
Received September 21, 2020, accepted October 20, 2020, date of publication October 23, 2020, date of current version November 9, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3033464

Big Data Velocity Management–From Stream to
Warehouse via High Performance Memory
Optimized Index Join
M. ASIF NAEEM 1,2, (Member, IEEE), FARHAAN MIRZA 2, (Member, IEEE),
HABIB ULLAH KHAN 3, (Member, IEEE), DAVID SUNDARAM4, NOREEN JAMIL1,
AND GERALD WEBER5
1IKMA Laboratory, Department of Computer Science, National University of Computer and Emerging Sciences, Islamabad 44000, Pakistan
2School of Engineering, Computer, and Mathematical Sciences, Auckland University of Technology, Auckland 1010, New Zealand
3Department of Accounting and Information Systems, College of Business and Economics, Qatar University, Doha, Qatar
4Department of Information Systems and Operations Management, The University of Auckland, Auckland 1010, New Zealand
5Department of Computer Science, The University of Auckland, Auckland 1010, New Zealand

Corresponding author: M. Asif Naeem (mnaeem@aut.ac.nz)

ABSTRACT Efficient resource optimization is critical to manage the velocity and volume of real-time
streaming data in near-real-time data warehousing and business intelligence. This article presents a memory
optimisation algorithm for rapidly joining streaming data with persistent master data in order to reduce
data latency. Typically during the transformation phase of ETL (Extraction, Transformation, and Loading)
a stream of transactional data needs to be joined with master data stored on disk. To implement this process,
a semi-stream join operator is commonly used. Most semi-stream join operators cache frequent parts of the
master data to improve their performance, this process requires careful distribution of allocated memory
among the components of the join operator. This article presents a cache inequality approach to optimise
cache size and memory. To test this approach, we present a novel Memory Optimal Index-based Join
(MOIJ) algorithm. MOIJ supports many-to-many types of joins and adapts to dynamic streaming data.
We also present a cost model for MOIJ and compare the performance with existing algorithms empirically
as well as analytically. We envisage the enhanced ability of processing near-real-time streaming data using
minimal memory will reduce latency in processing big data and will contribute to the development of high-
performance real-time business intelligence systems.

INDEX TERMS Big data, near-real-time data warehouse, memory optimisation, performance optimisation,
index-based join, cache inequality, high volume semi-stream data.

I. INTRODUCTION
Business intelligence people use data warehousing to cap-
ture relevant data (sense), analyze data (interpret), and pro-
duce valuable information that enables quick and effective
decisions (respond) [1] for their business. The fundamental
purpose of business intelligence systems [2], technologies,
and knowledge discovery processes [3] is to minimize the
time taken to capture all relevant data (data latency), analyze
the data (analysis latency) and take an informed effective
decision (decision latency) Figure 1. Data warehouse is an
integrated time-variant pool of data used to support business

The associate editor coordinating the review of this manuscript and

approving it for publication was Shajulin Benedict .

intelligence. Data warehousing technology has enabled
companies to organize and store large volumes of business
data in a form that can be analyzed [4]. For example Walmart
implemented the data warehouse and the initial Return on
Investment (ROI) analysis viewed the investment as a strate-
gic advantage over their competitors, however, the warehouse
faced several problems including performance in the initial
stages [5]. This is a common problem in large enterprises.
Researchers have contributed various solutions to deal with
the performance and optimisation challenges of voluminous
high velocity data.

The concept of near-real-time data warehousing is a step
towards minimizing the data latency in making user’s data
available in the data warehouse for analysis [7]. The tools and
techniques forminimizing this data latency and increasing the

195370
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-6785-7875
https://orcid.org/0000-0001-7684-9973
https://orcid.org/0000-0001-8373-2781
https://orcid.org/0000-0002-2543-2710

M. A. Naeem et al.: Big Data Velocity Management–From Stream to Warehouse via High Performance Memory Optimized Index Join

FIGURE 1. Data (Sense), Analysis (Interpret), and Decision (Respond) Latencies
(adapted from [6].

level of data freshness in the data warehouse are evolving at
a fast pace [8]–[12].

Initially, most data warehouses followed batch-oriented
concepts where a complete reload of data was performed in
each periodic cycle. Furthermore there used to be data con-
sistency issues because database applications applied exten-
sive caching and replication to boost performance [13]. This
coupled with mobile or ubiquitous devices (increasing the
data collection/access) posed performance challenges [14]
and query correctness issues in databases [15]. As a result
due to the high demand of up-to-date information, those
batch-oriented data warehouses were unfit to fulfill growing
and competitive business requirements. The most important
factor that influences an organization’s information need is its
dynamic competitiveness, and consequently, companies with
a dynamic supply chain [13] would need a faster transaction
and operations data system [11]. Therefore the mechanism
of loading data into warehouses was upgraded from a full
load to an incremental load, in which only new updates are
loaded to the warehouse [16]. While this approach is better
than the previous one, it is still only periodic as the new data
is reflected in the warehouse only after a certain period of
time.

To meet the high demand of data freshness by businesses,
batch-oriented and incremental refresh approaches are being
replaced with continuous data loading strategies [17]–[22].
According to these strategies data is being captured, trans-
formed, and loaded into the data warehouse on a continuous
basis. In the following sections we contextualize this problem
using an example, and outline our solution and contributions.

A. PROBLEM: NEAR REAL-TIME STREAM
DATA PROCESSING
The data warehouse often uses a different format for stor-
ing data compared to the operational data sources. The
source data therefore needs to be transformed into the for-
mat required by the data warehouse. Replacing of data

source key to surrogate key or enriching of master data to
the source data – also called content enrichment [23] is
a typical scenario of such transformation. To explain this
further we consider an example of a retail system where
sales transactions need to be transformed with the mas-
ter data before loading these to the data warehouse as
shown in Figure 2. The sales transactions extracted from the
data sources contain attributes productid(p_id), storeid(sid)
quantity(qty) and Date. Prior to loading these transactions
to the data warehouse they require enrichment of attributes
surrogatekey(s_key), vendorid(v_id), and price from themas-
ter data. Therefore a join operator is used to perform this
enrichment process under the transformation layer of ETL
(Extraction-Transformation-Loading).

In the context of near-real-time data warehousing, in which
a stream of transactions needs to be joined with the disk-
based master data, a semi-stream join operator is required.
The challenge for such semi-stream join operator is to deal
with the inputs coming from different sources at different
arrival rates. The sales transactions input is generated in the
form of a high volume stream with bursty nature while the
master data input is disk-based.

B. SOLUTION: MEMORY OPTIMISED INDEX JOINS
A possible solution for the above problem is using a semi-
stream join operator which is not trivial like simple static
tables join or full stream join operators. The reason for this
non-trivial nature is that, the access of disk-based master
data is significantly slower than the stream input because
of the disk I/O cost. This creates a bottleneck at the time
of join operation. The challenge for this scenario is to use
the available memory resources optimally among the join
components to eliminate this bottleneck.

An exiting SSBJ algorithm [24] mentioned in the related
work section below proposed a cache equation for the optimal
distribution of available memory among the join components.
However, the algorithm is limited to the scenario where the

VOLUME 8, 2020 195371

M. A. Naeem et al.: Big Data Velocity Management–From Stream to Warehouse via High Performance Memory Optimized Index Join

FIGURE 2. An example of stream-based join.

master data does not have index. In some scenario master
data can have index therefore, to address this type of research
challenge is important.

In this article we present a cache inequality approach
for deciding the optimal memory among the cache and the
other joins components particularly when the master data has
index. To implement this cache inequality we present a novel
semi-stream join algorithm called Memory Optimal Index-
based Join (MOIJ). The proposed algorithm is presented to
minimize the latency for processing streams data with disk-
basedmaster data. By using the newmemory equation we can
guarantee that the algorithm uses minimum amount of mem-
ory for producing the optimal service rate. In other words to
produce a given service rate an algorithm can determine the
minimum amount of memory. Also the algorithm uses tuple-
level cache to store the master data records appeared in the
stream most frequently. In addition to that MOIJ supports
many-to-many type of join between the stream and the index-
based master data which is useful for data cleaning operation
in data warehouse. Another advantage that MOIJ has over
SSBJ is guaranteed output against each disk access of the
master data. Since MOIJ access the master data using a join
attribute value in the stream as an index, at least one stream
tuple match in the master data is guaranteed. While SSBJ
reads the master data sequentially without an index and it
is possible to have no stream tuple match against a disk
read of the master data. This also means that SSBJ loads the
unmatched partitions of master data into memory with equal
frequency of loading the matched partitions which generates
an unnecessary I/O cost without any join output.

Our main contributions contrary to existing Cache Join
(CJ) [25] can be summarized as follows:

1) Cache equation: we present a cache equation (similar
to SSBJ) for index-based semi-stream joins for optimal
memory distribution among the join components. The
equation ensures that the algorithm consumes mini-
mum amount of memory to achieve the required value
of service rate.

2) A novel algorithm: we present a novel algorithm
calledMOIJ, which implements the following features:
a) MOIJ operates with minimummemory. The algo-

rithm implements the new cache equation and

therefore, acquires a minimum amount of mem-
ory for a given service rate.

b) MOIJ uses tuple level cachemeaning every single
master data tuple stored in the cache is frequent.
This facilitates continuous transition into main
memory join to increase service rate.

c) Contrary to SSBJ, MOIJ guaranties producing of
at least one stream tuple as an output against each
disk access of the master data.

d) After the tuning phase, MOIJ adapts to online
changes in stream data as well as the master data.

3) Performance improvement: our experimental data
shows that MOIJ performs significantly better than
other join algorithms for skewed stream data which is
an important characteristic in sales data.

4) Costmodel:we develop a cost model for our algorithm
and evaluate this empirically.

The rest of the paper is structured as follows.
Section II presents related work in this area. The method-
ology in Section III articulates how we conducted the
research. In Section IV the paper presents theorems, algo-
rithms, and architectures. Our approach towards the systems
development and experimentation is presented in Section V,
followed by mathematical evaluation of memory and cost
models in Section VI. The empirical evaluation of memory
and performance analysis is discussed in Section VII. Finally,
Section VIII concludes the paper.

II. RELATED WORK
Processing data immediately after a business event will cause
reduction in data latency and provide analysis of data to occur
soon after as shown in 1. Semi-stream joins are a mechanism
that can help us in reducing the data latency and even the anal-
ysis latency. Typically considering master data these semi-
stream joins are of two types (a) index-based semi-stream
joins (b) non-index-based semi-stream joins. Index-based
semi-stream joins assume index on themaster data while non-
index-based semi-stream joins don’t have this requirement.
In the following we present our literature review against each
type however, we restrict it to only hash-based semi-stream
joins as this is directly related to our work.

195372 VOLUME 8, 2020

M. A. Naeem et al.: Big Data Velocity Management–From Stream to Warehouse via High Performance Memory Optimized Index Join

A. NON-INDEX-BASED SEMI-STREAM JOIN
MESHJOIN (Mesh Join) [26] is a popular algorithm in the
area of semi-stream processing that is designed especially for
joining a stream of incoming data with a disk-based master
data. This is a typical scenario in real-time data warehouses.
MESHJOIN basically implements a hash join where the
master data uses as the probe input while the stream data
uses as the build input. One feature of MESHJOIN is that
it builds the hash table in stages by loading the stream data
in chunks. A limitation of the algorithm is that it does not
make any assumptions about the distribution of the streaming
data and the organization of the master data. The results
show that the algorithm performs worse with skewed or non-
uniform data [26]. AlsoMESHJOIN suffers with unnecessary
dependencies among its components.

A variant version of MESHJOIN called R-MESHJOIN
(reduced Mesh Join) [27] was proposed to remove these
dependencies. As a result the performance improved slightly
in R-MESHJOIN as compared to MESHJOIN. However,
R-MESHJOIN also does not consider the aspect of skew in
the streaming data.

Recently a cache based algorithm called Semi-Stream Bal-
anced Join (SSBJ) has been presented in the literature [24].
The algorithm extends existing MESHJOIN by adding a
cache module to it. Also the new algorithm implements a
cache equation to optimally distribute the available memory
between the cache module and the other join components.
The cache equation ensures that the algorithm consumes min-
imum amount of memory in order to achieve a required ser-
vice rate. SSBJ is a best memory efficient algorithm among
the non-index types of joins. However, there can be a scenario
where the master data has index and in this case the algorithm
due to its nature of accessing master data sequentially can not
be applied. The focus of this work is to develop a join for this
type of the master data.

B. INDEX-BASED SEMI-STREAM JOIN
The Index Nested Loop Join (INLJ) [28] is an algorithm that
can also be used to join the streaming data with disk-based
master data. However, INLJ is based on non-clustered with
respect to the join attribute in the streaming data. E.g., if the
join is processed over product_id between the the streaming
data and the master data then the master data is indexed by
product_id and in this case it will be non-clustered index.
Because of this non-clustered index access INLJ is known to
be inefficient as the algorithm cannot amortize the expensive
disk I/O cost over a rapid incoming stream of data. Eventually
the algorithm produces a low service rate.

Another algorithm that attempts to improve MESHJOIN
is the partition-based join [29]. This algorithm introduces
a two-level hash table. In first level the algorithm attempts
to join incoming stream tuples as they arrive. In case of no
join, the algorithm executes the second level where the stream
tuples are moved to a partition-based waiting area. However,
the waiting of a tuple till execution is unbounded. Moreover,
the algorithm uses cache at the page-level, which means there

is no guarantee that every tuple on the page is frequent that
makes the use of the cache memory suboptimal.

Another algorithm called the Semi-Streamed Index Join
(SSIJ) [30] was tried to join streaming data with disk-based
master data. The algorithm consists of three phases. The first
phase called pending phase is when the stream input needs
to wait in a waiting buffer unless the buffer size crosses the
predefined threshold limit or the stream terminates. When the
size of input buffer is greater than the predefined threshold
limit, the algorithm advances to the second phase called
online phase, in which the algorithm reads stream tuples
from the waiting buffer and finds the matching disk tuples
stored in cache blocks. In case if the required disk tuple is
found in the cache, the algorithm executes join and produces
the tuple as an output. In case if the ‘required tuple’ is not
available in the cache, the algorithm moves the stream tuple
to a stream buffer where it awaits for the next phase called
join phase. The algorithm induces a preset threshold on the
stream buffer. During the join phase a disk block is loaded to
the cache if the size of the stream buffer crosses the threshold
value. Then the algorithm performs join between the tuples
in the stream buffer and the tuples in the loaded disk block.
The algorithm implements a priority counter for each disk
block loaded into the cache and based in that the algorithm
decides about the disk blocks that need to be kept in memory.
However similar to partition-based join, SSIJ uses page-level
cache which means there is no guarantee that every tuple on
the page is frequent that makes the use of the cache memory
suboptimal. Also none of the above algorithms can deal the
bursty nature of the streaming data.

The algorithm for joining stream data with a disk-based
relation by Derakhshan et al. [31] uses a cache to store
frequent master data tuples and a waiting queue for stream
tuples that are not joined through the cache. The algorithm
processes this waiting queue in batches. The primary focus
of the algorithm is to preserve the arrival order of the stream
tuples in the output. While useful for some applications, this
order is not important in most applications such as the ones
we consider. Preserving this order can cause delays in produc-
ing outputs for some stream tuples, e.g. a stream tuple already
processed through the cache cannot be output if its prede-
cessor tuple is still in the waiting queue. Derakhshan and
others also demonstrated the role of stream-relation joins in a
federated stream processing system called MaxStream [32].
Apache Flink is another architecture for processing stream
and batch data [33]. The key focus of this architecture is
processing stream and batch data independently rather than
a join operation between stream and disk data.

Another algorithm calledHYBRIDJOIN (Hybrid Join) [34]
was proposed to deal with the bursty and non-uniform
characteristics of the streaming data. The algorithm joins
the streaming data with a historical master under limited
available memory resources. The algorithm uses a clustered
index on the join attribute in the master data. Due to this
the algorithm loads only those pages of the master data
into the memory which at least have one matching tuple

VOLUME 8, 2020 195373

M. A. Naeem et al.: Big Data Velocity Management–From Stream to Warehouse via High Performance Memory Optimized Index Join

FIGURE 3. Many-to-many join example.

in the stream data whereas there is no such guarantee in
MESHJOIN and R-MESHJOIN. The other issue that the
algorithm has addressed was to deal with the intermittency
in the streaming data. Although by using the index on the
master data HYBRIDJOIN amortizes the expensive disk I/O
cost over the high speed input stream however, there is a
possibility to scale up the performance if the aspect of skew
in the stream data is to be considered. Also the algorithm does
not apply for many-to-many type of joins.

Cache Join (CJ) [25] is an optimised version of
HYBRIDJOIN that presents an additional cache component
to deal with skewed stream data optimally. In this section we
present CJ in details and highlight our observations that the
memory distribution among the components of CJ algorithm
is suboptimal.

The CJ algorithm includes two join phases, disk-probing
phase and stream-probing phase. In the disk-probing phase
the algorithm uses the disk-based master data R as the probe
input whereas in the stream-probing phase the algorithm uses
the stream as the probe input. For each tuple from the stream
data, the algorithm first executes the stream-probing phase
where the algorithm looks for a match to the stream tuple,
and if match is not found, the algorithm forwards the tuple to
the second phase i.e. disk-probing phase.

In terms of memory usage the key components for the
algorithm are two hash tables, HS storing stream tuples and
HR storing data from disk-based relation. The other compo-
nents of the algorithm are disk buffer denoted byDB, a queue
denoted by Q and a tiny stream buffer denoted by SB. Master
data R and stream of sales transactions S are the input sources
for the algorithm. HR in the stream-probing phase retains
the popular tuples of R in memory permanently. While HS
stores the stream tuples which do not find matched tuples
in HR.

The algorithm moves back and forth between disk-probing
and the stream-probing phases. As mentioned above. For
each stream tuple the algorithm first finds the matching tuple
from HR. If matched tuple is identified the algorithm it pro-
duces the output for that stream tuple otherwise loads that
stream tuple to HS . A stream-probing phase terminates if
HS gets filled or if no stream tuple in SB is waiting. Once
the stream-probing phase terminates the disk-probing phase
begins. In the disk-probing phase the algorithm reads the last
element from the queue and loads the relevant partition of R
into DB by using this element as an index.
Unlike Partitioned Join and SSIJ, CJ uses a tuple-level

cache rather than a page-level cache to utilize the cache
effectively.We identified two primary limitations in CJ.First,
the algorithm doesn’t support many-to-many relationship due
to a clustered index on R. This is a common drawback in
most of the semi-stream joins which use index on R [25],
[30], [34], [35]. Second, the memory distribution between
the stream-probing phase and the disk-probing phase can be
suboptimal. Consider an example of join execution between
a stream of customers’ transaction and suppliers as shown
in Figure 3. In the example, R contains a list of suppliers
with their partID(s) and some other information. HR keeps
the frequent tuples of R in cache while HS stores stream
data which includes a list of customers’ sales transactions.
A join is needed to enrich some supplier details from R to the
stream data required in the data warehouse. In the example we
assume that the tuples in R and the stream are equal in size.
We also assume the threshold value that the algorithm uses to
determine if a tuple is frequent is equal to 3. By observingHS
from the figure we consider two cases.

In the first case where partID is 10, HS contains three cus-
tomer requests against that partID. According to the thresh-
old value, this partID is frequent in the stream, therefore

195374 VOLUME 8, 2020

M. A. Naeem et al.: Big Data Velocity Management–From Stream to Warehouse via High Performance Memory Optimized Index Join

FIGURE 4. Phases of the research methodology.

according to CJ all suppliers in R related to this partID will
be switched into HR. However, the total number of suppliers
in R who produce this partID are 4, so switching this partID
into HR (cache) is not an optimal option with respect to the
memory consumption. In other words, HS is a right place to
process this partID. In the second case where partID is 30,
we also have three customers’ transaction against that partID.
However, there are two suppliers who produce that partID.
Contrary to the first case, switching of partID 30 into HR is
a right option as it will consume less memory. Contrarily CJ
and other related approaches [30], [35] do not consider this
thinking in their implementations. Consequently, the distribu-
tion of memory among all join components is not optimal and
it negatively affects the performance. We present a solution
to the above issues by proposing the MOIJ algorithm. The
following section presents the research methodology that we
adopted in our approach.

III. RESEARCH METHODOLOGY
The core objective of this work is to design, implement,
test, and evaluate the proposed MOIJ algorithm. For this
study, we adapted the design science research methodology
presented by Nunamaker et al. [36] and Von Alan et al. [37].
This multi-method approach is an effective way of designing
and implementing a system. It includes following areas of
work - observation, theory building, systems development
and experimentation as shown in Figure 4. The unordered
phases are interconnected to facilitate creation and validation
of a system with several iterations. As research progressed
through each phase, and each iteration, the artifacts, theory,
and results produced would be generalised as shown in the
figure.

The research began with the observation phase. The
observation involved reviewing existing literature to define
the problem and technical motivation of the research
(section I-A). The observation also involved technical artic-
ulation of similar algorithms with respect to the problem
including CJ, MESHJOIN, R-MESHJOIN, INLJ, SSIJ, and
HYBRIDJOIN (Section II). The learning from observation
phase led to the theory building phase of the research. This
phase involved creation of conceptual theorems, as shown in
Section IV, these consider cache component to store frequent
tuples in the stream to minimize the memory required for a

given service rate. The architecture of MOIJ was introduced
and this is articulated in a graphical representation (Figure 5),
including pseudocode presented in Algorithm 1.

The Systems development phase of this research consid-
ered design as a search process. The authors in [37] state
that design science is inherently iterative, the search for
the best or optimal design is often intractable for realistic
problems. Therefore we adapt an approach where we are
able to generate, test and iterate. The architecture shown in
figure 5 was setup as a system for conducting iterative design
improvements and experimentation activities, presented in
section V. The system developed allowed for rigorous exper-
imentation activities.

The final phase dealt with evaluation, the evaluation was
intended to test and enhance the MOIJ algorithm to an
extent it is generalised. The generalisation was an ongo-
ing process which was achieved through multiple iterations
of design science phases described above. The evaluation
process included mathematical evaluation (sectionVI) and
empirical evaluation (section VII). The following sections
articulate each research phase in further detail.

IV. THEORY BUILDING - THEOREMS, ALGORITHMS
AND ARCHITECTURES
In this section we build our theorems, algorithms and based
on our observation on hash based stream joins (Section II).
Due to the same nature of cache inequality to SSBJ the
proof of Theorems 1 and 2 are similar to those are presented
in SSBJ. However the implementation of the equation as
presented in Algorithm 1 is different due to the index on the
master data.

A. CACHE INEQUALITY
CJ uses cache component to store frequent tuples from R in
order to improve the service rate. To decide which R tuple
is frequent the algorithm counts the number of matches in
HS against the R tuple. If the number of matches is greater
than a preset threshold, the algorithm considers this tuple
as a frequent and switches it into HR (i.e. cache). However,
as stated in the example above the switching of R tuples to
HR by considering their frequency only can be suboptimal
with respect to memory consumption.

The purpose of the cache is therefore not to increase the
service rate, but to minimize the memory required for a given
service rate. In our cache inequality solutionwe follow a natu-
ral strategy, namely deciding for every join value individually
whether it should be joined in the cache or the disk phase,
based on how much memory either option would take. If a
join value consumes less memory when joined in the cache,
the required amount of memory is added to the cache. The
memory used by a join value is the memory that all tuples
with that join attribute consume in the respective hash table
(HS or HR), plus some negligible overheads. We assume that
the memory consumption of the hash table is strictly linear in
the number of tuples stored.

VOLUME 8, 2020 195375

M. A. Naeem et al.: Big Data Velocity Management–From Stream to Warehouse via High Performance Memory Optimized Index Join

Algorithm 1 Pseudo Code for MOIJ
Input: Incoming stream S and the master data R on the disk.
Output: R FG S
Parameters: w (where w = wS + wN) input tuples of S and
a segment of R.
Method:
1: hSavailable := hS , f _count := 0
2: while (true) do
3: while (hSavailable > 0 AND the stream available) do
4: READ a stream tuple t from SB
5: if HR.lookUp(t.partID) then
6: OUTPUT all matches with HR
7: HR(t.partID).f _count :=

HR(t.partID).f _count + 1
8: else
9: ADD t into HS and join attribute t.partID into Q

10: hSavailable := hSavailable− 1
11: end if
12: end while
13: READ the oldest t.partID from Q
14: if t.partID does not match in R then
15: DELETE t.partID from Q
16: Go to line 13
17: end if
18: READ a segment of R into DB using t.partID as an

index
19: for each tuple r in DB do
20: if HS .lookUp(r .partID) then
21: OUTPUT all matches tuples from HS
22: mdisk := HS (r .partID).size()× vS
23: mstream := DB(r .partID).size()× vR
24: if mdisk > mstream then
25: hSavailable := hSavailable− mstream/vS
26: MOVE all tuples with partIDsequal to

r .partID from DB to HR
27: end if
28: hSavailable := hSavailable +

HS (r .partID).size()
29: DELETE all matched tuples from HS with their

pointers from Q
30: end if
31: end for
32: if CacheEvictionProcess then
33: for each join value j in HR do
34: mstream := HR(j).size()× vR
35: mdisk := HR(j).f _count/10× vS
36: if mstream > mdisk then
37: DELETE HR(j) with all tuples against j
38: hSavailable := hSavailable+ mstream/vS
39: end if
40: RESET HR(j).f _count to 0
41: end for
42: end if
43: end while

This strategy can guarantee overall best memory usage.
We capture this as Theorem 1. However, we need to gener-
alise the considerations to cases, where stream tuples and R
tuples have different sizes, and this will yield to introduction
of the actual cache inequality in Theorem 2.
Theorem 1 (Minimal Memory Consumption): If every join

value j is placed in the hash table where it uses less memory,
then the overall memory consumption is minimal.

Proof: The proof is straightforward based on the lin-
ear memory consumption of hash tables. Let mstream(j) and
mdisk (j) be the memory needed for join value j in the stream-
probing phase and the disk-probing phase, respectively. With
J the set of all join values, the memory consumption of both
hash tables is:

Memory for HR and HS =
∑
j∈J

min(mstream(j),mdisk (j))

All join values would use more memory if switched, hence
the memory consumption is minimal.
The footprint of other components (such as Q in

MESHJOIN and additional frequency counters in both
phases) is negligible, as they are dominated by the tuple sizes.
Now we derive what we call Cache Inequality in Theorem 2,
which builds upon the criterion used in Theorem 1.
Theorem 2 (Cache Inequality): Assume a join value j is

used inm records ofR and is appearing in an expected number
of n stream tuples in the whole Q length. vS and vR is the
size in bytes of a stream tuple and a R tuple, respectively.
Then j can be processed with less memory consumption in
the stream-probing phase than in the disk-probing phase if:

m× vR < n× vS

Proof: We prove that the sides of the inequality reflect
the memory consumption of j in either of the two hash tables.
To process j in the stream-probing phase, all R records match-
ing that join attribute have to be loaded into HR, i.e. m× vR.
Since all stream tuples remain in HS for the whole Q length,
the expected number of tuples inHS matching j at any point in
time is n. Hence the expected memory consumption of jwhen
processed in the disk-probing phase is n × vS . The strategy
given in the theorem chooses the option with less memory.

B. EXECUTION ARCHITECTURE FOR MOIJ
Figure 5 presents an execution architecture for MOIJ. The
algorithm implements the cache inequality to decide moving
data into and out the cache component. Similar to CJ, MOIJ
also has two complementary hash joinmodules called stream-
probing phase and disk-probing phase.

Each tuple from the stream first enters the stream-probing
phase, which uses selected tuples of R as the build input and
the stream as the probe input of a hash join. On arrival of
the new stream tuple it is probed in the stream-probing phase
first. If the tuple is matched, the join output is created. In case
of unmatched the tuple is loaded to the disk-probing phase.

195376 VOLUME 8, 2020

M. A. Naeem et al.: Big Data Velocity Management–From Stream to Warehouse via High Performance Memory Optimized Index Join

FIGURE 5. Execution architecture for MOIJ.

MOIJ switches between the stream-probing and the disk-
probing phases, which includes onemain loop step of CJ [25].
In further work, the two phases can be parallelized and exe-
cuted in different threads, but this is not the aim of this article.
Note that the stream input for the disk-probing phase is fil-
tered by the stream-probing phase, i.e. many stream tuples are
processed without going into the disk-probing phase. Master
data R and stream of sales transactions S are two external
inputs for the join algorithm. Similar to CJ in MOIJ a major
part of memory is consumed by two hash tables: the disk-
probing hash table HS storing stream tuples, and the stream-
probing has table HR storing the most frequently accessed
tuples from R. The queue in the disk-probing phase stores
pointers to the stream tuples in HS enabling the loading of
segments from R to disk buffer DB using index and ensures
a stream tuple that enters into the disk-probing phase must
be processed. It is growing with HS and hence only adds
a constant factor to the memory consumption per tuple in
HS . The other associated components of MOIJ are DB and
a stream buffer SB. DB is used to load the master data into
memory in segments. SB is comparably small, holding part of
the stream when necessary.

C. PSEUDOCODE FOR MOIJ
Algorithm 1 presents the pseudo code for MOIJ. We use
partID for the join value, aligned with the example in
Figure 3 and consider index on it in R. The first loop in
the algorithm runs infinitely, which is normal in these type
of algorithms (line 2). The loop executes both phases - the
stream-probing phase (lines 3 to 12) and the disk-probing
phase (lines 13 to 31) - and cache eviction process which runs

intermittently, after every ten iterations in our case (lines 32 to
42). These two phases alternate in the outer loop.

For every input the algorithm loads the number of stream
tuples equal to the number slots vacant in HS from the pre-
vious iteration. We use variable hSavailable to count this
number. At the beginning of the algorithm, all slots in HS are
vacant (line 1).

In the stream-probing phase the algorithm continues read-
ing stream input until stream tuples in SB and vacant slots in
HS are available (line 3). For each of these stream tuples t the
algorithm probes it in the disk-built hash table HR (line 5).
If t matches in HR, the algorithm enriches the master data
attributes to t , generates the join output(s), and increases
the stream tuple frequency f _count for join value t.partID.
Since HR is a multi-hashmap, there can be more than one
match (lines 6 and 7). In case if t does not find any matched,
the algorithm forwards t to the disk-probing phase, i.e. loads
t into HS and enqueues its pointer t.partID (also called join
attribute value) in Q. Also the algorithm decreases counter
hSavailable by one (lines 8 to 11). Once the stream probing
phase reaches to its end the algorithm switches to the disk
probing phase. This switching is the matter of switching a
program thread from one process to other, so it takes very
minimal time. The value of this switching time is too little
that it is almost invisible in cost processing. Consequently,
its influence on the algorithm is ignorable.

Lines 13 to 31 comprise the disk-probing phase. The algo-
rithm reads the oldest join attribute value t.partID fromQ and
search it in the value(s) in R. If no match found, the algorithm
deletes t.partID from Q and moves back to line 13. This
is the point where we can say the algorithm also supports

VOLUME 8, 2020 195377

M. A. Naeem et al.: Big Data Velocity Management–From Stream to Warehouse via High Performance Memory Optimized Index Join

0 − to − many type of join (lines 13 to 17). Otherwise,
the algorithm reads a segment of R using t.partID as an index
and load this into DB (line 18). One point to clarify here
is that because of the join accuracy the algorithm reads all
partIDs provided by one or more suppliers in one segment
which means the algorithm doesn’t read partIDs of one sup-
plier in two different segments. Therefore, the size of DB is
slightly flexible with respect to the variation in the segment
size.

In an inner loop (lines 19 to 31) the algorithm reads one-by-
one each tuple r from DB and looks it up in HS . If r matches
in HS , the algorithm enriches the master data attributes to the
matched tuple and generates the join output(s); there can be
more than one match (lines 20 and 21). Lines 22 and 27 deal
with the memory calculations for processingmatching stream
tuples against disk tuples r in DB in both of the phases and
implementing cache inequality. In line 22 variablemdisk com-
putes the memory for processing all matching stream tuples
in HS against r .partID in DB. As there can be more than one
same partIDs inDB provided by different suppliers, this is the
case where we need to use many-to-many type of join. While
in line 23 variable mstream computes the memory required
if these stream tuples are processed through stream-probing
phase. Based on these two memory calculations the cache
inequality is applied (line 24). If the cache inequality rec-
ommends switching, in this case the algorithm first releases
the equal amount of memory from the stream-probing phase
by reducing the size of next input, hSavailable, and then
loads all R records for that join attribute r .partID into HR
(line 25 and 26).

At the end of the disk-probing phase the algorithm deletes
all the matching tuples from HS with their correspond-
ing nodes from Q. Since HS is a multi-hash-map, there
can be multiple matches against one r .partID. This creates
empty slots in HS and therefore hSavailable has to increase
(lines 28 and 29).

Lines 32 to 42 describe the cache eviction process. This can
happen if a join value in disk-probing phase (i.e. in cache)
gets less frequently used over time. The execution of this
feature is not required in every outer loop iteration. In order to
increase the quality of the frequency estimate, we consider the
execution of this process after every 10th outer loop iteration.
Again, the memory for the both phases needs to be calculated
and based on this the cache inequality has to be applied (lines
34 to 36). For computing of mdisk the frequency count has
to be divided by 10 since the count runs for 10 outer loop
iterations. In line 36 where this comparison is true, the join
value j has become infrequent and should be evicted. The
algorithm simply deletes join value j from HR with all its
related tuples (line 37). In order to add the releasedmemory to
the stream-probing phase the algorithm increases hSvariable
accordingly. If any stream tuple with j appears in the stream
data it will be processed in the disk-probing phase. Finally,
the algorithm resets f _count(s) for all join values in HR so
that the algorithm can start counting again for the next ten
iterations (line 40).

V. SYSTEMS DEVELOPMENT AND EXPERIMENTAL SETUP
This section presents an experimental study where we com-
pare the memory and service rate of MOIJ with CJ using
synthetic and real-life data. We use different parameters as
independent variables in order to obtain a range of service rate
results that can be analyzed in different conditions. Through
the experiments we also validate the cost models for both
MOIJ and CJ. The following text describes the experimental
setup.

A. MEASUREMENT STRATEGY
In each experiment, the both algorithms go under their warm-
up phase which is normal for these type of algorithms that
run for indefinite time. The warm-up phase is a phase where
an algorithm tunes all its components with respect to the
available resources e.g. available memory. We take the mea-
surements after the warm-up phase ends, so that no tran-
sient effects from startup influence our measurements. In our
experiment where required we calculated the 95% confidence
interval based on the mean on at least 1000 runs for one set-
ting. In some results presented here, the confidence interval
is too small to show.

B. DATA SPECIFICATIONS
We used three data sets that we in the following refer to as
synthetic, TPC-H, and real-life data. The characteristics of
each data set are described below.

C. SYNTHETIC DATA
A dataset that we used was providing synthetic data with a
configurable Zipfian distribution exponent, this was useful
for tests where the zipfian exponent was an independent
variable, since it was not possible to get e.g. real-life data for
a given Zipfian exponent on demand, without changing that
data. We used this data in experiments varying the exponent
from 0 to 1 - at 0 the data is fully uniformwhile at 1 the data is
highly skewed. In the data generator we needed a simple and
natural way to ensure that the master data had duplicates e.g.
in case MOIJ duplicate partIDs. The specifications of syn-
thetic dataset that we used in our experiments are presented
in Table 1.

D. TPC-H
As a second dataset we adapted data from the TPC-H bench-
mark.We used scale factor 100 for generating the benchmark.
We generated two tables - tpch_partsupp1 that we used as
master data while tpch_lineitem2 that we used as stream
data. The join attribute was partID between both inputs.
Both tables contained 20 million tuples. The size of each
tuple in tpch_partsupp was 223 bytes and in tpch_lineitem
was 138 bytes. The motivation of using this dataset was to
show the performance of the algorithm on a standardized
workload that was not designed or chosen by us. A possible

1contained parts details provided by each supplier.
2contained orders details against the available parts.

195378 VOLUME 8, 2020

M. A. Naeem et al.: Big Data Velocity Management–From Stream to Warehouse via High Performance Memory Optimized Index Join

TABLE 1. Synthetic dataset specifications.

case for such a join is to enrich supplier details related to the
partIDs found in an order, before loading that order into a data
warehouse. Again for CJ we removed the duplicate partIDs
from R because it has no support for many-to-many type of
joins.

E. REAL-LIFE DATA
We also compared the service rate of MOIJ with CJ using
a real-life dataset.3 The dataset is a collection of weather
reports for the entire globe. The original CJ [25] also used
the same dataset to evaluate its performance. More specifi-
cally the master data table contained meteorological data for
the months of April and August. The stream data was built
based on the reports generated in December. The size of the
master data 20 million tuples and the of stream data table was
6 million tuples. The tuple size was 128 bytes in the both
master data and the stream data. The attribute used for joining
the both tables was longitude. The join type was many-to-
many and again for CJ we filtered out the duplicates from the
longitude attribute.

F. COMPUTER SPECIFICATIONS
We used Pentium-i5 with 8GB main memory and APPLE
SSD AP0512J 500GB hard drive with cache 256 MB in all
our experiments. Both algorithms were implemented in Java.
MOIJ needs both hash tables that can store several elements
against the same key, but this feature is not supported by
Java hash table. Therefore in order to implement the above
feature we used the Apache library class Multi-Hash-Map.
We used MySQL database with buffer pool size 1 MB to
store the master data table while the table has an index on the
join attribute e.g. partID. The table had a composite primary
key e.g. on the attributes partID and supplierID. However in
case of CJ we had one partID against each supplier as the
algorithm dose not support many-to-many type of join.

VI. MATHEMATICAL EVALUATION - MEMORY AND
PROCESSING COST MODELS
We calculated cost model in terms of memory and process
time for our algorithm. The main motivation for develop-
ing a cost model is to interrelate the key parameters of the
algorithm, such as the input size w = wN + wS tuples,
the processing cost cloop seconds required to process these

3This dataset is available at: http://cdiac.ornl.gov/ftp/ndp026b/

w tuples, the allocated memory M in bytes, and the ser-
vice rate µ in tuples/second. We developed the cost model
on the same styles used in original CACHEJOIN [25] and
MESHJOIN [26]. Equation 1 represents the total memory
(except SB) consumed by the algorithm while Equation 2 rep-
resents the processing cost for each iteration of the algorithm.
The symbols that we used in developing of the cost model are
described in Table 2.

A. MEMORY COST
As described above two hash tables HR and HS are the main
components of the algorithm, the major portion of the total
memory is assigned to these two has tables together with
Q. While a significantly smaller portion is assigned to DB.
We assigned 0.1 MB toDB in all our experiments. The stream
buffer is another tiny component (0.05 MB was sufficient
in our experiments) which we included in the architecture
diagram but is not included in the cost model.

An important point with respect to memory distribution
in MOIJ is that the algorithm assigns memory to both hash
tables (HR and HS) dynamically. We start the algorithm by
assigning a certain amount of memory to the each hash table.
The algorithm then optimises this using cache inequality as
described in the algorithm section. This is the reason that
the algorithm is adaptive for any change in the stream or the
master data. In general the size of HR depends upon the skew
in stream data. For greater skew in stream the size of HR will
be comparatively bigger while in case of completely uniform
stream data the size of HR will be zero as it does not play
any role in the performance of the algorithm. This shows
MOIJ is an optimal algorithm for uniform stream data. In the
following we calculate the memory for each component when
total memory available to assign isM .

HR (bytes) = hR · vR
DB (bytes) = b · vR
HS (bytes) = α(M − (b+ hR)vR)

Queue (bytes) = (1− α)(M − (b+ hR)vR)

Now after having memory for each component total memory
M can be calculated as shown in Equation 1.

M = hR · vR + b · vR + α(M − (b+ hR)vR)+ (1− α)

× (M − (b+ hR)vR) (1)

VOLUME 8, 2020 195379

M. A. Naeem et al.: Big Data Velocity Management–From Stream to Warehouse via High Performance Memory Optimized Index Join

TABLE 2. Symbols used in the cost model of MOIJ.

B. PROCESSING COST
Processing cost refers to the time taken by the algorithm for
each iteration. For the simplicity we first calculate the cost for
each component separately and then aggregate these costs to
get the total cost.

Cost to load b number of tuples from disk to DB
(nanosecs) = cI/O(b)

Cost to read the wN tuples from SB (nanosecs) = wN · cS
Cost to read the wS tuples from SB (nanosecs) = wS · cS
Cost to look-up wN tuples in HR (nanosecs) = wN · cH
Cost to append wS tuples into HS and Q (nanosecs) =

wS · cA
Cost to look-up DB tuples in HS (nanosecs) = b · cH
Cost to execute the cache inequality and switching of disk

tuples to HR if necessary (nanosecs) = b · cI
Cost to generate the output for wN tuples (nanosecs) =

wN · cO
Cost to generate the output for wS tuples (nanosecs) =

wS · cO
Cost to deletewS tuples fromHS andQ (nanosecs)=wS ·cE
Cost to execute the cache eviction process - after every ten

outer loop iteration (nanosecs) = hR·cV
10

Now Equation 2 sums up the above costs to determine the
total cost that the algorithm required to complete its one loop
iteration .

cloop(secs) = 10−9[cI/O(b)+ wN (cS + cH + cO)

+wS (cS + cA + cO + cE)+ b(cH + cI)

+
hR · cV
10

] (2)

The term 10−9 is used to convert nanoseconds to seconds.
Since the algorithm processes wN and wS tuples in cloop sec-
onds, the service rate µ can be determined as in Equation 3.

µ =
wN + wS
cloop

(3)

The proposed algorithm computes the exact join between a
stream and master data provided that λ ≤ µ. By substituting
the value of µ from Equation (3):

λ ≤
wN + wS
cloop

(4)

The minimum values of wN and wS are specified by Equa-
tion 4 as follows:

λ =
wN + wS
cloop

(5)

From Equation (1) the memory required to process wN and
wS tuples can be calculated as follows:

Memory for wN = hR · vR
Memory for wS = b · vR + α(M − (b+ hR)vR)

+ (1− α)(M − (b+ hR)vR)

By substituting the amount of memory taken by wN and wS
in Equation 5, λ can be written as follows:

λ =
1

cloop
[hR · vR + b · vR + α(M − (b+ hR)vR)

+ (1− α)(M − (b+ hR)vR)] (6)

This cost model can be used to make later comparisons with
the measured behavior of the algorithm.

VII. EMPIRICAL EVALUATION
We compareMOIJwith CJ based on two parameters, memory
and service rate. This section presents our analysis against
both parameters.

A. MEMORY ANALYSIS
The new algorithm adapts its memory consumption to the
stream arrival rate, therefore in our first experiment we
observed how much memory MOIJ can save compared to CJ

195380 VOLUME 8, 2020

M. A. Naeem et al.: Big Data Velocity Management–From Stream to Warehouse via High Performance Memory Optimized Index Join

FIGURE 6. Memory consumption measurements.

while producing the same service rate. We also compared the
memory consumption byMOIJ with CJ considering the same
sizes of the master data. In this experiment we used the syn-
thetic data, since we wanted to achieve a clear understanding
of the effect of a well-defined Zipfian exponent (set to 1) on
the algorithm behavior.

The results of our first experiment by varying the stream
arrival rate are presented in Figure 6(a). In this experiment
we fixed the size of R (denoted by |R|) to 20 million tuples,
and the value of Zipfian exponent is equal to 1. The stream
arrival rate was controlled by varying the parameters of our
data generator. The results in the figure show that CJ needs
about 73% more memory than MOIJ to produce the same
service rate under all stream arrival rate settings. The results
in Figure 6(b) are obtained by varying |R|, while keeping a
fixed service rate of 50000 tuples/sec. In this case CJ needs
about 36% more memory than MOIJ for |R| = 20 million
tuples and about 70%more for |R| = 100 million tuples. This
is due to the fact of the Zipfian distribution, a larger master
data table contains more frequent tuples while they all are not
cached in case of CJwhile they aremanaged to cache inMOIJ
due to memory adaptation.

B. SERVICE RATE ANALYSIS
We evaluated the service rate (which is the dependent vari-
able) by varying three key parameters - available memory,
|R|, and the intensity of skew in the streaming data. To see
the effect of individual parameter on the service rate we
varied one parameter at a time. In experiments presented
in Figures 7(a)–(c) and (f) we used the synthetic data.

1) MEMORY SIZE VARIES
In this experiment we evaluated the service rate for different
settings of memory. We varied the available memory size

from 1% to 10% of |R|While fixed |R| at 100 million tuples
(≈11.18GB) and the skew in the streaming data is equal to 1.

Figure 7(a) depicts the results of our experiment. From the
figure we observed that MOIJ was ≈1.5 times faster than CJ
with very limited memory (1% of |R|) and≈ 2 times faster for
10% of |R|. This shows that the impact of the cache increases
slightly with larger memory.

2) |R| VARIES
In this experiment we evaluated the service rate by varying
|R| from 20 million tuples to 100 million tuples. We kept the
other two parameters fixed, memory size is equal to≈1.12GB
and the value of the skew is equal to 1. The results presented
in Figure 7(b) show that MOIJ performed ≈ 2 times better
than CJ for |R| = 20 million tuples and ≈1.7 times better for
|R| = 100 million tuples.

3) SKEW VARIES
Finally we varied the value of skew in the streaming data
between 0 to 1. At the skew value is equal to 0 the input
stream S was fully uniform, while at the skew value is
equal to 1 the stream was skewed (non-uniform). The other
two parameters |R| and the available memory were fixed to
100million tuples (≈11.18GB) and to 10% of |R| (≈1.12GB)
respectively. Figure 7(c) depicts the results of the experiment.
It is clear from the figure that MOIJ starts performing better
as soon as the skew appears in the stream data and this
improvement becomes more evident and visible as the value
of skew increases. For the high values of skew (i.e. equal to
1) MOIJ performs≈2 times better than CJ. Although CJ also
exploits the feature of skew in the stream data but due to
the suboptimal distribution of the memory between the two
join phases the algorithm can not perform at its maximum.
We did not evaluate the performance for skew value is higher

VOLUME 8, 2020 195381

M. A. Naeem et al.: Big Data Velocity Management–From Stream to Warehouse via High Performance Memory Optimized Index Join

FIGURE 7. Service rate analysis and cost validation.

195382 VOLUME 8, 2020

M. A. Naeem et al.: Big Data Velocity Management–From Stream to Warehouse via High Performance Memory Optimized Index Join

than 1, as the higher skew values would imply comparatively
short tails. However, we presume that the improvement in the
service rate will continue for such short tails.

4) TPC-H AND REAL-LIFE DATASETS
We also compared the service rates of the both algorithms
using the TPC-H and the real-life weather datasets (see
Section V). For both algorithms we compared the service
rate under different memory settings, varied from 1% of |R|
to 10% of |R|. Figures 7(d) and (e) present the service rate
generated by the both algorithms using TPC-H and real-life
datasets respectively. From Figure 7(d) it can be observed
that, under memory size 10% of |R|, MOIJ performs about
≈1.8 times better than CJ. Similarly in case of the real-
life weather dataset, from Figure 7(e), MOIJ outperforms
CJ under all memory settings. An interesting aspect of these
measurements is that the TPC-H data as well as the real-life
data produce very similar behavior to our synthetic dataset.
This gives us confidence that the use of synthetic data is in
itself justified and relevant. Moreover the behavior for both
the datasets matches quite closely to the behavior for the skew
is equal to one in the synthetic data. This is not unexpected,
since such a moderately strong skew is, as we stated at the
very beginning, is a good rule of thumb for many real life
situations.

C. COST VALIDATIONS
Finally, we validated the cost models for both algorithms
where we compared the calculated cost for a central cost
parameter, cloop, with measurements of cloop. Figure 7(f)
depicts the results of the experiment. From the figure it is
clear that in case of both of the algorithms the calculated
cost is very close to the measured cost. This is a proof for
the correctness of our cost models.

VIII. CONCLUSION
Maximizing the value of an event in streaming data scenarios
is closely correlated with minimizing the data analysis and
decision latencies. The growing amount of streaming big data
applications and the processing time of storing this streaming
data into the data warehouse poses a performance challenge
for minimizing data latency. Traditional approaches have
used a variety of hash based stream joins during the ETL
transformation phase. During this phase a semi-stream join
operator is commonly used to join streaming data with master
data. Most semi-stream join operators cache frequent parts
of master data to improve their performance, this process
requires careful allocation of memory to each component of
the join operator.

In this article we developed a new ‘‘cache inequality’’ for
semi-stream index-based joins. The new cache inequality can
be applied to any cache-based semi-stream indexed join for
the optimal caching. To test the cache inequality we presented
a novel algorithm calledMOIJ which supports many-to-many
type of join and to the best of our knowledge no semi-stream
indexed join in the literature provides this support. The new

algorithm adapts to online changes in both stream as well as
the master data. We tested this by varying the intensity of
the skew in the stream data and the total size of the master
data.We evaluated the service rate of the new algorithm using
synthetic, TPC-H, and real data and our results show that the
new algorithm significantly outperforms existing algorithm
called CJ under all three data sets. We also derived and
validated the cost model for our algorithm.

In future we have a plan to apply our cache inequality to
other semi-stream joins. We are also aiming to parallelize our
MOIJ algorithm for processing of multiple inputs of stream
data with distributed master data placed at multiple nodes.

REFERENCES
[1] L. Fink, N. Yogev, and A. Even, ‘‘Business intelligence and organizational

learning: An empirical investigation of value creation processes,’’ Inf.
Manage., vol. 54, no. 1, pp. 38–56, Jan. 2017.

[2] S. Piramuthu andM. J. Shaw, ‘‘Learning-enhanced adaptive DSS: A design
science perspective,’’ Inf. Technol. Manage., vol. 10, no. 1, pp. 41–54,
Mar. 2009.

[3] I. Bose and R. Pal, ‘‘Predicting the survival or failure of click-and-
mortar corporations: A knowledge discovery approach,’’ Eur. J. Oper. Res.,
vol. 174, no. 2, pp. 959–982, Oct. 2006.

[4] I. Bose and R. K. Mahapatra, ‘‘Business data mining—Amachine learning
perspective,’’ Inf. Manage., vol. 39, no. 3, pp. 211–225, 2001.

[5] I. Bose, L. A. K. Chun, L. V. W. Yue, L. H. W. Ines, and W. O. L. Helen,
‘‘Business data warehouse,’’ in Proc. Data Mining Appl. Empowering
Knowl. Societies, 2009.

[6] R. Hackathorn, ‘‘Real-time to real-value,’’ Inf. Manage., vol. 14, no. 1,
p. 24, 2004.

[7] Y.-T. Park, ‘‘An empirical investigation of the effects of data warehous-
ing on decision performance,’’ Inf. Manage., vol. 43, no. 1, pp. 51–61,
Jan. 2006.

[8] A. Karakasidis, P. Vassiliadis, and E. Pitoura, ‘‘ETL queues for active
data warehousing,’’ in Proc. 2nd Int. Workshop Inf. Qual. Inf. Syst. (IQIS),
New York, NY, USA, 2005, pp. 28–39.

[9] M. A. Naeem, G. Dobbie, and G. Weber, ‘‘An event-based near real-
time data integration architecture,’’ in Proc. 12th Enterprise Distrib.
Object Comput. Conf. Workshops (EDOCW), Washington, DC, USA,
2008, pp. 401–404.

[10] X. Han, J. Li, and D. Yang, ‘‘PI-join: Efficiently processing join queries on
massive data,’’ Knowl. Inf. Syst., vol. 32, no. 3, pp. 527–557, Sep. 2012.

[11] M. Townsend, T. Le Quoc, G. Kapoor, H. Hu, W. Zhou, and S. Piramuthu,
‘‘Real-time business data acquisition: How frequent is frequent enough?’’
Inf. Manage., vol. 55, no. 4, pp. 422–429, Jun. 2018.

[12] R.-U.-D. Faizal, R. Doss, and W. Zhou, ‘‘String matching query verifica-
tion on cloud-hosted databases,’’ in Proc. 17th Int. Conf. Distrib. Comput.
Netw. (ICDCN), New York, NY, USA, 2016, pp. 17:1–17:10.

[13] S. Piramuthu, ‘‘Knowledge-based Web-enabled agents and intelligent
tutoring systems,’’ IEEE Trans. Educ., vol. 48, no. 4, pp. 750–756,
Nov. 2005.

[14] I. Bose, W. Ping, M. Shan, W. Shing, Y. Shing, C. Tin, and S. Wai,
Databases for Mobile Applications. Hershey, PA, USA: IGI Global, 2005.

[15] F. Riaz-ud-Din, W. Zhou, and R. Doss, ‘‘Query verification schemes for
cloud-hosted databases: A brief survey,’’ Int. J. Parallel, Emergent Distrib.
Syst., vol. 31, no. 6, pp. 543–561, Nov. 2016.

[16] W. J. Labio, J. L. Wiener, H. Garcia-Molina, and V. Gorelik, ‘‘Efficient
resumption of interrupted warehouse loads,’’ ACM SIGMOD Rec., vol. 29,
no. 2, pp. 46–57, Jun. 2000.

[17] X. Zhang and E. A. Rundensteiner, ‘‘Integrating the maintenance and
synchronization of data warehouses using a cooperative framework,’’ Inf.
Syst., vol. 27, no. 4, pp. 219–243, Jun. 2002.

[18] R. M. Bruckner, B. List, and J. Schiefer, ‘‘Striving towards near real-time
data integration for data warehouses,’’ in Proc. Int. Conf. Data Warehous-
ing Knowl. Discovery. Berlin, Germany: Springer, 2002, pp. 317–326.

[19] M. N. Tho and A. M. Tjoa, ‘‘Zero-latency data warehousing for heteroge-
neous data sources and continuous data streams,’’ in Proc. 5th Int. Conf.
Inf. Integr. Web-Based Appl. Services, 2003, pp. 55–64.

[20] F. Araque, ‘‘Real-time data warehousing with temporal requirements,’’ in
Proc. CAiSE Workshops, 2003.

VOLUME 8, 2020 195383

M. A. Naeem et al.: Big Data Velocity Management–From Stream to Warehouse via High Performance Memory Optimized Index Join

[21] L. Golab, T. Johnson, J. S. Seidel, and V. Shkapenyuk, ‘‘Stream ware-
housing with datadepot,’’ in Proc. 35th SIGMOD Int. Conf. Manage. Data
(SIGMOD), New York, NY, USA, 2009, pp. 847–854.

[22] M. Athanassoulis, S. Chen, A. Ailamaki, P. B. Gibbons, and R. Stoica,
‘‘Online updates on data warehouses via judicious use of solid-state stor-
age,’’ ACM Trans. Database Syst., vol. 40, no. 1, p. 6, 2015.

[23] G. Hohpe and B.Woolf,Enterprise Integration Patterns: Designing, Build-
ing, and Deploying Messaging Solutions. Reading, MA, USA: Addison-
Wesley, 2004.

[24] M. A. Naeem, G. Weber, and C. Lutteroth, ‘‘A memory-optimal many-to-
many semi-stream join,’’Distrib. Parallel Databases, vol. 37, pp. 623–649,
Aug. 2018.

[25] M. A. Naeem, G. Dobbie, and G. Weber, ‘‘A lightweight stream-based join
with limited resource consumption,’’ in Proc. Data Warehousing Knowl.
Discovery (DaWaK). Berlin, Germany: Springer, 2012, pp. 431–442.

[26] N. Polyzotis, S. Skiadopoulos, P. Vassiliadis, A. Simitsis, and N. Frantzell,
‘‘Meshing streaming updates with persistent data in an active data ware-
house,’’ IEEE Trans. Knowl. Data Eng., vol. 20, no. 7, pp. 976–991,
Jul. 2008.

[27] M. A. Naeem, G. Dobbie, G. Weber, and S. Alam, ‘‘R-MESHJOIN for
near-real-time data warehousing,’’ in Proc. ACM 13th Int. Workshop Data
Warehousing (DOLAP), Toronto, ON, Canada, 2010, pp. 53–60.

[28] R. Ramakrishnan and J. Gehrke, Database Management Systems.
New York, NY, USA: McGraw-Hill, 2000.

[29] A. Chakraborty and A. Singh, ‘‘A partition-based approach to support
streaming updates over persistent data in an active datawarehouse,’’ in
Proc. IEEE Int. Symp. Parallel Distrib. Process., Washington, DC, USA,
May 2009, pp. 1–11.

[30] M. A. Bornea, A. Deligiannakis, Y. Kotidis, and V. Vassalos, ‘‘Semi-
streamed index join for near-real time execution of ETL transformations,’’
in Proc. IEEE 27th Int. Conf. Data Eng., Apr. 2011, pp. 159–170.

[31] R. Derakhshan, A. Sattar, and B. Stantic, ‘‘A new operator for efficient
stream-relation join processing in data streaming engines,’’ in Proc. 22nd
ACM Int. Conf. Conf. Inf. Knowl. Manage., 2013, pp. 793–798.

[32] I. Botan, Y. Cho, R. Derakhshan, N. Dindar, A. Gupta, L. Haas, K. Kim,
C. Lee, G. Mundada, M.-C. Shan, N. Tatbul, Y. Yan, B. Yun, and J. Zhang,
‘‘A demonstration of the MaxStream federated stream processing system,’’
in Proc. IEEE 26th Int. Conf. Data Eng. (ICDE), 2010, pp. 1093–1096.

[33] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, ‘‘Apache flink: Stream and batch processing in a single
engine,’’ Bull. IEEE Comput. Soc. Tech. Committee Data Eng., vol. 36,
no. 4, 2015.

[34] M. A. Naeem, G. Dobbie, and G. Weber, ‘‘HYBRIDJOIN for near-real-
time data warehousing,’’ Int. J. Data Warehousing Mining, vol. 7, no. 4,
pp. 21–42, Oct. 2011.

[35] M. A. Naeem, G.Weber, C. Lutteroth, and G. Dobbie, ‘‘Optimizing queue-
based semi-stream joins with indexed master data,’’ in Data Warehousing
and Knowledge Discovery. Berlin, Germany: Springer, 2014, pp. 171–182.

[36] J. F. Nunamaker, M. Chen, and T. D. M. Purdin, ‘‘Systems development
in information systems research,’’ J. Manage. Inf. Syst., vol. 7, no. 3,
pp. 89–106, Dec. 1990.

[37] R. H. Von Alan, S. T. March, J. Park, and S. Ram, ‘‘Design science in
information systems research,’’ MIS Quart., vol. 28, no. 1, pp. 75–105,
2004.

M. ASIF NAEEM (Member, IEEE) received the
master’s degree (Hons.) in computer science, and
the Ph.D. degree in computer science from The
University of Auckland, New Zealand. He is cur-
rently the Founder of the Data Science Research
Group (DSRG), Auckland University of Tech-
nology, and the Co-Director of the Intelligent
Knowledge Mining and Analytics (IKMA) Lab-
oratory, National University of Computer and
Emerging Sciences (NUCES), Pakistan. He is also

a Professor with the School of Computing, NUCES. He has more than
15 years research, industrial, and teaching experience. He has published
over 80 research papers in high-repute journals, conferences, and workshops,
including IEEE, ACM, and VLDB. His research interests include data stream
processing, real-time data warehousing, data science, big data management,
and knowledge engineering. He has been awarded the Best Ph.D. Thesis
Award from The University of Auckland.

FARHAAN MIRZA (Member, IEEE) is currently
a Researcher and a Lecturer with the Depart-
ment of IT and Software Engineering, Auckland
University of Technology. His passion is to use
the Internet of Things (IoT), mobile apps, and
web technologies along with big data to develop
applications for public sector development, specif-
ically towards domains of healthcare, transporta-
tion, education, and telecommunications.

HABIB ULLAH KHAN (Member, IEEE) received
the Ph.D. degree in management information sys-
tems from Leeds Becket University, U.K. He is
currently an Associate Professor of MIS with the
Department of Accounting and Information Sys-
tems, College of Business and Economics, Qatar
University, Qatar. He has more than 20 years of
industry, teaching, and research experience. He is
an Active Researcher and his research work has
published in leading journals of the MIS field.

His research interests include IT security, online behavior, IT adoption in
supply chain management, Internet addiction, mobile commerce, computer
mediated communication, IT outsourcing, big data, cloud computing, and
e-learning. He is a member of leading professional organizations like DSI,
SWDSI, ABIS, FBD, and EFMD. He is a reviewer of leading journals of his
field and also working as an editor for some journals.

DAVID SUNDARAM is an Engineer by back-
ground, a Teacher, a Researcher, a Consultant by
profession, and a lifelong Student. He is passionate
about the modeling, design, and implementation
of flexible and evolvable information, decision,
knowledge, and social systems. Exploration and
application of these to the architecting and design
of learning, adaptive, agile, and sustainable enter-
prises and societies is close to his heart.

NOREEN JAMIL received the Ph.D. degree in computer science from
The University of Auckland, New Zealand. She is currently an Associate
Professor with the Department of Computer Science, National University
of Computer and Emerging Sciences (NUCES). As a part of her Ph.D.
Programme, she was a Visiting Research Fellow with the Department of
Mathematics, University of Maryland, USA. She has more than ten years
academic and research experience at university level. She has published
more than 25 research papers in well-reputed conferences and journals,
including IEEE and Elsevier. She has published two articles in Journal of
Computational and Applied Mathematics, one of the world leading Com-
putational Mathematics Journals. Her research interests include computa-
tional mathematics, human–computer interaction, numerical computation,
and constraint programming. She has received the Best Paper Award in
IEEE-ICDIM 2013 and the Best Student Paper Award at The University of
Auckland, in 2013.

GERALD WEBER received the Ph.D. degree from
FU Berlin. He is currently a Senior Lecturer with
the Department of Computer Science, The Uni-
versity of Auckland. He joined The University
of Auckland, in 2003. He is also the Information
Director of the Proceedings of the VLDB Endow-
ment. He is a coauthor of the book Form-Oriented
Analysis, and of over 40 peer-reviewed publi-
cations. His research interests include databases
and data models, human–computer interaction,

and theory of computation. He has been the Program Chair of several
conferences.

195384 VOLUME 8, 2020

