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ABSTRACT6

In this paper an alternative uncertainty treatment for the traditional unconstrained weighted-7

least squares (WLS) method is presented. This treatment enables hydraulic constraints (i.e., null8

demands at transit nodes, null flows at closed pipes, pumps or valves, etc.), high precision mea-9

surements and upper and lower variable bounds (i.e., head levels at tanks) to be included within the10

state estimation (SE) problem for water distribution systems. With this approach there is no need11

to choose appropriate weights associated with these types of measurements in order to correctly12

assess uncertainty for the SE problem. The method set out herein tackles these as constraints and13

works with the linear system of equations derived from imposing first order optimality conditions14

for the constrained SE problem. This approach enables general quantification of the SE uncertainty15

for all the hydraulic variables within the water system by applying the first order second moment16

(FOSM) method. Moreover, it enables standard computation of the covariance residual matrix17

associated with it, which is necessary to detect erroneous measurements. An illustrative example18
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(Spain). E-mail: Sarai.Diaz@uclm.es.

2Dr. Eng, Dept. of Civil Eng., Univ. of Castilla-La Mancha, Av. Camilo José Cela s/n, 13071 Ciudad Real (Spain).
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and a case study are shown to bring out the fact that the SE uncertainty results are more accurate19

and to show how the numerical conditioning of the system is affected, which may be crucial when20

dealing with large-scale water networks.21

Keywords: weighted least squares, exact measurements, residuals treatment, uncertainty analysis22

INTRODUCTION23

At present the tendency in improving water distribution systems management is to install24

Supervisory Control and Data Acquisition (SCADA) systems, whose implementation has been25

boosted recently with the aim of making the smart city challenge a reality. These platforms enable26

certain hydraulic variables to be monitored continuously where measurement devices are located,27

but do not, by themselves, enable the hydraulic state of the network to be inferred. State estimation28

techniques were developed in the 1970s in the power supply industry with that purpose in mind29

(Schweppe and Wildes, 1970), in order to turn the information provided by a monitored set of30

metering devices into real information about the state of the system. Unlike power supply systems,31

water networks are usually characterized by having a low degree of instrumentation, which is one32

reason why the application of SE algorithms to water systems is still a topic of ongoing research33

(Kang and Lansey, 2009).34

There have been several approaches to incorporating SE into water systems (see Andersen35

et al. (2001) for references). Among all of these, the WLS method stands out in the water distri-36

bution sector for solving both the state estimation (Bargiela, 1984; Powell et al., 1988; Brdys and37

Ulanicki, 2002; Kang and Lansey, 2009) and parameter estimation problems (Datta and Sridharan,38

1994; Piller, 1995; Reddy et al., 1996; Kapelan et al., 2003). With this approach the solution is39

typically found via the so called Gauss Newton or normal equation method, which fundamentally40

transforms the unconstrained WLS problem into a linear system of equations that must be solved41

iteratively. With this approach, weights must be assigned to the different available measurements42

in order to show how accurate these are. This constitutes a numerical problem when there are43

hydraulic constraints or high precision measurements, as the weight associated with these must44

in theory be infinite or very large, respectively. This could be true for null demands at transit45
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nodes, null flows at closed pipes, pumps or valves, etc., which should act as exact measurements46

for the SE problem. To overcome this problem, these measurements are typically considered to47

be highly accurate, but alternative constrained WLS methods have been developed in the power48

supply field (Korres, 2002; Abur and Expósito, 2004; Gómez-Quiles et al., 2013), which lessen the49

risk associated with working with ill-conditioned systems. These approaches have proved to be50

computationally efficient, hence application of similar techniques to water management systems51

would help to control ill-conditioning, inherent to the matrices involved in the normal equation52

approach as reported by Bargiela (1984). Additionally, a constrained WLS approach would enable53

upper and lower bounds for the SE of some variables, such as head levels at tanks, to be set.54

In this context, the aim of this paper is to set out an alternative treatment with respect to the55

WLS problem to determine the uncertainty related to SE in water distribution systems including:56

i) hydraulic constraints or high precision measurements and ii) upper and lower limits for state es-57

timation . For this purpose, we use the first order optimality conditions of the constrained WLS. It58

must be stressed that we do not focus on the solution for the constrained SE problem as this can be59

solved either using standard mathematical programming solvers or ad hoc algorithms which have60

already been developed in the literature (Caro et al., 2008; Caro and Conejo, 2012), where exten-61

sive comparisons in terms of SE performance can be found. Rather, we focus on quantifying the62

uncertainty associated with it because i) it is a novel contribution and ii) it is essential for evaluat-63

ing how accurate the SE results are, especially when pseudomeasurements (i.e., not readings taken64

from a meter, but predictions expected for hydraulic variables associated with greater uncertainty)65

are taken into account to guarantee the system observability (Bargiela and Hainsworth, 1989). Ad-66

ditionally, this method will enable the residual covariance matrix (which is required to compute67

normalized residuals and to detect erroneous measurements (Caro et al., 2011)) to be computed.68

The rest of this paper is set out as follows: in the first section, the traditional unconstrained69

WLS version (normal equation method) used to quantify SE uncertainty and compute the residual70

covariance matrix is presented. Then, the constrained approach is set out as a method for tackling71

the same problems. Subsequently, an illustrative example and a case study are presented to show72
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the differences between both methods when analyzing SE uncertainty and the impact hydraulic73

constraints or high precision variables have in the overall numerical conditioning of the problem.74

Finally, some important conclusions are drawn.75

TRADITIONAL UNCONSTRAINED WLS STATE ESTIMATION FORMULATION76

Generally speaking, an algorithm for SE enables the most likely state of a system to be com-77

puted by combining the information provided by a monitored measurement set and the system of78

governing equations. Specifically, the SE for water distribution systems at a selected time (i.e.,79

pseudo-static state estimation) is based on the following non-linear model:80

z = g(x) + ϵ, (1)81

where z ∈ Rm is the measurement vector (which may include piezometric heads at nodes, tank82

levels, pipe flows or consumptions at nodes), x ∈ Rn is the state variable vector (constituting nodal83

heads as in Dı́az et al. (2015)), g : Rn → Rm is the nonlinear relationship between measurements84

and state variables (derived from applying mass and energy conservation equations) and ϵ is the85

measurement error vector (typically assumed to be unbiased E[ϵ] = 0 and with the variance-86

covariance matrix Cz).87

Traditional SE techniques consist in finding the most likely values for the state variables x by88

solving the following unconstrained WLS problem:89

Minimize

x

fobj(x) =
1
2
ϵTWϵ = 1

2
[z − g(x)]T W [z − g(x)] , (2)90

whose optimal solution corresponds to x̂ and where W = C−1
z is the m×m diagonal matrix for91

the measurement weights. Note that one condition that is required but not sufficient for the SE92

problem to have a sole solution is m ≥ n.93

As mentioned before, Equation (2) has traditionally been solved using the well-known normal94

equation method (Expósito and Abur, 1998). According to this approach, the SE uncertainty can95
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be quantified by calculating the variance-covariance matrix for the state variables (Cx) as:96

Cx = [JTWJ ]−1, (3)97

where J ∈ Rm×n is the measurement Jacobian matrix evaluated at the optimal solution obtained98

from solving problem (2). Note that a theoretical and sufficient condition for quantifying the SE99

uncertainty is for matrix J to have full rank n, i.e., for the system to be observable (Dı́az et al.,100

2015).101

Once Cx has been computed, the variance-covariance matrix for the remaining hydraulic vari-102

ables (pipe flows Q and nodal demands q) can be inferred by applying the FOSM method again as103

follows:104

CQ,q = JQ,qCxJQ,q
T , (4)105

where JQ,q refers to the part of the measurement Jacobian matrix that relates pipe flows and nodal106

demands to nodal heads, respectively.107

Concurrently, the residual covariance matrix Ω can be obtained with this approach according108

to the expression (Expósito and Abur, 1998):109

Ω = [I − J(JTWJ)−1(JTW )]W−1[I − J(JTWJ)−1(JTW )]T . (5)110

CONTRAINED WLS STATE ESTIMATION FORMULATION111

Considering there are hydraulic constraints, high precision measurements and lower and upper112

bounds for variables, the SE problem presented in Eq. (2) has been amended as follows:113

Minimize

x

fobj(x) =
1
2
ϵTWϵ = 1

2
[z − g(x)]T W [z − g(x)] (6)114

subject to115

f(x) = 0. (7)116
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117

g(x) ≤ 0, (8)118

where equality constraints (7) represent hydraulic constraints and/or high precision measurements,119

and inequality constraints (8) represent the upper and lower bounds for the state variables. As120

mentioned previously, problem (6)-(8) can be solved directly using mathematical programming121

techniques by means of a nonlinear solver, because the mathematical programming solvers which122

are available at present can work with sparsity, are robust and computationally efficient and pro-123

vide highly accurate results. This is true for solvers such as CONOPT (Drud, 1996) or MI-124

NOS (Murtagh and Saunders, 1998). Furthermore, these solvers enable inequality constraints125

representing physical limits to be incorporated with ease (Caro et al., 2008). However, since we126

have focused on assessing uncertainty, we have assumed that the optimal solution to problem (6)-127

(8) is known and equal to x̂.128

Quantifying uncertainty means carrying out a local analysis at the optimal solution, thus, once129

an optimal solution for the SE problem is known, the binding inequality constraints are considered130

to be equality constraints and non-binding ones are disregarded (Caro et al., 2008), i.e., vector131

f(x) includes p equality constraints and qΛ active inequality constraints, where Λ is the set of132

active inequality constraints. Therefore, the first order optimality conditions for problem (6)-(8) at133

the optimum x̂ correspond to:134

m∑
i=1

∇x[
1

2
ωi(zi − gi(x̂))

2] +

p+qΛ∑
i=1

λi∇xfi(x̂) = 0

fi(x̂) = 0, i = 1, . . . , p+ qΛ,

(9)135

where F = ∇xf(x̂) is the (p + qΛ) × n equality constraint Jacobian and λ is the (p + qΛ) × 1136

Lagrangian multiplier vector associated with the equality constraints in (7)-(8).137

If we differentiate the optimality conditions (9) in such a way that the KKT conditions hold138

(Caro et al., 2011), the following linear system of equations is obtained:139
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 JTWJ F T

F 0




∂x

∂z
∂λ

∂z

 =

 JTW

0

 , (10)140

where the coefficient matrix of the system is U .141

As for quantifying the SE uncertainty , note that when i) there are hydraulic constraints or high142

precision measurements and/or ii) binding upper or lower bounds, these are considered to be part143

of F , and hence W and therefore JTWJ does not necessarily have full rank even if the system144

is observable. For this reason, the inverse of matrix U must be computed so that the part that145

establishes the partial derivatives of x with respect to z can be selected. According to Caro et al.146

(2011), that part would be E1, which is the upper-left quadrant of matrix U−1 as shown below:147


∂x

∂z
∂λ

∂z

 = U−1

 JTW

0

 =

 E1 ET
2

E2 E3


 JTW

0

 . (11)148

Therefore, the linear relationship among the differentials becomes:149

dx = E1J
TWdz = Sxzdz, (12)150

where Sxz represents the sensitivity matrix for the state variables x with respect to the measure-151

ments z. Hence, the variance-covariance matrix for the state variables Cx can be derived using the152

FOSM method as follows:153

Cx = SxzW
−1Sxz

T . (13)154

With this approach the variance-covariance matrix Cx (Eq. (13)) is equal to that obtained with the155

traditional WLS method (Eq. (3)) if there are no hydraulic constraints, high precision measure-156

ments and binding upper and lower bounds.157

Once these computations have been made, the variance-covariance matrix for the other hy-158

draulic variables within the water system (CQ,q) could be inferred from Cx using Eq. (4). Con-159

7



currently, the residual covariance matrix Ω can be obtained with this approach according to the160

general expression set out by Caro et al. (2011):161

Ω = (I − JSxz)W
−1(I − JSxz)

T . (14)162

ILLUSTRATIVE EXAMPLE163

The purpose of this illustrative example is to show the difference between quantifying SE164

uncertainty using the methodology set out herein and the traditional method based on normal165

equations using just weights. For this reason, the small water network set out by Dı́az et al. (2015)166

has been amended (see Fig. 1) in order to transform nodes 2 and 4 into transit nodes, where water167

demand is known to be equal to zero (q2 = q4 = 0) as long as there is no leakage. Additionally, with168

this example demand pseudomeasurements are considered to be available at nodes 3 and 5 (with169

the coefficient of variation associated with it being CV= 0.2 for both of them), water level readings170

are available at tanks 1 and 6 (with a measurement accuracy of σh = 0.1 m) and flow meters are171

available at pipes 1-2, 2-3, 2-5 and 3-4 (with a measurement accuracy of σQ = 0.25 m3/h). This172

results in an observable water network, in which the SE uncertainty and system conditioning are to173

be analyzed. Note that we do not solve the SE problem itself, but we use the network state solution174

assuming the measurements are error-free. This is because we focus on the effects both approaches175

have on uncertainty evaluation, as the impact of state estimation has been previously studied by176

other authors (Caro and Conejo, 2012).177

By applying the methodology set out in section 3 to the illustrative example, the results sum-178

marized in the first row of Table 1 are obtained, where SE uncertainty has been quantified for both179

heads (σSEh
) as well as demands (σSEq ) at every node. Also, the reciprocal of the condition num-180

ber estimate of U has been calculated in order to evaluate how sensitive the solution to a system181

of linear equations is to data errors (0 corresponds to an ill-conditioned system and 1 to a well-182

conditioned system). These results display consistent uncertainty when compared to the accuracy183

of the measurement devices and accurately display the demand uncertainty at transit nodes, which184
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is zero as they are specifically considered to be hydraulic constraints. Note that the W , J , F , U185

and Sxz matrices for this example have been collated in Appendix S1.186

Furthermore, the traditional unconstrained WLS approach has been implemented by means187

of the normal equation method used in SE uncertainty quantification. Here, a weight has to be188

assigned even to hydraulic constraints, as these are not given any special treatment. For a high189

degree of accuracy to be displayed, their standard deviation (σtransit) is considered to be a number190

of orders of magnitude lower than the minimum standard deviation there is assumed to be for the191

remaining measurements (σmin

10n
). In this paper, we consider n = 2, 4, 6 and 8 to test the sensitivity192

of the method to the weight assumption for exact measurements, whose results have been collated193

in Table 1 together with the reciprocal of the condition number estimate of JTWJ . The results194

show that for n = 2, the numerical condition of the matrix to be inverted is even better than that195

of the matrix to be inverted with the constrained WLS method set out, but this comes at the cost196

of a loss of accuracy in the SE of demand at the transit nodes, whose uncertainty is now 0.0025197

m3/h instead of 0 m3/h. Note that the accumulative effect of these deviations can be significant198

when dealing with large network systems. If the weight of error-free measurements is increased199

by considering n = 4, the SE of demand uncertainty associated with it is consequently reduced,200

but there is a deterioration in the JTWJ condition number. In fact, results show that for n = 6201

the system is ill-conditioned, which leads to SE uncertainties different from the values obtained202

with lower weights and to the constrained WLS approach. Finally, if n = 8, the condition number203

attains a value of 0, with which it is not possible to invert JTWJ , i.e., it is impossible to quantify204

SE uncertainty.205

These results prove that the normal equation approach is sensitive to the selection of the weights206

associated with the hydraulic constraints or the high precision measurements of the variables,207

whereas with the methodology set out herein, this problem can be overcome. Note that the network208

topology determines conditioning of the system, but the constrained WLS formulation ensures the209

SE results yielded as well as the subsequent process of quantifying uncertainty is independent.210

HANOI NETWORK CASE STUDY211
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In order to show that this method is still beneficial even with an increase in complexity in topol-212

ogy, Table 2 provides results for the same analysis when applied to the Hanoi network (Fujiwara213

and Khang, 1990), an example which has been widely used in other works. Note that this network214

originally has 1 tank, 31 demand nodes and 34 pipes, but demand nodes 3, 16, 23 and 25 have215

been turned into transit nodes in this study to demonstrate these measurements are exact ones.216

Regarding the measurement set, it has been assumed that only the tank level has been metered217

(σh = 0.1 m) and demand is pseudomeasured (CV = 0.2). The results given in Table 2 are analo-218

gous to those obtained in the illustrative example and bring out the fact that use of the traditional219

unconstrained WLS approach could lead to non-quantifiable SE uncertainty scenarios for n ≥ 6.220

Moreover, it shows how the numerical problem increases with the size of the water distribution221

system and thereby proves how useful the constrained approach is.222

CONCLUSIONS223

An alternative treatment to the unconstrained WLS approach for SE in water distribution sys-224

tems is set out in this paper, in which hydraulic constraints (i.e., null demands at transit nodes,225

null flows at closed pipes, pumps or valves, etc.), high precision measurements and upper and226

lower bounds for variables (i.e., head levels at tanks) are consistently included. The method set out227

herein uses the linear system of equations derived from imposing first order optimality conditions228

for the constrained SE problem and enables the SE uncertainty of the hydraulic variables and the229

associated residual covariance matrix to be calculated. These are both useful when assessing the230

results yielded by the SE problem. Both the illustrative example and the case study given in this231

paper prove that with the traditional normal equation method, the SE results are sensitive to the232

weight selected for said hydraulic constraints or high-precision measurements, which on varying233

could lead to an ill-conditioned system. Therefore, the constrained WLS method set out herein en-234

sures more accurate results for SE uncertainty, without sacrificing the precious information yielded235

by the hydraulic constraints, high precision measurements or upper and lower bounds within the236

setting of typically non-redundant or low redundancy water distribution systems.237
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SUPPLEMENTAL DATA238

Appendix S1 is available online in the ASCE Library (www.ascelibrary.org).239
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TABLE 1. SE uncertainty and system conditioning for different formulation scenar-
ios in the illustrative example

Formulation Node number σSEh
(m) σSEq (m3/h) Condition of the matrix to be

inverted (U or JTWJ )

Proposed WLS
method

1 0.0726 -

4.0291× 10−10

2 0.0725 0
3 0.0717 0.6804
4 0.0709 0
5 0.0745 1.1586
6 0.0726 -

Traditional WLS

σtransit =
min(σ)

102

1 0.0726 -

1.0962× 10−8

2 0.0725 0.0025
3 0.0717 0.6804
4 0.0709 0.0025
5 0.0745 1.1586
6 0.0726 -

Traditional WLS

σtransit =
min(σ)

104

1 0.0726 -

1.0963× 10−12

2 0.0725 0.0000
3 0.0717 0.6804
4 0.0709 0.0000
5 0.0745 1.1586
6 0.0726 -

Traditional WLS

σtransit =
min(σ)

106

1 0.0769 -

9.7573× 10−17

2 0.0768 0.0000
3 0.0758 0.6810
4 0.0750 0.0000
5 0.0788 1.1618
6 0.0762 -

Traditional WLS

σtransit =
min(σ)

108

1 - -

0

2 - -
3 - -
4 - -
5 - -
6 - -
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TABLE 2. SE uncertainty and system conditioning for different formulation scenar-
ios in the Hanoi network case study

Formulation Node number σSEh
(m) σSEq (m3/h) Condition of the matrix to be

inverted (U or JTWJ )

Proposed WLS
method

3 2.4885 0

7.8871× 10−816 4.0557 0
23 3.5678 0
25 4.2736 0

Traditional WLS

σtransit =
min(σ)

102

3 2.4885 0.0600

4.2583× 10−1316 4.0557 0.0600
23 3.5678 0.0600
25 4.2736 0.0600

Traditional WLS

σtransit =
min(σ)

104

3 2.4730 0.0006

4.3108× 10−1716 4.0282 0.0006
23 3.5437 0.0006
25 4.2439 0.0006

Traditional WLS

σtransit =
min(σ)

106

3 - -

0
16 - -
23 - -
25 - -

Traditional WLS

σtransit =
min(σ)

108

3 - -

0
16 - -
23 - -
25 - -
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FIG. 1. Illustrative example network (modified from Dı́az et al. (2015))
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