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González

The final publication is available at Springer via http://dx.doi.org/10.1007/s11269-017-1779-2

Abstract Calibration of model parameters is of utmost importance to ensure the
good performance of hydraulic simulation models. In this work, calibration is con-
ceived within a joint multi-period parameter and state estimation approach, where
model parameters (i.e. roughness coefficients) and hydraulic variables should be com-
puted from available measurements at different times. The aim of this paper is twofold:
(1) to present a novel methodology for the calibration of water networks via multi-
period state estimation, and (2) to adapt observability analysis to this approach. The
novelty of this work is that such a large-scale non-linear optimisation problem is here
solved using mathematical programming decomposition techniques. On the other
hand, observability analysis requires the construction of the multi-period measure-
ment and parameter Jacobian matrix of the problem. The proposed approach enables
computation of the observable roughness coefficients from available readings over
time, making possible the periodic reassessment of roughness values based on recent
online measurements. The potential of the method is illustrated by means of a case
study, which shows how such a methodology would contribute to make the most of
telemetry data for calibration purposes.
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1 Introduction

Hydraulic models are frequently used to simulate how a given water distribution sys-
tem would work under specific circumstances, i.e. enabling different scenarios to
be tested. For this reason, they have become an essential tool for both practitioners
and researchers. In the industry domain, they are normally used to simulate differ-
ent scenarios, based on which the understanding of the system can be furthered and
decisions can be made to improve the network operation and enhance serviceability.
In academia, they constitute the basis on which other related applications lay their
foundation. Such is the case of algorithms for the efficient design of water systems,
leakage detection strategies, optimal pump and valve operation, state estimation tech-
niques, and other online monitoring and control applications. Nevertheless, all these
applications rely on the fact that the simulation model accurately represents the ac-
tual system. Accordingly, it is a matter of utmost importance to correctly adjust model
parameters using the available measurements in the network.

Numerous approaches have been presented in the past to solve the calibration
problem, also known as the inverse problem. Savic et al (2009) classify calibration
procedures in three categories: (1) iterative or trial-and-error methods, (2) explicit or
hydraulic simulation procedures, and (3) implicit or optimisation models. Trial-and-
error methods are ad hoc procedures that iteratively update model parameters based
on the solution of the flow network, either considering a single demand scenario (Ra-
hal et al, 1980) or multiple loading conditions (Bhave, 1988), with the latter being
more robust as it permits to adjust the model based on different flow scenarios. In ex-
plicit approaches, model parameters are obtained by solving the extended system of
steady-state equations that results from considering continuity and energy equations,
together with the additional equations that can be derived from available measure-
ments. Such methods are limited to even-determined systems of equations and may
consider single (Boulos and Wood, 1990) or multiple (Boulos and Ormsbee, 1991)
loading conditions. Implicit methods tackle the calibration problem with a weighted
least squares (WLS) approach that minimises the difference between the metered
or observed values and the estimated variables, which take into account the model
parameters through the optimisation constraints, i.e. the flow governing equations.
These procedures traditionally consider multiple loading conditions and have been
solved in many different ways: applying the gradient method (e.g. Lansey and Bas-
net (1991)), sensitivity analysis techniques (e.g. Datta and Sridharan (1994)), Gauss-
Newton based methods (e.g. Reddy et al (1996)) and genetic algorithms (e.g. Savic
and Walters (1995), Kapelan et al (2007), Wu and Clark (2009)), among others. It
should be noted that the aforementioned methodologies do not all consider the same
calibration parameters. Roughness coefficients, nodal demands, pump and valve set-
tings, leak coefficients or a combination of these have been considered as calibration
parameters in the past (see Savic et al (2009) for details).



Calibration via multi-period state estimation in water distribution systems 3

Such variety of approaches proves that calibration has been a matter of crucial in-
terest in the water supply field since the 1970s. Nevertheless, there is not an ultimate
solution to the problem yet, and calibration is still a topic of ongoing research (Savic
et al, 2009). As recently pointed out by Kumar et al (2010), the majority of existing
calibration procedures use a hydraulic model as the basis or engine for parameter ad-
justment, and do not consider the hydraulic state of the network using a “formal state
estimation approach”. The traditional view is that water levels at source nodes and
water outflows are known (hence the hydraulic model works straightforwardly) and
only additional measurements of pressure or flow are used to estimate model param-
eters (Lansey et al, 2001). However, in practice all measurements can sporadically
fail (e.g. sensor failure, communication failure) and are subjected to noise, and that
should be taken into account in the calibration process. To consistently simulate this
reality, parameter estimation can be integrated with state estimation techniques.

A state estimator is an algorithm that provides the most likely hydraulic state of
a water distribution system based on the available measurements, considering that
model parameters are already known (Dı́az et al, 2016). Some work has been done
in the past at a scientific level to develop joint state and parameter estimation algo-
rithms in static and dynamic water supply systems with bounded uncertainty (Brdys
and Chen, 1993, 1994; Brdys and Ulanicki, 2002). More recently, Kumar et al (2010)
have resumed the combined state and parameter estimation problem by simplifying
the associated large-scale non-linear optimisation problem using graph theoretic prin-
ciples (Kumar et al, 2008), but only for a single loading condition. It must be high-
lighted that considering multiple loading conditions leads to a significant increase in
the size of the optimisation problem, as not only model parameters but also hydraulic
variables at all loading conditions must be inferred from the available measurements.
This fact complicates the use of real-time measurements provided by recently in-
stalled supervisory control and data acquisition (SCADA) systems for calibration
purposes.

In this context, the aim of this paper is twofold: (1) to present a novel method-
ology for the calibration of water networks via multi-period state estimation, and
(2) to assess the system observability for such calibration procedure. The calibration
problem set out in this work results in a large-scale non-linear mathematical pro-
gramming problem whose resolution poses new challenges from the computational
perspective. The novelty of this paper is that we take advantage of mathematical pro-
gramming decomposition techniques (Conejo et al, 2006) to tackle this difficulty.
Hence, we decompose the original problem into a set of state estimation subprob-
lems of substantially reduced complexity and a calibration problem, so called master
problem. With that aim we consider calibration parameters as complicating variables,
i.e. variables that if fixed to given values render a decomposable problem consisting
on different state estimation problems at different times, which allows the evaluation
of the objective function for given values of calibration parameters. In addition and
using sensitivity analysis, derivatives of those objective functions with respect to cal-
ibration parameters are computed. Thus, the calibration or master problem reduces
to an unconstrained non-linear mathematical programming problem, which depends
on roughness coefficients (taken as calibration parameters in this work) and can be
solved using Gauss-Newton type algorithms that only use first-order derivatives. This
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enables the use of the telemetry data at different times for calibration purposes. The
price to be paid for such advantage is the need of an iterative algorithm. On the other
hand, observability analysis enables beforehand identification of which roughness
coefficients could be adjusted based on the existing measurements over time.

The paper is organised as follows: firstly, the novel methodology for calibration
of water distribution systems via multi-period state estimation is presented, including
a detailed description of the decomposition technique adopted to simplify the joint
parameter and state estimation inverse problem. Then, a strategy for observability
analysis is provided for the aforementioned calibration procedure. This section in-
cludes an explanation of how the multi-period measurement and parameter Jacobian
matrix must be built for this approach, as well as a brief presentation of how to assess
observability from there. Subsequently, a case study is presented to show the poten-
tial and effectiveness of the methodology proposed in this paper when considering
a different number of roughness parameters, and finally, conclusions are concisely
drawn.

2 Calibration via multi-period state estimation

2.1 General approach

The calibration problem is conceived in this work starting from a joint multi-period
parameter and state estimation approach. To begin with, the set of state variables,
i.e. the minimum set of variables needed to compute the hydraulic state of the sys-
tem based on the hydraulic governing equations (Brdys and Ulanicki, 2002), for such
problem must be defined. Note that for a conventional state estimation process, head
levels can be taken as state variables on their own, as any combination of nodal heads
can determine the hydraulic state of the system (Dı́az et al, 2016). For the joint param-
eter and state estimation problem, model parameters must also be included as state
variables. More specifically, pipe roughness coefficients (Hazen-Williams constants)
are considered the only model parameters in this paper, as done before by Savic and
Walters (1995), Kapelan et al (2007) and Kumar et al (2010), among others. Accord-
ing to this selection, there are as many state variables as the number of nodes in the
network (n) multiplied by the number of times considered (nt), and plus the number
of roughness coefficients (p). Note that roughness coefficients can be assumed con-
stant in time for a reasonable time period, but measurements, and thus head levels,
are different for each loading condition or time step t.

The joint multi-period parameter and state estimation problem can then be posed
as the following non-linear WLS mathematical programming problem:

Min
xt;∀t,C

J =
∑
∀t

Jt (xt, zt,C) =
∑
∀t

1

2
[zt − ht(xt,C)]

T
R−1zt

[zt − ht(xt,C)]

(1)
subject to

lt(xt,C) = 0; ∀t = 1, 2, . . . , nt (2)

gt(xt,C) ≤ 0; ∀t = 1, 2, . . . , nt, (3)
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where x̂t;∀t = 1, 2, . . . , nt and Ĉ represent the optimal solution of the problem
and Ĵ the optimal objective function. Note that xt ∈ Rn and zt ∈ Rm represent
the head level and measurement vectors for each time t, respectively, and C ∈ Rp

is the roughness coefficient vector, which remains constant for the considered times
or loading conditions. Moreover, ht : Rn,Rp → Rm is the non-linear relationship
between measurements and estimates at each time, and R−1zt

is the measurement
variance-covariance matrix at time t, calculated as the inverse of the weight matrix.
On the other hand, Eqs. (2)-(3) represent the hydraulic constraints of the problem for
each time, which include mass balance and energy equations. Note that pseudo-static
state estimation is considered in this work all along, as the state estimation from each
loading condition or measurement set corresponds to an independent instantaneous
snapshot of the network (Dı́az et al, 2016), i.e. no relationship needs to exist between
different loading conditions or time steps.

It should be noted that, as mentioned in the Introduction, the number of vari-
ables (n× nt + p) of the multi-period state estimation problem (1)-(3) considerably
increases as the number of loading conditions enlarges. This constitutes a major lim-
itation for the use of the SCADA systems for calibration purposes, even if group-
ing strategies are used to reduce the number of roughness coefficients (Kumar et al,
2010). Such platforms provide readings from metering devices in subsequent times,
which could be understood as different loading conditions that provide first-hand real-
time information about the state of the system, i.e. they are a good reference for cal-
ibration. Nevertheless, optimisation problem (1)-(3) needs to be simplified somehow
in order to be suitable to estimate roughness coefficients considering multi-period
information.

2.2 Decomposition technique

As the purpose of this work is to provide a novel methodology for calibration of
water distribution systems based on available measurements over time rather than
solving directly the joint parameter and state estimation issue, problem (1)-(3) can
be decomposed into a set of state estimation subproblems of substantially reduced
complexity and a calibration problem, so called master problem. With that aim we
consider roughness coefficients as complicating variables, i.e. variables that if fixed to
given values render a decomposable problem consisting on different state estimation
problems at different times, which allows the evaluation of the objective function for
given values of calibration parameters. Note that if roughness coefficients are fixed to
given values instead of being considered unknowns, the multi-period state estimation
problem could be easily solved, providing the head levels at each time x̂t from each
of the independent available measurement sets zt.

Therefore, problem (1)-(3) can be decomposed by firstly considering a battery of
nt subproblems where C is a given particular value C(k):
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x̂
(k)
t
∀t=1,2,...,nt←


Ĵ
(k)
t = Min

xt

1
2

[
zt − ht(xt,C

(k))
]T

R−1zt

[
zt − ht(xt,C

(k))
]

subject to
lt(xt,C

(k)) = 0
gt(xt,C

(k)) ≤ 0

,

(4)
with (k) being an iteration counter. Note that for a given C(k) the state estimation
problem can be solved with a non-linear solver such as CONOPT (Drud, 1996) or
MINOS (Murtagh and Saunders, 1998), which have proven to be robust and compu-
tationally efficient (Caro et al, 2008). Once the solution for subproblems x̂(k)

t ;∀t =
1, 2, . . . , nt has been obtained, it is possible using sensitivity analysis to compute the
derivatives of the objective function in (4) with respect to the roughness values C(k),
so that the original problem (1)-(3) can be approximated using the following master
problem:

Min
C

∑
∀t

Ĵ
(k)
t +

∑
∀t

∂Ĵ
(k)
t

∂C(k)
(C −C(k)) (5)

Note that ∂Ĵ(k)

∂C(k) =
∑
∀t

∂Ĵ
(k)
t

∂C(k) , i.e. the sensitivity of the master problem can be ob-
tained from the sensitivities of each of the subproblems. Such derivatives can be eas-
ily computed with any existing sensitivity analysis technique (see Piller et al (2017)
for references).

It must be highlighted that decomposition techniques have traditionally been im-
plemented as recursive procedures, i.e. firstly solving each of the subproblems, then
computing the associated sensitivities and finally solving the master problem, to then
repeat the process with a different parameter value (Conejo et al, 2006). However,
in this work the computation of first-order derivatives is integrated within a quasi-
Newton method to speed the process, as in such type of methods the Hessian can be
approximated using gradient evaluations. More specifically, the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) quasi-Newton method (Broyden, 1970; Fletcher, 1970;
Goldfarb, 1970; Shanno, 1970) with a cubic line search procedure is here adopted, as
implemented in MatLab 7.12.0 (R2011a). Therefore, only an initial value C(0) and
a function that provides the value of J and ∂J

∂C are required to run the calibration
algorithm, which internally updates roughness coefficients as explained before.

It should be noted that the complexity of the calibration procedure increases as
the number of pipe roughness coefficients (p) enlarges. In this regard, it is com-
mon practice to reduce the number of parameters by grouping pipes according to
different criteria, such as age, material, diameter or relative location in the system
(Kumar et al, 2010), and even work has been done to discuss the balance between
the number of groups and model accuracy (Mallick et al, 2002). Grouping strate-
gies are out of the scope of this work, but any of the already available techniques
could be applied as a previous stage to calibration. Note that grouping pipes implies
that the BFGS algorithm has to work with the derivatives of each objective func-
tion with respect to the group roughness Cg instead of the individual roughness of
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each pipe C, i.e. ∂J(k)

∂C
(k)
g

=
∑
∀t

∂J
(k)
t

∂C
(k)
g

instead of ∂J(k)

∂C(k) =
∑
∀t

∂J
(k)
t

∂C(k) . At the same

time, derivatives with respect to the group roughness can be computed by adding
the derivatives of the pipes whose roughness values belong to the same group, i.e.
∂J

(k)
t

∂C
(k)
g

=
∑
∀C∈Cg

∂J
(k)
t

∂C(k) .

Finally, we want to highlight that this calibration approach takes full advantage of
the available metering devices in any water distribution system, as it can be fed with
the real-time information provided by telemetry systems at different times, e.g. at dif-
ferent times within a day or month, but at the same position. The use of multi-period
data increases the robustness of the solution, as it takes into account very different
flow scenarios that contribute to narrow down the unknown parameters. Therefore,
the wide range of the data contributes to compensate the traditional scarcity of me-
tering devices in water networks (Dı́az et al, 2016) with the use of information over
time. Moreover, the use of information over time enables the periodic reassessment
of roughness values based on recent online measurements. This facilitates keeping an
up-to-date model of the system, thus constituting a solid base on which other applica-
tions could be run. Note that the uncertainty of the estimated roughness coefficients
could be obtained using sampling experiments (i.e. Monte Carlo method).

3 Observability analysis

The observability problem has been identified as one of the main difficulties associ-
ated with the calibration process (Piller, 1995; Kumar et al, 2010), and is considered a
prior essential step when implementing calibration strategies at an operational level,
either considering static, quasi-static or dynamic models (Pérez, 2003). Moreover,
observability analysis for state estimation has been a topic of extensive research in
both the water and power supply fields (see Dı́az et al (2016) for references). For this
reason, it is a matter of interest to develop a consistent methodology that enables to
assess the system observability and identify the observable model parameters for a
given measurement setting when implementing the aforementioned calibration pro-
cedure.

In this section, observability analysis is adapted for the novel calibration method-
ology presented in this paper. Firstly, guidelines are given to build the associated
measurement and parameter Jacobian matrix. Then, an already available in the liter-
ature methodology is selected to analyse the observability of the problem.

3.1 Measurement and parameter Jacobian matrix

In a conventional single-period state estimation application, the measurement Jaco-
bian matrix H ∈ Rm×n contains the first-order partial derivatives of all the possible
measurements within the system (i.e. flow, water level, pressure or demand measure-
ments) with respect to all the state variables (i.e. head levels) at that time. This matrix
contains all the information about the system’s flow governing equations, thus a the-
oretical and sufficient condition for the state estimation problem to have a unique so-
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lution is that matrix H has full rank n, withm ≥ n (Dı́az et al, 2016a). In order to as-
sess the observability of the novel calibration procedure, a multi-period measurement
and parameter Jacobian matrix needs to be similarly built M ∈ R(m×nt)×(n×nt+p).
Note that even though the original joint parameter and state estimation problem is
decomposed for calibration purposes, both head levels and model parameters have
to be observable to enable the solution of the subproblems and the master problem
at different stages. Therefore, the observability of the combined parameter and state
estimation problem (1)-(3) has to be analysed.

Figure 1 shows the structure of the resulting multi-period measurement and pa-
rameter Jacobian matrix. As mentioned before, in this case there are n × nt + p
state variables, which are introduced in the matrix as columns, and m× nt measure-
ments, which appear in the matrix as rows. Accordingly, the measurement Jacobian
matrix for each time (Ht;∀t = 1, 2, . . . , nt) must be introduced in the multi-period
Jacobian matrix, whose size considerably increases with the number of time steps
taken into consideration for calibration purposes. A detailed description of how to
build the measurement Jacobian matrix for each time is provided in Dı́az et al (2016).
Additionally, the derivatives of each of the measurements with respect to roughness
coefficients must be considered for the analysis, i.e. the roughness Jacobian matrix
P ∈ Rm×p must be built. As roughness values are considered constant over time, the
sum of the derivatives at each time (Pt;∀t = 1, 2, . . . , nt) should be included in the
combined matrix.

Fig. 1 Structure of the multi-period measurement and parameter Jacobian matrix M

Note that the M matrix must be computed for a specific flow scenario, but an
iterative evaluation for each of the C(k) or C(k)

g values considered along the process
would be time-consuming. For this reason, it is recommended to build the joint Ja-
cobian matrix with an approximate estimate of the roughness values that are to be
calibrated. This provides a good insight of the system observability, but could lead
to inconsistent results if the estimate is far from the assumed value. Nevertheless, as
this calibration procedure is conceived to be periodically repeated in networks gifted
with telemetry systems, the initial value could be taken as the last estimated rough-
ness, thus ensuring a reasonable approximation to the next value.
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3.2 Algorithm for observability analysis

Once the multi-period measurement and parameter Jacobian matrix has been built,
any method for observability analysis can be implemented. As commented by Dı́az
et al (2017), such analysis can be undertaken evaluating the rank of the matrix consti-
tuted by only the available measurements over time, or considering the full Jacobian
matrix. Note that the second approach enables to assess the observability of all vari-
ables within the system rather than only the state variables. As the ultimate objective
of the methodology developed in this paper is to calibrate model parameters, and
roughness coefficients are included as state variables, the first type of methods can be
used. Note that such choice enables to work with a (m× nt)× (n× nt + p) matrix,
whose size can already be considerable for large systems when using a significant
number of time steps.

More specifically, the null-space method proposed by Castillo et al (2005) is used
in this work. According to this approach, the system is fully observable when the null-
space matrix of the Jacobian is an empty set, and unobservable when it is not. As the
general solution of any system of equations can be written in terms of a particular so-
lution and the scalar product of the null-space matrix (N ∈ R(n×nt+p)×k) and an ar-
bitrary k-dimensional vector, the method also permits to identify observable elements
even when the system is unobservable in the overall. Those state variables that present
zero-rows in the null-space matrix can be determined with only their particular so-
lution, thus they are observable. In order to avoid numerical problems, which may
happen since M is prone to ill-conditioning due to the difference in order of mag-
nitude between the components of Ht;∀t = 1, 2, . . . , nt and Pt;∀t = 1, 2, . . . , nt,
the null-space of the normalised matrix M should be computed. Note that the nor-
malised matrix can be obtained by simply dividing all the components of each row by
the maximum absolute value in that row. Moreover, Singular Value Decomposition
(SVD) is recommended to systematically compute the null-space and is used in this
work all along.

4 Case study

The Hanoi network as presented by Dı́az et al (2016a) is adopted as case study in
this paper. Figure 2 provides the network layout, where 1 source node provides water
to 31 junctions through 34 pipes. Such benchmark network is only modified here in
terms of pipe roughness coefficients. As grouping techniques are out of the scope of
this paper, pipes are grouped in three different ways in this work just for the sake of
showing how the performance of the algorithm is affected by the number of rough-
ness coefficients considered for calibration. Figure 3 provides the three associations
that are assumed along the case study, together with the real value of the roughness
coefficient for each group (Cg,real), which is required to artificially generate mea-
surements.

In what regards measurement configurations, several scenarios are used for cali-
bration in this case study. In all of them, the water level at the source tank and water
demands at all nodes are metered (base scenario), as if the Hanoi system was a water
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Fig. 2 Layout of Hanoi network case study

transport network in which all outflows are monitored. Note that such measurement
configuration would ensure the system observability if conventional state estimation
was undertaken, i.e. if only head levels had to be computed at each time step. Never-
theless, as roughness coefficients must be adjusted, additional meters are included in
this case study. Five measurement scenarios are here tested: (a) 1 level of redundancy,
(b) 2 levels of redundancy, (c) 3 levels of redundancy, (d) 5 levels of redundancy, and
(e) all hydraulic variables are metered. Note that the level of redundancy refers to
the number of extra measurements with respect to the aforementioned base scenario,
in which only the water level at the source tank and water demands at all nodes are
metered. Table 1 gives the measurement setting associated with each of such scenar-
ios. For example, scenario a) includes one extra pressure measurement at node 30 (1
level of redundancy), and scenario b) includes two extra pressure meters at nodes 30
and 9 (2 levels of redundancy). In terms of the noise to which those measurements
are subjected, two versions are here simulated: exact measurements or measurements
not subjected to noise (“E”), and noisy measurements (“N”), where pressure meters
are subjected to a deviation σx = 0.01 bar and flow meters and demand meters are
affected by σQ = σq = 0.25 m3/h. Moreover, as the proposed calibration procedure
is conceived to use available online measurements over time, 24 measurement con-
figurations are considered in this paper for all the aforementioned scenarios, one at
each hour during a full day. The base demand for the Hanoi network case study is
modified at each hour by demand factors given in Figure 4. As this figure shows, the
minimum demand is registered at 4-5h and represents 35% of the base demand of the
network, and the peak consumption takes place at 13h, multiplying the base demand
by 2. Therefore, in exact measurement scenarios, metered values exactly correspond
to the solution of the flow network according to such consumptions, whereas in noisy
configurations, metered values are perturbed around each flow network solution.

Calibration results considering two, three and five groups of pipes are shown here-
after. In each of such pipe configurations, both observability analysis and calibration
results for all five measurement scenarios without and with noise measurements are
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Fig. 3 Group roughness values considered for Hanoi network case study

Table 1 Measurement scenarios for Hanoi network case study

Measurement scenario Level of redundancy Pressure meters Flow meters Demand meters

a 1 Node 1, 30 - All nodes
b 2 Nodes 1, 30, 9 - All nodes
c 3 Nodes 1, 30, 9, 4 - All nodes
d 5 Nodes 1, 30, 9, 4, 24 Pipe 2-3 All nodes
e All All nodes All pipes All nodes
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Fig. 4 Demand factors over time for Hanoi network case study

provided and discussed. All computations have been carried out in a MatLab 7.12.0
(R2011a) 64-bits version and a 23.3 GAMS 64-bits version, both run in an Intel(R)
Core(TM) i7-6700 CPU 3.40 GHz 16 GB RAM desktop computer.

4.1 Two groups of pipes

To start with, Table 2 provides both observability analysis and calibration results for
all exact measurement scenarios when two groups of pipes exist in the network, i.e.
when only two roughness coefficients are to be calibrated. Beginning with observ-
ability analysis (OA), which in this work is analysed considering Cg,real values,
the second column of this table shows that with one level of redundancy (scenario
2aE) the system is not observable. In fact, none of the roughness coefficients is ob-
servable for such measurement scenario, but the full system observability is ensured
for the rest of measurement settings. In the next column, the value of the objective
function of the calibration problem is provided for Cg,real values (Jreal). As Table
2 corresponds to error free-measurements, such value is approximately zero for all
cases (negative values are explained by the specified zero-tolerance). Then, calibra-
tion results are provided for two initial values C

(0)
g . Two starting points have been

considered all along this case study with the aim of showing how the BFGS algo-
rithm performance is affected by the initial value. For each of such solutions, optimal
roughness coefficients (Ĉg), the value of the objective function at the optimum (Ĵ),
the number of objective function evaluations needed to reach the optimum (ne), and
the time required for the BFGS algorithm to converge in a desktop computer (tc) are
provided. As this table shows, the method converges to the correct roughness values
in scenarios 2bE, 2cE, 2dE and 2eE no matter the starting point. Nevertheless, the
calibration process converges to different values in scenario 2aE, which implies that
no unique solution exists to the calibration process, as it depends on the initial value.
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Such result proves the importance of observability analysis, as this prior step permits
to know beforehand that roughness coefficients cannot be uniquely adjusted for this
measurement setting, without the need of running the calibration algorithm itself. On
the other hand, the objective function Ĵ is approximately zero for all error-free sce-
narios regardless of the starting point, and the number of function evaluations, which
is directly related to the convergence time, does not seem to significantly increase
when starting further from the optimum. Note that the computational time required
to adjust roughness parameters in all scenarios remains lower than 8 minutes.

Table 2 Observability analysis and calibration results: exact measurements for two groups of pipes

From C
(0)
g = [90; 117] From C

(0)
g = [90; 90]

Case* OA Jreal Ĉg Ĵ ne tc (s) Ĉg Ĵ ne tc (s)

2aE Unobs 5.6811e-8 102.9127 4.2142e-8 8 165.3343 112.2342 -2.1420e-8 9 200.2739
122.4294 105.1343

2bE Obs 6.7521e-8 100.0000 2.3516e-8 15 297.1207 100.0000 6.2864e-8 14 301.6791
130.0000 130.0001

2cE Obs 8.8476e-9 100.0000 7.9162e-9 15 301.3898 100.0000 4.9360e-8 14 285.0134
130.0000 130.0000

2dE Obs 3.9041e-6 100.0000 4.1798e-6 14 323.2315 100.0000 3.7029e-6 14 338.6271
130.0000 130.0000

2eE Obs 1.8328e-6 100.0000 -6.2585e-7 12 235.1822 100.0000 2.8759e-6 19 421.1136
130.0000 129.9999

*2 refers to the number of roughness coefficients or pipe groups considered for calibration (as described
in Figure 3); letters a-e refer to the measurement configuration (as described in Table 1); and “E” implies
that measurements are exact (i.e. not subjected to noise)

Table 3 provides the same results for noisy measurement scenarios. As this table
shows, the system remains unobservable for setting 2aN (i.e. Ĉg values are different
for the two initialisations) and observability is still ensured for the rest of the cases.
In what regards Jreal, the objective function for Cg,real is now different from zero
in all cases, and increases with the level of redundancy. This is explained by the fact
that measurements are subjected to noise, thus the Cg values that better adjust to the
measurement setting are no longer Cg,real = [100; 130], but slightly different. Note
that such deviation is due to the fact that only 24 noisy measurements are considered
for calibration, but a better adjustment would be obtained if more online measure-
ments were incorporated. As Ĉg better fits the noisy measurements, Ĵ is smaller than
Jreal for all case scenarios. The speed of convergence seems to be very similar for
both C

(0)
g values.

Finally, Figure 5 provides contour maps of how the objective function changes
with Cg for the observable cases (2bE, 2cE, 2dE, 2eE, 2bN, 2cN, 2dN and 2eN).
Starting with case 2bE (i.e. two levels of redundancy and measurements not subjected
to noise), the figure shows that the objective function of the multi-period calibration
problem is convex, with the minimum located at Ĉg = Cg,real = [100; 130]. This
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Table 3 Observability analysis and calibration results: noisy measurements for two groups of pipes

From C
(0)
g = [90; 117] From C

(0)
g = [90; 90]

Case* OA Jreal Ĉg Ĵ ne tc (s) Ĉg Ĵ ne tc (s)

2aN Unobs 13.3775 102.9414 11.9807 8 176.1451 112.2905 12.0318 9 217.6179
122.4474 105.1190

2bN Obs 23.6220 100.0042 23.5668 15 328.3052 100.0042 23.5668 14 314.8889
129.9792 129.9792

2cN Obs 29.1701 99.9752 27.6410 14 466.9487 99.9752 27.6410 13 289.0662
130.0600 130.0601

2dN Obs 61.0293 99.9888 60.7363 14 449.5603 99.9888 60.7363 13 310.0673
130.0186 130.0186

2eN Obs 774.5133 100.0108 773.2475 13 346.4825 100.0108 773.2475 17 407.0368
130.0144 130.0144

*2 refers to the number of roughness coefficients or pipe groups considered for calibration (as described
in Figure 3); letters a-e refer to the measurement configuration (as described in Table 1); and “N” implies
that measurements are noisy

figure also shows that the change in the objective function is more evident in the
horizontal direction, i.e. the objective function is more sensitive to Cg1 than to Cg2.
Therefore, we can conclude that parameter Cg1 is more identifiable, which is consis-
tent with the reality of the network because the pipes that correspond to such group
(see Figure 3) are located at the right-hand side of the system and are associated with
greater flows, thus they can be more easily adjusted based on sensitivity analysis.
Also, Figure 5 shows that the objective function becomes more convex as the number
of metering devices increases, because contour lines associated with cases 2cE and
2dE are closer to the optimum value than in case 2bE. Nevertheless, there is a change
in pattern for case 2eE: as in this scenario all hydraulic variables are metered, contour
lines have a slope close to 45, which implies that the sensitivity to Cg1 and Cg2 is
very similar. Note that in this case the objective function reaches much higher values,
which indicates that the function has considerably convexified around the optimum.
On the other hand, contour maps of cases 2bN, 2cN, 2dN and 2eN (right side of the
figure) are very similar to their equivalents without noise (in the left), with the only
difference being that the objective function presents now higher values as a result of
the noise consideration (i.e. the objective function is vertically displaced), and that
the optimum value has slightly moved from Cg,real.

4.2 Three groups of pipes

Tables 4 and 5 provide observability analysis and calibration results for exact and
noisy measurement scenarios when considering that three groups of pipes exist in
Hanoi network, i.e. three roughness coefficients are to be calibrated. In this case,
the system results unobservable (with all three Cg values being unobservable) for
measurement settings 3aE, 3aN, 3bE and 3bN, i.e. when only one or two levels of
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redundancy exist. For such cases, the BFGS algorithm converges to different values
when starting from different starting points, but for the rest of observable scenarios,
the same solution is reached no matter the initialisation. As before, optimal values
are close to Cg,real for the without-noise scenarios, but differ slightly when noise
is taken into account. The convergence time and number of function evaluations has
increased with respect to the previous section as a result of the increase in the number
of parameters, but it is still reasonable and similar regardless of the initialisation.

Table 4 Observability analysis and calibration results: exact measurements for three groups of pipes

From C
(0)
g = [90; 117; 103.5] From C

(0)
g = [90; 90; 90]

Case* OA Jreal Ĉg Ĵ ne tc (s) Ĉg Ĵ ne tc (s)

3aE Unobs 2.4913e-8 103.9502 3.5856e-8 8 163.1314 113.7080 -2.1653e-8 9 193.2424
120.7061 100.4243
106.6725 98.1217

3bE Unobs 3.6554e-8 100.2048 -8.1491e-9 15 322.5363 99.9644 1.4436e-8 15 322.3756
131.6885 129.7138
112.0086 115.5316

3cE Obs 4.6333e-8 100.0000 1.9325e-8 26 542.2622 100.0009 1.3642e-5 21 443.5707
130.0000 130.0114
115.0000 114.9838

3dE Obs 7.8976e-6 100.0000 7.5921e-6 25 627.2670 100.0000 7.7486e-6 25 616.1586
129.9998 130.0000
115.0003 115.0000

3eE Obs 5.6967e-5 99.9999 5.7295e-5 27 549.8109 100.0000 5.8636e-5 24 1.1874e+3
129.9999 130.0000
114.9999 115.0000

*3 refers to the number of roughness coefficients or pipe groups considered for calibration (as described
in Figure 3); letters a-e refer to the measurement configuration (as described in Table 1); and “E” implies
that measurements are exact (i.e. not subjected to noise)

4.3 Five groups of pipes

Tables 6 and 7 provide the same results when five groups of pipes are distinguished,
i.e. when five roughness parameters are to be calibrated. In this case, the system is
only observable for scenarios 5eE and 5eN among the examples tested. This fact must
be highlighted because in the previous sections, two and three levels of redundancy
were enough to guarantee the system observability when two and three roughness
groups existed, but in this case five levels of redundancy (scenarios 5dE and 5dN)
are not sufficient to adjust five roughness values. However, some of the roughness
parameters are observable regardless of the system’s lack of observability. The appli-
cation of the null-space method indicates that even though the system in the overall
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Table 5 Observability analysis and calibration results: noisy measurements for three groups of pipes

From C
(0)
g = [90; 117; 103.5] From C

(0)
g = [90; 90; 90]

Case* OA Jreal Ĉg Ĵ ne tc (s) Ĉg Ĵ ne tc (s)

3aN Unobs 13.3986 103.9812 11.9979 8 186.9955 113.7666 12.0535 9 212.2409
120.7186 100.3643
106.6834 98.1712

3bN Unobs 23.6075 100.2084 23.5453 15 333.1195 99.9629 23.5497 15 346.6269
131.6632 129.6489
112.0010 115.5996

3cN Obs 29.1712 99.9646 27.4212 26 611.6861 99.9646 27.4212 22 533.4064
129.9061 129.9061
115.2627 115.2625

3dN Obs 61.0049 99.9853 60.6888 25 611.7809 99.9854 60.6888 25 617.8526
129.9586 129.9587
115.0894 115.0891

3eN Obs 773.6400 100.0102 771.8931 17 359.3844 100.0102 771.8931 22 1.1242e+3
130.0112 130.0112
115.0125 115.0125

*3 refers to the number of roughness coefficients or pipe groups considered for calibration (as described
in Figure 3); letters a-e refer to the measurement configuration (as described in Table 1); and “N” implies
that measurements are noisy

is not observable, Cg1, Cg2 and Cg3 are observable in cases 5cE, 5dE, 5cN and 5dN
(i.e. when three and five levels of redundancy exist), which matches results shown
in Tables 6 and 7. Such a solution is consistent with the reality of the network, be-
cause groups Cg4 and Cg5 are formed by the two branches that come out of the main
looped structure (see Figure 3). As these branches are subjected to low flow, they are
expected to have low identifiability and be difficult to adjust when low redundancy
exists. Note that results from Tables 4 and 6 are very similar to each other, and so
are those in Tables 5 and 7, except for the new groups incorporated. Additionally, the
number of function evaluations (i.e. convergence time) is in this case very similar to
that obtained when only considering three groups. This may lead to think that as long
as some of the roughness values are observable, the algorithm could be applied to
the system in order to obtain as much information as possible without burdening the
convergence speed.Note that the associated computational time remains in all cases
below 30 minutes, which is reasonable for such an application in a medium size water
system.

5 Conclusions

In this work, the calibration problem is conceived as a joint parameter and state esti-
mation problem, which is then decomposed to leave model parameters (i.e. roughness
coefficients) as the only variables. As many other approaches in the technical liter-
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Table 6 Observability analysis and calibration results: exact measurements for five groups of pipes

From C
(0)
g = [90; 117; 103.5; 99; 108] From C

(0)
g = [90; 90; 90; 90; 90]

Case* OA Jreal Ĉg Ĵ ne tc (s) Ĉg Ĵ ne tc (s)

5aE Unobs 3.7253e-9 103.9502 4.0280e-8 8 164.7195 113.7080 2.3982e-8 9 196.9345
120.7061 100.4243
106.6725 98.1217
99.0000 90.0000

108.0000 90.0000
5bE Unobs -1.0000e-15 100.2048 -1.7229e-8 15 316.8454 99.9644 -5.8208e-9 15 313.5507

131.6885 129.7138
112.0086 115.5316
99.0000 90.0000

108.0000 90.0000
5cE Unobs 2.4447e-8 100.0000 -1.3504e-8 26 540.8685 100.0009 1.3630e-5 21 452.7968

130.0000 130.0114
115.0000 114.9838
99.0000 90.0000

108.0000 90.0000
5dE Unobs 7.6964e-6 100.0000 9.0525e-6 25 651.4509 100.0001 1.1072e-5 26 621.7441

129.9998 130.0002
115.0003 114.9997
99.0000 90.0000

108.0000 90.0000
5eE Obs 6.4641e-5 100.0000 6.2987e-5 45 947.2427 99.9994 0.0025 47 1.3760e+3

130.0000 129.9992
115.0000 114.9993
110.0000 110.0573
120.0000 120.0019

*5 refers to the number of roughness coefficients or pipe groups considered for calibration (as described
in Figure 3); letters a-e refer to the measurement configuration (as described in Table 1); and “E” implies
that measurements are exact (i.e. not subjected to noise)

ature, the proposed method is conceived as a multi-period analysis, which enables
consideration of different flow conditions to better adjust unknown model parameters.
Nevertheless, the methodology presented in this paper is different from conventional
calibration strategies, as it considers that all measurements can be subjected to noise
thanks to its state estimation structure. This enables the use of first-hand real-time
information provided by SCADA systems for calibration purposes.

Also, a methodology to assess the observability of such a problem is presented.
The method permits to identify the roughness coefficients that can be calibrated based
on the available measurement setting, thus enabling to save time when measurements
are not sufficient. This is of special interest nowadays, because even though the instal-
lation of new devices is on its way, many water distribution systems are still limited in
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Table 7 Observability analysis and calibration results: noisy measurements for five groups of pipes

From C
(0)
g = [90; 117; 103.5; 99; 108] From C

(0)
g = [90; 90; 90; 90; 90]

Case* OA Jreal Ĉg Ĵ ne tc (s) Ĉg Ĵ ne tc (s)

5aN Unobs 13.3986 103.9812 11.9979 8 179.4745 113.7666 12.0535 9 211.7089
120.7186 100.3643
106.6834 98.1712
99.0000 90.0000
108.0000 90.0000

5bN Unobs 23.6075 100.2084 23.5453 15 335.2300 99.9629 23.5497 15 344.1667
131.6632 129.6489
112.0010 115.5996
99.0000 90.0000
108.0000 90.0000

5cN Unobs 29.1712 99.9646 27.4212 26 609.4641 99.9646 27.4212 22 527.3345
129.9061 129.9061
115.2627 115.2625
99.0000 90.0000
108.0000 90.0000

5dN Unobs 61.0049 99.9853 60.6888 25 603.4838 99.9854 60.6888 25 611.7869
129.9586 129.9587
115.0894 115.0891
99.0000 90.0000
108.0000 90.0000

5eN Obs 773.6378 100.0105 771.6431 40 860.4153 100.0103 771.6437 43 1.7798e+3
130.0115 130.0112
115.0129 115.0126
110.0119 110.0133
119.9828 119.9831

*5 refers to the number of roughness coefficients or pipe groups considered for calibration (as described
in Figure 3); letters a-e refer to the measurement configuration (as described in Table 1); and “N” implies
that measurements are noisy

terms of instrumentation, and some measurements can occasionally fail (e.g. sensor
failure, communication failure). Note that observability analysis enables identifica-
tion of networks that cannot be calibrated with available measurements, but it also
sets up a basis on which sampling design strategies could be developed. This is a
subject for further research.

Results highlight the robustness of the observability-calibration tool presented
in this paper, which has proven to work effectively for both exact and noisy mea-
surements in the considered case study. Moreover, convergence time is not severely
affected by the distance between the initialisation and the optimum, mainly thanks to
the use of sensitivity analysis to iteratively update model parameters. This fact is of
special interest in real-life networks, where a good initialisation may not be possible
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due to the lack of periodic calibration. Note that if unrealistic roughness values are
obtained for observable parameters, this would constitute an indicator of abnormal
conditions in such pipes, i.e. a change in the pump and valve setting, a burst, etc.
Therefore, the proposed novel methodology not only contributes to keeping an up-to-
date model of the system, but also furthers the knowledge on the network’s real-time
behavior, thus contributing to taking full advantage of available telemetry systems.
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Fig. 5 Contour maps of the objective function for observable cases*: two groups of pipes
*2 refers to the number of roughness coefficients or pipe groups considered for calibration (as described
in Figure 3); letters b-e refer to the measurement configuration (as described in Table 1); “E” implies that
measurements are exact (i.e. not subjected to noise) and “N” implies that measurements are noisy
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