: NLRP3 C__25648615_10,
C__26052028_10; CASP1 C__64657193_10; IL-1p C___1839943_10; 11-18 C___2898459_20;
and CARDS C__11708080_1_).

2.3. Statistical Analysis

Differences between the SNVs genotypic frequencies in OP patients and the con-
trol group were assessed using the chi-square test. Odds ratios (ORs) and 95% confi-
dence intervals (Cls) were also calculated. Allelic and genotypic frequencies and Hardy—
Weinberg equilibrium (HWE) were evaluated using the SNPStats tool (Available online:
http:/ /bioinfo.iconcologia.net/SNPstats (accessed on 24 October 2022). Differences be-
tween healthy control and OP groups were analyzed using student’s T or Mann-Whitney
for parametric and non-parametric data, respectively. In the same way, ANOVA or Kruskal-
Wallis tests, for parametric and non-parametric data, respectively, were performed to
compare the genotypes frequencies related to BMD and biochemical markers levels. When
a significant difference was observed, the Tukey or Dunn’s tests were applied for pairwise
comparisons of genotypes. Associations between genotypes, demographic, and clinical
quantitative variables were performed by multinomial logistic regression, in which geno-
types were used as dependent variables and all the demographic and clinical as covariates.
All statistical analyses were conducted using Graphpad Prism software version 8.0 (Graph-
Pad Software, San Diego, CA, USA) and IBM SPSS statistic software version 26.0 (IBM
Corp, Armonk, NY, USA). Differences were accepted significantly at p-values < 0.05.

3. Results
3.1. Clinical and Biochemical Bone Markers Levels

We assessed 196 patients with OP and 103 individuals in the control group. The demo-
graphical data comparison showed no statistically significant difference between age (OP:
62 years old; control: 61 years old, p = 0.06); however, a statistically significant difference
was observed in the average of years since menopause, with OP patients presenting a mean


https://products.appliedbiosystems.com/
https://products.appliedbiosystems.com/
http://bioinfo.iconcologia.net/SNPstats

Genes 2022, 13, 2271

40f10

of 16 years (range: 3-36), while the control group presented a mean of 13 years (range: 2-35)
(p = 0.019). In the clinical data comparison, we observed statistically significant differences
in biochemical markers. The OP patients presented lower levels of vitamin D than the
control group (p = 0.001); OP patients also showed higher levels of serum PTH (p = 0.043).
No significant difference was observed for: calcium, ALP, phosphorus, and magnesium
(Table 1).

Table 1. Demographic and clinical characteristics of patients with osteoporosis (OP) versus
control group.

Characteristics or Control P
Demographic

Age (range) 62 (51-72) 61 (53-73) 0.06
Mean of years since menopause (range) 16 (3-36) 13 (2-35) 0.019 *
Clinical

Vitamin D (ng/mL) 28.15 4+ 8.68 32.75 +10.72 0.001 *
Calcium (mg/dL) 9.45 4+ 0.67 9.48 +0.78 0.79
Alkaline phosphatase (U/L) 75.48 + 28.38 70.16 £ 23.70 0.33
Phosphorus (mg/dL) 3.47 £ 0.56 3.61 £ 0.58 0.11
Parathyroid hormone (pg/mL) 56.39 + 27.25 48.33 + 27.05 0.043 *
Magnesium (mg/dL) 2.06 £ 0.26 2.02 + 047 0.74

Demographic quantitative variables were expressed as mean and min-max. Clinical quantitative were expressed
as mean and standard deviation. * Statistically significant.

3.2. Genetic Association Study
3.2.1. SNVs and OP Susceptibility

Inflammasome genes, SN'Vs, allele, and genotype frequencies were compared between
OP and controls, with the aim of detecting a possible association with susceptibility to
developing OP. Allelic and genotypic frequencies from the selected SNVs were in HWE
in both OP patients and control individuals. Low or null frequencies were observed for
the SNVs genotypes NLRP3 rs35829419 AA and rs10754558 GG, and CASP1 rs61751523
CC and CARDS rs2043211 TT in both groups. Moreover, a borderline association with
protection was observed for the IL-1§3 rs16944 genotype AG in the codominant model for
OP susceptibility (OR = 0.53; CI = 0.29-0.98; p = 0.05). However, none of the hypothesized
associations reached statistical significance. All genotype and allelic frequencies are shown
in Table 2.

Table 2. Allele and genotype frequencies between OP patients and controls in SNVs of
NLRP3 inflammasome.

SNVs Alleles/Genotypes Controls, n (%) OPn(%) p OR 95% CI
C 196 (97) 364 (97) 1
A 6 (3) 10 (3) 0.83 0.90 0.30-2.46
NLRP3 Codominant CC 95 (94) 177 (95) 1
rs35829419 CA 6 (6) 10 (5) 0.83 0.89 0.33-2.52
AA 0 (0) 0 (0) ND ND ND
1 1
G 70 (36) 136 (36) 1
C 126 (64) 246 (64) 0.97 1.00 0.70-1.44
Codominant GG 9(9) 25 (13) 1
GC 52 (53) 86 (45) 0.22 0.59 0.24-1.35
NLRP3 CC 37 (38) 80 (42) 0.56 0.77 0.54-3.09
rs10754558 Dominant GG 99 25 (13) 1
GC-CC 89 (81) 166 (87) 0.75 0.67 0.29-1.52
Recessive GG-GC 61 (62) 111 (58) 1
CC 37 (38) 80 (42) 1.12 1.18 0.71-1.96

Log-additive —
H\%E

— — 0.98 0.99 0.69-1.44
0.19 0.87
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Table 2. Cont.

SNVs Model Alleles/Genotypes Controls, n (%) OPn(%) p OR 95% CI
T 140 (92) 283 (94) 1
C 12 (8) 17 (6) 0.36 0.70 0.33-1.50
Codominant TT 64 (84) 134 (89) 1
TC 12 (16) 15 (10) 0.21 0.59 0.27-1.39
CASP1 CC 0(0) 1(1) 0.49 ND ND
561751523 Dominant TT 64 (84) 134 (89) 1
TC-CC 12 (16) 16 (11) 0.28 0.63 0.29-1.46
Recessive TT-TC 76 (100) 149 (99) 1
CcC 0(0) 1(1) >099 ND ND
Log-additive — — — 0.37 0.70 0.33-1.51
HWE 1 0.38
A 79 (40) 144 (46) 1
C 121 (60) 172 (54) 0.17 0.77 0.54-1.12
Codominant AA 15 (15) 33 (21) 1
AC 49 (49) 78 (49) 0.36 0.72 0.35-1.42
IL-18 CcC 36 (36) 47 (30) 0.17 0.59 0.28-1.28
51946519 Dominant AA 15 (15) 33 (21) 1
AC-CC 85 (85) 125 (79) 0.25 0.66 0.34-1.28
Recessive AA-AC 64 (64) 111 (70) 1
CcC 36 (36) 47 (30) 0.33 0.75 0.45-1.27
Log-additive — — — 0.17 1.28 0.89-1.84
HWE 1 1
A 96 (47) 189 (50) 1
G 110 (53) 189 (50) 043 0.87 0.62-1.23
Codominant AA 20 (20) 54 (29) 1
AG 56 (54) 81 (43) 0.05 0.53 0.29-0.98
L-1p GG 27 (26) 54 (28) 0.39 0.74 0.36-1.45
rs16944 Dominant AA 20 (20) 54 (29) 1
AG-GG 83 (80) 135 (71) 0.09 0.60 0.33-1.07
Recessive AA-AG 76 (74) 135 (72) 1
GG 27 (26) 54 (28) 0.68 1.12 0.64-1.89
Log-additive — — — 0.45 1.14 0.82-1.58
HWE 043 0.06
A 145 (72) 275 (72) 1
T 55 (28) 105 (28) 0.97 1.00 0.69-1.46
Codominant AA 51 (51) 99 (52) 1
AT 43 (43) 77 (41) 0.75 0.92 0.56-1.52
CARDS T 6 (6) 14 (7) 0.72 1.20 0.45-3.28
152043211 Dominant AA 51 (51) 99 (52) 1
AT-TT 49 (49) 91 (48) 0.90 0.95
Recessive AA-AT 94 (94) 176 (93) 1
TT 6 (6) 14 (7) 0.80 1.24 0.49-3.26
Log-additive — — — 0.97 1.01 0.68-1.49
HWE 0.62 1

OP, osteoporosis; HWE, Hardy-Weinberg equilibrium; p, chi-square test p-value; OR, odds ratio; CI, confidence
interval; — not applicable; ND, not determined.

3.2.2. SNVs and Correlation with BMD

Regarding BMD, the average levels (g/cm?) in regions measured by DXA exam (lum-

bar spine, femoral neck, and total hip) were compared to each polymorphism tested. We
observed a statistically significant lower BMD mean of lumbar spine among patients for the

NLRP3 SNV rs35829419 CA compared with CC (CC=0.766 £ 0.10; CA = 0.655 £ 0.09 g/ cm?,
p = 0.001). Furthermore, we observed a statistically significant higher BMD mean of total
hip in OP patients for the IL-13 SNV rs16944 AA when compared with GG (AA = 0.759 +£ 0.10;
AG =0.697 £ 0.10; GG = 0.725 £+ 0.10, p = 0.009) (Figure 1).
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Figure 1. Comparison of bone mineral density stratified according to the genotypes of single-
nucleotide variants rs35829419 of NLRP3 and rs16944 of IL-1f3 gene. (a) Comparison of bone mineral
density of lumbar spine area between genotypes of 1s35829419 of NLRP3. (b) Comparison of bone
mineral density in the total hip between genotypes of rs16944 of the IL-13 gene. Statistical tests:
(a) p-value student’s T = 0.001. (b) p-value ANOVA = 0.012; p Tukey post hoc test = 0.009 (AA vs.
GG genotype).

3.2.3. SNVs and Biochemical Markers

In the comparison of serum biochemical markers between SNVs genotypes in our
study populations (patients OP and control), the polymorphism IL-1 rs16944 showed a
lower level of ALP serum in the GG genotype (AA =79.70 £ 22.86; AG =73.90 £ 26.69;
GG =64.78 + 19.88 U/L), with a statistically significant difference when compared with
AA (p =0.009) (Figure 2).

200
p=10.009
_ ]
=
2 150
g
'_u - -
% .
£ 1004 i
i o.o -
8 i
2 5- i
0 I I I

AA AG GG
rs16944

Figure 2. Comparison of alkaline phosphatase levels according to genotypes of single-nucleotide
variant rs16944 in IL-1§3 gene. Statistical tests: p-value Kruskall-Wallis = 0.012; p-value Dunn’s post
hoc test = 0.009 (AA vs. GG genotype).

When compared within OP patients, lower levels of ALP were observed in IL-1f3
rs16944 GG (AA = 81.53 + 22.04; AG =76.28 + 27.54; GG = 65.99 + 22.14 U/L) (AA vs.
GG p = 0.026). In addition, lower levels of vitamin D were also observed in IL18 rs1946519
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AA subjects (AA =23.26 + 6.75; AC =29.18 & 9.08; CC = 28.05 £ 8.77 ng/mL) (AA vs.
AC p = 0.018) (Figure 3). The other SN'Vs and serum biochemical markers did not show
statistically significant differences. In the same way, multivariate analysis did not show
statistically significant differences among genotypes and demographic and clinical features.

p=0.018 200
604 [ 1
e s
2 S 150
A 17}
= 40 -
g o
£ £ 100
g 2
= 20 g
« < 50—
0 T | T 0
AA AC CC
(a) (b)
rs1946519 rs16944

Figure 3. Comparison of biochemical markers of bone homeostasis in serum according to genotypes
of single-nucleotide variants rs1946519 of IL-18 and rs1644 of IL-13 gene. (a) Comparison of 25(OH)
Vitamin D levels between genotypes of rs1946519 of IL-18. (b) Comparison of Alkaline phosphatase
levels between genotypes of rs16944 of IL-1f3. Statistical tests values: (a) p-value ANOVA = 0.029;
p-value Tukey = 0.018 (AA vs. AC); (b) p-value ANOVA /Kruskall-Wallis = 0.023; p-value Dunn’s
test = 0.026 (AA vs. GG).

To summarize our results, despite the lack of association between the inflammasome
genes’ SNVs and OP occurrence, a statistically significant correlation between genotypes
and BMD levels was observed for SNVs rs35829419 CA of NLRP3 and rs16944 GG of IL-1p3
gene. Furthermore, lower PTH serum level was associated with the variant rs16944 GG in
IL-1p3 gene, and lower vitamin D levels associated with IL-18 rs1946519 AA patients.

4. Discussion

In our study, we assessed the SNVs with the NLRP3 inflammasome pathway, rs35829419,
rs10754558, CASP1 rs61751523, IL-18 rs1946519, IL-1f3 rs16944, and CARDS rs2043211,
and their role in OP susceptibility as well as in serum bone remodeling markers, BMD,
and clinical features. We observed an association of NLRP3 rs35829419 and IL-1p rs16944
genotypes with BMD levels.

The NLRP3 rs35829419 variant is a C>A SNV located at exon 3 [24]. This variant
is a gain-of-function mutation that leads to an increased production of IL-1f3, which is
associated with various inflammatory diseases such as rheumatoid arthritis, Crohn’s dis-
ease, and celiac disease [16,17]. The IL-13 binds macrophages’ receptors and promotes
the generation of RANKL, which binds to RANK on osteoclast precursor cells, leading to
osteoclasts activation. Therefore, IL-1(3 acts as an osteogenic inhibitor and bone resorption
stimulator [25]. Additionally, in a previous study by Youm and colleagues [26], NLRP3
was reported as overexpressed in an aging mouse model. In contrast, the 24-month-old
knockout (NLRP3—/—) mice had significantly higher bone mineral density and total bone
area with significantly increased cortical and trabecular bone thickness. In our study, we
observed that OP patients with rs35829419 CA genotype had lower BMD at the lumbar
spine compared to CC patients (p = 0.001), according to the high bone resorption expected
due to the presence of allele A.

As aforementioned, IL-1f increases with estrogen deficiency and plays an essential
role in bone loss, thus stimulating the expression of the receptor activator of RANKL in
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osteoblasts, which can lead to a massive upregulation of osteoclasts and inhibition of
osteoblasts. For example, the activation of osteoclasts via pro-inflammatory cytokines,
such as IL-1f3, in chronic inflammatory conditions leads to excessive systemic bone loss by
upregulation of RANKL [25,27]. In this context, the IL-1 3 rs16944 variant A>G is in the
promoter region of the gene, which is possibly involved in the regulation of IL-13 [28,29].
Moreover, the SNV 1516944 G was associated with increased transcriptional activity and
clinical conditions such as cardiovascular disease and gastric cancer [26]. Additionally, He
and colleagues [30] investigated IL-1(3 genetic variants and predisposition to osteoporosis
among the northwestern Chinese Han population. The authors observed an association
of the IL-1 3 rs16944 G allele with an elevated susceptibility to OP, especially in Chinese
women >60 years (OR = 1.19, p = 0.037). These results are consistent with our findings, in
which OP patients carrying the IL-1 (3 rs16944 AA genotype showed higher BMD at total
hip compared to AG and GG (AA vs. GG p = 0.009), indicating a higher osteoclastic activity
related to the G allele.

Regarding the biochemical markers and SNVs analysis results, lower serum ALP was
observed in the presence of IL-13 rs16944 GG genotype in OP patients and controls. ALP is
a marker of bone remodeling by osteoblast activity, so low serum ALP indicates reduced
osteoblasts action or bone formation [31,32]. Therefore, the lower ALP level reinforces the
observed association between SNV IL-1( rs16944 G-allele and low BMD. Additionally,
serum vitamin D was lower in OP patients with IL-18 rs1946519 AA genotype (p = 0.018).
The SNV IL-18 rs1946519 located at promoter position-607 of IL-18 gene (11q22.2-q23.3)
has been reported as associated with the decrease of IL-18 [33]. Low vitamin D status is a
risk factor for BMD loss in postmenopausal women, with deficiency relatively high among
postmenopausal women and a provisional diagnosis of osteoporosis [34]. However, high
inflammation is the common factor between diseases and low vitamin D concentrations [35].
Therefore, the presence of AA genotype could contribute to maintaining lower vitamin
D levels.

When comparing OP patients and control groups, the OP patients present a lower
serum vitamin D (28.15 & 8.68, p = 0.001) and higher PTH (56.39 £ 27.25, p = 0.043).
Estrogen has an essential role in increasing the activity of the enzyme responsible for
activating vitamin D; therefore, declining estrogen levels during menopause could lead
to vitamin D deficiency [36]. Additionally, both PTH and vitamin D are the two major
regulators of mineral metabolism. They play critical roles in maintaining calcium and
phosphate homeostasis and developing and maintaining bone health. They form a tightly
controlled feedback cycle, PTH being a major stimulator of vitamin D synthesis in the
kidney, while vitamin D exerts negative feedback on PTH secretion [37].

Finally, OP patients showed more time with menopause (16 years) than control group
(13 years) (p = 0.019). This data agrees with the literature, where a longer time of menopause
is associated with a higher risk of OP development due to more intense loss of bone mass
over the years [38].

5. Conclusions

Our results suggest an influence of inflammasome SNVs on bone formation, biochemi-
cal markers levels, and OP severity. Furthermore, these findings highlight the importance of
the inflammasome on bone homeostasis and OP prognostic. Being aware of the limitation
of our study, related to the absence of functional validation, our simple genetic approach
might contribute to better elucidating the mechanisms at the basis of postmenopausal
OP development.
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