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Abstract We implement a space-time grid adaptation procedure to efficiently improve the accuracy of
numerical simulations of solute transport in porous media in the context of model parameter estimation.
We focus on the Advection Dispersion Equation (ADE) for the interpretation of nonreactive transport experi-
ments in laboratory-scale heterogeneous porous media. When compared to a numerical approximation
based on a fixed space-time discretization, our approach is grounded on a joint automatic selection of the
spatial grid and the time step to capture the main (space-time) system dynamics. Spatial mesh adaptation is
driven by an anisotropic recovery-based error estimator which enables us to properly select the size, shape,
and orientation of the mesh elements. Adaptation of the time step is performed through an ad hoc local
reconstruction of the temporal derivative of the solution via a recovery-based approach. The impact of the
proposed adaptation strategy on the ability to provide reliable estimates of the key parameters of an ADE
model is assessed on the basis of experimental solute breakthrough data measured following tracer injec-
tion in a nonuniform porous system. Model calibration is performed in a Maximum Likelihood (ML) frame-
work upon relying on the representation of the ADE solution through a generalized Polynomial Chaos
Expansion (gPCE). Our results show that the proposed anisotropic space-time grid adaptation leads to ML
parameter estimates and to model results of markedly improved quality when compared to classical inver-
sion approaches based on a uniform space-time discretization.

1. Introduction

Transport of solute mass in the subsurface is due to advection and diffusion processes, taking place at the
pore level. Due to practical difficulties to include pore-scale modeling in the analysis of typical laboratory
and field-scale settings, solute transport in porous media is mostly described by means of effective models.
Several alternative modeling options are available in this context. A standard choice is to adopt a
continuum-based representation of the main governing processes grounded on the standard advection-
dispersion equation (ADE). A key assumption underlying the ADE is that the total dispersion coefficient can
be described by the sum of effective diffusion and hydrodynamic dispersion, according to the so-called
Fickian analogy [Bear and Cheng, 2010]. Limitations of this modeling option have been identified and dis-
cussed on the basis of theoretical arguments, numerical simulations, and experimental evidences, which led
to the development of alternative formulations encapsulating effective descriptions of non-Fickian (or
anomalous) transport [see, e.g., Haggerty et al., 2000; Levy and Berkowitz, 2003; Berkowitz et al., 2006; Zhang
et al., 2009; Porta et al., 2013, and references therein]. These approaches encompass very different modeling
perspectives, based on both Lagrangian and Eulerian mathematical formulations and can give rise to local
and/or nonlocal (integrodifferential) equations. All these macroscale models entail the definition of effective
transport parameters, which are typically assumed to be linked to geometrical settings which are somehow
representative of the pore space geometry. These parameters are generally unknown in laboratory and
field-scale applications, and need to be estimated by means of inverse modeling procedures. To this aim,
multiple evaluations of the model of choice are typically required. A number of analytical solutions are avail-
able for solute transport in homogeneous media [Wexler, 1992]. However, practical applications often
require to model transport in highly heterogeneous systems, for which analytical solutions are typically lack-
ing. In this context, numerical approximations of the governing equations are required to obtain the evolu-
tion of the concentration in the space-time domain of interest [Bear and Cheng, 2010]. Independently of the
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approach employed, the results of numerical simulations are always subject to an approximation error,
which is related to the selected discretization method. For instance, the computational error associated
with Eulerian discretizations (e.g., finite elements, finite volumes, finite differences) is a function of the spa-
tial grid spacing and of the time step size. This work is aimed at assessing the impact of the numerical dis-
cretization strategy on parameter estimation procedures, as applied to laboratory-scale solute transport
processes in porous media. To keep model complexity at a minimum level, we assume that transport can
be modeled at a continuum scale by means of an ADE, which is solved in a finite element framework. We
ground the numerical approximation of the ADE on a space-time adaptive discretization, following the
methodology outlined in Esfandiar et al. [2014]. Here we focus on the effect of this adaptive methodology
on the quality of the estimates of dispersivity parameters associated with experimental solute breakthrough
curves detected in a real heterogeneous porous system.

Previous studies show that the impact of discretization techniques on typical output variables of interest at res-
ervoir/aquifer scales may be relevant [Branets et al., 2009; Gerritsen and Lambers, 2008]. Nassar and Ginn [2014]
show that the choice of the numerical methodology employed for the forward solution of transport problems
can bear considerable effects on inverse modeling results. Automatic mesh and time step adaptation techni-
ques provide a flexible tool to dynamically tie the resolution of the space-time mesh to the features of the
numerical solution of the target differential problem [Mansell et al., 2002]. In the context of groundwater flow
simulation, adaptive mesh methodologies have been applied to the simulation of free surface flows [Knupp,
1996; Bresciani et al., 2012], and to simulate flow in the presence of heterogeneous permeability fields [Cao
and Kitanidis, 1999; Mehl and Hill, 2002]. Adaptive mesh strategies have also been implemented for the simula-
tion of transport processes in porous media, e.g., in Pepper and Stephenson [1995], Pepper et al. [1999], Huang
and Zhan [2005], and Gedeon and Mallants [2012]. The majority of existing literature works rely on an isotropic
local refinement of the spatial grid. A dynamic anisotropic mesh adaptation scheme is proposed in Sun and
Wheeler [2006] for the simulation of reactive transport. The key advantage of anisotropic meshes is that they
enable one to optimize the computational mesh in the presence of directional features of the solution of the
mathematical model or of model outputs (e.g., concentration fronts induced by transport and/or reactive phe-
nomena) when dealing with a goal-oriented approach [Becker and Rannacher, 2001].

Time-dependent behaviors characterize many relevant processes taking place in the subsurface. Recent
studies show that an adaptive choice of the time step typically allows increasing the accuracy and efficiency
of numerical solvers. For example, time step adaptation methodologies have been proposed for the simula-
tion of density-driven flows [Younes and Ackerer, 2010], passive and reactive chemical transport [Younes and
Ackerer, 2005; Saaltink et al., 2004], and flow in variably saturated porous media [Kavetski et al., 2002].

Recent works demonstrate the effectiveness of combining anisotropic mesh and time step adaptations in
the framework of, e.g., computational fluid dynamics [Coupez and Hachem, 2013; Micheletti and Perotto,
2010a] and overland flow simulations [Porta et al., 2012a, 2012b]. The methodology proposed in Porta et al.
[2012a] has been recently applied by Esfandiar et al. [2014] to the simulation of solute transport in porous
media. These authors compare the results obtained through the space-time adaptive methodology against
experimental breakthrough curves measured at the outlet of a homogeneous sand box. The results of Esfan-
diar et al. [2014] indicate that anisotropic mesh adaptation allows capturing early solute breakthrough,
which is not reproduced with the same accuracy through a fixed uniform space-time discretization associ-
ated with a comparable number of grid elements and time step length. The adaptive methodology allows
optimizing the computational effort through a dynamic allocation of the mesh spatial resolution. Consider-
ing that chemical transport is characterized by multiple and evolving time scales, a time step adaptation
contributes to reduce the number of required time iterations, while preserving accuracy of the results asso-
ciated with the anisotropic mesh adaptation strategy and a suitable fixed (and generally small) time step.

The main objective of this work is to quantify the impact of the implementation of the space-time adaptive
procedure proposed in Esfandiar et al. [2014] on parameter estimation and uncertainty quantification in the
context of laboratory-scale solute transport modeling. We ground our study on solute breakthrough curves
measured at the outlet of a block-wise heterogeneous porous domain. To this end, we couple a space-time
adaptive discretization with the model reduction technique proposed in Formaggia et al. [2013]. The latter
methodology provides a way to compute an approximation of the modeled breakthrough curve through a
generalized polynomial chaos expansion (gPCE). The gPCE enables one to construct a surrogate model
approximating a target system response through a finite series of polynomials. These are selected on the
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basis of the functional format of the probability density of the model uncertain parameters. The procedure
allows performing multiple evaluations of the system model, which are employed to (a) obtain Maximum
Likelihood estimates of model parameters and (b) quantify propagation of parameter uncertainty to target
model outputs at a reduced computational cost [Fajraoui et al., 2011, 2012; Ciriello et al., 2013a, b; Oladysh-
kin et al., 2012; Porta et al., 2014]. The gPCE strategy can also lead to the analytical evaluation of the
variance-based Sobol sensitivity indices [Sobol, 2001; Sudret, 2008], which quantify the relative contribution
of each uncertain model parameter to the total variability of the model output. The parameter estimation
methodology we consider entails three main steps: (i) numerical solution of the ADE for a number of param-
eter combinations identified through a sparse grid of collocation points; (ii) derivation of a reduced com-
plexity model of the solute breakthrough curve through the above mentioned gPCE; (iii) model calibration
through Maximum Likelihood parameter estimation. Preliminary results which explore the impact of mesh
adaptation on uncertainty quantification and parameter estimation are reported in Becker et al. [2007] and
Palacios et al. [2012]. To the best of our knowledge, this is the first time that space-time mesh adaptation is
employed in the context of interpretation of solute transport phenomena in porous media.

The work is organized as follows. Section 2 introduces the problem setting, while section 3 summarizes the key
elements of the adaptive numerical methodology proposed in Porta et al. [2012b] and Esfandiar et al. [2014]. Sec-
tion 4 provides a description of the numerical implementation of the space-time mesh adaptation technique for
model parameter estimation and uncertainty quantification. Results related to modeling and interpretation of sol-
ute transport within an heterogeneous sand box are provided in section 5. Concluding remarks end the paper.

2. Problem Setting

We cast the transport problem in a two-dimensional (planar) framework. The ADE reads

@C
@t

1r � vCð Þ2r � DrCð Þ5 0 in X 3 0; Tð �; (1)

where X is a bounded polygonal domain of R2;C5C x; tð Þ [mol/m3] is the unknown solute concentration at
location x and at time t, v5 v1; v2ð ÞT [m/s] is fluid velocity, and D5fDijg is the local dispersion tensor [Bear
and Cheng, 2010] given by

Dij5 aTkvk21Dmð Þdij1 aL2aTð Þ vivj

kvk2
with i; j 5 1; 2 : (2)

Here aT, aL [m] are transverse and longitudinal dispersivity, respectively, dij is Kronecker’s delta, Dm [m2/s] is
molecular diffusion, and jjwjj2 denotes the standard Euclidean norm of a generic vector w 2 R2. Note that
formulation (2) corresponds to the classical definition of local dispersion introduced by Scheidegger [1961].
Equation (1) is completed with suitable initial and boundary conditions which, in general, can be cast as

C x; 0ð Þ5C0 xð Þ for x 2 X;

C x; tð Þ5f1 x; tð Þ for x 2 C1; t 2 0; Tð �;

2 DrCð Þ � n5f2 x; tð Þ for x 2 C2; t 2 0; Tð �;

vC2DrCð Þ � n5f3 x; tð Þ for x 2 C3; t 2 0; Tð �;

8>>>>><
>>>>>:

(3)

where C1, C2, and C3, with [3
i51Ci5@X;Ci \ Cj51, for i, j 5 1, 2, 3 and i 6¼ j, represent partitions of the

boundary @X of X associated with Dirichlet, Neumann, and Robin boundary conditions, respectively; C0 is
the initial value of the solute concentration; fi, with i 5 1, 2, 3, are boundary values; and n is the unit outward
normal vector to @X. A typical quantity of interest for the interpretation of experiments and field-scale
transport settings is the solute breakthrough curve, i.e., the time evolution of solute concentration at a fixed
location. In typical experimental settings, the solute breakthrough curve is measured at the outlet section
Cout of the domain and can be defined as

Cout tð Þ5 1
jCoutj

ð
Cout

C x; tð ÞdC 8t 2 0; T½ �; (4)

where |Cout| denotes the length of the outflow section. Following Esfandiar et al. [2014], we discretize (1)–(3)
by means of a stabilized finite element method, which is based on a streamline diffusion technique [Brooks
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and Hughes, 1982]. Spatial discretization is performed upon relying on a spatial mesh T h5 Kf g, i.e., a confor-
mal discretization of X into triangular elements K. Discretization of the time window [0,T] is performed
upon introducing the time levels t0; . . . ; tnf g, which define the set Ikf g of the time intervals Ik of amplitude
Dtk5tk112tk , for k50; . . . ; n21. Time discretization is performed through the standard h-method [Quarter-
oni et al., 2007]. To guarantee the unconditionally absolute stability of the h-method, we resort to an implicit
scheme and set h 5 2/3.

Here we assume the velocity field v in (1)–(3) to be stationary and to obey Darcy’s law and the fluid mass
conservation equation so that

v52
k

l/
rp1qgkð Þ for x 2 X;

r � v50 for x 2 X;

v � n5w for x 2 @X;

8>>><
>>>:

(5)

where p [Pa] is pressure, g [m/s2] is gravity, l> 0 [Pa s] and q> 0 [kg/m3] are the fluid viscosity and density,
respectively, k> 0 [m2] is the porous medium permeability (which we treat here as a generally spatially vari-
able scalar, for simplicity), 0 < / < 1 is porosity, w is a flux imposed on the domain boundary, and k
denotes the unit vector aligned with the vertical direction. Following Esfandiar et al. [2014], the numerical
solution of the flow problem (5) is obtained through a mixed two-field formulation [see, e.g., Masud and
Hughes, 2002], based on zero-order Raviart-Thomas finite elements [Brezzi and Fortin, 1991] to discretize the
velocity and standard finite elements of degree zero for the pressure.

3. The Adaptive Discretization Technique

We solve numerically the ADE (1) upon relying on an adaptive and automatic selection of the space-time
discretization. The adaptive methodology we implement has been developed for shallow-water modeling
in Porta et al. [2012a, 2012b]. A preliminary application to transport in porous media is provided in Esfandiar
et al. [2014]. We recount here the main concepts underlying the adaptive methodology and refer to Esfan-
diar et al. [2014] for additional details. The adaptive technique is grounded on the definition of an a posteri-
ori error estimator for the global (space-time) discretization error

gA
ht5gA

h 1 gt; (6)

which includes an estimator (gA
h) for the approximation error associated with the spatial discretization and

one (gt) for the error due to time discretization. We assume here that the two error estimates can be com-
puted separately, following, e.g., Micheletti and Perotto [2008] and Schmich and Vexler [2008]. We employ an
anisotropic spatial error estimate gA

h , i.e., an error estimate which allows optimizing not only the size but
also the shape and the orientation of the mesh elements.

To compute (6), we rely on recovery-based error estimates, following the idea proposed by Zienkiewicz and
Zhu [1987] in the context of linear elasticity. Recovery-based error estimation entails two steps: (i) local
reconstruction of the solution gradient upon averaging or reinterpolating the discrete solution gradient
(gradient recovery procedure), and (ii) estimation of the discretization error in the H1(X)-seminorm,
obtained by computing the L2(X)-norm of the difference between the recovered gradient and the discrete
gradient [Zienkiewicz and Zhu, 1992a, b]. A standard notation is here adopted for the Sobolev spaces, as
well as for the space of the functions bounded almost everywhere in X [Lions and Magenes, 1972].
Recovery-based estimators are typically robust and reliable and have been successfully applied to a wide
spectrum of differential problems, e.g., in Farrell et al. [2011], Micheletti et al. [2010], Porta et al. [2012a], Mu
and Jari [2013], Yan [2001], and references therein.

3.1. Anisotropic Mesh Adaptation
We provide here a suitable definition of the spatial error estimator gA

h in (6). Let Ch be the finite element
approximation of concentration C, obtained by the discretization of (1). Following the approach proposed
in Porta et al. [2012b] and Micheletti and Perotto [2010b], we introduce the local anisotropic error estimator
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½gA
KðtÞ�

2
5

1
k1;Kk2;K

ð
DK

�
k2

1;K ½r1;K � ðPRðChðtÞÞ2rChðtÞÞ�2

1k2
2;K ½r2;K � ðPRðChðtÞÞ2rChðtÞÞ�2

�
dDK 8K 2 T h; 8t > 0;

(7)

where ki,K and ri,K (i 5 1, 2) identify the eigenvalues and the eigenvectors of the tensor MK, defining the
mapping between a reference triangle K̂ and the generic element K of the mesh T h (see Figure 1a). Note
that ki,K measure the length of the semiaxes of the ellipse circumscribing K, while ri,K identify the directions
of these semiaxes [Formaggia and Perotto, 2001, 2003]. The quantity PR Ch tð Þð Þ represents the recovered spa-
tial gradient of Ch at time t. As depicted in Figure 1b, PR Chð Þ is computed as the area-weighted average of
the discrete gradient rCh within the patch DK of triangles sharing at least one vertex with K. Thus, the
global error estimator associated with the spatial discretization is computed as

gA
h tð Þ

� �2
5
X

K2T h

gA
K tð Þ

� �2 8t > 0: (8)

Equation (8) represents an anisotropic error estimate, as it directly involves the anisotropic quantities ki,K

and ri,K identifying the size, shape, and orientation of element K. Note that definition (7) - (8) stems from the
generalization of the standard estimate for the H1(X)-seminorm of the discretization error to an anisotropic
setting [Micheletti and Perotto, 2010b; Esfandiar et al., 2014]. For a rigorous presentation of the error estima-
tor (7) - (8), we refer to Porta et al. [2012a] and Micheletti and Perotto [2010b].

The goal of our mesh adaptation technique is to build an anisotropic spatial grid that is driven by the esti-
mator (7) - (8). This is achieved through the implementation of the mesh adaptation procedure presented
in Formaggia and Perotto [2003], and successively applied in several works, e.g., Micheletti and Perotto [2008,
2010b] and Porta et al. [2012a, 2012b]. The main goal of this procedure is to find the mesh with the least
number of elements and associated with a fixed accuracy sh, i.e., such that gA

h ’ sh while guaranteeing an
equidistribution of the error in space. A metric-based adaptation technique is applied to this end. Let ~M : X
! R232 be a symmetric positive definite tensor field and T b

h be a generic grid, here defined as background
grid. The tensor ~M can be cast as ~M5~R

T ~K
22 ~R, where ~K5diagð ~k1 ; ~k2Þ and ~R

T
5 ~r1 ; ~r2½ � are a positive diago-

nal and an orthonormal tensor, respectively, defined at each x �X. The quantities ~K and ~R can be approxi-
mated through matrices which are piecewise constant on T b

h, such that ~k ijK 5~k i;K ;~r ijK 5~r i;K , for i 5 1, 2 and
for any element K of the mesh T b

h. The computation of the elemental metric ~M
new
K identifying the new

adapted mesh is then performed on the background grid T b
h by (i) applying an error equidistribution crite-

rion, and (ii) solving a local constrained optimization problem on each element K of T b
h. In details, first the

ADE is solved on the background mesh T b
h. Then, the unknown metric ~M

new
is computed by imposing the

desired accuracy sh and by equidistributing the error so that the local accuracy sK 5sh=Nb
el is guaranteed, Nb

el

being the number of elements of T b
h. This procedure essentially leads to deal with local constrained optimi-

zation problems which can be explicitly solved [Formaggia and Perotto, 2003].

Figure 1. Spatial error estimator gA
K in (7): (a) geometric definition of the anisotropic setting, and (b) definition of the recovered gradient

PRðChÞ.
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Once ~M
new

is computed, the new mesh T new
h is generated through the software BAMG [Hecht, 2012]. We

refer to Micheletti and Perotto [2010b] and Porta et al. [2012a] for a detailed description of the local optimi-
zation problem and the explicit computation of the metric field from the estimator gA

h .

Three constraints are imposed to the mesh adaptation procedure, to guarantee the robustness of the
methodology. Excessive element clustering is locally prevented by setting a minimum threshold qmin

for the product ~k1;K
~k2;K within the local optimization solution. This is equivalent to assign a lower limit

on the element area, since jK j5jK̂ jk1;K k2;K . Two global constraints are then imposed on the minimum
and maximum number of mesh elements. We set Nel;min � Nnew

el � Nel;max , to prevent global excessive
coarsening/refinement of the spatial mesh. This objective is achieved through a uniform scaling of the
computed metric field ~M

new
. Notice that, to contain the computational cost of the global adaptive pro-

cedure, we do not employ any iterative algorithm to obtain the new adapted mesh T new
h . As explained

in section 3.3, the adaptive procedure here detailed is applied at each time tk to generate a correspond-
ing adapted mesh T k

h.

3.2. Time Step Adaptation
Time step adaptation is implemented upon relying on a recovery-based estimate of the time discretization
error. We aim at predicting the time step Dtk that can be used at each time level tk for the subsequent time
advancement. For this reason, we will deal only with a local time error estimator. The time step adaptation
procedure entails three steps: (i) computation of a recovered time derivative, (ii) evaluation of the local time
estimator, and (iii) prediction of the next time step size.

The recovery-based estimator for the time discretization error within time interval Ik215 tk21; tk
� �

is then
defined as [Porta et al., 2012b; Esfandiar et al., 2014]

gT
Ik21

xð Þ
h i2

5Dtk21
ð

Ik21

���� @CR xð Þ
@t

jIk21
2

Ck
h xð Þ2Ck21

h xð Þ
Dtk21

����
2

dt; (9)

where CR xð Þ is a recovered solution, coinciding with the parabola which interpolates the concentration val-
ues Ck22

h xð Þ; Ck21
h xð Þ; Ck

h xð Þ
� �

at tk22, tk21, tk, respectively; and Ck
h xð Þ is the numerically computed concen-

tration at time tk and at point x. Note that the multiplicative factor Dtk21 in (9) renders the time error
estimator dimensionless, consistent with the spatial error estimator gA

h in (8).

In our finite element framework, estimator (9) is computed at specific spatial locations identified by the ver-
tices Vi of the current grid T k

h. This provides us with a spatially distributed quantity, which is then lumped
into a single error indicator through an area-weighted average

gT
Ik21

h i2
5

P
K2T k

h
gT

Ik21;K

h i2
jK jP

K2T k
h
jKj ; (10)

where gT
Ik21;K

h i2
is the average of estimator (9) on K computed as

gT
Ik21;K

h i2
5

1
3

X
Vi2K

gT
Ik21

Við Þ
h i2

: (11)

To compute the new time step, we assign a fixed tolerance for the time error, i.e., we impose the
condition gT

Ik21
5sDt

t . Note that the error control is applied on the time slab Ik21, because the global
error estimator can be evaluated only at the end of the simulation when the whole time partition is
known. Following Porta et al. [2012b] and Esfandiar et al. [2014], the adaptive time step is then cal-
culated as

Dtk5
sDt

t

gT
Ik21

Dtk21: (12)

A minimum (Dtmin) and a maximum (Dtmax) value for the predicted time step are fixed a priori, i.e., the
time step computed through (12) is constrained within an interval Dtmin;Dtmax½ �. These lower and upper
bounds for the time step are defined according to the characteristic time scale of the considered trans-
port setting.
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3.3. Solution-Adaptation Coupling
We outline here the numerical technique employed to couple the mesh and time step adaptation method-
ologies described in sections 3.1 and 3.2 with the numerical approximation of the ADE (1). The procedure is
graphically depicted in Figure 2 (right panel).

Approximating the ADE requires (i) setting appropriate boundary and initial conditions, and (ii) knowledge
of the velocity field. The latter is obtained by solving the flow problem (5) on a sufficiently fine uniform
mesh T 0

h. At a generic time tk21, the approximate concentration field Ck21, the mesh T k21
h , and the time

step Dtk21 are known. As a first step the ADE is numerically solved on T k21
h . This yields the approximation

~C
k

at time tk. This approximation is used to adapt the spatial grid through the methodology described in
section 3.1. Once the metric ~M

k
5 ~M

new
is computed, the new mesh T k

h5T new
h is generated by BAMG [Hecht,

2012]. The concentration field is then projected from T k21
h to T k

h through an L2-conservative projection
method [Porta et al., 2012a; Esfandiar et al., 2014]. This yields the actual approximation Ck of the concentra-
tion C at time tk. The time step Dtk is then predicted through the methodology described in section 3.2.
Note that, since three successive solutions are required to compute Dtk, we fix Dtk 5 Dtmin for k 5 1, 2.

4. Parameter Estimation and Uncertainty Quantification

We briefly describe here the procedure we employ for model parameter estimation, which is coupled to the
adaptive discretization technique described in section 3. We follow the approach proposed by Porta et al.
[2014] and combine the model reduction technique explored in Formaggia et al. [2013] with a standard
Maximum Likelihood parameter estimation framework [Carrera and Neuman, 1986]. To simplify the discus-
sion of the methods, we assume here the target output quantity of interest to be the solute breakthrough
curve. The extension of the methodology to other model output quantities (e.g., concentration profiles, spa-
tial concentration fields) is straightforward.

4.1. Maximum Likelihood Parameter Estimation
We assume a set of measurements to be available, describing the evolution in time of solute concentration
at specific locations within a porous system. For our purposes, we assume that N observations of solute con-
centration C�out tið Þ with i51; . . . ;N are available at the outlet of an experimental cell. The numerical approxi-
mation of (1) yields a set of values Cout ti;pð Þ, where p is a vector collecting M unknown model parameters

Figure 2. Sketch of the numerical procedure.
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to be estimated. We focus here on the assessment of the Maximum Likelihood (ML) estimate p̂ of p, which
yields the ML breakthrough curve associated with the discrete values Ĉ out tið Þ.

We consider measurement errors to be Gaussian, and that no cross correlation exists between errors associ-
ated with measurements C�out tið Þ acquired at different times. We further assume that the covariance matrix
of estimation errors

CC5r2
C V; (13)

is known up to a positive constant r2
C and that the prior estimation error of concentration is constant in

time, i.e., V 5I, I being the identity matrix.

Given the above assumptions, the ML estimate p̂ is obtained upon minimizing the Negative Log Likelihood

NLL5
J
r2

C

1N log r2
C1N log 2pð Þ; (14)

with

J pð Þ5
XN

i51

Cout ti ;pð Þ2C�out tið Þ
� �2

: (15)

We can then compute

r̂2
C5

J p̂ð Þ
N

; (16)

which corresponds to the a posteriori ML estimate of the measurement error variance.

The covariance matrix associated with parameter estimates is then computed as [Carrera and Neuman, 1986]

Q5r̂2
C JVJT
� �21

; (17)

where J is a Jacobian matrix, which contains the derivatives with respect to the input parameters of the out-
put concentrations forming the breakthrough curve at the N observation times ti.

4.2. Modeling Procedure
A large number of model evaluations is typically required to minimize (14) and to compute numerically the
Jacobian J in (17). For this reason, we approximate the numerical breakthrough curve Cout ti;pð Þ in (15) with
a reduced complexity surrogate model, CPC

out ti;pð Þ. The surrogate model for Cout ti;pð Þ is expressed in terms
of a generalized polynomial chaos expansion (gPCE) [Xiu and Karniadakis, 2003, and references therein],
which can be cast as

CPC
out ti ;pð Þ5

XQ

j51

bjwj pð Þ; (18)

where bj are the so-called gPCE coefficients, wj is a set of multivariate orthogonal polynomials, and Q is the
total number of polynomials included in the expansion. A probability density function model is assigned to
the uncertain input parameters to select the polynomial basis wj [Xiu and Karniadakis, 2003]. Prior measure-
ments of uncertain parameters may be available in some applications. Oladyshkin and Nowak [2012] show
that assuming parametric probability density function (pdf) models as opposed to considering raw data fre-
quency distributions might lead to inaccurate uncertainty quantification through polynomial surrogate mod-
els. In the absence of prior knowledge on uncertain parameters, we assume here that the uncertain
parameters collected in p are characterized by uniform distributions. Hence, we select wj as Legendre orthog-
onal polynomials.

We provide in the following a complete overview of the modeling procedure we employ, which combines
the numerical methodologies introduced in section 3 with the model reduction, parameter estimation, and
uncertainty quantification steps. The overall procedure entails the five steps described in the following (see
Figure 2) left panel.

1. Identification of calibration parameters and related domain of variability. As a first step, a set of M unknown
parameters needs to be identified. These may include the local dispersivities, porosities, and
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permeabilities of the porous medium. A lower and an upper bound of variability are introduced for each
parameter to define a multidimensional parameter space CP.

2. Sparse grid sampling. A number NC of collocation points is selected within the M-dimensional parameter
space CP by means of a sparse grid sampling technique, along the lines of Formaggia et al. [2013]. Each
collocation point corresponds to a coordinate in CP, i.e., it is associated with specific values of the selected
uncertain model parameters.

3. Forward simulation. A forward simulation of the ADE (1) is performed for parameter values corresponding
to each collocation point. This simulation step can be performed through the space-time adaptive meth-
odology described in section 3 (see Figure 2, right) or by means of standard (fixed and uniform) meshes.

4. Model reduction. The gPCE (18) of the model output is obtained following the methodology outlined in
Formaggia et al. [2013], where the coefficients bj are computed through algebraic manipulations of the
model evaluations obtained at each of the NC collocation points. This provides us with a reduced com-
plexity (surrogate) model of the solute breakthrough curve.

5. Parameters estimation. The gPCE expansion is then used as a proxy of the original system model for the
minimization of the NLL criterion (14). The minimization of (14) is here performed by means of the
Nelder-Mead simplex search method [Lagarias et al., 1998], implemented in the Matlab function fmin-
search. This allows computing the ML parameter estimate p̂. The related uncertainty is evaluated through
an analytical computation of the covariance matrix Q in (17).

6. Validation of the surrogate model. Reliability of gPCE surrogate models needs to be carefully assessed.
Numerical validation of gPCE models can be performed by comparing full and gPCE model outputs for a
number of parameters combinations, randomly selected in the parameter space [e.g., Porta et al., 2014].

7. Global sensitivity analysis and uncertainty quantification. We exploit the gPCE model to obtain a large set
of Monte Carlo realizations of the breakthrough curve at a reduced computational cost. This allows propa-
gating to the output quantity of interest the uncertainty associated with ML parameter estimates. It addi-
tionally enables us to analytically compute from the gPCE the variance-based Sobol sensitivity indices
[Sobol, 2001; Sudret, 2008]. These indices yield a quantitative measure of the way the variability of the
model output is influenced by the variability of each of the considered uncertain parameters. The defini-
tion of the Sobol indices and their relationship with the gPCE representation (18) is recalled in Appendix
A for completeness.

This procedure makes joint use of numerical approximation and model reduction techniques, both intro-
ducing an approximation error. As opposed to fixed uniform discretizations, the space-time adaptive tech-
nique we implement enables us to directly control the approximation error associated with the numerical
solution of the forward transport problem. The reliability of the approximation of the full model outputs
through the gPCE approach needs to be assessed through a dedicated validation (step 6). The accuracy of
approximation (18) increases with the number Q of terms included in the expansion [Formaggia et al.,
2013]. This is in turn linked to the largest polynomial order w selected for the gPCE surrogate model. Recent
works [Fajraoui et al., 2011; Ciriello et al., 2013a] show that expression (18), with the assumptions we employ
for the probability distributions of the uncertain model parameters, constitutes a viable representation of
the output of solute concentrations at laboratory scales.

5. Numerical Results

This section is devoted to the assessment of the effect of the space-time adaptation methodology intro-
duced in section 3 on the estimation of the longitudinal dispersivity coefficients for the interpretation of a
laboratory-scale solute transport experiment performed in a block-wise heterogeneous sandy porous
medium. In the following, we first provide a brief description of the experimental data set. We then present
the application of the space-time adaptive methodology to the forward simulation of the transport process.
Finally, we assess the impact of the space-time adaptive methodology on the results of the parameter esti-
mation procedure. We do so upon comparing the results of parameter estimation obtained by means of a
mesh with fixed uniform discretization (i.e., fixed uniform spatial mesh and time step) and our space-time
adaptive methodology.
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5.1. Overview of the
Experiment and Data Set
We consider transport of a non-
reactive solute within a flow
cell packed with two different
sand types. Figure 3 depicts a
sketch of the experimental
setup. The data set we examine
is part of a still unpublished set
of experiments which was pro-
vided to us courtesy of Profes-
sor Brian Berkowitz, Weizmann
Institute of Science. The experi-
ment we consider is conducted
in a rectangular flow cell of size

0:2530:20 m2, characterized by a constant thickness of 0.01 m. Inflow and outflow to the cell are formed by
a cylindrical tube with circular cross section of diameter equal to 4 mm and are located in the middle of the
left and right sides of flow cell (see Figure 3). The experimental data are solute breakthrough concentrations
which are acquired at the outlet with the same methodology presented in Levy and Berkowitz [2003].

The packing comprises a rectangular-shaped region near the outlet, filled with a fine well-rounded quartz
sand (sand 2) with grain diameter of 0.231 mm and hydraulic conductivity of 0.014 cm/s, within a back-
ground coarser sand (sand 1) with grain diameter of 1.105 mm and hydraulic conductivity of 0.5 cm/s [Levy
and Berkowitz, 2003].

Steady state flow is established in the cell at a constant flow rate of Qin 5 4.6 mL/min. The flow cell is initially
saturated with water. A solution containing a constant tracer concentration C0 is introduced as a step-input
at the inlet at time t 5 0. The tracer breakthrough curve is measured by means of an electrical conductivity
meter at the outlet. We consider here the data stemming from three replicates of the transport experiment.

5.2. The Adaptive Mesh Procedure
We illustrate here the results obtained by applying the adaptive methodology described in section 3 to the
forward simulation of the experimental setting described in section 5.1. The velocity field is obtained upon
numerically solving the flow equation (5), as discussed in section 2. A high-resolution velocity field is com-
puted on a fine uniform grid of about 95,000 elements. A constant (atmospheric) pressure is imposed at the
outlet boundary. We set v � n5Qin=Ain at the inlet, Ain being the area of the inflow cross section. The remain-
ing parts of the boundary of the flow cell are impermeable. For the sake of our demonstration, we set the
porosities of the coarse and fine sands to /150:41 and /250:38, respectively, upon preliminary visual cali-
bration of the breakthrough curve. We set the fluid viscosity l and density q to 1023 Pa s and 1000 kg/m3,
respectively.

Figure 4 depicts the concentration field obtained by simulating the transport experiment through the
adaptive methodology together with the corresponding adapted meshes. In particular, we consider the
time window t 2 0; 6000½ � s. Figures 4a–4c illustrate the temporal evolution of the concentration field. At
early times, the solute spreads radially into the cell around the inflow section (see Figure 4a). Then, the con-
centration front deforms and displaces toward the middle of the cell (see Figure 4b) under the effect of
advective and dispersive processes. At time t � 1200 s, the solute starts reaching the low-conductivity inclu-
sion, located near the outlet section. The difference between hydraulic conductivities of the coarse and fine
sand regions induces a locally complex pattern of the solute concentration field (see Figure 4c). Two main
mechanisms contribute to solute mass transfer between the two regions (see Figure 4g): (i) the advective
flow field tends to drive the concentration front around the low-permeability block, while (ii) diffusive/dis-
persive mass transfer takes place along the left-hand side of the inclusion, located at x 5 0.18 m and parallel
to the y axis. As a consequence of the interplay between these two mechanisms, we observe the appear-
ance of an arrow-shaped region associated with small concentration values in the fine sand block, while
two sharp concentration fronts develop parallel to the x axis, along the upper and lower edges of the inter-
face (located at y 5 0.06 m and y 5 0.14 m). The local concentration gradients observed in Figure 4g tend to

Figure 3. Experimental flow cell: definition sketch.
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gradually smooth out for longer times. The last regions of the cell which are reached by the invading solute
are located at the bottom-right and top-right corners of the domain (not shown).

Figures 4d–4f show the adapted computational mesh corresponding to the solutions at the time-frames
depicted in Figures 4a–4c. The adaptive simulation is obtained upon setting the tolerances sS 5 1.5 (for spa-
tial mesh adaptation) and sT

Dt50:17 (for time step adaptation), Nel;min51000 and Nel;max510; 000, the lower
and upper bounds for the time step being fixed to Dtmin 5 1 s and Dtmax 5 30 s, respectively. As discussed
in Esfandiar et al. [2014], the value qmin set as a local constraint plays a key role for an accurate approxima-
tion of the breakthrough curve. We recall that parameter qmin corresponds to the minimum allowed value
of the product k1;K k2;K . We observe that (i) an accurate discretization of the concentration field at the inlet
is critical to capture solute behavior at early times; (ii) high mesh resolution is required to capture the propa-
gation of the solute at the interface between the two regions with contrasting conductivities; and (iii) a
proper discretization of the concentration at the outlet section is key for a sound comparison between the
numerical results and the experimental measurements (i.e., the measured breakthrough curve). As a conse-
quence, we adaptively modify the value of qmin along the simulated time window according to the follow-
ing strategy: (i) for t< 50 s we set qmin51029 m2 to properly model the concentration field near the inflow
section; (ii) we increase qmin to 1026 m2 for intermediate times to minimize computational costs, and (iii) we
set qmin51029 m2 as soon as the ratio C/C0 exceeds the threshold �5 1023 at any position in the low-
conductivity block. This latter value for qmin is then preserved until the end of the simulation.

Figure 4. (a–c) Adaptive forward simulation: snapshots of concentration field, and (d–f) corresponding adapted meshes. Results are for (a
and d) t 5 4 s, (b and e) t 5 760 s, and (c and f) t 5 1900 s. A zoom on the regions highlighted in Figures 4c and 4f is shown in Figures 4g
and 4h.
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We observe that the generated computational meshes follow the temporal evolution of the concentration
front (see Figures 4d–4f) and allow capturing the local patterns of the spatial distribution of concentration
in the cell (see Figure 4h). Anisotropic adaptation allows optimizing the mesh with respect to the directional
features of the solution, as documented by the highly stretched triangles generated along the concentra-
tion front (see, e.g., Figure 4h).

Figure 5 depicts the evolutions of the time step and of the spatial mesh cardinality along the simulation
time, and relates these with the dynamics of the transport phenomenon. The following three stages are
observed:

1. For t< 1200 s, we observe a smooth spreading of the front within the homogeneous coarse sand domain.
Hence, the time step increases from the minimum value Dtmin 5 1 s to Dt 5 25 s (Figure 5a) and the num-
ber of mesh elements is comprised between 1000 and 3000 (Figure 5b).

2. For 1200 s< t< 3500 s, the transport phenomenon exhibits complex dynamics, as illustrated in the snap-
shots depicted in Figures 5a and 4g. As a consequence, the time step size reduces and attains a minimum
value Dt 5 5 s at t � 2000 s before increasing gradually (Figure 5a), while the number of mesh elements
sharply increases to the maximum allowed number, i.e., Nel,max 5 10,000 (Figure 5b). Note that this sud-
den increase of the mesh cardinality is associated with the change in the parameter qmin from 1026 to
1029 m2, which allows capturing fine details of the numerical solution at the interface between the two
regions (see Figures 4g and 4h).

3. For long times (t� 3500 s), the concentration front is localized in a very small portion of the domain.
Hence, we observe again an increase of the time step, which attains a maximum value Dtmin 5 30 s at t �
4000 s (Figure 5a) and then preserves this value until the end of the simulation. At the same time, a pro-
gressive decrease of the number of elements is observed. The number of mesh elements is equal to 2000
at the end of the simulation (Figure 5b).

5.3. Parameter Estimation
We apply here the methodology introduced in section 4.2 to estimate the longitudinal dispersivities aL1 and
aL2 associated with the coarse and the fine sand, respectively. We assume that quantities log 10 aLið Þ (i 5 1, 2)
are uniformly distributed within the interval [26, 22], with aLi given in meters. For our illustration purposes,
we set transverse dispersivities to the commonly employed values aTi5aLi=10. The gPCE approximation of
the solute breakthrough curve is obtained by means of a polynomial of order w 5 3 so that the parameter
space is sampled through 29 collocation points, i.e., the ADE is solved for 29 different pairs of longitudinal
dispersivity values (details not shown). To assess the impact of the space-time adaptive methodology, the
simulation step is performed through two different discretization strategies: (i) a fixed uniform space-time
discretization, and (ii) the adaptive discretization introduced in section 3. The numerical constraints

Figure 5. Adaptive forward simulation: temporal evolution (a) of the time step Dt and (b) of the cardinality of the adapted spatial mesh.
Inserts show snapshots of the concentration field.
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imposed to the space-time adaptive procedure are fixed for all simulations and coincide with those illus-
trated in section 5.2. The fixed uniform space-time mesh comprises 50,000 triangles and a constant time
step Dt 5 1 s is employed. Note that the number of elements of the fixed uniform spatial mesh is five times
larger than the maximum number of elements (Nel,max) allowed for the adaptive anisotropic mesh, while the
uniform time step Dt coincides with the lower bound Dtmin for the time step adaptive procedure. The reso-
lution of the fixed uniform spatial grid and time step are chosen upon a preliminary analysis on the accu-
racy of the numerical solution.

Table 1 lists the results of ML parameter estimation and global sensitivity analysis. It includes the optimized
value of the NLL criterion, the estimated measurement error variance r̂2

C , the ML estimates log 10 âLið Þ, and the
associated estimation variances r̂2 log 10 aLið Þ½ �, corresponding to the diagonal terms of the covariance matrix Q
in (17), as well as the time-averaged total Sobol indices associated with the two longitudinal dispersivities. All
results are listed for both a space-time fixed uniform and adaptive discretizations. The ML estimates âLi obtained
via the two approaches are within the same order of magnitude. However, we observe that the use of space-
time adaptation allows improving the quality of parameter estimation results: the optimized value of the NLL is
reduced by about 10%, and the uncertainty associated with both ML parameter estimates obtained by space-
time adaptation is smaller than the one associated with the fixed uniform discretization. In particular, we
observe that the variance associated with âL2 is largely reduced by implementing the adaptive technique.

Figure 6 shows the comparison between experimental data and the breakthrough curves resulting from
ML parameter estimation. Both the gPCE approximation of the breakthrough curve resulting from param-
eter estimation (continuous lines) and the results obtained by a full model run with the estimated param-

eters (dashed lines) are
graphically depicted. We observe
that the calibrated gPCEs con-
structed for both space-time dis-
cretization strategies, i.e., fixed
uniform and adaptive meshes,
virtually coincide with the corre-
sponding full model results (i.e.,
dashed and continuous lines are
essentially superimposed in Fig-
ure 6). The mean squared error
between the gPCE approxima-
tion and the full model run is
equal to 7:831025 and 3:231026

for the space-time adaptive and
fixed uniform discretization,
respectively. This result shows
that the gPCE model imple-
mented renders a reliable
approximation of the solute
breakthrough curve for the pur-
pose of this parameter estima-
tion example.

Table 1. Results of Parameter Estimation and Global Sensitivity Analysis: Optimized Value of NLL Criterion, ML Estimates of log 10âLi and
Corresponding Estimation Variance r̂2, and Time Average �S T of the Total Sobol Sensitivity Indices Associated With the Two
Dispersivitiesa

Discretization NLL r̂2
C Parameter (m) log 10âLi r̂2 log 10aLi½ � �ST

Fixed uniform 571.6 9:5831024 aL1 24.33 0.68 0.98
aL2 23.95 2.24 0.02

Space-time adapted 632.7 6:1731024 aL1 24.22 0.15 0.47
aL2 23.14 0.01 0.57

aResults are listed for a space-time fixed uniform and adaptive discretization.

Figure 6. Parameter estimation: comparison between experimentally measured (sym-
bols) and ML calibrated solute breakthrough curves obtained by fixed uniform (gray
curves) and space-time adaptive (black curves) discretization. Continuous curves corre-
spond to the breakthrough curve rendered by the gPCE model; dashed curves represent
the result of a forward run with ML parameter estimates listed in Table 1 for each of the
two discretization strategies.

Water Resources Research 10.1002/2014WR016569

ESFANDIAR ET AL. VC 2015. American Geophysical Union. All Rights Reserved. 1327



We observe that the early part of the breakthrough curve (1900< t< 2500 s) is represented with the same
degree of accuracy by both the discretization strategies. The fixed uniform discretization leads to a marked
underestimation of the observed experimental data for 2500< t< 4500 s. The space-time adaptive
approach leads to a significant reduction of the difference between modeling results and experimental
data (see Figure 6), although a slight underestimation is still observed for 3500< t< 4500 s. This discrep-
ancy between experimental observations and numerical results may be due to the influence of (i) additional
uncertain parameters not investigated in this study (e.g., transverse dispersivity) or (ii) model error due to
the inadequacy of the ADE to fully interpret the transport phenomenon. Further studies on this issue would
require the investigation of anomalous transport formulations and this is beyond the scope of this work. All
calibrated curves shown in Figure 6 yield similar results for the longest times examined (t> 4500 s), i.e., the
difference between experimental observations and modeling results tends to reduce with time.

Results listed in Table 1 show that the discretization strategy has a marked impact on the way uncertainty
propagates from input parameters to simulation outputs. This effect can be additionally quantified upon
considering the Sobol sensitivity indices obtained by applying the fixed uniform and adaptive discretiza-
tions. The time-averaged values of the total Sobol indices ST aLið Þ (i 5 1, 2) associated with the two dispersiv-
ities are listed in Table 1, their temporal evolution being depicted in Figure 7. We observe that
�ST aL1ð Þ � �ST aL2ð Þ when the space-time mesh is adapted, i.e., the influence of the two parameters on the
model output is comparable on average (see Table 1). The influence of the longitudinal dispersivity of the
low conductivity sand block (aL2) tends to increase for long times (see Figure 7a), consistent with the
advancement of the solution within this region. On the other hand, the numerical breakthrough curve is
basically insensitive to aL2 for the whole considered time window when a fixed uniform discretization strat-
egy is implemented (see Figure 7b). In this latter case, we find �ST aL1ð Þ 	 �ST aL2ð Þ. Note that the uncertainty
bounds related to ML estimates listed in Table 1 and computed by (17) are inherently linked to the sensitiv-
ity of the output variable to the input parameters. Therefore, the observed significant difference between
the two temporal evolution of the Sobol indices explains the large reduction in the uncertainty bounds
associated with the estimation of âL2 by means of a space-time adaptive methodology.

Finally, we assess the propagation to the model output of the uncertainty related to the parameter estima-
tion results yielded by the two discretization strategies. As a reduced complexity model, the gPCE allows for
a fast evaluation of the solute breakthrough curve as a function of the selected uncertain parameters. Fol-
lowing model calibration, we consider log 10 aLið Þ (i 5 1, 2) to be described by a bivariate Gaussian distribu-
tion, centered on the ML parameters estimates âLi and characterized by the covariance matrix Q. We then
perform 104 evaluations of the solute breakthrough curve gPCE approximation (18) in a Monte Carlo frame-
work and compare the results yielded by the implementation of the space-time adaptive approach with
those obtained by a fixed uniform discretization. Figure 8 depicts the results of this analysis. Figures 8a and
8b depict the Monte Carlo realizations (gray curves) together with their associated 5th and 95th percentiles
(solid black curves) obtained through the space-time adaptation and the fixed grid approach, respectively.
Figures 8c–8e juxtaposes the empirical pdfs of the normalized solute concentrations resulting from the two

Figure 7. Global sensitivity analysis: time evolution of the total Sobol indices associated with dispersivities aL1, aL2 obtained through (a)
space-time adaptive and (b) fixed uniform discretizations.
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grid discretization strategies at three selected times. We observe that the uncertainty related to parameter
estimates is largely reduced by implementing a space-time adaptive procedure in the forward simulation
step with respect to a standard fixed uniform discretization in space and time. This is particularly evident for
early times (t � 2000 s). The results in Figures 8c–8e indicate that the discretization strategy has a remark-
able impact on these output pdfs. In general, the pdfs obtained by approximating the ADE through a fixed
uniform discretization display a considerably larger spread than those obtained by means of an adaptive
method. This result is particularly evident when we consider early solute arrivals (Figures 8c and 8d). For
later times (Figure 8e), we observe that the pdf associated with the fixed uniform strategy is associated with
smaller concentration values than those linked to the space-time adaptive methodology. At this late time
the two pdfs tend to assume a similar shape. These results suggest that the impact of the choice of auto-
matically adaptive discretization methods may be relevant in practical applications, e.g., when the estima-
tion of the risk associated with target scenarios of groundwater pollution is of concern.

6. Conclusions

We provide a methodology for forward simulation and parameter estimation of solute transport in porous
media. We base our study on the standard ADE formulation. The numerical solution of the ADE is achieved
by means of a space-time adaptive discretization. We implement anisotropic spatial mesh adaptation, which
allows optimizing size, shape, and orientation of the mesh elements with respect to the features of the
numerical solution considered, together with time step adaptation. The methodology is here applied to the
interpretation of a laboratory-scale solute transport experiment performed within a block-wise heterogene-
ous sand box. Our results lead to the following major conclusions:

1. The proposed adaptation procedure is robust and able to capture the evolutionary features of the target
problem. We couple the space-time adaptive methodology with a model reduction technique based on a
generalized Polynomial Chaos Expansion (gPCE) approximation of the considered transport model. A
fixed set of constraints and tolerances allow simulating the transport process in the presence of large

Figure 8. Uncertainty quantification: Monte Carlo realizations of solute breakthrough curves (gray curves) obtained through the gPCE
associated with the (a) space-time adaptation method and (b) the fixed uniform discretization, and corresponding probability density func-
tions of the normalized concentration C/C0 at selected time levels (c) T1 5 1500 s, (d) T2 5 2000 s, and (e) T3 5 3100 s. Continuous black
curves in a–b correspond to the time evolution of the 5th and 95th percentile of the distributions.
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variations of the physical model parameters (e.g., dispersivities). This result shows that the proposed
adaptive methodology is suited to be embedded in parameter estimation and/or uncertainty quantifica-
tion schemes, where the input/output relationship need to be investigated through multiple numerical
simulations of the transport problem.

2. The impact of the space-time adaptive procedure is assessed by means of Maximum Likelihood (ML)
parameter estimation based on a set of solute breakthrough concentration measurements acquired at
the outlet of the experimental flow cell. When compared to standard fixed uniform discretizations charac-
terized by an apparently sufficient resolution, the quality of parameter estimation results improves when
the space-time adaptive methodology is implemented. The space-time adaptive approach allows reduc-
ing (i) the estimated error between model predictions and experimental measurements, and (ii) the
bounds of uncertainty associated with ML parameter estimates.

3. Implementing a space-time adaptive methodology bears a marked impact on global sensitivity analysis
and uncertainty quantification results. The sensitivity of the model output to input uncertain parameters
may be highly affected by the space-time discretization strategy. In our example, the total Sobol sensitiv-
ity indices associated with the longitudinal dispersivity of the low-conductivity region has only a marginal
influence on the solute breakthrough curve when a fixed uniform discretization strategy is implemented.
On the other hand, the space-time adaptive simulation allows grasping the influence of this parameter
on the output breakthrough curve. Our analysis suggests that this result may be due to the accurate
space-time resolution of the adaptive discretization at the transition of the concentration front from the
coarse to the fine sand region.

4. As a final result, we present (empirical) probability density distributions of breakthrough concentrations,
computed through Monte Carlo simulations of the constructed gPCE surrogate models. We show that
implementing a space-time adaptive procedure in the considered transport setting leads to a consider-
able uncertainty reduction associated with the solute breakthrough at the outlet of the experimental cell.
This result suggests that adaptive discretization strategies may provide a key tool for uncertainty control
and reduction, to be employed, e.g., within risk assessment practice of groundwater pollution.

Finally, results presented in this study demonstrate the remarkable potential of our proposed adaptive tech-
nique to improve our ability to model solute transport in field scenarios. In future contributions, we plan to
address the extension of the technique to complex transport settings, characterized by heterogeneous per-
meability fields. In this context, the mesh adaptation procedure might require to merge different variables
to build the error estimator, along the lines of the methodology proposed by Porta et al. [2012a].

Appendix A: Computation of Sobol Indices

For the sake of the computation of the Sobol indices, we rewrite (18) upon adopting a multiindex notation. Let i
2 NM be a multiindex vector, collecting the order of each polynomial wi with respect to each parameter pn and
K be the set of multiindices identifying the polynomials included in the expansion (18). We recast (18) as

CPC
out ti ;pð Þ5b0w01

XM

n51

X
i2Pn

biwi pð Þ1
XM

n51

XM

m5n

X
i2Pn;m

biwi pð Þ � � � ; (A1)

where Pn;m indicates the subset of K for which only the mth and nth components of i are nonzero, and
analogously for Pn. Equation (A1) is equivalent to the ANOVA decomposition of Cout tið Þ [Sudret, 2008]. As a
consequence, the full set of Sobol indices can be analytically computed as

S pnð Þ5
X
i2Pn

b2
i

V
S pn;m
� �

5
X

i2Pn;m

b2
i

V
; (A2)

where

V5
X
i2K

b2
i 2b2

0; (A3)

is total output variance. Note that the Sobol index S(pn) gathers solely the contribution of parameter pn to
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the total variance V, while the index S(pn,m) considers the combined influence of parameters pn, pm. The
total Sobol index associated with pn is then defined as

ST pnð Þ5S pnð Þ1
X
k 6¼n

S pn; pkð Þ1
X
k;j 6¼n

S pn; pk ; pj
� �

� � � ; (A4)

and includes all contributions of parameter pn to the total variance.
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