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Abstract. The present paper deals with the study of E-Bochner curvature tensor
on an almost C(λ) manifolds with the conditions Be(ξ,X).S = 0, Be(ξ,X).R = 0,
R.Be(ξ,X) = 0 and Be(ξ,X).Be = 0, where R, S and Be denote Riemannian curva-
ture tensor, Ricci tensor and E-Bochner curvature tensor, respectively. Also, we study
ξ-E-Bochner flat C(λ) manifolds.
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1. Introduction

In 1981, D. Janssens and L. Vanhecke [4] first introduced the idea of the C(λ)
manifold. An almost contact metric manifold M2n+1(φ, ξ, η, g) is said to be an
almost C(λ) manifold if the curvature tensor R of the manifold has the form [13]
(1.1)
R(X,Y )Z = R(φX, φY )Z − λ[g(Y, Z)X − g(X,Z)Y − φXg(φY,Z) + g(φX,Z)φY ],

for any vector fields X,Y, Z ∈ TM and λ is a real number.
D. Janssens and L. Vanhecke [4] also proved that if λ = 0, λ = 1 and λ = −1 then
C(λ) manifold becomes cosymplectic, Sasakian and Kenmotsu manifolds respec-
tively. In 2013, Ali Akbar and Avijit Sarkar[1] studied conharmonic and concircular
curvature tensors in an almost C(λ) manifold. They proved that the concircular and
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conharmonic curvature tensors in C(λ) manifold vanish if either λ = 0 or the mani-
fold is a special type of η-Einstein manifold. In 1949, S. Bochner [14] gave the idea of
the Bochner curvature tensor. D. E. Blair[5] explain the Bochner curvature tensor
geometrically in 1975, Matsumoto and Chuman [10] constructed a curvature tensor
from the Bochner curvature tensor with the help of Boothby-Wangs fibrations[18]
and called it C-Bochner curvature tensor. J. S. Kim, M. M. Tripathi and J.Choi
[9] studied the C-Bochner curvature tensor of a contact metric manifold in 2005.
C-Bochner curvature tensor was also studied by several authors, viz., [4, 7, 12, 17]
in different approaches. As an extension of C-Bochner curvature tensor, in 1991
Endo [8] defined the E-Bochner curvature tensor Be.
The E-Bochner curvature tensor Be is defined by [8]

(1.2) Be(X,Y )Z = B(X,Y )Z − η(X)B(ξ, Y )Z − η(Y )B(X, ξ)Z − η(Z)B(X,Y )ξ.

where B is the C-Bochner curvature tensor defined by [10]

B(X,Y )Z = R(X,Y )Z +
1

2(n+ 2)

{
S(X,Z)Y − S(Y, Z)X

+ g(X,Z)QY − g(Y,Z)QX + S(φX,Z)φY

− S(φY,Z)φX + g(φX,Z)QφY − g(φY,Z)QφX

+ 2S(φX, Y )φZ + 2g(φX, Y )QφZ − S(X,Z)η(Y )ξ

+ S(Y,Z)η(X)ξ − η(X)η(Z)QY + η(Y )η(Z)QX
}

− τ + 2n

2(n+ 2)

{
g(φX,Z)φY − g(φY,Z)φX

+ 2g(φX, Y )φZ
}
− τ − 4

2(n+ 2)

{
g(X,Z)Y − g(Y,Z)X

}
+

τ

2(n+ 2)

{
g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ

+ η(X)η(Z)Y − η(Y )η(Z)X
}
,

(1.3)

where τ = r+2n
2(n+2) , Q is Ricci operator i.e. g(QX,Y ) = S(X,Y ) for all X and Y and

r is a scalar curvature of the manifold.
We have gone through the developments in C(λ) manifold and then plan to study
the E-Bochner curvature tensor in almost C(λ) manifold. This paper is organized
as follows:
The first section of the paper is introductory, and we provided the basic defini-
tion; the second part of the paper is the preliminaries and we have written some
basic formula required for the calculation. In section 3 we studied E-Bochner pseu-
dosymmetric in almost C(λ) manifold and proved that the C(λ) manifold will be
E-Bochner pseudosymmetric if in C(λ) manifold either LBe = −λ or C(λ) manifold
is Kenmotsu manifold. In section 4, we have studied E-Bochner semi-symmetric and
proved that the C(λ) manifold is E-Bochner semi-symmetric if either C(λ) manifold
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is cosymplectic manifold or a Kenmotsu manifold. Besides this, in this section we
have proved that the E-Bochner curvature tensor satisfies Be(ξ,X).S = 0 if and
only if the C(λ) manifold is either cosymplectic or Ricci curvature tensor satisfies
S(X,U) = −2nλη(X)η(U). Also, we have proved the relation Be(ξ,X).Be = 0
hold if and only if the manifold is Kenmotsu manifold. Finally, in section 5 we have
discussed the ξ-E-Bochner flat curvature tensor on C(λ) manifolds.

2. Preliminaries

A Riemannian manifold (M2n+1, g) of dimension (2n + 1) is said to be an almost
contact metric manifold [3] if there exists a tensor field φ of type (1, 1), a vector
field ξ (called the structure vector field) and a 1-form η on M such that

(2.1) φ2(X) = −X + η(X)ξ,

(2.2) g(φX, φY ) = g(X,Y )− η(X)η(Y ),

and

(2.3) η(ξ) = 1,

for any vector fields X, Y on M . In an almost contact metric manifold, we have

(2.4) φξ = 0, ηoφ = 0.

Then such type of manifold is a called contact metric manifold if dη = Φ, where
Φ(X,Y ) = g(X,φY ), is called the fundamental 2-form of M (2n+1).
A contact metric manifold is said to be K-contact manifold if and only if the co-
varient derivative of ξ satisfies

(2.5) ∇Xξ = −φX,

for any vector field X on M.
The almost contact metric structure of M is said to be normal if

(2.6) [φ, φ](X,Y ) = −2dη(X,Y )ξ,

for any vector fields X and Y, where [φ, φ] denotes the Nijenhuis torsion of φ.
A normal contact metric manifold is called a Sasakian manifold. An almost contact
metric manifold is Sasakian if and only if

(2.7) (∇Xφ)Y = g(X,Y )ξ − η(Y )X,

for any vector fields X, Y.
An almost C(λ) manifold satisfies the following relations [13]

(2.8) R(X, Y ) ξ = R(φX, φY )ξ − λ {η(Y )X − η(X)Y } ,



742 B. K. Gupta and B. B. Chaturvedi

(2.9) R(X, ξ)Y = λ {g(X,Y )ξ − η(Y )X} ,

(2.10) R(ξ, Y )Z = λ {η(Z)Y − g(Y, Z)ξ} ,

(2.11) R(X, ξ) ξ = λ {η(X)ξ −X} ,

(2.12) R(ξ, Y )ξ = λ {Y − η(Y )ξ} ,

(2.13) S(X,Y ) = Ag(X,Y ) +Bη(X)η(Y ),

where A = −λ(2n − 1) and B = −λ, since g(QX,Y ) = S(X,Y ), where Q is the
Ricci-operator.
From straight forward calculation of (2.13) we can write the following

(2.14) QX = AX +Bη(X)ξ,

(2.15) S(X, ξ) = (A+B)η(X),

(2.16) S(ξ, ξ) = (A+B),

and

(2.17) r = −4n2λ.

With the help of equations (1.2)-(1.3) and (2.8)-(2.16), we have

(2.18) Be(ξ, Y )Z = η(Z)
2(λ+ 1)

(n+ 2)
[η(Y )ξ − Y ],

(2.19) Be(X,Y )ξ =
2(λ+ 1)

(n+ 2)
[η(Y )X − η(X)Y ],

(2.20) Be(X, ξ)Z = η(Z)
2(λ+ 1)

(n+ 2)
[X − η(X)ξ],

and

(2.21) Be(ξ, ξ)ξ = 0.

This is required E-Bochner curvature tensor in C(λ) manifolds.
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3. E-Bochner Pseudosymmetric C(λ) manifolds

Let (M, g) be a Riemannian manifold and let ∇ be the Levi-Civita connection of
(M, g). A Riemannian manifold is called locally symmetric if ∇R = 0, where R is
the Riemannian curvature tensor of (M, g). The locally symmetric manifolds have
been studied by different differential geometers through different approaches and
they extent it e.x. semi-symmetric manifolds by Szabo [19], recurrent manifolds by
Walker [2], conformally recurrent manifolds by Adati and Miyazawa [15].
According to Z. I. Szab

′
o[19], if the manifold M satisfies the condition

(3.1) (R(X,Y ).R)(U, V )W = 0, X, Y, U, V,W ∈ χ(M)

then the manifold is called semi-symmetric manifold for all vector fields X and Y.
For a (0, k)- tensor field T on M, k ≥ 1 and a symmetric (0, 2)-tensor field A on M
the (0, k+2)-tensor fields R.T and Q(A, T) are defined by

(R.T )(X1, .....Xk;X,Y ) = −T (R(X,Y )X1, X2, .......Xk)

− .......− T (X1, ..........Xk−1, R(X,Y )Xk),
(3.2)

and

Q(A, T )(X1, .....Xk;X,Y ) = −T ((X ∧A Y )X1, X2, .......Xk)

− .......− T (X1, ..........Xk−1, (X ∧A Y )Xk),
(3.3)

where X ∧A Y is the endomorphism given by

(3.4) (X ∧A Y )Z = A(Y, Z)X −A(X,Z)Y.

According to R. Deszcz [11] a Riemannian manifold is said to be pseudosymmetric
if

(3.5) R.R = LRQ(g,R),

holds on Ur =
{
x ∈M |R− r

n(n−1)G 6= 0 at x
}

, where G is (0, 4)-tensor defined by

G(X1, X2, X3, X4) = g((X1 ∧X2)X3, X4) and LR is some smooth function on UR.
A Riemannian manifold M is said to be E-Bochner pseudosymmetric if

(3.6) R.Be = LBe Q(g,Be),

holds on the set UBe = {x ∈M : Be 6= 0 at x}, where LBe is some function on UBe

and Be is the E-Bochner curvature tensor.
Let M2n+1 be E-Bochner pseudosymmetric C(λ) manifold and then from equa-
tion(3.6), we have

(3.7) (R(X, ξ).Be)(U, V )W = LBe [((X ∧g ξ).Be)(U, V )W ].
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Using equations (3.2) and (3.3) in equation (3.7), we get

R(X, ξ)Be(U, V )W −Be(R(X, ξ)U, V )W

−Be(U,R(X, ξ)V )W −Be(U, V )R(X, ξ)W

= LBe

{
(X ∧g ξ)Be(U, V )W −Be((X ∧g ξ)U, V )W

−Be(U, (X ∧g ξ)V )W −Be(U, V )(X ∧g ξ)W
}
.

(3.8)

Again, using equations (2.9) and (3.4) in (3.8), we infer

(λ)
{
g(X,Be(U, V )W )ξ − g(ξ,Be(U, V )W )X + η(U)Be(X,V )W

− g(X,U)Be(ξ, V )W + η(V )Be(U,X)W − g(X,V )Be(U, ξ)W

+ η(W )Be(U, V )X − g(X,W )Be(U, V )ξ
}

= LBe

{
g(ξ,Be(U, V )W )X − g(X,Be(U, V )W )ξ − η(U)Be(X,V )W

+ g(X,U)Be(ξ, V )W − η(V )Be(U,X)W + g(X,V )Be(U, ξ)W

− η(W )Be(U, V )X + g(X,W )Be(U, V )ξ
}
.

(3.9)

The above expression can be written as

(LBe + λ)
{
g(ξ,Be(U, V )W )X − g(X,Be(U, V )W )ξ − η(U)Be(X,V )W

+ g(X,U)Be(ξ, V )W − η(V )Be(U,X)W + g(X,V )Be(U, ξ)W

− η(W )Be(U, V )X + g(X,W )Be(U, V )ξ
}

= 0,

(3.10)

which implies that either

(a) LBe = −λ
or

(b)
{
g(ξ,Be(U, V )W )X

− g(X,Be(U, V )W )ξ − η(U)Be(X,V )W

+ g(X,U)Be(ξ, V )W − η(V )Be(U,X)W + g(X,V )Be(U, ξ)W

− η(W )Be(U, V )X + g(X,W )Be(U, V )ξ
}

= 0.

(3.11)

Putting W = ξ and using equations (1.3) and (2.18) in equation (3.11(b)), we have

(3.12) Be(X,V )W =
2(λ+ 1)

(n+ 2)
[g(X,V )U − g(X,U)V ].

Now, contracting V in above equation, we get

(3.13)
2(λ+ 1)

(n+ 2)
2n g(X,U) = 0.
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This implies that

(3.14) λ = −1.

using equations (3.14) in (2.18) in (3.12), we have

(3.15) Be(X,V )W = 0, Be(ξ, V )W = 0.

Therefore with the help of equations (3.11(b)) and (3.15) we conclude that:

Proposition 3.1. A C(λ) manifold M2n+1 (n > 1) is E-Bochner pseudosymmet-
ric if either LBe = −λ or C(λ) manifold is a Kenmotsu manifold.

Now, since λ is a real number and if C(λ) manifold be E-Bochner pseudosymmetric
then we have λ = −1 or LBe = −λ holds on M2n+1 which implies that LBe = −λ
will be a real number in both cases therefore we can state the following corollary.

Corollary 3.1. Every C(λ) manifold is E-Bochner pseudosymmetric and has the
form R.Be = −λQ(g,Be).

Corollary 3.2. Every C(λ) manifold is E-Bochner pseudosymmetric and has the
form R.Be = Q(g,Be).

4. E-Bochner semi-symmetric C(λ) manifolds

In an (2n+1)-dimensional alomost C(λ) the E-Bochner semi-symmetric C(λ) man-
ifold is defined by

(4.1) (R(X,Y ).Be)(U, V )W = 0.

The above equation can be written as

R(X,Y )Be(U, V )W −Be(R(X,Y )U, V )W

−Be(U,R(X,Y )V )W −Be(U, V )R(X,Y )W = 0.
(4.2)

Putting Y = ξ in above equation we get

λ
[
g(X,Be(U, V )W )ξ −Xη(Be(U, V )W )

− g(X,U)Be(ξ, V )W + η(U)Be(X,V )W

− g(X,V )Be(U, ξ)W + η(V )Be(U,X)W

+ η(W )Be(U, V )X − g(X,W )Be(U, V )ξ
]

= 0.

(4.3)

From (4.3), we have either λ = 0 or[
g(X,Be(U, V )W )ξ −Xη(Be(U, V )W )

− g(X,U)Be(ξ, V )W + η(U)Be(X,V )W

− g(X,V )Be(U, ξ)W + η(V )Be(U,X)W

+ η(W )Be(U, V )X − g(X,W )Be(U, V )ξ
]

= 0,

(4.4)
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for λ = 0 the manifold is a cosymplectic manifold.
Now putting W = U = ξ and using equation (2.18) in above equation, we have

(4.5)
2(λ+ 1)

(n+ 2)
η(X)V − g(X,V )ξ = 0.

again putting X = φX , V = φV and using equation (2.4), we have

(4.6)
2(λ+ 1)

(n+ 2)
g(φX, φV )ξ = 0.

Since g(φX, φV )ξ 6= 0, in general therefore we obtain from (4.5) λ = −1. Therefore
in this case manifold is a Kenmotsu manifold.
Thus we conclude

Proposition 4.1. If C(λ) manifold M2n+1 (n > 1) is an E-Bochner semi-symmetric
C(λ) manifold then either C(λ) manifold is a cosymplectic manifold or a Kenmotsu
manifold.

Now we propose

Theorem 4.1. In a C(λ) manifold M2n+1 (n > 1), Be(ξ,X).S = 0 if and only if
either C(λ) manifold is a Kenmotsu manifold or in C(λ) manifold the Ricci tensor
satisfies S(X,U) = −2nλη(X)η(U).

Proof If C(λ) manifold satisfying Be(ξ,X).S = 0.
Then from equation (3.2), we have

(4.7) S(Be(ξ,X)U, ξ) + S(U,Be(ξ,X)ξ) = 0,

From equation (2.12), we have

(4.8) S(Be(ξ,X)U, ξ) = −2nλη(Be(ξ,X)U).

Now with the help of equations (2.18) and (4.8), we have

(4.9) S(Be(ξ,X)U, ξ) = 0.

Again in view of the equation (2.18), we have

(4.10) S(Be(ξ,X)ξ, U) = −2(λ+ 1)

(n+ 2)
(S(X,U) + 2nλη(X)η(U)).

By using expressions (4.10) and (4.9) in (4.7), we infer

(4.11)
2(λ+ 1)

(n+ 2)
(S(X,U) + 2nλη(X)η(U)) = 0,

which implies that λ = −1 or

(4.12) S(X,U) = −2nλη(X)η(U).
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Conversely if the manifold satisfies the relation (4.12), then in view of equation
(2.18), we have

Be(ξ,X).S = −S(Be(ξ,X)U, ξ)− S(U,Be(ξ,X)ξ)

= −2(λ+ 1)

(n+ 2)
(S(X,U) + 2nλη(X)η(U))

= 0.

(4.13)

Again, if the manifold is Kenmotsu then we easily obtain from (2.18) thatBe(ξ,X).S =
0.
As a particular case of theorem 4.1 we can state the following corollary :

Corollary 4.1. A C(λ) manifold M2n+1 (n > 1) satisfies Be(ξ,X).S = 0 is a
special type of η-Einstein manifold.

Now we take Be(ξ, U).R = 0.
Then from equation (3.2), we have

Be(ξ, U)R(X,Y )Z −R(Be(ξ, U)X,Y )Z

−R(X,Be(ξ, U)Y )Z −R(X,Y )Be(ξ, U)Z = 0,
(4.14)

which in view of the equation (2.18), we have

2(λ+ 1)

(n+ 2)

{
η(U)η(R(X,Y )Z)ξ − η(R(X,Y )Z)U)

− η(X)η(U)R(ξ, Y )Z + η(X)R(U, Y )Z

− η(U)η(Y )R(X, ξ)Z + η(Y )R(X,U)Z

− η(U)η(Z)R(X,Y )ξ + η(Z)R(X,Y )U
}

= 0,

(4.15)

From (4.15) we have either λ = −1, or{
η(U)η(R(X,Y )Z)ξ − η(R(X,Y )Z)U)

− η(X)η(U)R(ξ, Y )Z + η(X)R(U, Y )Z

− η(U)η(Y )R(X, ξ)Z + η(Y )R(X,U)Z

− η(U)η(Z)R(X,Y )ξ + η(Z)R(X,Y )U
}

= 0.

(4.16)

For λ = −1, the manifold is Kenmotsu ˙
Putting X = Z = ξ in (4.16) and using (2.10) in the above equation, we infer

(4.17) R(φU, φY )ξ = λ[g(Y,U)ξ − η(U)η(Y )].

Thus, we conclude

Proposition 4.2. In C(λ) manifold M2n+1 (n > 1) if Be(ξ, U).R = 0 then the
manifold is either a Kenmotsu manifold or R(φU, φY )ξ = λ[g(Y,U)ξ − η(U)η(Y )].
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Now we propose

Theorem 4.2. In C(λ) manifold M2n+1 (n > 1), Be(ξ,X).Be = 0, if and only if
the manifold is Kenmotsu manifold.

Proof If C(λ) manifold satisfying Be(ξ,X).Be = 0. Then from equation (3.2), we
have

Be(ξ,X)Be(U, V )W −Be(Be(ξ,X)U, V )W

−Be(U,Be(ξ,X)V )W −Be(U, V )Be(ξ,X)W = 0,
(4.18)

which in view of the equation (2.18), we get

2(λ+ 1)

(n+ 2)

{
η(Be(U, V )W )η(X)ξ − η(Be(U, V )W )X

− η(U)η(X)Be(ξ, V )W + η(U)Be(X,V )W

− η(X)η(V )Be(U, ξ)W + η(V )Be(U,X)W

− η(W )η(X)Be(U, V )ξ + η(W )Be(U, V )X
}

= 0.

(4.19)

By using U = ξ in above equation, we infer

(4.20)
2(λ+ 1)

(n+ 2)

{
(Be(X,V )W + η(W )

2(λ+ 1)

(n+ 2)
(η(V )X + η(X)V )

}
= 0,

which implies that either λ = −1 or

(4.21) Be(X,V )W =
2(λ+ 1)

(n+ 2)
η(W )[η(V )X − η(X)V ],

contracting V in above equation, we have

(4.22)
2(λ+ 1)

(n+ 2)
2nη(W )η(X) = 0,

This implies that λ = −1, for λ = −1, the manifold is Kenmotsu. Conversely, in
the case if the manifold is Kenmotsu then from (2.18) we obtain Be(ξ,X).Be = 0
holds if and only if the manifold is Kenmotsu.

5. ξ-E- Bochner flat curvature tensor on C(λ) manifolds

A contact metric manifold is said to be ξ-conformally flat contact metric manifold
if the conformal curvature tensor of the manifold satisfies

(5.1) C(X,Y )ξ = 0,

for any vector fields X and Y.
This idea was introduced by Zhen, Cabrerizo, M. Fernandez and Fernandez [6] in
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1997. In 2012 U.C.De , Ahmet Yildiz, Mine Turan and Bilal E. Acet [16] defined
ξ-concircularly flat manifold if the concircular curvature tensor C̃(X,Y )ξ = 0 holds
on M.
Now, we define ξ- E-Bochner flat C(λ) manifold.

Definition 5.1. A C(λ) manifolds is said to be ξ- E-Bochner flat C(λ) manifold
if the E-Bochner curvature tensor Be of type (1, 3) of C(λ) manifold satisfies

(5.2) Be(X,Y )ξ = 0,

for any vector fields X and Y.
Putting Z = ξ in equation (1.2), we have

(5.3) Be(X,Y )ξ = −η(X)B(ξ, Y )ξ − η(Y )B(X, ξ)ξ.

Now from equations (1.3), (2.18) and (5.3), we get

(5.4)
2(λ+ 1)

(n+ 2)
[η(Y )X − η(X)Y ] = 0

putting Y = ξ in above equation we have

(5.5)
2(λ+ 1)

n+ 2
(X − η(X)ξ) = 0.

Now taking inner product with a vector field V, we have

(5.6)
2(λ+ 1)

n+ 2
(g(X,V )− η(X)η(V )) = 0.

Replacing X by QX in above equation, we get

(5.7)
2(λ+ 1)

n+ 2
(g(QX,V )− η(QX)η(V )) = 0,

since S(X,Y)=g(QX, Y), then from above equation we have

(5.8)
2(λ+ 1)

n+ 2
(S(X,V )− η(QX)η(V )) = 0.

Now with the help of equation (2.11) and (4.8), we have

(5.9)
2(λ+ 1)

n+ 2
(S(X,V ) + 2nλη(X)η(V ))) = 0.

this implies that either

(5.10) λ = −1,

or

(5.11) S(X,V ) = −2nλη(X)η(V ).

Theorem 5.1. In a ξ-E-Bochner flat C(λ) manifold either λ = −1 or C(λ) man-
ifold is a special type of η-Einstein manifold.
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