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Abstract. In this paper, we establish some common fixed point theorems and a coinci-
dence point theorem on complete weak partial metric spaces using auxiliary functions.
We also give some examples in support of the results. The results proved in this paper
extend and generalize several results from the existing literature.
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1. Introduction

The famous Banach contraction principle has been generalized in many direc-
tions, whether by generalizing the contractive condition or by extending the domain
of the function. Matthews [22] introduced the concept of partial metric space as a
part of the study of denotational semantics of dataflow networks [21, 22, 31, 33]. It
is widely recognized that partial metric spaces play an important role in construct-
ing models in the theory of computation. In partial metric spaces the distance of
a point in the self may not be zero. Introducing partial metric space, Matthews
extended the Banach contraction principle [7] and proved the fixed point theorem
in this space. The concept of partial Hausdorff metric was given by Aydi et al.
[5] and they established a fixed point theorem for multivalued mappings in partial
metric spaces. Excluding the idea of small self-distance Heckmann [16] generalized
the partial metric space to weak partial metric space. Recall that Heckmann [16]
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has shown that, if p is a weak partial metric on X, then for all x, y ∈ X, we have
the following weak small self-distance property:

p(x, y) ≥ p(x, x) + p(y, y)

2
.

Weak small self-distance property reflects that WPMS are not far from small self-
distance axiom. Clearly, every PMS is aWPMS, but not conversely. Some results
have recently been obtained in [3], [6], [13], [14].

The study of common fixed points was initiated by Jungck [19] in 1986, and this
notion has attracted many researchers to establish the existence of common fixed
points by using various contractive conditions.

This direction of research produced a consistent literature on fixed point, com-
mon fixed point and coincidence point theorems in various ambient spaces. For
more details see [1, 2, 8, 9, 11, 15, 17, 20, 23, 24, 25, 26, 27, 30, 32].

In 2017, Imdad et al. [18] established coupled and tripled fixed point results for
(ψ, ϕ) contractions on complete weak partial metric spaces which generalize certain
corresponding results of Ayadi et al. [4] and some others.

In 2019, Dhawan and Kaur [12] (Mathematics 2019,7,193) introduced the notion
of F-generalized contractive type mappings by using C-class function and estab-
lished some common fixed point theorems for weakly isotone increasing set valued
mappings in the setting of ordered partial metric spaces and give an example in
support of the result.

Recently, Popa and Patriciu [28] have proved a general fixed point theorem for
a mapping satisfying an implicit relation in the framework of weak partial metric
spaces, which is different of the results from [3] and [14].

Quite recently, Popa and Patriciu [29] have proved a general fixed point theorems
for two pairs of absorbing mappings in the setting of weak partial space, using
implicit relation and give an example in support of the result.

The aim of this paper is to investigate some unique common fixed point and
a coincidence point theorems for two self mappings satisfying auxiliary functions
in the framework of complete weak partial metric spaces. The results of findings
extend and generalize several comparable results in the existing literature.

2. Definitions and Lemmas

Now, we give some basic definitions and auxiliary results on partial metric space
(PMS) and weak partial metric space (WPMS).

Definition 2.1. ([21, 22]) Let X be a nonempty set and p:X × X → [0,∞) be
such that for all x, y, z ∈ X the following postulates are satisfied:

(PM1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),

(PM2) p(x, x) ≤ p(x, y),
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(PM3) p(x, y) = p(y, x),

(PM4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

Then p is called partial metric on X and the pair (X, p) is called partial metric
space.

Remark 2.1. It is clear that, if p(x, y) = 0, then x = y. But, if x = y, p(x, x) may not
be zero.

Each partial metric space on a set X generates a T0 topology τp on X which has
a base the family of open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈
X : p(x, y) < p(x, x) + ε} for all x ∈ X and ε > 0.

Similarly, closed p-ball is defined as Bp[x, ε] := {y ∈ X : p(x, y) ≤ p(x, x) + ε}
A sequence {xn} in the partial metric space (X, p) converges with respect to τp

to a point x ∈ X if and only if p(x, x) = limn→∞ p(xn, x).

If p is a partial metric on X, then the functions dw, dp:X ×X → [0,∞) given
by

dw(x, y) = p(x, y)−min{p(x, x), p(y, y)}(2.1)

and

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y)(2.2)

are ordinary metrics on X.

Remark 2.2. Let {xn} be a sequence in a PMS (X, p) and x ∈ X, then limn→∞ dw(xn, x) =
0 if and only if

p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm).

Proposition 2.1. ([3]) Let (X, p) be a PMS, then dp and dw are equivalent metrics
on X.

Definition 2.2. ([22]) Let (X, p) be a partial metric space. Then

(1) a sequence {xn} is called a Cauchy sequence if limn,m→∞ p(xn, xm) exists and
is finite,

(2) (X, p) is said to be complete if every Cauchy sequence {xn} in X converges
with respect to τp to a point x ∈ X such that p(x, x) = limn,m→∞ p(xn, xm).

Definition 2.3. ([16]) A weak partial metric space on a nonempty set X is a
function p:X ×X → [0,∞) such that for all x, y, z ∈ X, the following is satisfied:

(WPM1): x = y ⇔ p(x, x) = p(x, y) = p(y, y),
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(WPM2): p(x, y) = p(y, x),

(WPM3): p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

Then p is called weak partial metric on X and the pair (X, p) is called weak partial
metric space (in short WPMS).

If p(x, y) = 0, then x = y.

It is obvious that, every partial metric space is a weak partial metric space, but
the converse is not true. For example, if X = [0,∞) and p(x, y) = x+y

2 , then (X, p)
is a weak partial metric space and (X, p) is not a partial metric space. For another
example, for x, y ∈ R the function p(x, y) = ex+ey

2 is a non partial metric but weak
partial metric on R.

Remark 2.3. ([3]) If (X, p) be a WPMS, but not a PMS, then the function dp as in (2.2)
may not be an ordinary metric on X. For example, let X = [0,∞) and let p:X × X →
[0,∞) defined by p(x, y) = x+y

2
. Then it is clear that dp(x, y) = 0 for all x, y ∈ X, so dp

is not a metric on X. Note that, in this case dw(x, y) =
1
2
|x− y|.

Proposition 2.2. ([3]) Let a, b, c ∈ [0,∞), then we have

min{a, c}+min{b, c} ≤ min{a, b}+ c.

Proposition 2.3. ([3]) Let (X, p) be a WPMS, then dw:X × X → R defined as
in (2.1) is an ordinary metric on X.

Definition 2.4. A point x in X is called a coincidence point of two self mappings
f and S of X if fx = Sx for each x ∈ X.

Example 2.1. Let f(x) = x3

4
and S(x) = x4 for all x ∈ [0, 1

4
]. Then f and S have two

coincidence point 0 and 1
4
. Clearly, they commute at 0 but not at 1

4
.

Remark 2.4. In a weak partial metric space, the convergent Cauchy sequence and the
completeness are defined as in partial metric space.

Lemma 2.1. ([3]) Let (X, p) be a weak partial metric space (WPMS).

(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in
(X, dw).

(b) (X, p) is complete if and only if (X, dw) is complete.

Lemma 2.2. ([28]) Let (X, p) be a weak partial metric space and {xn} is a se-
quence in (X, p). If limn→∞ xn = x and p(x, x) = 0, then limn→∞ p(xn, y) =
p(x, y), for all y ∈ X.
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Lemma 2.3. ([10]) Let (X, p) be a partial metric space and let {xn} be a sequence
in (X, p) such that limn→∞ p(xn+1, xn) = 0.

If the sequence {x2n} is not a Cauchy sequence in (X, p), then there exists ε > 0
and two subsequences {x2m(k)} and {x2n(k)} of positive integers with n(k) > m(k) >
k such that the four sequences

p(x2m(k), x2n(k)+1), p(x2m(k), x2n(k)), p(x2m(k)−1, x2n(k)+1), p(x2m(k)−1, x2n(k))

tend to ε > 0 when k → ∞.

Remark 2.5. Remark 2.2 is still true for weak partial metric spaces.

3. Main Results

In this section, we shall prove some unique common fixed point and a coincidence
point theorems via auxiliary functions in the setting of complete weak partial metric
spaces.

The following classes of the auxiliary functions are used in the main results of
this paper.

(1) Let Ψ be the family of continuous and monotone non-decreasing functions
ψ: [0,∞) → [0,∞) such that ψ(t) = 0 if and only if t = 0.

(2) Let Φ be the family of lower semi-continuous functions ϕ: [0,∞) → [0,∞) such
that ϕ(t) = 0 if and only if t = 0.

Theorem 3.1. Let F and G be two self-maps on a complete weak partial metric
space (X, p) satisfying the condition:

ψ
(
p(Fx,Gy)

)
≤ ψ

(
M(x, y)

)
− ϕ

(
N (x, y)

)
,(3.1)

for all x, y ∈ X, where

M(x, y) = max
{
p(x, y), p(x, Fx), p(y,Gy),

1

3
[p(x, y) + p(x,Gy) + p(y, Fx)]

}
,

N (x, y) = max
{
p(x, y),

1

4
[p(x, Fx) + p(y,Gy)],

1

4
[p(x,Gy) + p(y, Fx)]

}
,

ψ ∈ Ψ and ϕ ∈ Φ. Then F and G have a unique common fixed point z in X with
p(z, z) = 0.

Proof. For each x0 ∈ X. Let x2n+1 = Fx2n and x2n+2 = Gx2n+1 for n = 0, 1, 2, . . ..
We prove that {xn} is a Cauchy sequence in (X, p). It follows from (3.1) for x = x2n
and y = x2n−1 that

ψ
(
p(x2n+1, x2n)

)
= ψ

(
p(Fx2n, Gx2n−1)

)
≤ ψ

(
M(x2n, x2n−1)

)
− ϕ

(
N (x2n, x2n−1)

)
,(3.2)
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where

M(x2n, x2n−1) = max
{
p(x2n, x2n−1), p(x2n, Fx2n), p(x2n−1, Gx2n−1),

1

3
[p(x2n, x2n−1) + p(x2n, Gx2n−1) + p(x2n−1, Fx2n)]

}
= max

{
p(x2n, x2n−1), p(x2n, x2n+1), p(x2n−1, x2n),(3.3)

1

3
[p(x2n, x2n−1) + p(x2n, x2n) + p(x2n−1, x2n+1)]

}
,

using condition (WPM3), we have

p(x2n−1, x2n+1) ≤ p(x2n−1, x2n) + p(x2n, x2n+1)− p(x2n, x2n),

or
1

3
[p(x2n, x2n−1) + p(x2n, x2n) + p(x2n−1, x2n+1)]

≤ 1

3
[p(x2n, x2n−1) + p(x2n−1, x2n)

+p(x2n, x2n+1)]

=
1

3
[p(x2n, x2n−1) + p(x2n, x2n−1)

+p(x2n, x2n+1)] (by (WPM2))

≤ max
{
p(x2n, x2n−1), p(x2n+1, x2n)

}
,(3.4)

by equations (3.3), (3.4) and using (WPM2), we have

M(x2n, x2n−1) ≤ max
{
p(x2n, x2n−1), p(x2n+1, x2n)

}
,(3.5)

and

N (x2n, x2n−1) = max
{
p(x2n, x2n−1),

1

4
[p(x2n, Fx2n) + p(x2n−1, Gx2n−1)],

1

4
[p(x2n, Gx2n−1) + p(x2n−1, Fx2n)]

}
= max

{
p(x2n, x2n−1),

1

4
[p(x2n, x2n+1) + p(x2n−1, x2n)],(3.6)

1

4
[p(x2n, x2n) + p(x2n−1, x2n+1)]

}
,

from condition (WPM3), we have

p(x2n−1, x2n+1) ≤ p(x2n−1, x2n) + p(x2n, x2n+1)− p(x2n, x2n),

or
1

4
[p(x2n, x2n) + p(x2n−1, x2n+1)]
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≤ 1

4
[p(x2n−1, x2n) + p(x2n, x2n+1)]

≤ max
{
p(x2n, x2n−1), p(x2n+1, x2n)

}
,(3.7)

by equations (3.6) and (3.7), we have

N (x2n, x2n−1) ≤ max
{
p(x2n, x2n−1), p(x2n+1, x2n)

}
,(3.8)

From equations (3.2), (3.5) and (3.8), we have

ψ
(
p(x2n+1, x2n)

)
≤ ψ

(
max

{
p(x2n, x2n−1), p(x2n+1, x2n)

})
−ϕ

(
max

{
p(x2n, x2n−1), p(x2n+1, x2n)

})
.(3.9)

If p(x2n+1, x2n) > p(x2n, x2n−1), then from equation (3.9) and using the property
of ψ, ϕ, we get

ψ
(
p(x2n+1, x2n)

)
≤ ψ

(
p(x2n+1, x2n)

)
− ϕ

(
p(x2n+1, x2n)

)
< ψ

(
p(x2n+1, x2n)

)
,(3.10)

which is a contradiction since p(x2n+1, x2n) > 0. So, we have p(x2n+1, x2n) ≤
p(x2n, x2n−1), that is, {p(x2n+1, x2n)} is a non-increasing sequence of positive real
numbers. Thus there exists ρ ≥ 0 such that

p(x2n+1, x2n) = ρ.(3.11)

Suppose that ρ > 0. Taking the lower limit in (3.9) as n→ ∞ and using (3.10) and
the properties of ψ, ϕ, we have

ψ(ρ) ≤ ψ(ρ)− lim inf
n→∞

ϕ(ρ) ≤ ψ(ρ)− ϕ(ρ) < ψ(ρ),

which is a contradiction. Therefore,

lim
n→∞

p(x2n+1, x2n) = 0,

which implies

lim
n→∞

p(xn+1, xn) = 0.(3.12)

Now, we shall prove that {x2n} is a Cauchy sequence in (X, p). On the contrary,
assume that {x2n} is not a Cauchy sequence in (X, p), then by Lemma 2.3, there
exists ε > 0 and two subsequences {x2m(k)} and {x2n(k)} of {x2n} with n(k) >
m(k) > k such that the sequences

p(x2m(k), x2n(k)+1), p(x2m(k), x2n(k)), p(x2m(k)−1, x2n(k)+1), p(x2m(k)−1, x2n(k))

tend to ε > 0 when k → ∞.
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Now, using the given contractive condition (3.1) for x = x2m(k) and y = x2n(k)+1,
we have

ψ
(
p(x2m(k), x2n(k)+1)

)
= ψ

(
p(Fx2m(k)−1, Gx2n(k)

)
≤ ψ

(
M(x2m(k)−1, x2n(k))

)
−ϕ

(
N (x2m(k)−1, x2n(k))

)
,(3.13)

where

M(x2m(k)−1, x2n(k)) = max
{
p(x2m(k)−1, x2n(k)),

p(x2m(k)−1, Fx2m(k)−1), p(x2n(k), Gx2n(k)),

1

3
[p(x2m(k)−1, x2n(k)) + p(x2m(k)−1, Gx2n(k))

+p(x2n(k), Fx2m(k)−1)]
}

= max
{
p(x2m(k)−1, x2n(k)),

p(x2m(k)−1, x2m(k)), p(x2n(k), x2n(k)+1),(3.14)

1

3
[p(x2m(k)−1, x2n(k)) + p(x2m(k)−1, x2n(k)+1)

+p(x2n(k), x2m(k))]
}
.

Taking the limit as k → ∞ and using (WPM2) and (3.12) in (3.14), we get

M(x2m(k)−1, x2n(k)) → max{ε, 0, 0, ε} = ε,(3.15)

and

N (x2m(k)−1, x2n(k)) = max
{
p(x2m(k)−1, x2n(k)),

1

4
[p(x2m(k)−1, Fx2m(k)−1) + p(x2n(k), Gx2n(k))],

1

4
[p(x2m(k)−1, Gx2n(k)) + p(x2n(k), Fx2m(k)−1)]

}
= max

{
p(x2m(k)−1, x2n(k)),(3.16)

1

4
[p(x2m(k)−1, x2m(k)) + p(x2n(k), x2n(k)+1)],

1

4
[p(x2m(k)−1, x2n(k)+1) + p(x2n(k), x2m(k))]

}
.

Taking the limit as k → ∞ and using (WPM2) and (3.12) in (3.16), we obtain

N (x2m(k)−1, x2n(k)) → max{ε, 0, ε
3
} = ε.(3.17)

Thus, by (3.13) for any k → ∞, we have

ψ(ε) ≤ ψ(ε)− ϕ(ε) < ψ(ε),
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which is a contradiction. Hence, we have

lim
n,m→∞

p(xn, xm) = 0.(3.18)

Since limn,m→∞ p(xn, xm) exists and is finite, we conclude that {xn} is a Cauchy
sequence in (X, p).

On the other hand, since

dw(xn, xm) ≤ p(xn, xm)−min
{
p(xn, xn), p(xm, xm)

}
≤ p(xn, xm).

Therefore, taking the limit as n,m→ ∞ and using (3.18), we have

lim
n,m→∞

dw(xn, xm) = 0.(3.19)

This shows that {xn} is also a Cauchy sequence in the metric space (X, dw). Since
(X, p) is complete, then from Lemma 2.1, the sequence {xn} converges in the metric
space (X, dw), say to a point z ∈ X and limn→∞ dw(xn, z) = 0. Again from Lemma
2.1, we have

p(z, z) = lim
n→∞

p(xn, z) = lim
n,m→∞

p(xn, xm).(3.20)

Hence from (3.18) and (3.20), we get

p(z, z) = lim
n→∞

p(xn, z) = lim
n,m→∞

p(xn, xm) = 0.(3.21)

Now, we shall show that z is a common fixed point of F and G. Notice that due to
(3.21), we have p(z, z) = 0. By (3.1) with x = x2n and y = z and using (3.21), we
have

ψ
(
p(x2n+1, Gz)

)
= ψ

(
p(Fx2n, Gz)

)
≤ ψ

(
M(x2n, z)

)
− ϕ

(
N (x2n, z)

)
,(3.22)

where

M(x2n, z) = max
{
p(x2n, z), p(x2n, Fx2n), p(z,Gz),

1

3
[p(x2n, z) + p(x2n, Gz) + p(z, Fx2n)]

}
= max

{
p(x2n, z), p(x2n, x2n+1), p(z,Gz),

1

3
[p(x2n, z) + p(x2n, Gz) + p(z, x2n+1)]

}
,

passing the limit as n→ ∞ and using (3.21) in the above inequality, we obtain

M(x2n, z) → max
{
0, 0, p(z,Gz),

p(z,Gz)

3

}
= p(z,Gz),(3.23)
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and

N (x2n, z) = max
{
p(x2n, z),

1

4
[p(x2n, Fx2n) + p(z,Gz)],

1

4
[p(x2n, Gz) + p(z, Fx2n)]

}
= max

{
p(x2n, z),

1

4
[p(x2n, x2n+1) + p(z,Gz)],

1

4
[p(x2n, Gz) + p(z, x2n+1)]

}
,

passing the limit as n→ ∞ and using (3.21) in the above inequality, we obtain

N (x2n, z) → max
{
0,
p(z,Gz)

4
,
p(z,Gz)

4

}
=
p(z,Gz)

4
.(3.24)

Now, from (3.22), (3.23) and (3.24), we have

ψ
(
p(x2n+1, Gz)

)
≤ ψ

(
p(z,Gz)

)
− ϕ

(p(z,Gz)
4

)
.(3.25)

passing the limit as n→ ∞ in the above inequality and using the property of ψ, ϕ,
we obtain

ψ
(
p(z,Gz)

)
≤ ψ

(
p(z,Gz)

)
− ϕ

(p(z,Gz)
4

)
< ψ

(
p(z,Gz)

)
,

which is a contradiction. Thus Gz = z, that is, z is a fixed point of G. Similarly,
we can prove that z is also a fixed point of F . Hence, z is a common fixed point of
F and G. Finally to prove uniqueness, suppose z′ is another common fixed point
of F and G such that Fz′ = z′ = Gz′ with z ̸= z′. From (3.1) and (3.20), we have

ψ
(
p(z, z′)

)
= ψ

(
p(Fz,Gz′)

)
≤ ψ

(
M(z, z′)

)
− ϕ

(
N (z, z′)

)
,(3.26)

where

M(z, z′) = max
{
p(z, z′), p(z, Fz), p(z′, Gz′),

1

3
[p(z, z′) + p(z,Gz′) + p(z′, Fz)]

}
= max

{
p(z, z′), p(z, z), p(z′, z′),

1

3
[p(z, z′) + p(z, z′) + p(z′, z)]

}
= max

{
p(z, z′), 0, 0, p(z, z′)

}
(by (WPM2))

= p(z, z′),(3.27)
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and

N (z, z′) = max
{
p(z, z′),

1

4
[p(z, Fz) + p(z′, Gz′)],

1

4
[p(z,Gz′) + p(z′, F z)]

}
= max

{
p(z, z′),

1

4
[p(z, z) + p(z′, z′)],

1

4
[p(z, z′) + p(z′, z)]

}
= max

{
p(z, z′), 0,

p(z, z′)

2

}
(by (WPM2))

= p(z, z′).(3.28)

Now, from equations (3.26)-(3.28) and using the property of ψ, ϕ, we obtain

ψ
(
p(z, z′)

)
≤ ψ

(
p(z, z′)

)
− ϕ

(
p(z, z′)

)
< ψ

(
p(z, z′),

which is a contraction. Thus, z = z′. This shows that the common fixed point of
F and G is unique. This completes the proof.

If we take F = G = T in Theorem 3.1, then we have the following result as
corollaries.

Corollary 3.1. Let T be a self-map on a complete weak partial metric space (X, p)
satisfying the condition:

ψ
(
p(Tx, Ty)

)
≤ ψ

(
M(x, y)

)
− ϕ

(
N (x, y)

)
,(3.29)

for all x, y ∈ X, where

M(x, y) = max
{
p(x, y), p(x, Tx), p(y, Ty),

1

3
[p(x, y) + p(x, Ty) + p(y, Tx)]

}
,

N (x, y) = max
{
p(x, y),

1

4
[p(x, Tx) + p(y, Ty)],

1

4
[p(x, Ty) + p(y, Tx)]

}
,

ψ ∈ Ψ and ϕ ∈ Φ. Then T has a unique fixed point u in X with p(u, u) = 0.

Corollary 3.2. Let T be a self-map on a complete weak partial metric space (X, p)
satisfying the condition:

ψ
(
p(Tx, Ty)

)
≤ ψ

(
M(x, y)

)
− ϕ

(
M(x, y)

)
,

for all x, y ∈ X, where M(x, y) as in Corollary 3.1, ψ ∈ Ψ and ϕ ∈ Φ. Then T has
a unique fixed point u in X with p(u, u) = 0.
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Corollary 3.3. Let T be a self-map on a complete weak partial metric space (X, p)
satisfying the condition:

ψ
(
p(Tx, Ty)

)
≤ ψ

(
N (x, y)

)
− ϕ

(
N (x, y)

)
,

for all x, y ∈ X, where N (x, y) as in Corollary 3.1, ψ ∈ Ψ and ϕ ∈ Φ. Then T has
a unique fixed point u in X with p(u, u) = 0.

Taking ψ to an identity mapping and ϕ(t) = (1−k)t for all t ≥ 0, where k ∈ (0, 1)
in Corollary 3.2, then we obtain the following result.

Corollary 3.4. Let T be a self-map on a complete weak partial metric space (X, p)
satisfying the condition:

p(Tx, Ty) ≤ k max
{
p(x, y), p(x, Tx), p(y, Ty),

1

3
[p(x, y) + p(x, Ty) + p(y, Tx)]

}
,

for all x, y ∈ X, where k ∈ (0, 1) is a constant. Then T has a unique fixed point u
in X with p(u, u) = 0.

Taking ψ to an identity mapping and ϕ(t) = (1−q)t for all t ≥ 0, where q ∈ (0, 1)
in Corollary 3.3, then we obtain the following result.

Corollary 3.5. Let T be a self-map on a complete weak partial metric space (X, p)
satisfying the condition:

p(Tx, Ty) ≤ q max
{
p(x, y),

1

4
[p(x, Tx) + p(y, Ty)],

1

4
[p(x, Ty) + p(y, Tx)]

}
,

for all x, y ∈ X, where q ∈ (0, 1) is a constant. Then T has a unique fixed point u
in X with p(u, u) = 0.

Theorem 3.2. Let G1 and G2 be two continuous self-maps on a complete weak
partial metric space (X, p) satisfying the condition:

ψ
(
p(Gm

1 x,G
n
2y)

)
≤ ψ

(
M(x, y)

)
− ϕ

(
N (x, y)

)
,(3.30)

for all x, y ∈ X, where m and n are some integers,

M(x, y) = max
{
p(x, y), p(x,Gm

1 x), p(y,G
n
2y),

1

3
[p(x, y) + p(x,Gn

2y) + p(y,Gm
1 x)]

}
,

N (x, y) = max
{
p(x, y),

1

4
[p(x,Gm

1 x) + p(y,Gn
2y)],

1

4
[p(x,Gn

2y) + p(y,Gm
1 x)]

}
,

ψ ∈ Ψ and ϕ ∈ Φ. Then G1 and G2 have a unique common fixed point v in X with
p(v, v) = 0.
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Proof. Since Gm
1 and Gn

2 satisfy the conditions of the Theorem 3.1. So Gm
1 and Gn

2

have a unique common fixed point. Let v be the common fixed point. Then we
have

Gm
1 v = v ⇒ G1(G

m
1 v) = G1v

⇒ Gm
1 (G1v) = G1v.

If G1v = v0, then G
m
1 v0 = v0. So G1v is a fixed point of Gm

1 . Similarly, Gn
2 (G2v) =

G2v, that is, G2v is a fixed point of Gn
2 .

Now, using equations (3.30) and (3.21), we have

ψ
(
p(v,G1v)

)
= ψ

(
p(Gm

1 v,G
m
1 (G1v))

)
≤ ψ

(
M(v,G1v)

)
− ϕ

(
N (v,G1v)

)
,(3.31)

where

M(v,G1v) = max
{
p(v,G1v), p(v,G

m
1 v), p(G1v,G

m
1 (G1v)),

1

3
[p(v,G1v) + p(v,Gm

1 (G1v)) + p(G1v,G
m
1 v)]

}
= max

{
p(v,G1v), p(v, v), p(G1v,G1v),

1

3
[p(v,G1v) + p(v,G1v) + p(G1v, v)]

}
= max

{
p(v,G1v), 0, 0, p(v,G1v)

}
(using (WPM2))

= p(v,G1v),(3.32)

and

N (v,G1v) = max
{
p(v,G1v),

1

4
[p(v,Gm

1 v) + p(G1v,G
m
1 (G1v))],

1

4
[p(v,Gm

1 (G1v)) + p(G1v,G
m
1 v)]

}
= max

{
p(v,G1v),

1

4
[p(v, v) + p(G1v,G1v)],

1

4
[p(v,G1v) + p(G1v, v)]

}
= max

{
p(v,G1v), 0,

p(v,G1v)

2

}
(using (WPM2))

= p(v,G1v).(3.33)

From equations (3.31)-(3.33) and using the property of ψ, ϕ, we obtain

ψ
(
p(v,G1v)

)
≤ ψ

(
p(v,G1v)

)
− ϕ

(
p(v,G1v)

)
< ψ

(
p(v,G1v)

)
,

which is a contradiction. Hence v = G1v for all v ∈ X. Similarly, we can show
that v = G2v. This shows that v is a common fixed point of G1 and G2. For the
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uniqueness of v, let v′ ̸= v be another common fixed point of G1 and G2. Then
clearly v′ is also a common fixed point of Gm

1 and Gn
2 which implies v = v′. Thus

G1 and G2 have a unique common fixed point in X. This completes the proof.

Theorem 3.3. Let {Fα} be a family of continuous self-maps on a complete weak
partial metric space (X, p) satisfying the condition:

ψ
(
p(Fαx, Fβy)

)
≤ ψ

(
M(x, y)

)
− ϕ

(
N (x, y)

)
,(3.34)

for all x, y ∈ X, where

M(x, y) = max
{
p(x, y), p(x, Fαx), p(y, Fβy),

1

3
[p(x, y) + p(x, Fβy) + p(y, Fαx)]

}
,

N (x, y) = max
{
p(x, y),

1

4
[p(x, Fαx) + p(y, Fβy)],

1

4
[p(x, Fβy) + p(y, Fαx)]

}
,

ψ ∈ Ψ, ϕ ∈ Φ and α, β ∈ F with α ̸= β, where F denote the family of all continuous
functions α: [0,∞) → [0,∞). Then there exists a unique µ ∈ X satisfying Fα(µ) = µ
for all α ∈ F with p(µ, µ) = 0.

Proof. Follows from Theorem 3.1 and by definition of continuity.

Theorem 3.4. Let T and f be two self-maps on a complete weak partial metric
space (X, p) satisfying the condition:

ψ
(
p(T x, T y)

)
≤ ψ

(
M1(x, y)

)
− ϕ

(
M2(x, y)

)
,(3.35)

for all x, y ∈ X, where

M1(x, y) = max
{
p(fx, fy), p(fx, T x), p(fy, T y), 1

3
[p(fx, fy) + p(fx, T y)

+p(fy, T x)]
}
,

M2(x, y) = max
{
p(fx, fy),

1

4
[p(fx, T x) + p(fy, T y)], 1

4
[p(fx, T y)

+p(fy, T x)]
}
,

ψ ∈ Ψ and ϕ ∈ Φ. If the range of f contains the range of T and f(X) is a complete
subspace of X, then T and f have a coincidence point v ∈ X, that is, fv = T v with
p(fv, fv) = 0.

Proof. Let x0 ∈ X and choose a point x1 in X such that T x0 = fx1, . . . , T xn =
fxn+1. Then from (3.35) for x = xn−1 and y = xn we have successively

ψ
(
p(fxn, fxn+1)

)
= ψ

(
p(T xn−1, T xn)

)
≤ ψ

(
M1(xn−1, xn)

)
− ϕ

(
M2(xn−1, xn)

)
,(3.36)
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where

M1(xn−1, xn) = max
{
p(fxn−1, fxn), p(fxn−1, T xn−1), p(fxn, T xn),
1

3
[p(fxn−1, fxn) + p(fxn−1, T xn) + p(fxn, T xn−1)]

}
= max

{
p(fxn−1, fxn), p(fxn−1, fxn), p(fxn, fxn+1),(3.37)

1

3
[p(fxn−1, fxn) + p(fxn−1, fxn+1) + p(fxn, fxn)]

}
,

using condition (WPM3), we have

p(fxn−1, fxn+1) ≤ p(fxn−1, fxn) + p(fxn, fxn+1)− p(fxn, fxn),

or
1

3
[p(fxn−1, fxn) + p(fxn−1, fxn+1) + p(fxn, fxn)]

≤ 1

3
[p(fxn−1, fxn) + p(fxn−1, fxn) + p(fxn, fxn+1)]

≤ max
{
p(fxn−1, fxn), p(fxn, fxn+1)

}
,(3.38)

by equations (3.37) and (3.38), we have

M1(xn−1, xn) = max
{
p(fxn−1, fxn), p(fxn, fxn+1)

}
.(3.39)

Similarly, we can show that

M2(xn−1, xn) = max
{
p(fxn−1, fxn), p(fxn, fxn+1)

}
.(3.40)

From equations (3.36), (3.39) and (3.40), we have

ψ
(
p(fxn, fxn+1)

)
≤ ψ

(
max

{
p(p(fxn−1, fxn), p(fxn, fxn+1))

})
−ϕ

(
max

{
p(p(fxn−1, fxn), p(fxn, fxn+1))

})
.(3.41)

If p(fxn, fxn+1) > p(fxn−1, fxn), then from equation (3.41) and using the property
of ψ, ϕ, we get

ψ
(
p(fxn, fxn+1)

)
≤ ψ

(
p(fxn, fxn+1)

)
− ϕ

(
p(fxn, fxn+1)

)
< ψ

(
p(fxn, fxn+1)

)
,(3.42)

which is a contradiction since p(fxn, fxn+1) > 0. So, we have p(fxn, fxn+1) ≤
p(fxn−1, fxn), that is, p(fxn, fxn+1) is a non-increasing sequence of positive real
numbers. Thus there exists L ≥ 0 such that

lim
n→∞

p(fxn, fxn+1) = L.(3.43)
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Suppose that L > 0. Taking the lower in (3.41) as n→ ∞ and using (3.43) and the
properties of ψ, ϕ, we have

ψ(L) ≤ ψ(L)− lim inf
n→∞

ϕ(L) ≤ ψ(L)− ϕ(L) < ψ(L),

which is a contradiction. Therefore,

lim
n→∞

p(fxn, fxn+1) = 0.(3.44)

On the other hand, since

dw(fxn+1, fxn) ≤ p(fxn+1, fxn)−min
{
p(fxn, fxn), p(fxn+1, fxn+1)

}
≤ p(fxn+1, fxn).

Therefore, taking the limit as n→ ∞ and using (3.44), we have

lim
n→∞

dw(fxn+1, fxn) = 0.(3.45)

Therefore we have for m > n

dw(fxm, fxn) ≤ dw(fxm, fxm−1) + . . .+ dw(fxn+1, fxn).

Passing to the limit as n,m→ ∞ and using (3.45), we obtain

lim
n,m→∞

dw(fxn, fxm) = 0.(3.46)

This shows that {xn} is a Cauchy sequence in the metric space (X, dw). Since (X, p)
is complete then from Lemma 2.1, the sequence {xn} converges in the metric space
(X, dw), say xn → v ⇒ fxn → fv as n→ ∞, since f(X) is a complete subspace of
X, that is, limn→∞ dw(fxn, fv) = 0. Again from Lemma 2.1, we have

p(fv, fv) = lim
n→∞

p(fxn, fv) = lim
n,m→∞

p(fxn, fxm).(3.47)

Moreover, since {xn} is a Cauchy sequence in the metric space (X, dw), we have
limn,m→∞ dw(fxm, fxn) = 0. On the other hand since

p(fxn, fxn) + p(fxn+1, fxn+1) ≤ 2p(fxn, fxn+1),(3.48)

from (3.44), we obtain

lim
n→∞

p(fxn, fxn) = 0.(3.49)

Therefore, by the definition of dw we obtain

p(fxn, fxm) = dw(fxn, fxm) + min
{
p(fxn, fxn), p(fxm, fxm)

}
,
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and so

lim
n,m→∞

p(fxn, fxm) = 0.(3.50)

Thus from (3.47), we obtain

p(fv, fv) = lim
n→∞

p(fxn, fv) = lim
n,m→∞

p(fxn, fxm) = 0.(3.51)

Now, we shall show that v is a coincidence point of T and f . Notice that due to
(3.51), we have p(fv, fv) = 0. By (3.35), we have

ψ
(
p(T v, T xn)

)
≤ ψ

(
M1(v, xn)

)
− ϕ

(
M2(v, xn)

)
,

or

ψ
(
p(T v, fxn+1)

)
≤ ψ

(
M1(v, xn)

)
− ϕ

(
M2(v, xn)

)
,(3.52)

where

M1(v, xn) = max
{
p(fv, fxn), p(fv, T v), p(fxn, T xn),
1

3
[p(fv, fxn) + p(fv, T xn) + p(fxn, T v)]

}
= max

{
p(fv, fxn), p(fv, T v), p(fxn, fxn+1),(3.53)

1

3
[p(fv, fxn) + p(fv, fxn+1) + p(fxn, T v)]

}
,

passing to the limit as n→ ∞ and using p(fv, fv) = 0 in (3.53), we obtain

M1(v, xn) → max
{
0, p(fv, T v), 0, 1

3
p(fv, T v)

}
= p(fv, T v),(3.54)

and

M2(v, xn) = max
{
p(fv, fxn),

1

4
[p(fv, T v) + p(fxn, T xn)],

1

4
[p(fv, T xn) + p(fxn, T v)]

}
= max

{
p(fv, fxn),

1

4
[p(fv, T v) + p(fxn, fxn+1)],

1

4
[p(fv, fxn+1) + p(fxn, T v)]

}
,(3.55)

passing to the limit as n→ ∞ and using p(fv, fv) = 0 in (3.55), we obtain

M2(v, xn) → max
{
0,

1

4
p(fv, T v), 1

4
p(fv, T v)

}
=

1

4
p(fv, T v).(3.56)

From equations (3.52), (3.54) and (3.56), we have

ψ
(
p(T v, fxn+1)

)
≤ ψ

(
p(fv, T v)

)
− ϕ

(1
4
p(fv, T v)

)
.(3.57)
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Passing to the limit as n→ ∞ in (3.57) and using the property of ψ, ϕ, we obtain

ψ
(
p(fv, T v)

)
≤ ψ

(
p(fv, T v)

)
− ϕ

(1
4
p(fv, T v)

)
, (by (WPM2))

< ψ
(
p(fv, T v)

)
,

which is a contradiction. Hence, T v = fv. This shows that v is a coincidence point
of T and f . This completes the proof.

Remark 3.1. If we take g = I, the identity map, M1(x, y) = M(x, y) and M2(x, y) =
N (x, y) in Theorem 3.4, then we obtain Corollary 3.1 of this paper.

Now, we give some examples in support of our result.

Example 3.1. Let X = [0, 1] and p(x, y) = x+y
2

, then dw(x, y) = 1
2
|x − y|. Therefore,

since (X, dw) is complete, then by Lemma 2.1, (X, p) is a complete weak partial metric
space (WPMS). Consider the mapping T :X → X, defined by

T (x) =

{
x− 1, if x ̸= 0,
0, if x = 0.

and ψ, ϕ: [0,∞) → [0,∞) defined by ψ(t) = t and ϕ(t) = 2t
3

for all t ≥ 0.

We claim that condition (3.29) of Corollary 3.1 is satisfied. For this, we consider the
following cases.

Case 1. If x = y = 0, then

p(T (x), T (y)) = 0 and ψ
(
p(T (x), T (y))

)
= 0,

and

M(x, y) = 0, N (x, y) = 0 ⇒ ψ
(
M(x, y)

)
= 0 = ϕ

(
N (x, y)

)
.

Hence

ψ
(
p(T (x), T (y))

)
= 0 ≤ ψ

(
M(x, y)

)
− ϕ

(
N (x, y)

)
.

Case 2. If x = y > 0, then

p(T (x), T (y)) = p(x− 1, x− 1) = x− 1 and ψ
(
p(T (x), T (y))

)
= x− 1.

Now

p(x, y) =
x+ y

2
, p(x, T (x)) =

2x− 1

2
, p(y, T (y)) =

2y − 1

2
,

p(x, T (y)) =
x+ y − 1

2
, p(y, T (x)) =

y + x− 1

2
,

and

M(x, y) =
x+ y

2
⇒ ψ

(
M(x, y)

)
=
x+ y

2
,

N (x, y) =
x+ y

2
⇒ ϕ

(
N (x, y)

)
=
x+ y

3
.
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Hence from condition (3.29), we have

ψ
(
p(T (x), T (y))

)
= x− 1 ≤ x+ y

6
=
x+ y

2
− x+ y

3

= ψ
(
M(x, y)

)
− ϕ

(
N (x, y)

)
.

Thus, we have

ψ
(
p(T (x), T (y))

)
≤ ψ

(
M(x, y)

)
− ϕ

(
N (x, y)

)
.

Case 3. If x > y = 0, then

p(T (x), T (y)) = p(x− 1, 0) =
x− 1

2
and ψ

(
p(T (x), T (y))

)
=
x− 1

2
.

Now

p(x, y) =
x+ y

2
, p(x, T (x)) =

2x− 1

2
, p(y, T (y)) = 0,

p(x, T (y)) =
x

2
, p(y, T (x)) =

x− 1

2
,

and

M(x, y) =
2x− 1

2
⇒ ψ

(
M(x, y)

)
=

2x− 1

2
,

N (x, y) =
2x− 1

8
⇒ ϕ

(
N (x, y)

)
=

2x− 1

12
.

Hence from condition (3.29), we have

ψ
(
p(T (x), T (y))

)
=

x− 1

2
≤ 5

12
(2x− 1) =

1

2
(2x− 1)− 1

12
(2x− 1)

= ψ
(
M(x, y)

)
− ϕ

(
N (x, y)

)
.

Thus, we have

ψ
(
p(T (x), T (y))

)
≤ ψ

(
M(x, y)

)
− ϕ

(
N (x, y)

)
.

This shows that all the conditions of Corollary 3.1 are satisfied and so T has a unique
fixed point in X, that is, 0 is the unique fixed point of T .

Example 3.2. Let X = {0, 1, 2, . . . , 10} and p(x, y) = x+y
2

, then dw(x, y) = 1
2
|x − y|.

Therefore, since (X, dw) is complete, then by Lemma 2.1, (X, p) is a complete weak partial
metric space (WPMS). Consider the mapping T :X → X, defined by

T (x) =

{
x− 1, if x ̸= 0,
0, if x = 0.

(1) We claim that the inequality of Corollary 3.4 is satisfied with k ∈ [0, 1). For this,
we consider the following cases.

Case 1. If x = y = 0, then
p(T (x), T (y)) = 0,

and

max

{
p(x, y), p(x, Tx), p(y, Ty),

1

3
[p(x, y) + p(x, Ty) + p(y, Tx)]

}
= 0.
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Hence, we conclude that
p(T (x), T (y))

≤ k max

{
p(x, y), p(x, Tx), p(y, Ty),

1

3
[p(x, y) + p(x, Ty) + p(y, Tx)]

}
,

where k ∈ [0, 1).

Case 2. If x = y > 0, then

p(T (x), T (y)) = p(x− 1, x− 1) = x− 1,

and

max

{
p(x, y), p(x, Tx), p(y, Ty),

1

3
[p(x, y) + p(x, Ty) + p(y, Tx)]

}
=
x+ y

2
.

Hence, we have

p(T (x), T (y)) = x− 1 ≤ k x = k p(x, y),

where k ∈ [0, 1).

Case 3. If x > y = 0, then

p(T (x), T (y)) = p(x− 1, 0) =
x− 1

2
,

and

max

{
p(x, y), p(x, Tx), p(y, Ty),

1

3
[p(x, y) + p(x, Ty) + p(y, Tx)]

}
=

2x− 1

2
.

Hence, we have

p(T (x), T (y)) =
x− 1

2
≤ k

x

2
= k p(x, y),

where k ∈ [0, 1).

Case 4. If x > y > 0, then

p(T (x), T (y)) = p(x− 1, y − 1) =
x+ y − 2

2
,

and

max

{
p(x, y), p(x, Tx), p(y, Ty),

1

3
[p(x, y) + p(x, Ty) + p(y, Tx)]

}
=
x+ y

2
.

Hence, we have

p(T (x), T (y)) =
x+ y − 2

2
≤ k

x+ y

2
= k p(x, y),

where k ∈ [0, 1).

This shows that all conditions of Corollary 3.4 are satisfied for k ∈ [0, 1) and so T has
a unique fixed point in X. Indeed, 0 ∈ X is the unique fixed point in this case.

(2) Now, we claim that the inequality of Corollary 3.5 is satisfied. For this, we consider
the following cases.
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Case 1. If x = y = 0, then
p(T (x), T (y)) = 0,

and

max

{
p(x, y),

1

4
[p(x, Tx) + p(y, Ty)],

1

4
[p(x, Ty) + p(y, Tx)]

}
= 0.

Hence, we conclude that
p(T (x), T (y))

≤ q max

{
p(x, y),

1

4
[p(x, Tx) + p(y, Ty)],

1

4
[p(x, Ty) + p(y, Tx)]

}
,

where q ∈ [0, 1).

Case 2. If x = y > 0, then

p(T (x), T (y)) = p(x− 1, x− 1) = x− 1,

and

max

{
p(x, y),

1

4
[p(x, Tx) + p(y, Ty)],

1

4
[p(x, Ty) + p(y, Tx)]

}
=
x+ y

2
.

Hence, we have

p(T (x), T (y)) = x− 1 ≤ q x = q p(x, y),

where q ∈ [0, 1).

Case 3. If x > y = 0, then

p(T (x), T (y)) = p(x− 1, 0) =
x− 1

2
,

and

max

{
p(x, y),

1

4
[p(x, Tx) + p(y, Ty)],

1

4
[p(x, Ty) + p(y, Tx)]

}
=
x+ y

2
.

Hence, we have

p(T (x), T (y)) =
x− 1

2
≤ q

x

2
= q p(x, y),

where q ∈ [0, 1).

Case 4. If x > y > 0, then

p(T (x), T (y)) = p(x− 1, y − 1) =
x+ y − 2

2
,

and

max

{
p(x, y),

1

4
[p(x, Tx) + p(y, Ty)],

1

4
[p(x, Ty) + p(y, Tx)]

}
=
x+ y

2
.

Hence, we have

p(T (x), T (y)) =
x+ y − 2

2
≤ q

x+ y

2
= q p(x, y),

where q ∈ [0, 1).

This shows that all conditions of Corollary 3.5 are satisfied for q ∈ [0, 1) and so T has
a unique fixed point in X. Indeed, 0 ∈ X is the unique fixed point.
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4. Conclusion

In this paper, we establish some unique common fixed point and a coincidence
point theorems using auxiliary functions in the setting of complete weak partial
metric spaces and give some consequences of the main results. We also give some
examples to support our results. The results presented in this article extend and
generalize several results from the existing literature.
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