
The Relocation Problem for the One-Way Electric
Vehicle Sharing

Maurizio Bruglieri and Alberto Colorni
Dipartimento di Design – Politecnico di Milano, Via Durando 38/A, 20158 Milano, Italy

Alessandro Luè
Poliedra – Politecnico di Milano, via Giuseppe Colombo 40, 20133 Milano, Italy

Dipartimento di Design – Politecnico di Milano, Via Durando 38/A, 20158 Milano, Italy

1. INTRODUCTION

As a result of the current financial crisis and within the
context of environmental and social changes, a collective

reflection is taking place on how to design and build more
sustainable a new kind of prosperity. Consequently, the idea
of sharing objects and services has been gaining popularity
[9, 30]. As regards urban mobility, the number and dimen-
sion of car sharing services have increased, especially in the
last decades [39]. The earliest origins of car sharing, under-
stood as an organized form of shared use of the car, can be
traced back to 1948 when an association started a service in
Zurich [38]. In the following years, particularly in the 1970s
and 1980s, several car sharing systems were set up, but still
on a small scale, with poor results [37]. The original idea has
been gradually replaced by an offer structurally organized
according to strict business criteria, to achieve economies of
scale, which resulted in increased benefits to users in terms
of low rates and diversification of the available fleet.

The design and management of a car sharing service raise
several optimization problems, which have been tackled in
the literature (e.g., [6, 21, 26]), in particular to determine
the optimal size of the fleet and identify the location of the
parking stations. For instance, in [16], the authors propose
a methodology based on fuzzy logic algorithm, where the
users’ needs are modeled by way of suitable performance
indicators, with the objective of ensuring the balance between
costs, number of stations and level of service. The prob-
lems of the optimal location of the charging stations and of
the optimal electric vehicle (EV) routing are considered in
[40], where their mathematical programming formulations
consider variants of well-known combinatorial optimization
problems. Reference [24] introduced a tool for evaluating the
performance of a network of car sharing stations in function
of variations of the service demand. The tool is based on dis-
crete event simulation and seeks to maximize the satisfaction
level of the users and to minimize the number of vehicles.

Traditional car sharing services are based on the two-
way (or round trip) scheme, where the user picks up and
returns the vehicle at the same parking station. Some new
services, such as Car2Go (www.car2go.com) or Autolib
(www.autolib.eu/en/) permit also one-way trips, which allow
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the user to return the vehicle in another station. The one-way
scheme is more attractive for the users, but may lead to an
unbalance between the demand and the availability of vehi-
cles (e.g., near the railway stations at the beginning of a
working day) or vice versa between the request for returning
a vehicle and the availability of vacant parking lots. In such
cases, the service provider may develop strategies to reallo-
cate the fleet and restore a better distribution of the vehicles
among the parking stations to maximize their availability to
the users. Such a distribution could be based on the immedi-
ate needs at a particular station, or on a historical prediction
(i.e., estimating the vehicle demand in the future to determine
when and from where a relocation event must occur) [6]. The
relocation activity can be carried out by the user himself or
by the service provider [7]. In the first case, the user is incen-
tivized to choose another station and/or reservation time, or
to car pool with other users; in the second case, which is
the most common in real services, the vehicles are physically
moved by the service provider. The relocation problem exists
also for bike sharing services (see, for instance, [2, 11, 36]); in
this case, the practical solution is easier since the bikes can be
simply moved loading them in a truck. In the car sharing relo-
cation literature, also the platooning of the vehicles has been
considered [17], where the platoon is composed by a chain
of technologically innovative vehicles, led by vehicle head.
This procedure, however, is still of little use for safety reasons
and due to pending future technological developments [12].

In the following, a brief literature review regarding the
methods proposed to model and solve the vehicle relocation
problem is presented.

In [14], the use of a fleet of auto transport trucks is con-
sidered, minimizing the number of cars to move between the
stations and minimizing the travel time of the auto-transport
trucks. The first problem is an uncapacitated transportation
problem, solved through the Hitchcock algorithm [29]; while
the second problem is addressed through a heuristic algo-
rithm. One development is proposed in [15], which makes
the assumption of using a single auto transport truck that
runs continuously on a circuit, arbitrarily established. In [22],
a heuristic based on the immediate needs at the stations is
presented, that is, the next station to be visited by the auto-
transport truck is chosen according to the current state of the
system. In such a way, the algorithm gives priority to visit
the stations that have the greatest likelihood of running out
of vehicles. [31] proposed two techniques, namely “shortest
time” and “inventory balancing,” for the relocation carried out
by the service provider. Relocating by “shortest time” means
moving vehicles to or from a neighboring station in the short-
est possible time to answer to an immediate need. Relocating
by “inventory balancing” means keeping the balance between
the stations, following a predetermined desired distribution
of the vehicles. A simulation model was used to test such
techniques using historical data from a car sharing operator
in Singapore. Results have shown that the system can afford a
10% reduction in car parking lots and a 25% reduction in staff
numerousness. In [19], the complex dynamics of the system,
using a discrete event system simulation, is represented. The

article considers the relocation made by both users and staff,
simulating different scenarios, with the objectives of reduc-
ing the number of required staff and minimizing the number
of car sharing vehicles to satisfy the service demand. In [32],
a decision support system to determine a set of near-optimal
operating parameters (e.g., number of vehicles) is presented,
formulating the relocation problem as a mixed integer pro-
gramming problem. In [34], the authors consider a strategy
that involves anticipative fleet redistribution that operators
initiate to correct short-term demand asymmetry, develop-
ing a stochastic mixed-integer program to take into account
demand uncertainty.

As regards the engine of the vehicles, the general expec-
tation, confirmed by the investments of the principal car
makers, is a shift from internal combustion to electricity [23].
Such a change will have a particular impact on urban areas,
which will experience less local emissions and a better air
quality. In addition, greenhouse gas emissions will decrease
if the electricity needed for the vehicles will be generated
by cleaner and renewable technologies, such as solar power
plants. The problem of the relocation of EVs has been faced in
[20], as a generalization of the pickup and delivery problem,
formulated as a mixed integer program and solved using dif-
ferent solution methods including constraint programming,
Lagrangian relaxation and a modified A* heuristic. The algo-
rithm is applied to a car sharing service with 50 EVs and
five charging stations, offered in the French town of Saint
Quentin en Yvelines. The same car sharing service was stud-
ied also in [28], where the authors determined the needed
number of auto transport trucks with an exact algorithm, and
then minimized the total travel time of reallocation, study-
ing three different heuristics. In [13], the authors consider
the issue of recharging the vehicles, and an optimal level of
battery charge that makes the vehicle available for the users
is defined. Because of the battery-limited range, two major
aspects have to be taken into account in the relocation system:
the physical and energy availability of vehicles at stations. In
[10], the authors proposed a model for supporting strategic
decisions (i.e., number and location of charging stations and
number of vehicles) and tactical planning decisions (i.e., allo-
cation of personnel for the vehicle relocation). The model was
applied to plan an electric one-way vehicle sharing service in
Nice, France.

In our opinion, the relocation approach based on auto-
transport trucks may be not well suitable for an urban settings,
from a practical point of view, because stations may not be
easily reachable by the trucks, and the operations of load-
ing/unloading EVs is time consuming. For the EV relocation
problem, we propose, therefore, the use of a staff of car shar-
ing operators (hereafter called workers). They may move
easily and in ecosustainable way from a delivery point to
a pickup point using a folding bicycle that can be loaded
in the trunk of the EV which needs to be moved. Such a
relocation approach generates a challenging Paired Pickup
and Delivery Problem with Time Windows (PPDPTW) [35]
with features that, to the best of our knowledge, have been
never considered in the literature. We call such a problem the



based on small, electric, and shared vehicles. Financed by
Regione Lombardia, the project aims to face both the technol-
ogy aspect and the service design part to identify a successful
business model of vehicle-sharing. The main idea is to cre-
ate a flexible sharing service, based on EVs and open to a
wide range of different categories of users. The system will
be made easily accessible thanks to a device, the Green-e-
Box [1], which allows the inclusion into the vehicle sharing
service also of private vehicles.

In this work, we yield the first mixed integer linear pro-
gramming (MILP) formulation of the EVRP, and we illustrate
some techniques to strengthen it and to speedup its solution
through a state-of-the art solver (CPLEX). Finally, we test
our approach on verisimilar instances built on the Milan road
network.

The article is organized as follows. In Section 2, we
describe the problem, in Section 3, we present its MILP
formulation, in Section 4, we introduce some techniques to
speedup its solution, in Section 5, we show the results of
some numerical experiments, and in Section 6, we draw some
conclusions.

2. PROBLEM DESCRIPTION

We consider a one-way car sharing service with a homo-
geneous fleet of EVs. Let L be the maximum distance that an
EV can cover when its battery is fully charged. Such distance
depends on the vehicle model; for instance, L can vary from
50 km for a Liberty Piaggio to 400 km for a Tesla (in the
experimental campaign, we assume that L =150 km). Note
that when the battery of an EV is not fully charged, the max-
imum distance that can be covered is linearly proportional
to the residual charge of the battery (i.e., an EV with resid-
ual charge at 50% can travel for L/2 km). Concerning the
recharge time � of a battery, typically the recharge process
comprises two phases: the first one is intensity-constant, the
second one is tension-constant. In the first phase, the battery
charge level grows linearly with the time and at the end the
battery is almost fully recharged. In the second phase, con-
versely, the charging pace is not linear with the time; such a
phase can require some hours to achieve the full charge of
the battery and to ensure an uniform recharge of all the cells
that compose the battery. For sake of simplicity, we do not
consider the second phase to model the EVRP. The maxi-
mum time needed to complete the first phase depends on the
recharge technology used and can vary for instance from �

= 1 hour for a 380 V Superfast Recharger to � = 5 h for a
220 V Multifast Recharger (in the experimental campaign we
consider � = 4 h).

We suppose that all the lots of the parking stations are
equipped with a charging infrastructure. In a one-way car
sharing service, the relocation problem consists in establish-
ing how to move the vehicles to prevent a station from running
out of EVs or having all the parking lots occupied. Let D be
the set of delivery requests (i.e., requests of EVs that need to
be delivered to prevent a station from running out of them)
and let P be the set of pickup requests (i.e., requests of EVs

FIG. 1. Instance of the EVRP with six pickup requests (Pi for i = 1,...,6) 
and five delivery requests (Di for i = 1,...,5). Both the battery charge level 
and time window [τ max, τ min] are indicated beside each request node. Two 
workers (W1, W2) leave a single depot, indicated by the shaded node, to 
relocate the EVs. The dashed arcs denote that a worker is biking while the 
solid arcs denote that is driving an EV. [Color figure can be viewed in the 
online issue, which is available at wileyonlinelibrary.com.]

EV relocation problem (EVRP). In Fig. 1, an instance of the 
EVRP with six pickup relocation requests and six delivery 
relocation requests spread in six parking stations is given. 
Beside each request node, the battery charge level of the 
EV is indicated as well as a time window [τ max, τ min] being 
τ max and τ min, respectively, the earliest time and the latest 
time when the request can be satisfied. An example of fea-
sible solution with two workers is also shown: it consists of 
two cycles (one for each worker) starting from the depot and 
alternating a pickup request with a delivery request, which is 
compatible for battery charge level and time window (taking 
into account both the battery consumption and the time spent 
to arrive to the parking station of the delivery request with 
the EV picked up); moreover, the duration of each cycle must 
not to exceed the working time of the workers.

EVRP shares some features with the 1-skip vehicle rout-
ing problem [3] and the rollon–rolloff problem ([5, 8, 18]), 
that is, the fact that just one item at the time can be picked up 
and delivered, and routes starting and ending at a single depot 
cannot exceed a given maximum duration. However, EVRP 
is more challenging than the above mentioned problems since 
it is complicated by the fact that the distance covered by 
a vehicle depends also by the item picked up, that is, the 
residual electrical charge of the EV picked up. This further 
complication does not allow for instance to map the prob-
lem into a static bipartite graph like for the rollon–rolloff 
problem presented in [5] because the feasibility of an arc 
connecting a pickup request node with a delivery request 
node depends on the time when the pickup request node is 
reached since the battery level of a parked EV increases over 
the time. Another important difference between the EVRP 
and the rollon–rolloff problem is that in the EVRP both the 
routes and the schedules of the vehicles are decided, whereas 
in the latter only the routes.

We faced such a problem within the Green Move project 
[4, 33], which has been studying and testing a new system



that need to be moved to vacant parking lots). Each request
r ∈ P ∪ D is characterized by a parking location vr , that is,
a node of the road network containing a parking station, by
the residual charge of the battery ρr and by a time window
[τmax

r , τmin
r ] where τmax

r and τmin
r represent, respectively, the

earliest time and the latest time of the request r. For instance,
if r is a pickup request then τmin

r is the time before which the
EV is not available, while τmax

r is the time after which it is not
convenient to pickup the EV (because from τmax

r , the vehicle
may be used by some user in the parking station where it
is). Note that for a delivery request r, ρr indicates the mini-
mum charge level that the EV battery must have at time τmax

r .
Therefore, if an EV is delivered before τmax

r , the charge level
of its battery may be less than ρr on condition that at least the
charge level ρr is achieved at the time τmax

r . Whereas for a
pickup request r, ρr indicates the battery charge level at τmin

r .
Since the fleet of EV is homogeneous, each delivery request
can be satisfied picking up every EV of a pickup request pro-
vided that the constrains on time windows and battery charge
level are satisfied.

We propose to relocate the EVs using a staff of car shar-
ing operators (workers). They may move easily and in an
ecosustainable way from a delivery point to a pickup point
using a folding bicycle that can be loaded in the trunk of
the EV which needs to be moved. Note that some reloca-
tion requests may not be satisfied through this relocation
approach (for instance, when |P| �= |D|): in this case, the car
sharing provider should consider other actions to satisfy the
users requests. For instance, whether some delivery request
remains unsatisfied, and thus, a parking station runs out of
EVs, then the car sharing provider may put at disposal of the
users a taxi (e.g., this policy is used in Milan by the e-vai
company: www.e-vai.com).

Given a team of K workers which leave a single depot—
even at different times—using folding bicycles, we want to
determine their routes and their schedules in such a way that:
(1) each route consists of an alternating sequence of pickup
requests and delivery requests, (2) the duration of each route
does not exceed a given threshold T (i.e., the working time
of the workers), (3) each route ends at the depot, and (4) the
number of satisfied requests is maximized respecting the time
windows and battery charge level constraints. We call such a
problem the EVRP.

3. MATHEMATICAL PROGRAMMING
FORMULATION

The formulation of the EVRP is based on a directed graph
G=(N, A) that models all the possible actions rather than con-
sidering straightly the road network. The set of nodes of G is
given by N = P ∪ D ∪ {0} where 0 indicates the depot node.
The set of arcs can be partitioned into two sets: the EV arcs
and the bike arcs. The EV arcs model the action of a worker
when he is traveling using an EV from a pickup point to a
delivery point; the bike arcs model the action of a worker
when he is traveling using a bike from a delivery point or
from the depot to a pickup point or to the depot. Therefore,

TABLE 1. Operational times cij of every arc of graph G.

Arcs Operational times Involved nodes

(i, j)
dij
s′ + q′ + q′′ ∀i ∈ P, ∀j ∈ D

(j, i)
dji
s′′ ∀i ∈ P, ∀j ∈ D

(0,i) d0i
s′′ ∀i ∈ P

(j,0)
dj0
s′′ ∀j ∈ D

for each i ∈ P and for each j ∈ D, the EV arcs link i and j
through the ordered pairs (i,j), while the bike arcs are defined
by the ordered pairs (j,i). Moreover, the bike arcs also include
the arcs (0, i) ∀i ∈ P and the arcs (j, 0) ∀j ∈ D.

For each i ∈ P and for each j ∈ D, let dij denote the length
of the shortest path from vi to vj with an EV, let dji denote
the length of the shortest path from vj to vi with a bike, let s′
indicate the average speed of an EV, let s′′ indicate the average
speed by bicycle of a worker, let q′ be the time to park the
EV and take the bike from the EV trunk, let q′′ be the time to
load the bike in the EV trunk and leave the parking lot with
the EV. We associate an operational time cij with every kind
of arc as reported in Table 1.

There are two main advantages to deal with the graph G
rather than directly with the road network. The first one is
that an elementary cycle on graph G corresponds always to
every feasible route of a worker, whereas this is not true in the
original road network when there are multiple requests in the
same parking and modeling nonelementary cycles is by far
harder (see [20]). The second advantage, even in the case of a
single request for each parking, is that a formulation based on
graph G requires by far less variables than a formulation based
on the road network, because variables are defined on the
arcs and nodes of the used graph. The dimension of graph G
depends only on the number of requests (since |N |=|P|+|D|+1
and |A|=2|P||D|+|P|+|D|) and not by the number of the physical
nodes (road intersections) and road links. For instance, the
Milan road network considered in Section 5 contains more
than 23,000 road links, which are by far greater than |A| even
for a high number of EVs to be redistributed.

Let us introduce the binary routing variables xijk equal
to 1 if the kth worker visits node j ∈ N immediately after
node i ∈ N , 0 otherwise. Let us also introduce the continu-
ous variables tik to model the arrival time to the parking vi

of the kth worker. We state that the EVRP can be modeled
by way of the following MILP (note that for all i ∈ N , we
indicate with δ+(i) and δ−(i) the forward star and the back-
ward star of node i, respectively, and in constraints (5)–(6)
M = maxi∈P∪D

{
τmax

i

}
).

max
K∑

k=1

∑
(i,j)∈A:i �=0

xijk (1)

subject to:∑
j∈δ+(0)

x0jk ≤ 1 ∀k = 1, . . . , K (2)



K∑
k=1

∑
j∈δ+(i)

xijk ≤ 1 ∀i ∈ P ∪ D (3)

∑
j∈δ+(i)

xijk −
∑

j∈δ−(i)

xjik = 0 ∀i ∈ P ∪ D ∪ {0} ,

∀k = 1, . . . , K (4)

tik + cijxijk ≤ tjk + M(1 − xijk) ∀(i, j) ∈ A : j �= 0,

∀k = 1, . . . , K (5)

tik + ci0xi0k ≤ t0k + T + M(1 − xi0k) ∀i ∈ δ−(0),

∀k = 1, . . . , K (6)

τmin
i ≤ tik ≤ τmax

i ∀i ∈ P ∪ D, ∀k = 1, . . . , K (7)

dijxijk ≤ L

(
ρi + tik − τmin

i

�

)
∀(i, j) ∈ A : i ∈ P, j ∈ D,

∀k = 1, . . . , K (8)

ρi + tik − τmin
i

�
− dij

L
xijk ≥ ρj − τmax

j − tjk

�

− (ρj + 1)(1 − xijk) ∀(i, j) ∈ A : i ∈ P, j ∈ D,

∀k = 1, . . . , K (9)

1 − dij

L
xijk ≥ ρj − τmax

j − tjk

�
− (ρj + 1)(1 − xijk)

∀(i, j) ∈ A : i ∈ P, j ∈ D, ∀k = 1, . . . , K (10)

xijk ∈ {0, 1} ∀(i, j) ∈ A, ∀k = 1, . . . , K (11)

tik ≥ 0 ∀i ∈ P ∪ D ∪ {0} , ∀k = 1, . . . , K (12)

Since each arc connects a pair of requests, the objective
function (1) represents the total number of satisfied requests.
Constraints (2) take into account that at most K workers are
available, and therefore, at most K routes can be generated
imposing that at most one arc for each worker can leave the
depot node 0. Constraints (3) impose that each request is sat-
isfied at most once. Flow conservation constraints (4) ensure
that the solution is a collection of cycles. Constraints (5) rule
the time variables ensuring that the visit time of a node is
given by the sum of the visit time of its predecessor and
the operational time to go from the predecessor to the current
node. Note that such constraints are not imposed for the depot
node to ensure that the route can pass through the depot and at
the same time they prevent the solution from containing iso-
lated cycles that do not pass through the depot. In this way, the
formulation does not require additional subtour elimination
constraints. Constraints (6) ensure that the duration of each
route does not exceed the threshold T. Constraints (7) enforce
the time windows for the pickup and delivery requests. Con-
straints (8) model the fact that the maximum distance traveled
by an EV is linearly proportional to the residual charge. Note

that if ρi + tik−τmin
i

�
> 1, such constraints become redundant

since the graph topology prevent already the existence of arcs
(i, j) with dij > L. Finally, constraints (9) and (10) ensure that

an EV is delivered with a battery level such that at the time
τmax

j a charge level not lower than ρj will be achieved.

4. SOLVING THE EVRP

4.1. Speedup Techniques for the MILP Formulation

In this subsection, we present some techniques to speedup
the solution of MILP formulation (1)–(12) of the EVRP when
a commercial MILP solver (e.g., CPLEX) is used.

The first technique consists in reducing the number of arcs
considered in the graph representation of the EVRP intro-
duced in Section 3, by excluding the arcs that cannot model
feasible actions. In particular, the EV arcs (i, j) are defined
not for every pair of node i ∈ P and j ∈ D but only for the
ones that satisfy the following four conditions:

d0i

s′′ + dij

s′ + dj0

s′′ + q′ + q′′ ≤ T (13)

τmin
j − τmax

i + d0i

s′′ + dj0

s′′ ≤ T (14)

dij ≤ L · min

{
1, ρi + τmax

i − τmin
i

�

}
(15)

max

{
�

(
dij

L
+ρj − ρi

)
, 0

}
+ dij

s′ +q′ + q′′ ≤ τmax
j − τmin

i

(16)

Condition (13) takes into account the time to travel—
within the working time T—from the depot to vi, from vi

to vj and then to the depot. Condition (14) is necessary to
respect both the request time windows and the working time
when a worker needs to wait to serve request j. Condition
(15) ensures that even if the EV is picked up as later as pos-
sible (i.e., at τmax

i ), the battery level achieved is sufficient to
cover the trip from vi to vj along the shortest path. Condition
(16) checks if the time necessary to reach the battery level of
the delivery request—starting from the battery charge level
of the pickup request (�(ρj − ρi))—is compatible with the
time windows of both the requests, taking into account also
the battery consumption (�dij/L) and the time (dij/s′) used
to travel from vi to vj, and the related parking operations
(q′ + q′′).

In a similar way, the bike arcs (j,i) are defined for each
j ∈ D and for each i ∈ P such that the following condition
holds:

τmax
i ≥ τmin

j + dji

s′′ (17)

We call Ã, the set of arcs that satisfy conditions (13)–(17).
A second technique is based on the observation that the

feasible region of MILP delimited by (2)–(12) may contain
several equivalent optimal solutions. In an optimal solution, if
any, the route of one generic worker can be swapped with the
one of any other worker, yielding a different optimal solution
in terms of variables xijk and tik . The presence of such multiple
optimal solutions is harmful for a MILP solver, since it may



require more CPU time. To prevent such situation, we add to
Formulation (1)–(12) the following group of constraints that
“breaks” the symmetry of the feasible region:

∑
(i,j)∈A:i �=0

cijxijk′ ≥
∑

(i,j)∈A:i �=0

cijxijk′′

∀k′, k′′ = 1, . . . , K : k′ < k′′ (18)

Constraints (18) prevent the presence of multiple optimal
solutions mentioned above, since they impose that the routes
are assigned to the workers according to the non-increasing
operative cost ordering.

4.2. A MILP-Based Heuristic

We observed that the MILP formulation of EVRP can
often be solved in reasonable time for K=1. Therefore, we
exploited such outcome to build a simple but effective heuris-
tic procedure based on the iterative solution with the MILP
(1)–(12) of at most K instances of the EVRP with one worker.
At the kth iteration, the tour of the kth worker is determined
considering only the requests that are not already satisfied in
the previous iterations, until k is equal to K or all the requests
are satisfied.

The quality of such heuristic solution can be evaluated
considering the gap with an upper bound to the optimal value
(when the latter is not available), as will be explored in the
next subsection.

4.3. MILP-Based Upper Bounds

A first method to compute an upper bound to the opti-
mal value of the satisfied requests in the EVRP when K > 1
consists straightforward in multiplying by K the maximum
number of satisfied requests by one worker [i.e., the opti-
mal value of the EVRP obtained solving MILP (1)–(12) with
K=1]. Indeed let s1 be the maximum number of satisfied
requests when K=1 and let sK be the maximum number of
requests served by a worker in a team of K > 1 workers, then
we have by definition sK ≤ s1. Therefore, the total number
of requests served by K > 1 workers is upper bounded by the
product Ks1. In the following, we call U1 the upper bound
given by U1 = min {Ks1, |P ∪ D|}.

A second method to compute an upper bound, U2, consists
in solving with one worker the Formulation (1)–(12) where
Constraint (7) is relaxed by elimination and the worker’s
working time is extended to KT. The optimal value obtained
in this way is an upper bound for the original problem because
any feasible solution of the latter consists in at most K routes,
each one assigned to a worker, that satisfy all Constraints
(2)–(12) and therefore they can be also traveled, one after
the other, by one worker within the working time KT satis-
fying certainly all constraints except (7). Hence, any feasible
solution of the original problem is also feasible for the For-
mulation (1)-(12) where Constraints (7) are removed and the
working time is extended to KT.

Finally, a third kind of upper bound, U3, can be obtained
considering the linear programming relaxation of MILP
(1)–(12), that is, the binary variables xijk become continuous
variables in the interval [0,1].

4.4. Upper Bound with Unlimited Workers

In this subsection, we describe a method to compute an
upper bound, U4, which considers an unlimited number of
workers. Such an upper bound will be useful in the experi-
mental campaign to detect those cases where, although not all
the relocation requests are satisfied, no further improvement
is possible increasing the number of workers.

Let us consider the bipartite graph Ĝ = (P∪D, ÃEV)where
ÃEV is the subset of the arc set Ã (introduced in Subsection
4.1) made up only by the EV arcs: if a pickup request i ∈ P
and a delivery request j ∈ D are compatible (i.e., the request
j can be satisfied using the EV of request i) then the EV
arc (i, j) is present in ÃEV. Therefore, twice the maximum
matching value on graph Ĝ gives an upper bound on the max-
imum number of relocation requests that can be satisfied by
an unlimited number of workers (U4 may be strictly greater
than the maximum number of the feasible relocation requests
since Conditions (13)–(17) are necessary but may be not suf-
ficient for the compatibility). Note that such an upper bound
can be tighter than |P ∪ D| since it exploits the information
on the compatibility between pickup and delivery requests
given by ÃEV.

5. EXPERIMENTAL RESULTS

This section presents some numerical experiments made
on the road network of Milan. The network is based on
the database set up by the Milan transport agency [27],
which contains information about road topology, nodes, per-
mitted maneuvers, and link attributes. The road network
consists of about 23,000 links. The experiments consider nine
charging stations located nearby some main attractors, that
is, Loreto, Cadorna, Porta Genova, Porta Garibaldi, Piola,
Duomo, Stazione Centrale, Turati, and San Babila (Fig. 2).

We built 100 instances of the EVRP considering randomly
generated pickup and delivery requests on the nine parking
stations with random battery charge levels and random time
windows between 8.00 a.m. and 8.00 p.m. In all the instances,
|P| = |D| and the total number of relocation requests can
assume five values: 10, 20, 30, 40, and 50 (we refer to them as
“instance size”). Note that the maximum instance size con-
sidered is consistent with most of real world car sharing case
studies (e.g., [10]). The 100 instances have been obtained
considering, for each instance size, five different samples on
the random choice of parking, battery charge level and time
window of each pickup and delivery request, and four val-
ues of K = 1,...,4. Some statistics on the battery levels and
on the time windows of the relocation requests considered in
each instance are shown, respectively, in Tables 8 and 9 of
Appendix.



FIG. 2. The road network and the locations of the nine charging sta-
tions considered in the numerical experiments. Point D denotes the depot,
located at the charging station of Piola, where the workers start their routes.
[Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

Through a preprocessing algorithm, we eliminated from
each instance the relocation requests that cannot be satisfied
because infeasible. More precisely, the algorithm removes
the requests i ∈ P if there exists j ∈ D such that Conditions
(13)–(17) are not satisfied. An analogous check is made for
each j ∈ D. The number of relocation requests removed by
the preprocessing is very small (more details can be found in
Table 10 of Appendix).

The main input data values used for the MILP formula-
tion of the EVRP presented in Section 3 are summarized in
Table 2.

The MILP Formulation (1)–(12) has been implemented
in AMPL [25] and solved with the state of the art solver
CPLEX11.0 on a PC Intel Xeon 2.80 GHz with 2GB RAM.

The average percentage cardinality saving passing from
arc set A to the reduced arc set Ã introduced in Section 4
is around the 50% (the details can be found in Table 10
of Appendix). Therefore, the application of the first tech-
nique proposed in Section 4 halves on average the number of
binary variables used by the MILP formulation of the EVRP,
since the only binary variables of the model are the routing
variables xijk defined for each arc (i,j). In the experimental
campaign, we always use the speedup techniques presented
in Section 4. Moreover, we always consider a CPU time limit
of 1800 s.

Table 3 shows the numerical results obtained with the
MILP formulation of the EVRP on the whole test bed of
instances. The first column indicates the instance name: note
that each name is in the format AmatX_Y where X indicates
the instance size and Y the sample considered. The successive

four columns represent the percentage of satisfied requests
for a number of workers K, respectively, equal to 1, 2, 3,
and 4. Such percentage is computed on the total number of
original requests, that is, considering also infeasible requests
identified by the preprocessing algorithm. We emphasize in
boldface the the values for which the 100% of requests have
been served or the percentage of satisfied requests corre-
sponds to the maximum achievable since the upper bound U4

(described in Subsection 4.4) has been reached (this is done
only for the minimum value of K). The sixth column (headed
with K = ∞) indicates the maximum percentage of satisfied
requests achievable with an unlimited number of workers on
the basis of upper bound U4. The last four columns show the
CPU times (measured in seconds) spent to obtain the solu-
tions for K = 1, 2, 3, 4, respectively. In such columns, we
emphasize in boldface the cases where the maximum CPU
time limit has been reached, and therefore, there is no guar-
antee that the solution yielded by CPLEX is optimal. The
average results on each group of instances with the same size
are reported in Table 4; the meaning of the columns is similar
to the one of Table 3.

Concerning the quality of the obtained solutions, we note
that with K = 4 it is possible to satisfy a high percentage of
relocation requests (on average around 83%), with an average
gap of only 7% with the maximum number of requests that
may be satisfied with an unlimited number of workers. Three
workers are already sufficient to satisfy all instances with 10
requests and K = 3 seems to be also the suitable number of
workers to be used for the instances up to 30 requests, because
the average marginal improvement switching from K = 3 to
K = 4 is only 3.11%.

Concerning the CPU time, the MILP Formulation (1)–(12)
with the speedup techniques is able to solve on average
instances up to 20 requests in few seconds, the instances
with 30 requests in few minutes, while it can require sev-
eral minutes to solve the instances of greater sizes (for 20
instances, the maximum CPU time allowed is reached). We
can also notice that the CPU time of the instances with size
greater than 20 strongly depends on K (for K > 1, the CPU
time can also be the double of the one for K = 1). However,
we note that for some instances (e.g., Amat30_1, Amat30_2,
Amat40_1, Amat50_1) the CPU time can decrease when K
increases (for instance switching from K=3 to K=4). In such
cases, the marginal improvement in the number of satisfied
requests is small (even null for Amat30_1 and Amat30_2) and
therefore the MILP solver obtains easier the optimal solution
with an additional worker, because the feasible region for
K=4 contains the feasible region for K=3.

Table 5 presents the characteristics of the solutions
obtained considering only the instances with the minimum

TABLE 2. Main input data values used in the experiments.

Input data T (min) s′ (km/h) s′′ (km/h) q′ (min) q′′ (min) L (km) � (min)

Values 300 25 15 1 1 150 240



TABLE 3. Numerical results of MILP (1)–(12) with the speedup techniques.

Served % CPU

Instance K = 1 K = 2 K = 3 K = 4 K = ∞ K = 1 K = 2 K = 3 K = 4

Amat10_1 60.00 100.00 100.00 100.00 100.00 0.01 0.04 0.07 0.05
Amat10_2 60.00 100.00 100.00 100.00 100.00 0.01 0.03 0.03 0.04
Amat10_3 60.00 80.00 80.00 80.00 80.00 0.01 0.01 0.02 0.02
Amat10_4 40.00 80.00 100.00 100.00 100.00 0.01 0.02 0.14 0.22
Amat10_5 40.00 60.00 80.00 80.00 80.00 0.01 0.01 0.01 0.01
Amat20_1 50.00 100.00 100.00 100.00 100.00 0.38 0.21 1.09 0.38
Amat20_2 50.00 80.00 90.00 90.00 90.00 0.89 2.22 0.94 0.42
Amat20_3 50.00 70.00 80.00 80.00 80.00 4.78 21.42 0.19 0.28
Amat20_4 30.00 50.00 70.00 80.00 90.00 0.05 0.38 0.26 3.67
Amat20_5 30.00 50.00 70.00 80.00 90.00 0.04 0.16 0.36 1.33
Amat30_1 46.67 86.67 100.00 100.00 100.00 27.74 224.24 615.52 8.85
Amat30_2 46.67 80.00 93.33 93.33 93.33 1.62 35.46 153.96 7.35
Amat30_3 33.33 60.00 73.33 80.00 93.33 26.36 168.81 1327.92 1800.00
Amat30_4 33.33 53.33 66.67 80.00 93.33 0.67 2.48 17.59 17.94
Amat30_5 26.67 46.67 60.00 66.67 86.67 0.03 0.53 2.51 18.00
Amat40_1 40.00 75.00 85.00 95.00 95.00 1800.00 1800.00 1800.00 105.35
Amat40_2 35.00 65.00 80.00 80.00 90.00 410.41 1800.00 1800.00 1800.00
Amat40_3 30.00 55.00 75.00 80.00 90.00 47.78 1800.00 1800.00 1800.00
Amat40_4 25.00 45.00 55.00 65.00 85.00 1.46 8.15 122.16 554.99
Amat40_5 25.00 50.00 60.00 70.00 90.00 0.53 4.27 25.55 59.84
Amat50_1 44.00 72.00 84.00 88.00 88.00 1800.00 1800.00 1800.00 1633.19
Amat50_2 36.00 60.00 72.00 80.00 84.00 566.56 1800.00 1800.00 1800.00
Amat50_3 32.00 52.00 64.00 72.00 84.00 67.57 1800.00 1800.00 1800.00
Amat50_4 24.00 44.00 56.00 64.00 80.00 1.22 13.47 162.97 1800.00
Amat50_5 32.00 52.00 64.00 72.00 88.00 0.29 13.54 78.18 116.27
Average 39.19 66.67 78.33 83.04 90.03 190.34 451.82 532.38 533.13

value of K for which the maximum value of satisfied
requests has been reached (e.g., K=2 for Amat10_1, K =3
for Amat10_5). After the instance name indicated in the first
column, the next four columns show the duration of the max-
imum relocation trip that each worker handles in a shift (the
field is empty if a worker is not used in a solution). The sixth
column represents the maximum travel time of a worker, the
seventh column the total travel time of all workers, and the
last three columns the total time spent by all the workers for,
respectively, driving an EV, riding a bicycle, and waiting. All
the times are expressed in minutes. We notice that on average
66% of the working time is spent by the workers for waiting,
23% for riding a bicycle, and only 11% for driving an EV.
The fact that the waiting time is so high can be due to two
reasons: (1) sometimes the workers really need to wait for
respecting the time windows of the relocation requests; (2)

the only objective of the EVRP is the optimization of the total
number of relocation satisfied requests and not the optimiza-
tion of the time spent by the workers (the latter is indirectly
optimized only if the time saved allows to serve additional
relocation requests).

In Table 6, we compare the results obtained with the
heuristic described in Subsection 4.2 with the results of the
MILP formulation. The first column indicates the instance
name, the successive three columns indicate the percentage
of satisfied requests for a number of workers K, respectively,
equal to 2, 3, and 4. The successive three columns indicate the
relative gap (expressed in percentage) between the requests
satisfied by the heuristic and by the MILP formulation (the
ratio is with the latter). Finally, the last three columns indicate
the CPU times in seconds to obtain the results for K = 2, 3, 4,
respectively. We notice that the heuristic obtains high-quality

TABLE 4. Average numerical results of MILP (1)–(12) with the speedup techniques.

Served % CPU

|P U D| K = 1 K = 2 K = 3 K = 4 K = ∞ K = 1 K = 2 K = 3 K = 4

10 52.00 84.00 92.00 92.00 92.00 0.01 0.02 0.05 0.07
20 42.00 70.00 82.00 86.00 90.00 1.23 4.88 0.57 1.22
30 37.33 65.33 78.67 84.00 93.33 11.28 86.30 423.50 370.43
40 31.00 58.00 71.00 78.00 90.00 452.04 1082.48 1109.54 864.04
50 33.60 56.00 68.00 75.20 84.80 487.13 1085.40 1128.23 1429.89



TABLE 5. Statistics on the longest trips and on the time spent by the workers biking, driving and waiting (in min).

Max Trip

Instance Worker 1 Worker 2 Worker 3 Worker 4 Max Travel Tot Travel Drive Bike Wait

Amat10_1 16.78 8.80 98.82 154.55 49.74 104.81 445.45
Amat10_2 9.15 10.77 100.45 160.87 38.20 122.67 378.73
Amat10_3 9.78 7.62 80.77 117.80 29.27 88.53 277.97
Amat10_4 9.59 9.78 4.79 61.29 137.14 32.00 105.14 762.86
Amat10_5 15.66 16.78 11.84 47.07 119.57 55.05 64.52 471.09
Amat20_1 16.78 9.59 133.31 249.84 91.24 158.60 350.16
Amat20_2 9.78 11.07 6.62 98.59 232.76 65.89 166.87 667.24
Amat20_3 13.47 16.86 11.41 81.70 219.47 90.40 129.07 458.36
Amat20_4 11.36 7.09 13.47 4.72 63.37 196.43 63.98 132.45 1003.57
Amat20_5 16.86 11.41 15.66 9.21 88.09 237.89 92.42 145.47 962.11
Amat30_1 16.42 14.79 11.07 165.50 359.08 119.09 239.99 467.64
Amat30_2 11.53 9.78 9.78 143.99 314.41 102.29 212.11 525.11
Amat30_3 8.21 9.78 14.79 11.53 94.49 350.16 103.08 247.09 560.91
Amat30_4 11.41 14.79 16.78 9.59 97.00 337.17 114.99 222.19 707.43
Amat30_5 9.39 11.53 11.07 16.86 95.18 308.35 86.80 221.55 865.32
Amat40_1 16.78 12.41 16.86 9.33 148.43 484.27 174.30 309.97 694.62
Amat40_2 11.53 11.07 14.79 144.20 390.89 131.82 259.07 451.99
Amat40_3 9.78 9.39 11.53 14.79 117.78 414.70 123.55 291.15 621.99
Amat40_4 9.78 16.78 9.39 11.53 114.26 375.72 117.85 257.87 824.28
Amat40_5 12.41 9.06 16.78 9.21 129.39 365.76 111.96 253.80 550.21
Amat50_1 9.78 9.59 16.86 11.84 154.59 521.53 177.97 343.57 621.35
Amat50_2 11.53 14.79 9.59 9.15 156.50 497.69 154.20 343.49 488.50
Amat50_3 14.79 11.53 11.53 9.78 156.38 448.65 159.28 289.37 694.23
Amat50_4 9.39 9.78 11.53 16.78 138.33 414.19 127.43 286.76 785.81
Amat50_5 11.84 9.78 12.41 16.78 155.13 425.90 151.55 274.35 765.36

solutions with often by far less CPU time of the MILP for-
mulation. Indeed the average relative gap with the MILP is
less than 3.28%, and on average the heuristic CPU time is
less than half of that one necessary for the MILP.

Table 7 compares the performances of the four methods
to obtain upper bounds described in Subsections 4.3 and 4.4.
The first column indicates the instance name, the Columns
2, 3, and 4 indicate the values of upper bound U1, expressed
as percentage on the total number of requests, for a number
of workers K, respectively, equal to 2, 3, and 4. The fifth
column has the same meaning for the upper bound U2 since
it yields the same results for K = 2, 3, and 4: this seems to
happen because, removing Constraints (7), already two work-
ers are able to satisfy a high number of relocation requests,
and therefore, there is no improvement switching to K = 3
or K = 4. The successive three columns indicate the values
of upper bound U3. The ninth column contains the results
for the upper bound U4. Finally, the last three columns indi-
cate the relative gap (expressed in percentage) between the
best of the three bounds and the optimum value z* obtained
with MILP (1)–(12) (or the value of the best feasible solution
found if the CPU time limit has been reached), represented
by the following:

100
min {U1, U2, U3, U4} − z∗

z∗
We do not report the CPU time to generate the upper

bounds, because for U1 the CPU time is given by the sixth

column of Table 3, while for U2, U3, and U4, the CPU time
is negligible being always less than 1 s (on average 0.12 s).
Concerning the quality of the upper bounds, we notice that
they are by far better for K = 4 than for K = 2, 3 since in the
former case, the relative gap with the CPLEX solution value
is on average 3.33% against a value around 11% for K = 2,3.
Moreover, we observe that in general there is no domination
between the two upper bound methods U1 and U2. Indeed
for K = 2, U1 < U2 in 16 cases on 25, but for K = 3, 4, U2 ≤
U1 is always true. The deterioration of the quality of upper
bound U1 when K increases probably depends on the fact
that the value U1 linearly increases with K and for the high-
est values of K, it easily reaches the total number of requests.
Also between the two upper bound methods U1 and U4 in
general there is no domination since for K = 2, U1 < U4 in
16 cases on 25, but for K = 3, the number of cases decreases
to 4 against 13 cases with U4 < U1 and for K = 4, it always
results U4 ≤ U1. While U2 almost dominates U4 since it
always results U2 ≤ U4 except for an instance (Amat20_3).
Upper bound U3 yields performances very similar to those
concerning upper bound U4, but slightly better being U3 <
U4 in 5 cases for K = 2 and in 3 cases for K = 3 while U3 = U4

in any other case. Therefore, considering also that the CPU
time required by U2 is by far less than the one for U1, we
can conclude that in our test bed the most convenient upper
bound method is U2 for K ≥ 3.

Finally, we note that for two instances (Amat50_2 and
Amat50_4 with K=4), for which the CPU time limit was



TABLE 6. Comparison of the heuristic results with the MILP results.

Served by heuristic % Relative gap % CPU

Instance K = 2 K = 3 K = 4 K = 2 K = 3 K = 4 K = 2 K = 3 K = 4

Amat10_1 80.00 100.00 100.00 20.00 0.00 0.00 0.21 0.03 0.01
Amat10_2 80.00 100.00 100.00 20.00 0.00 0.00 0.02 0.01 0.03
Amat10_3 80.00 80.00 80.00 0.00 0.00 0.00 0.02 0.02 0.01
Amat10_4 80.00 100.00 100.00 0.00 0.00 0.00 0.06 0.03 0.04
Amat10_5 60.00 80.00 80.00 0.00 0.00 0.00 0.02 0.02 0.03
Amat20_1 100.00 100.00 100.00 0.00 0.00 0.00 0.08 0.15 0.21
Amat20_2 80.00 90.00 90.00 0.00 0.00 0.00 0.63 0.77 0.79
Amat20_3 70.00 80.00 80.00 0.00 0.00 0.00 4.74 4.83 4.69
Amat20_4 50.00 70.00 80.00 0.00 0.00 0.00 0.02 0.06 0.07
Amat20_5 50.00 60.00 70.00 0.00 14.29 12.50 0.04 0.11 0.06
Amat30_1 86.67 93.33 100.00 0.00 6.67 0.00 31.03 30.52 30.22
Amat30_2 80.00 86.67 93.33 0.00 7.14 0.00 2.13 2.60 2.36
Amat30_3 53.33 66.67 73.33 11.11 9.09 8.33 27.86 26.64 26.87
Amat30_4 53.33 53.33 53.33 0.00 20.00 33.33 0.74 1.09 0.81
Amat30_5 46.67 60.00 66.67 0.00 0.00 0.00 0.06 0.19 0.06
Amat40_1 75.00 85.00 95.00 0.00 0.00 0.00 1800.00 1800.00 1800.00
Amat40_2 65.00 75.00 80.00 0.00 6.25 0.00 671.97 650.69 650.25
Amat40_3 55.00 70.00 80.00 0.00 6.67 0.00 65.19 65.15 64.71
Amat40_4 45.00 55.00 65.00 0.00 0.00 0.00 1.23 1.25 1.43
Amat40_5 50.00 60.00 70.00 0.00 0.00 0.00 0.49 0.53 0.49
Amat50_1 72.00 84.00 88.00 0.00 0.00 0.00 1800.00 1800.00 1800.00
Amat50_2 60.00 68.00 76.00 0.00 5.56 5.00 745.96 787.55 787.54
Amat50_3 52.00 60.00 68.00 0.00 6.25 5.56 93.77 95.39 99.17
Amat50_4 44.00 56.00 64.00 0.00 0.00 0.00 1.71 1.33 1.34
Amat50_5 52.00 64.00 72.00 0.00 0.00 0.00 0.76 0.47 0.51
Average 64.80 75.88 80.99 2.04 3.28 2.59 209.95 210.78 210.87

TABLE 7. Performances of upper bounds U1, U2, U3, and U4.

U1 U2 U3 U4 Relative gap %

Instance K = 2 K = 3 K = 4 K = 2,3,4 K = 2 K = 3 K = 4 K = ∞ K = 2 K = 3 K = 4

Amat10_1 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00 0.00 0.00
Amat10_2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00 0.00 0.00
Amat10_3 100.00 100.00 100.00 80.00 80.00 80.00 80.00 80.00 0.00 0.00 0.00
Amat10_4 80.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00 0.00 0.00
Amat10_5 80.00 100.00 100.00 80.00 80.00 80.00 80.00 80.00 33.33 0.00 0.00
Amat20_1 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00 0.00 0.00
Amat20_2 100.00 100.00 100.00 90.00 90.00 90.00 90.00 90.00 12.50 0.00 0.00
Amat20_3 100.00 100.00 100.00 90.00 80.00 80.00 80.00 80.00 14.29 0.00 0.00
Amat20_4 60.00 90.00 100.00 80.00 90.00 90.00 90.00 90.00 20.00 14.29 0.00
Amat20_5 60.00 90.00 100.00 80.00 90.00 90.00 90.00 90.00 20.00 14.29 0.00
Amat30_1 93.33 100.00 100.00 100.00 100.00 100.00 100.00 100.00 7.69 0.00 0.00
Amat30_2 93.33 100.00 100.00 93.33 93.33 93.33 93.33 93.33 16.67 0.00 0.00
Amat30_3 66.67 100.00 100.00 86.67 93.33 93.33 93.33 93.33 11.11 18.19 8.33
Amat30_4 66.67 100.00 100.00 86.67 93.33 93.33 93.33 93.33 25.01 29.99 8.33
Amat30_5 53.33 80.00 100.00 73.33 86.67 86.67 86.67 86.67 14.28 22.22 9.99
Amat40_1 80.00 100.00 100.00 95.00 95.00 95.00 95.00 95.00 6.67 11.76 0.00
Amat40_2 70.00 100.00 100.00 90.00 87.50 87.50 90.00 90.00 7.69 9.38 12.50
Amat40_3 60.00 90.00 100.00 90.00 90.00 90.00 90.00 90.00 9.09 20.00 12.50
Amat40_4 50.00 75.00 100.00 70.00 80.00 82.50 85.00 85.00 11.11 27.27 7.69
Amat40_5 50.00 75.00 100.00 75.00 90.00 90.00 90.00 90.00 0.00 25.00 7.14
Amat50_1 88.00 100.00 100.00 88.00 88.00 88.00 88.00 88.00 22.22 4.76 0.00
Amat50_2 72.00 100.00 100.00 80.00 84.00 84.00 84.00 84.00 20.00 11.11 0.00
Amat50_3 64.00 96.00 100.00 84.00 82.00 84.00 84.00 84.00 23.08 31.25 16.67
Amat50_4 48.00 72.00 96.00 64.00 74.00 78.00 80.00 80.00 9.09 14.29 0.00
Amat50_5 64.00 96.00 100.00 72.00 86.00 88.00 88.00 88.00 23.08 12.50 0.00
Average 12.28 10.65 3.33



TABLE 8. Statistics on the battery charge level of all relocation requests considered in each instance.

Instance min_R_P max_R_P av_R_P dev_R_P min_R_D max_R_D av_R_D dev_R_D

Amat10_1 0.40 1.00 0.78 0.21 0.30 0.60 0.48 0.12
Amat10_2 0.40 1.00 0.74 0.20 0.30 0.70 0.54 0.14
Amat10_3 0.30 1.00 0.80 0.26 0.40 0.90 0.64 0.16
Amat10_4 0.40 1.00 0.72 0.21 0.40 0.90 0.58 0.17
Amat10_5 0.20 0.90 0.50 0.24 0.40 0.80 0.56 0.14
Amat20_1 0.20 1.00 0.63 0.26 0.30 0.70 0.48 0.12
Amat20_2 0.20 1.00 0.71 0.27 0.30 0.90 0.56 0.16
Amat20_3 0.30 1.00 0.82 0.23 0.40 0.90 0.64 0.14
Amat20_4 0.30 1.00 0.71 0.24 0.40 0.90 0.61 0.13
Amat20_5 0.20 1.00 0.66 0.27 0.30 0.80 0.55 0.14
Amat30_1 0.20 1.00 0.65 0.27 0.30 0.70 0.47 0.12
Amat30_2 0.20 1.00 0.64 0.25 0.30 0.90 0.53 0.14
Amat30_3 0.30 1.00 0.74 0.24 0.30 0.90 0.62 0.15
Amat30_4 0.30 1.00 0.75 0.24 0.30 0.90 0.57 0.15
Amat30_5 0.20 1.00 0.58 0.26 0.30 0.80 0.57 0.16
Amat40_1 0.20 1.00 0.65 0.27 0.30 0.70 0.47 0.11
Amat40_2 0.20 1.00 0.67 0.27 0.30 0.90 0.56 0.15
Amat40_3 0.20 1.00 0.67 0.27 0.30 0.90 0.59 0.15
Amat40_4 0.20 1.00 0.65 0.27 0.30 0.90 0.59 0.15
Amat40_5 0.20 1.00 0.64 0.25 0.30 0.80 0.54 0.16
Amat50_1 0.20 1.00 0.58 0.27 0.30 0.70 0.48 0.11
Amat50_2 0.20 1.00 0.60 0.28 0.30 0.90 0.55 0.14
Amat50_3 0.20 1.00 0.60 0.28 0.30 0.90 0.57 0.14
Amat50_4 0.20 1.00 0.58 0.28 0.30 0.90 0.57 0.14
Amat50_5 0.20 1.00 0.58 0.25 0.30 0.80 0.52 0.16

reached solving the MILP (1)–(12), the gap is equal to 0,
allowing to conclude that the solutions found by CPLEX are
optimal for these two cases too.

6. CONCLUSIONS

23,000 road links) considering up to 50 relocation requests
and a number of workers K = 1, 2, 3, 4. The results show that
with K = 4 a high percentage of relocation requests can be
satisfied: on average 83%, with an average gap of only 7%
with the maximum number of requests that may be satisfied
with an unlimited number of workers. The employment of
K = 3 workers is already sufficient to satisfy all instances with
10 requests, and this seems to be also the suitable number of
workers to be used for the instances up to 30 requests since in
this case, the average marginal improvement switching from
K = 3 to K = 4 is only 3.11%.

Concerning the CPU time, while for instances up to 20
requests the MILP formulation solved by CPLEX 11.0 on a
PC Intel Xeon 2.80 GHz with 2 GB RAM requires on aver-
age less than 5 s, it can require a few minutes for instances
up to 30 requests, and more than 15 min for instances with
40 and 50 requests (for 20 instances, the maximum CPU
time allowed of 30 min has been reached). To overcome
such computational difficulties due to the non-deterministic
polynomial-time (NP)-hardness of the EVRP, we have also
developed a MILP-based heuristic and three upper bound
methods (in addition to the one for an unlimited number of
workers) to estimate the quality of the heuristic when the
optimal solution cannot be found by CPLEX.

The experiments on the same test bed used for the MILP
formulation show that the heuristic obtains high quality solu-
tions with by far less CPU time than solving the MILP by
CPELX. Indeed the average relative gap with the CPLEX
solution values is less than 3.28%, and on average the CPU
time is less than half the one necessary to CPLEX.

In this work, a new approach to redistribute the vehicles of 
a one-way electric car sharing service has been proposed. The 
EVs are transferred by a team of workers, who can travel from 
a delivery point to a pickup point using folding bicycles that 
can be loaded in the trunk of the EVs. Such approach gener-
ates a new challenging Paired Pickup and Delivery Problem 
with Time Windows for which we propose the first MILP for-
mulation. The formulation is based on a graph modeling of 
the problem rather than directly on the road network for two 
reasons: avoiding nonelementary cycles for the worker route 
representation and reducing the number of binary variables 
used. To further reduce the number of binary variables, we 
established necessary conditions for which a pickup reloca-
tion request and a delivery relocation request are compatible. 
Such conditions are also used in a preprocessing algorithm 
to eliminate from the instances possible relocation requests 
that certainly cannot be satisfied.

To evaluate the impact of the number of employed workers 
on the number of satisfied relocation requests, we developed a 
method to compute an upper bound on the maximum number 
of requests that can be satisfied with an unlimited number of 
workers.

We tested the MILP formulation of the EVRP on a test bed 
of 100 instances based on the road network of Milan (about



TABLE 9. Statistics on the time windows of all relocation requests considered in each instance.

Instance min_TW_P max_TW_P av_TW_P dev_TW_P min_TW_D max_TW_D av_TW_D dev_TW_D

Amat10_1 30 100 48.00 27.13 30 80 46.00 17.72
Amat10_2 30 100 46.00 27.28 30 80 51.00 18.00
Amat10_3 20 88 44.00 23.66 10 45 33.00 12.08
Amat10_4 18 35 25.60 6.28 10 25 21.00 5.83
Amat10_5 20 25 22.00 2.45 20 25 21.00 2.00
Amat20_1 27 180 58.90 45.79 30 80 53.50 16.59
Amat20_2 20 100 47.80 27.63 10 80 44.50 19.93
Amat20_3 20 88 36.70 19.33 10 45 34.00 10.91
Amat20_4 15 40 25.00 7.60 10 35 24.00 7.68
Amat20_5 15 27 21.70 3.47 10 35 23.50 6.73
Amat30_1 27 180 63.93 42.27 25 80 49.67 16.07
Amat30_2 15 100 47.33 25.38 10 80 41.67 19.38
Amat30_3 20 88 35.33 16.31 10 60 37.00 11.94
Amat30_4 15 40 25.87 7.24 10 50 25.67 9.98
Amat30_5 15 47 22.93 7.74 10 35 22.93 6.20
Amat40_1 27 180 64.35 37.20 25 80 51.75 16.98
Amat40_2 15 100 43.35 23.36 10 80 42.25 17.64
Amat40_3 15 88 36.25 16.75 10 70 36.00 14.37
Amat40_4 15 47 26.75 8.28 10 60 27.45 12.19
Amat40_5 10 47 22.25 8.31 10 35 21.95 6.91
Amat50_1 23 180 57.20 36.32 20 80 46.92 18.09
Amat50_2 15 100 39.60 22.25 10 80 36.52 17.20
Amat50_3 15 88 34.32 15.52 10 70 33.12 14.14
Amat50_4 15 47 26.32 8.35 10 60 27.08 11.13
Amat50_5 10 47 22.32 8.50 10 35 22.28 6.48

Future work on the EVRP concerns the investigation of
a multiobjective version of the problem where beside the
maximization of the total number of the satisfied relocation
requests, also the optimization of the working time is con-
sidered. Concerning the instances, a possible improvement
consists in the generation of the pickup and delivery requests
in more verisimilar ways exploiting the origin-destination
traffic matrix yielded by the Milan transport agency. More-
over, we have also an interest in investigating the combination
of the EVRP operator-based relocation approach with pric-
ing policies, that is, the promotion of the vehicle relocation
made by the users by varying the rental fare in function of
the vehicles availabilities at the stations.

APPENDIX

Table 8 shows some statistics on the battery charge level
of the considered relocation requests in each instance of the
experimental campaign presented in Section 5. The first col-
umn indicates the instance name, the successive four columns
indicate, respectively, the minimum, the maximum, the aver-
age, and the deviation value of the battery charge levels on all
pickup requests; the successive four columns have the same
meaning for the delivery requests.

Table 9 shows some statistics on the time window size
of the considered relocation requests in each instance (the
meaning of the columns is analogous to the one of Table 8).

Finally the columns of Table 10 show for each instance, the
number of pickup requests, the number of delivery requests,
the cardinality of the arc set A defined in Section 3 to model

TABLE 10. Information on the number of relocation requests and on the
arcs considered in the model for each instance.

Instance |P| |D| |A| |Ã| Arc saving %

Amat10_1 5 5 60 38 36.67
Amat10_2 5 5 60 37 38.33
Amat10_3 4 5 49 33 32.65
Amat10_4 5 5 60 32 46.67
Amat10_5 4 5 49 27 44.90
Amat20_1 10 10 220 114 48.18
Amat20_2 10 10 220 122 44.55
Amat20_3 8 8 144 100 30.56
Amat20_4 10 10 220 100 54.55
Amat20_5 9 10 199 99 50.25
Amat30_1 15 15 480 236 50.83
Amat30_2 15 15 480 228 52.50
Amat30_3 14 15 449 244 45.66
Amat30_4 15 15 480 221 53.96
Amat30_5 14 15 449 192 57.24
Amat40_1 20 20 840 418 50.24
Amat40_2 20 20 840 390 53.57
Amat40_3 20 20 840 374 55.48
Amat40_4 20 20 840 340 59.52
Amat40_5 19 20 799 332 58.45
Amat50_1 25 25 1300 592 54.46
Amat50_2 25 25 1300 554 57.38
Amat50_3 25 25 1300 537 58.69
Amat50_4 25 25 1300 502 61.38
Amat50_5 24 25 1249 500 59.97

the EVRP, the cardinality of the reduced arc set Ã introduced
in Section 4 and the percentage cardinality saving passing
from A to Ã.
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