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ABSTRACT6

The aim of observability analysis (OA) is to determine if a given measurement setting is suffi-7

cient to compute the current status of a water distribution network. There are several approaches8

in the technical literature to making such an analysis. With all of them there is an assumption that9

the lie of the land of the network in terms of the statuses of its pumps and/or valves is known. In10

this paper we omit this assumption and introduce the concept of topological observability anal-11

ysis (TOA), which aims to determine not only if it would be possible to compute the hydraulic12

state of a network from the available measurement set (ordinary OA), but also if the statuses of13

pumps and valves would be observable as well. Additionally, we propose a method that modifies14

the standard measurement Jacobian matrix by incorporating either equations and/or unknowns de-15

pending on the available information for each specific pump or valve. The rest of the analysis can16

be undertaken using any of the existing methods for OA in the literature. An illustrative example17
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(Spain). E-mail: Sarai.Diaz@uclm.es.
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is presented by way of illustration to show the potential TOA has which would certainly enhance18

on-line monitoring systems.19

Keywords: state estimation, topological analysis, optimal meter placement, network monitoring20

INTRODUCTION21

Nowadays, large water distribution networks are being modernised with the installation of22

supervisory control and data acquisition (SCADA) systems. This has focused attention on the23

need for using automatic processing tools that enable the information provided by the available24

real-time measurements distributed throughout the network to be interpreted. This is what occurs25

with state estimation techniques, which have been applied on an academic and scientific level in26

the water industry since the late 70s (Sterling and Bargiela, 1984; Bargiela, 1984; Powell et al.,27

1988; Andersen et al., 2001; Kumar et al., 2008), but have hardly been implemented in real-life28

networks on an operational level (Carpentier and Cohen, 1991; Powell, 1992; Preis et al., 2011;29

Cheng et al., 2014). Essentially, a state estimator is an algorithm that enables flow conditions to30

be inferred from the hydraulic network equations and the available measurement set (flow meters,31

head level meters, pressure meters, among others) at any time and location.32

In order to guarantee full applicability and effectiveness of state estimation techniques, observ-33

ability analysis (OA) needs to be undertaken first. OA is a strategy that evaluates if the measure-34

ment set available is sufficient to compute the current state of the network, enabling the observ-35

able variables to be identified, i.e. variables that could be effectively computed based on existing36

telemetry data (Carpentier and Cohen, 1991). In this respect, there have been several approaches37

to implementing OA in water distribution systems (Bargiela, 1985; Nagar and Powell, 2004; Dı́az38

et al., 2016a; Dı́az et al., 2016c), but in all of them there is an assumption that the lie of the land of39

the network in terms of the statuses of its pumps and/or valves is known.40

In this paper, we omit this assumption and introduce the concept of topological observability41

analysis (TOA), which aims not only to identify if the current status of the network could be com-42

puted from the available measurement set in a subsequent state estimation process (ordinary OA),43

but also if the statuses of its pumps and valves could be inferred as well. The novelty of evaluat-44
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ing observability of pumps and valves answers a necessity in the real operation of water systems:45

even if the network topology is likely to be known under normal operating conditions, unexpected46

practical issues (such as changing demand patterns or the occurrence of sudden ruptures) may re-47

quire the statuses of the pumps and/or valves to be changed in order to maintain serviceability.48

Therefore, there is a risk of these quick response operations not being recorded in the water system49

model, which should be conveniently updated once the changes have been identified. Note that50

the importance of taking into account how changes in the statuses of the pumps and valves can51

modify the network topology has been discussed before in the context of solving (Giustolisi et al.,52

2008; Laucelli et al., 2015) and calibrating (Laucelli et al., 2011) flow networks, but this has yet53

to be integrated into the OA problem. In this regard, TOA would enable assessment of possible54

locations for additional metering devices for topological purposes, i.e., to ensure that the statuses55

of some pumps and valves can be inferred from the existing measurements. Note that in TOA, like56

in OA, only relationships among variables are considered, disregarding the uncertainty effect of57

the associated measurements.58

Therefore, the aim of this paper is twofold: firstly, to introduce the concept of TOA in water59

distribution networks, and secondly, to present a method that allows the measurement Jacobian60

matrix to be amended in order to assess observability of how the land lies. More specifically, in61

this paper observability of pumps and valves is analysed by including equations and/or unknowns62

in the Jacobian matrix, depending on the information available for each specific pump or valve.63

The rest of this paper is organised as follows: in the first section, the construction of the standard64

measurement Jacobian matrix is outlined. Secondly, the amendments required to undertake TOA65

are presented. Then, an illustrative example is discussed to show the possibilities of using TOA66

for water distribution networks, as well as its potential for optimal meter placement. Finally,67

conclusions are duly drawn.68

OBSERVABILITY ANALYSIS IN WATER DISTRIBUTION SYSTEMS69

The state estimation problem is normally approached by means of the normal equations method70

(Expósito and Abur, 1998), which enables iterative calculation of the optimal solution (x̂) of the71
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original unconstrained weighted least squares approach as:72

∆x̂(ν+1) = [JT
(ν)Cz

−1J(ν)]
−1[JT

(ν)Cz
−1](z − g(x̂(ν))), (1)73

with x̂(ν+1) = x̂(ν) +∆x̂(ν+1). Note that ν is an iteration counter and J(ν) ∈ Rm×n is the Jacobian74

measurement matrix at point x̂(ν) (see Dı́az et al. (2016a) for details). This matrix represents the75

sensitivity of the available measurements z ∈ Rm with respect to the state variables vector x ∈ Rn,76

which is the minimum set of variables that enables the hydraulic state of the network (considered77

as nodal heads in this paper) to be calculated, according to the non-linear model g : Rn → Rm.78

Cz is the measurement error vector (ϵ = z−g(x)) variance-covariance matrix, typically assumed79

to be unbiased.80

According to Equation 1, a theoretical and sufficient condition for there to be a unique so-81

lution to the state estimation problem is for the matrix J to remain full rank, in which case the82

system would be observable. Therefore, it is first mandatory to construct the measurement Ja-83

cobian matrix adequately, which gathers the first-order partial derivatives of all the variables that84

could be measured within a water distribution system (in rows) with respect to the state variables85

(in columns), taken as head levels in this paper. Note that in standard OA, possible measurements86

within a water network are: 1) head levels, 2) pipe flows and 3) water demands. Therefore, the87

potential measurements vector is:88

z =
(
hi; ∀i ∈ V , Qij; ∀ij ∈ L; qi; ∀i ∈ (VQ ∪ VT)

)T
, (2)89

where V and L represent the set of nodes and pipes that exist in the system respectively, and VQ
90

and VT specifically refer to demand and transit nodes, as tank nodes can be characterised only by91

their head level. Note that actual measurements are specifically represented with a tilde and their92

corresponding rows in the measurement Jacobian matrix are shadowed, as shown in the illustrative93

example.94

The structure of the resulting Jacobian matrix [J] is shown in Fig. 1, where npi and nq in95
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J represent the number of pipes where flow could be metered and the number of nodes where96

demand can be measured, respectively, and I is the identity matrix. Note that the derivatives97

associated could be calculated according to the expressions in Dı́az et al. (2016a). Moreover, the98

matrix should be normalised to improve its condition number for observability purposes, although99

its original version must be used if state estimation uncertainty is to be evaluated as in Bargiela100

and Hainsworth (1989) or Dı́az et al. (2016b).101

Then, any existing method for OA could be applied to evaluate observability of the system,102

either by evaluating the rank of the available measurement Jacobian matrix, which can be built103

by just selecting the rows of metered variables and all columns, or the full Jacobian matrix. Note104

that in the first type of methods, like the null space method presented in Castillo et al. (2005),105

only observability of the state variables is evaluated, whereas if the relationships contained in the106

full matrix are considered (like the algebraic approach in (Dı́az et al., 2016a)), the observability of107

every single variable can be assessed.108

TOPOLOGICAL OBSERVABILITY ANALYSIS IN WATER DISTRIBUTION SYSTEMS109

The statuses of pumps and valves in water distribution systems change over time in order110

to adapt the network performance to the varying patterns in demand. For this reason, OA must111

move forward so as to assess observability of the network topology in terms of the statuses of its112

pumps and/or valves. Thus, TOA would constitute a powerful tool to identify unnotified changes113

in operation or abnormal operating conditions.114

To account for the existence of pumps and valves in OA, the structure of the Jacobian matrix115

presented in Fig. 1 must be amended. In this respect, three scenarios must be differentiated de-116

pending on the information available for each specific pump or valve, which are here treated as117

link elements:118

• The pump or valve characteristic curve or setting is known, and the device is known119

to be working. In this case, the standard measurement Jacobian matrix is not amended,120

and observability of the whole system (including pump and/or valve elements) could be121
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evaluated using any existing OA technique.122

However, if, as mentioned before, a more sophisticated technique is used to assess observ-123

ability of each of the variables, an equation should be added to represent the existing rela-124

tionship between the flow through the pump/valve and its head levels at both end nodes, i.e.125

its characteristic curve. In this case, the derivative ∂Q
∂hi

could be computed easily, as all the126

parameters that define the pump or valve operations have been characterised. For example,127

if there is a generic pump with characteristic curve hj −hi = ∆h = AQp2ij +B|Qpij|+C,128

where Qpij refers to the flow through the pump from node i to node j, the associated129

derivatives could be written as:130

∂Qpij
∂hi

=
−1

2A|Qpij|+B
(3)131

132

∂Qpij
∂hj

=
1

2A|Qpij|+B
, (4)133

where i and j represent the initial and final nodes, respectively. Note that these expressions134

would become −1 and 1 when the Jacobian matrix is to be normalised. Similarly, additional135

expressions can be derived for particular flow controlling devices, such as pressure reducing136

or sustaining valves, general purpose valves or ordinary gate valves.137

• The pump or valve is known to be closed. In this case, there is an additional state variable138

that refers to the flow through the pump or valve (Qpij or Qvij), but there is also direct139

measurement of the water flow through the device: Q̃pij = 0 or Q̃vij = 0. Therefore, a140

flow state variable column has to be added for each closed element, together with a flow141

measurement row, which should be incorporated into the measurement set available. Note142

that this row and column show zero values for all their positions except when they cross,143

where a value of 1 must be placed (identity matrix).144

• The pump or valve status is unknown. Also in this case, an additional state variable145

column that refers to the flow through the pump or valve (Qpij or Qvij) must be added.146

However, in this scenario there is no information about how the pump or valve is operating,147
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thus no additional measurement is possible. Therefore, unknowns are added to the mea-148

surement Jacobian matrix but equations are not, and more metering devices are necessary149

to obtain observability for the system.150

It must be emphasized that it is only when a pump or valve is known to be closed that informa-151

tion is added to the available measurement set. In any other case, the measurement set available152

corresponds exactly to the metering devices there are within the water distribution system, and153

the number of additional state variables will depend on whether there is information available for154

each device or not. This idea is summarised in Fig. 2, where npu pumps (Qpij) and nv valves155

(Qvij) have been incorporated into the standard measurement Jacobian matrix presented in Fig. 1,156

and measurements available thanks to the network topology, i.e. closed pumps and/or valves, are157

shaded in light grey. Note that in this amended matrix there are several empty sets (Ω) in those158

positions where there is no relationship between the measurement and either head levels or flow159

state variables, depending on the information available for each pump and/or valve. For this rea-160

son, water demand measurements q can be related to either the h or Q state variables depending161

on the information available.162

ILLUSTRATIVE EXAMPLE163

An example is presented below to illustrate the potential TOA has. For this purpose, the il-164

lustrative network proposed by Dı́az et al. (2016a) has been amended (see Fig. 3) to incorporate165

the presence of a gate valve (link 2-7) and a pump (link 6-8) at strategic locations. For this to166

happen, elevation at node 6 has been reduced to zero and two transit nodes (7 and 8) have been167

added to include both devices as link elements (Appendix S1 contains detailed characteristics of168

this example).169

In this network, two scenarios are considered to explain the potential TOA has. All water170

demands and tank levels are metered in both of them, so achieving full observability actually171

depends on the information available for the pump and valve and if there are any extra meters.172

The following cases are analysed: 1) the pump is known to be working with a characteristic curve173
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given by parameters A = −2.2204 · 10−16, B = −0.3126 and C = 125.2806, the gate valve is174

known to be open and the energy loss condition at the valve is assumed to be known, and 2) there is175

no information about the statuses of the pumps and valves. Subsequently, the associated modified176

Jacobian matrix will be constructed for both scenarios, after which TOA for the system will be177

undertaken according to the null space method (Castillo et al., 2005) and the algebraic approach178

proposed by Dı́az et al. (2016a), respectively.179

Case 1: Known pump and valve statuses180

For this first scenario the null space approach proposed by Castillo et al. (2005) is used. There-181

fore, only the Jacobian matrix associated with the measurements available is built, as shown in Fig.182

4. Note that all rows are shaded in light grey because the matrix is only made up of available mea-183

surements (also marked with a tilde), which in this case correspond to water levels at tank nodes184

and water demands for the remaining nodes. As can be seen in this figure, eight state variables185

exist, as there are eight nodes in the illustrative network and the pump characteristic curve and gate186

valve status are known. Note that the signs correspond to a sign criteria in which flow is considered187

to be positive whenever the water moves from the low numbering node i, to the high numbering188

node j.189

In order to carry out TOA, the null space of the measurement Jacobian matrix available must be190

computed. In this case, the associated null space is an empty set, i.e., the system is fully observable.191

Case 2: Unknown pump and valve statuses192

In this scenario, the algebraic approach proposed by Dı́az et al. (2016a) is used, so the full193

measurement Jacobian matrix is computed. The normalised Jacobian matrix for this scenario is194

shown in Fig. 5, where measurement rows available are shaded in grey and there are two additional195

flow state variable columns due to the lack of information about the pump and valve. In this case,196

the resulting system is unobservable, as there are ten unknowns and only eight measurements197

available. Note that all the measurements in the transformed Jacobian shown in Fig. 6 have been198

transferred to columns by pivoting their corresponding rows, however, there are still two columns199

associated with valve and pump flows (Qv2−7, Qp6−8) which could not be replaced by additional200
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measurements. Therefore, all row variables containing non-null elements in these two columns201

are unobservable variables. The advantage of using the aforementioned algebraic procedure used202

here is that the resulting transformed matrix can be useful to identify locations where additional203

measurement devices could be added in order to attain observability for the whole system.204

This matrix shows how all measurements available have been pivoted throughout the process205

from rows to columns, but still more information is required to estimate the statuses of the pumps206

and valves. Contrary to the null space approach, with the transformed matrix it can be seen that207

in order to guarantee observability of the pump status, it would be necessary to incorporate a flow208

meter at any location except pipe 3-7, where a null element exists in the corresponding position, or209

an additional pressure meter at any node. However, if both pump and valve observability must be210

achieved, two additional metering devices should be added. More specifically, these instruments211

would need to have an associated invertible matrix in columns Qp6−8 and Qv2−7. For example,212

the addition of flow meters Q1−2 and Q3−5 would lead to a fully observable system, and so would213

the incorporation of Q2−5 and Q3−4, but not Q1−2 and Q4−8. Note that if, for example, new214

information was received by the telemetry system about pump 6-8 being closed, row Qp6−8 would215

become an available measurement, thus the transformed matrix could be amended by pivoting this216

row additionally .217

Therefore, TOA has the potential to, at any time, consider other assumptions apart from know-218

ing the statuses of the pumps or valves, as is likely to be the case in large real on-line monitored219

water distribution systems. Nevertheless, it must be stressed that TOA (as well as OA), is only220

capable of evaluating if there are enough relationships to calculate the state variables of the system221

from the measurements available, but as data obtained by telemetry data is prone to errors, this222

could eventually lead to an incorrect status determination within any state estimation algorithm.223

This is a subject for further research.224

CONCLUSIONS225

In this paper the concept of TOA in water distribution networks is presented, which enables226

not just observability of the hydraulic state of the network to be analysed, but also assessment of227
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whether the network topology in terms of the statuses of its pump and/or valves would be observ-228

able. Therefore, this approach constitutes a breakthrough with respect to existing OA techniques,229

where the network topology is always assumed to be known. The method presented herein is based230

on a slight amendment of the standard measurement Jacobian matrix to account for an analysis of231

the statuses of the pumps and/or valves.232

The illustrative example presented in this paper shows how simple it is to include topological233

considerations in the measurement Jacobian matrix. Moreover, the strategy set out enables use of234

any of the numerical methods there are for observability analysis based on the manipulation of235

this matrix. The methodology shown here enables identification of in which locations unnotified236

changes in operating conditions could be potentially detected.237

It is worth stressing that although this method only enables observability to be checked with238

the hypothesis of error-free measurements, this is a necessary step before attempting to make any239

topological state estimation with noisy measurements because: (1) unobservable elements with240

error-free measurements would remain unobservable with noisy measurements; and (2) observable241

elements with error-free measurements would or would not remain observable depending on the242

measurement distribution and uncertainty. This is a subject for further research.243

SUPPLEMENTAL DATA244

Appendix S1 is available online in the ASCE Library (www.ascelibrary.org).245
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