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Abstract Leak detectability or leakage awareness refers to the capability of sensing9

losses from a water supply system. Several methods exist in the technical literature10

to tackle this problem, but only few address it with a state estimation approach. The11

aim of this paper is to present a new methodology that enables probabilistic assess-12

ment of the extent to which water loss could be detected using state estimation by13

only analysing a single hydraulic state, i.e. one time period. Significant leaks are14

sensed by identifying unusually high normalised state estimation residuals, which15

can be identified based on the largest normalised residual test. More specifically, the16

probability of detecting leaks is computed here by working with the multivariate dis-17

tribution among measurements and estimates to take into account the noisy nature18

of measurements with an analytical approach rather than with sampling experiments,19

which are time-consuming. The methodology set out herein also provides a procedure20

to systematically assess the minimum leak that could be detected in different parts of21

the network for a specific measurement setting and operating condition. The method22

has been applied to a water transport network case study to show its potential and23

to highlight the usefulness of such a tool for practitioners. The limitations of such a24
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methodology are also discussed, including its possible use for on-line leak detection25

strategies.26

Keywords Leakage awareness · State estimation · Bad data analysis27

1 Introduction28

Leakage in water systems has been extensively discussed by both practitioners and29

researchers in recent years so as to better characterise and reduce water loss [5].30

According to [30], leak management models can be broadly classified as: (1) leak-31

age assessment or water audit methods, which aim to quantify the amount of water32

lost, (2) leakage detection methods, which intend to detect if and/or where leaks are33

taking place, and (3) leakage control models, which focus on effectively control-34

ling and forecasting leakage. Leakage detection methods are outstanding amongst35

these, as they constitute one of the most sophisticated and active topics of ongoing36

research and it is common practice to use them in conjunction with other methods37

[30]. Within the leakage detection field, two types of analysis can be distinguished:38

(1) leakage awareness, which refers to the capability of sensing loss of water in a sup-39

ply system, without giving any information about its precise location, and (2) leakage40

localisation, which focuses on identifying and prioritising leaking areas to accurately41

locate the source of leakage. Note that leakage awareness aims to identify if water42

is being lost in the system, i.e. it is a prior analysis that should be undertaken before43

running leak localisation algorithms to accurately pinpoint the leak. In this study, the44

problem of leakage awareness or leak detectability is tackled through state estimation45

techniques as an alternative to other existing methods, many of which are based on46

artificial intelligence [27,31].47

State estimation techniques have been used in the power supply field for decades48

[36] and were introduced on an academic level in the water industry shortly after-49

wards [9]. The state estimation problem is normally set out as a weighted least squares50

(WLS) problem where the difference between measurements and estimated variables51

is minimised. Therefore, such techniques provide the most likely hydraulic state of a52

water system based on readings from available metering devices and flow governing53

equations [13]. Note that the state estimation problem enables the hydraulic state (i.e.54

flows, demands and pressures) of the system to be determined based on the available55

measurements, and this problem has traditionally been considered independent from56

the so called parameter estimation or calibration problem [34,14], where model pa-57

rameters are inferred from existing measurements. There is significant literature on58

off-line state estimation approaches [1], and these techniques are also regarded as59

effective tools that should be relied upon to take full advantage of the huge amount60

of real-time data provided by telemetry systems [2]. Hence, they have the potential61

to identify if water is being lost in the system. This possibility has been explored62

before by [8] and [37], but the truth is that online state estimation has hardly been63

implemented in water networks to date [15]. However, due to the recent surge in the64

installation of telemetry systems worldwide, it is worth exploring the prospects state65

estimation has for leak detection.66
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There are many issues and sources of uncertainty that must be taken into account67

in order to build a consistent on-line leakage awareness algorithm based on state68

estimation results. For this reason, we believe that before proposing a method for69

real-time detection, it is necessary to assess the viability of detecting leaks according70

to the existing metering devices in the network. This is of utmost importance in water71

systems, which traditionally have been poorly metered [22] and subjected to a great72

deal of uncertainty [3], which has thus limited the usefulness of real-time monitor-73

ing. In this paper, we develop a method that enables the probability of detecting a74

leak in real time via state estimation to be evaluated by only analysing a snapshot75

of the state of the system. Note that this is in keeping with the same line of work76

of other state estimation related techniques, as assessing the viability of undertaking77

state estimation on-line has become as important as developing algorithms for state78

estimation itself. For example, prior analyses have been developed to assess if suf-79

ficient measurements exist to undertake state estimation (observability analysis, e.g.80

[28], [11]), if there are sufficient measurements to infer pump and valve settings from81

real-time data (topological observability analysis, e.g. [15]), if the uncertainty of the82

measurement devices enables good estimates to be obtained (uncertainty evaluation,83

e.g. [3], [12]), or whether additional metering devices must be included at strategic84

locations (optimal meter placement, e.g. [39], [22]), among others. A probabilistic85

leak detectability assessment is set out here to evaluate beforehand to what extent the86

presence of leakage could be sensed based on state estimation results in water supply87

systems subjected to measurement noise.88

As will be presented in detail further on, in this paper detecting leaks is based89

on the fact that when a noticeable amount of water is lost throughout the network,90

the metered values and the variables obtained from the state estimation process dif-91

fer considerably. In such cases, state estimation normalised residuals are high, and92

statistical tests can be undertaken to systematically identify the presence of unex-93

pected leakage. Such a procedure is analogous to what is currently known as “bad94

data analysis” or “bad data processing” in the power supply field, where the method95

is standard practice for online state estimation evaluation. In the power industry, bad96

data analysis, and more specifically bad data identification, is normally carried out us-97

ing the traditional largest normalised residual test [35], which gives a positive result if98

a specific normalised residual (computed from the measured value and the estimated99

variable) is above a chosen threshold [7]. This analysis has also been adapted to eval-100

uate state estimation errors in water systems [2], but in this paper the method is used101

to systematically assess the existence of leakage for the first time. Note that in order102

to compute the probability of leak detection, sampling experiments (i.e. Monte Carlo103

simulations) on the normalised residual test are required to assess the effect of mea-104

surement noise. However, this type of experiments is known to be time-consuming105

[23] and can become tiresome when used to assess the behaviour of the overall sys-106

tem.107

The aim of this paper is to present a new probabilistic methodology to previously108

assess leak detectability via state estimation in water transport networks. Water trans-109

port networks are pipeline systems that provide water to larger communities, e.g. Dis-110

trict Metered Areas (DMA), where incoming flows are normally monitored. There-111

fore, they represent the “main arteries” that enable large urban areas to be supplied112
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with water, and they are better metered than conventional water distribution systems.113

This explains why other state estimation related applications have focused on water114

transport networks [11,37], which is the same area explored in this study. The method115

represents a step forward in terms of bad data analysis, as it propagates measurement116

noise to normalised residuals without the need for sampling experiments. Here, ob-117

taining the probability of leak detection is based on the measurement-estimate joint118

bivariate covariance matrix. This probability can then be used to identify the mini-119

mum leak that could be detected at different positions within the system for a specific120

measurement setting and operating scenario, providing a useful tool to better under-121

stand the behaviour of the network in terms of leakage.122

The organisation of this paper is as follows: firstly, the state estimation problem123

and the two commonly adopted procedures for bad data analysis are presented to then124

explain the principle assumed here for leakage awareness. Secondly, the probabilistic125

methodology for leak detectability assessment is set out, and then this analysis is built126

into a strategy for minimum leak assessment in order to estimate the minimum leak127

that could be detected according to the available metering devices. Afterwards, the128

method is applied to a case study, and the applicability of the algorithm is discussed,129

highlighting its potential and limitations. Finally, concise conclusions are drawn.130

2 State estimation, bad data analysis and leakage awareness131

2.1 The state estimation problem132

State estimation can be formulated as a constrained WLS mathematical programming133

problem as follows:134

Min
x

J(x, z) =
1

2
[z − h(x)]

T
C−1

Z [z − h(x)] (1)

subject to135

A x = KQ|Q|b−1, (2)
136

B Q = −q, (3)
137

qi = 0;∀i ∈ VT, (4)
138

−Qmax ≤ Q ≤ Qmax, (5)
139

xmin ≤ x ≤ xmax, (6)

where x̂ corresponds to the optimal solution. Note that the objective function J in140

Eq. (1) involves the z ∈ Rm vector of available measurements, the x ∈ Rn state141

variable vector (constituted by head levels in this paper), the h : Rn → Rm non-142

linear relationship between x and z, and the CZ matrix, which is the m × m mea-143

surement variance-covariance matrix, i.e. the inverse of the traditional weight matrix144

W = C−1
Z . At the same time, the h relationship is defined by hydraulic constraints145

(2)-(6). Eq. (2) represents the headloss equation, where A is the connectivity matrix146

(+1 at initial node and -1 at final node), K is the flow resistance pipe coefficient, Q147
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represents pipe flow, and b is the equation exponent, which is b = 1.852 for Hazen-148

Williams headloss equation. On the other hand, Eq. (3) is the continuity equation that149

enables water demand q to be computed, where B is a topological incidence sub-150

matrix that contains +1 values when water enters the node and -1 when it flows out.151

Note that an additional constraint (4) exists to simulate the existence of nodes known152

to have null demand (i.e. transit nodes). Such nodes constitute a subset ∀i ∈ VT
153

of the set of nodes in the system ∀i ∈ V . Additionally, Eqs. (5)-(6) impose physi-154

cal limits on water flows and head levels, respectively. Note that the state estimation155

problem (1)-(6) traditionally assumes that model parameters (e.g. roughness param-156

eters, pumps and valve settings) are known beforehand [11], i.e. the system has been157

previously calibrated and the network topology is known, thus only measurement158

errors are taken into account.159

2.2 Bad data analysis160

Bad data analysis is essential for assessing the result of any state estimator [7]. Bad161

data analysis has traditionally been used to detect any erroneous measurements in the162

system, i.e. to identify if there are significant deviations between the metered and the163

estimated values. Bad measurement treatment typically consists of two phases: (1)164

bad data detection, and (2) bad data identification.165

2.2.1 Bad data detection166

Bad data detection is typically formulated as a hypothesis testing problem. The null167

hypothesis H0 corresponds to a scenario in which no bad data are present, whereas168

the alternative hypothesis H1 considers that bad data exist. According to [2] and [7],169

the Chi-square test is normally applied for bad data detection:170

Ĵ

{
≤ χ2

m+p−n,α, accept H0

> χ2
m+p−n,α, reject H0

, (7)

where Ĵ refers to the value of the objective function at the estimated state, and171

χ2
m+p−n,α is the Chi-square distribution function corresponding to m + p − n de-172

grees of freedom and a 1 − α confidence level (typical values for α are 0.1, 0.05, or173

0.01). Note that p refers to the number of equality and binding inequality constraints174

provided by Eqs. (2)-(6).175

2.2.2 Bad data identification176

Bad data identification is typically undertaken when bad measurements have been177

detected. It traditionally consists of applying the largest normalised residual test [35].178

According to [7], this procedure requires the computation of the normalised residual179

vector rN as follows:180

rNi =
|zi − ẑi|√

Ωii

, (8)
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where ẑ = h(x̂) refers to the estimated variables depending on the optimal state181

variables x̂, and Ω is the residual covariance matrix. The residual covariance matrix182

can be computed as shown by [6] in power systems, or by [12] in water systems:183

Ω = (I −HSxz)CZ(I −HSxz)
T , (9)

where I is the m×m identity matrix, H represents the m×n measurement Jacobian184

matrix [11], and Sxz is the n×m sensitivity matrix of the state variables (i.e. nodal185

heads) with respect to the available measurements [12]. Once Ω has been computed,186

normalised residuals for each i measurement can be calculated according to Eq. (8)187

and compared with a chosen identification threshold, e.g. Φ−1(1−α/2), which refers188

to the inverse of the normal distribution function for a given confidence level 1− α.189

2.3 Leakage awareness190

In this paper, we assume that leakage can be detected thanks to the same principle191

that has been traditionally used for bad data analysis in both the power supply field192

[7], and the water industry [2]. Note that the presence of a leak acts as an addi-193

tional demand node in the system, leading to inconsistencies among measurements194

and estimated variables: readings from metering devices are altered by the loss of195

water, whereas the estimated variables are the result of minimising the difference be-196

tween measurements and estimates while also taking into account the flow governing197

equations specified in (2)-(6). Therefore, when there is a loss of water, the result-198

ing objective function is abnormally large, and so are the normalised state estimation199

residuals. In other words, a leak can be sensed by either: (1) subjecting the estimated200

objective function Ĵ to a chi-squared statistic test (Eq. (7)), which is analogous to bad201

data detection, or (2) assessing the deviation of normalised residuals obtained with202

Eq. (8), which is analogous to bad data identification.203

As mentioned before, the detection phase is normally carried out prior to the iden-204

tification process. The purpose of this strategy is to skip the second step according to205

the results of the first one, thus minimising the computational expense. However, as206

both analyses are independent, they may not always be consistent with each other: for207

example, the test described in Eq. (7) can indicate that leakage does not exist while208

the second analysis shows there is a loss of water due to the existence of abnormally209

large residuals. This is because the detection phase is normally a poorer indicator210

due to the reliance on an aggregate value of the WLS, i.e. the objective function. For211

this reason, in this paper residual analysis is used straight away to detect leakage, i.e.212

each measurement normalised residual is subjected to a test rather than the objective213

function on its own. This is sustained by the fact that leaks affect the estimation of214

not only the flow measurements nearby, but also the remaining hydraulic variables215

(i.e. head levels) in the system. Note that we assume that the hydraulic problem set216

out in Eqs. (2)-(6) has been previously calibrated, i.e. it includes background leak-217

age. Hence, only pipe bursts or other events that induce abnormal pressure or flow218

variations with respect to the calibrated model can be detected with the methodol-219

ogy presented hereafter. This brings outs the importance of periodic calibration of220

hydraulic models [14].221
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3 Probabilistic leak detectability assessment via state estimation222

In this section, a new probabilistic methodology for prior leak detectability assess-223

ment is provided. This approach works with mean metered values and the measurement-224

estimate joint covariance matrix to cover all likely perturbations of state estimation225

normalised residuals. On this basis the probability of leak detection according to the226

limit state equations can be calculated. Hence, there are three main blocks in this sec-227

tion: firstly, the construction process of the measurement-estimate joint covariance228

matrix is presented. Secondly, the limit state equations inferred from the largest nor-229

malised residual test to detect leakage are put together. Finally, the probability of leak230

detection is computed based on the previous information.231

3.1 Computation of the joint bivariate covariance matrix232

The traditional largest normalised residual test can be used to identify leaks by re-233

lying on computation of normalised residuals according to Eq. (8), which considers234

isolated values of measurements zi and their corresponding estimated variables ẑi.235

However, readings from metering devices are subject to noise. Note that so far, we236

have been talking about realizations of such variables, i.e. particular sets of readings237

from a measurement device i. Nevertheless, the objective of this paper is to compute238

the probability of leak detection by analysing a single hydraulic state, i.e. one time239

period, rather than undertaking sampling experiments of a large number of realiza-240

tions. Therefore, from now on it is necessary to work with random variables Zi and241

Ẑi rather than with individual variable realizations zi and ẑi. Thus, a 2× 2 variance-242

covariance matrix C
(i)

Z,Ẑ
can be built for each measurement i as follows:243

C
(i)

Z,Ẑ
=

[
C

(i)
Z C

(i)

Z,Ẑ

C
(i)

Ẑ,Z
C

(i)

Ẑ

]
; ∀i = 1, . . . ,m. (10)

In this expression, C(i)
Z refers to the variance of measurement i, i.e. diagonal compo-244

nent of matrix CZ . Component C(i)

Ẑ
represents the variance of the estimated variable,245

which can be obtained by propagating measurement uncertainty with the First-Order246

Second-Moment method as shown by [12]. The crossed component or covariance247

C
(i)

Ẑ,Z
can similarly be obtained from the corresponding matrix among:248

CẐx,Zx
= SxzCZ , (11)

249
CẐQ,ZQ

= HQCẐx,Zx
, (12)

250
CẐq,Zq

= HqCẐx,Zx
, (13)

where HQ and Hq correspond to the rows related to flows and demand values in the251

measurement Jacobian matrix H , respectively.252

Once all required matrices have been computed, it is straightforward to extract253

the components that correspond to measurement and estimated variable i. Hence, its254

variance-covariance matrix (10) can be built immediately. It must be noted that each255
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of these variance-covariance matrices contains all the possible perturbations that can256

be induced to the state estimate Ẑi as a result of measurement noise in Zi. This257

approach represents a step forward with respect to the traditional largest normalised258

residual test, which only evaluates the normalised residual for the measurement value259

rather than considering all likely perturbations.260

3.2 Limit state equations261

As commented before, the largest normalised residual test is based on comparing the262

normalised residual of each measurement with a chosen threshold. According to Eq.263

(8), zi, ẑi and Ωii must be known to compute residuals, but an implicit relationship264

(9) exists between Ω and the state estimation solution. As readings from metering265

devices are not expected to produce gross errors, it has been tested numerically that266

Ω does not vary considerably with noise (see Hanoi case study for details). Thus,267

this matrix can be computed only for the mean value of the measurements and be268

considered constant here. Thanks to this assumption, we can derive from Eq. (8) that269

an estimated variable ẑi indicates the existence of leakage when it falls out of the270

confidence intervals around the metered variable zi:271

ẑi ≥ zi + Φ−1
(
1− α

2

)√
Ωii; ∀i = 1, . . . ,m, (14)

272

ẑi ≤ zi − Φ−1
(
1− α

2

)√
Ωii; ∀i = 1, . . . ,m. (15)

3.3 Probability of leak detection273

According to limit state equations (14) and (15), leaks can be detected by comparing274

the result of an estimated variable ẑi and its measured value zi;∀i = 1, . . . ,m. Note275

that both measurements Zi and estimations Ẑi are random variables, and therefore276

the probability of leak detection is as follows:277

Prob
{[

Ẑi ≥ Zi + Φ−1
(
1− α

2

)√
Ωii

]
∪
[
Ẑi ≤ Zi − Φ−1

(
1− α

2

)√
Ωii

]}
(16)

Means (µZi
and µẐi

) and variance-covariance matrix (C(i)

Z,Ẑ
) of these random278

variables can be easily determined. On the one hand, as this methodology evalu-279

ates the viability of detecting leaks according to the available metering devices by280

analysing a snapshot of the system, the mean value of measurements µZi is consid-281

ered to be equal to the value of such variables in the flow network solution associated282

with the selected operating condition and including the artificial presence of the leak.283

Then, the associated µẐi
can be obtained by solving the state estimation problem284

for the mean value of measurements µZi
. On the other hand, the variance-covariance285

matrix for each measurement i can be obtained from Eq. (10).286

This information enables the associated measurement-estimate probability den-287

sity function to be plotted in a zi-ẑi space, whose contours are shown in Figure 1a.288
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Additionally, limit state equations (14) and (15) are represented in this figure: Eq.289

(14) corresponds to the shaded grey area above line LSEi1, and Eq. (15) is related290

to the shaded grey area below line LSEi2. Therefore, the probability of detecting a291

leak for a measurement i (Pdetecti ; ∀i = 1, . . . ,m,) is equal to the probability that292

random variables Zi and Ẑi hold limit state equations (14)-(15), as described in Eq.293

(16). Thus, this probability can be computed by integrating the joint probability den-294

sity function of both random variables over the grey region.295

Starting with LSEi1, the probability of random variables (Zi, Ẑi) being above296

that line (i.e. holding to Eq. (14)) can be calculated with well-known First-Order297

Second-Moment structural reliability methods. According to [20], the probability of298

being above that line can be obtained by using expression Φ(βi1), where Φ repre-299

sents the normal distribution function and βi1 is the so called reliability index, which300

corresponds to the minimum distance between the centre of the joint bivariate proba-301

bility density function (µZi
, µẐi

) and line LSEi1 [25]. Note that line LSEi1 is equal302

to constraint (14) but uses an equality. Similarly, the probability that Eq. (15) holds303

can be calculated from the distance between LSEi2 (βi2 ) and the normal distribution304

function. Therefore, the problem of calculating the probability of detection reduces305

to calculating distances βi1 and βi2 . According to [20], βij ;∀i = 1, . . . ,m;∀j = 1, 2306

can be invariantly defined for each limit state equation as:307

βij = Min
zi,ẑi

√(
zi − µZi

ẑi − µẐi

)T

C
(i)−1

Z,Ẑ

(
zi − µZi

ẑi − µẐi

)
subject to

ẑi = zi + Φ−1
(
1− α

2

)√
Ωii if j = 1

ẑi = zi − Φ−1
(
1− α

2

)√
Ωii if j = 2


∀i = 1, . . . ,m;∀j = 1, 2.

(17)
This system of equations could be solved more straightforwardly if the original zi-ẑi308

space was converted to a standard normal space yi1 , yi2 [26] through the orthogonal309

transformation:310 [
zi

ẑi

]
=

[
µZi

µẐi

]
+L

[
yi1
yi2

]
, (18)

with L being the lower triangular matrix from Cholesky decomposition of the measurement-311

estimate variance-covariance matrix C
(i)

Z,Ẑ
;∀i = 1, . . . ,m. Using (18), problem (17)312

can be rewritten as follows:313

βij = Min
yi1 ,yi2

√(
yi1
yi2

)T (
yi1
yi2

)
subject to

yi2 −
(

l22
l11

+ l21
l11

)
yi1 = l22

[
µZi

− µẐi
+ Φ−1

(
1− α

2

)√
Ωii

]
if j = 1

yi2 −
(

l22
l11

+ l21
l11

)
yi1 = l22

[
µZi

− µẐi
− Φ−1

(
1− α

2

)√
Ωii

]
if j = 2


∀i = 1, . . . ,m;∀j = 1, 2,

(19)
where lij refers to L−1 matrix components. Note that in the standard normal random314

space, the reliability index corresponds to the minimum Euclidean distance between315

the origin and the limit state equation, as shown in Figure 1b.316
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 Contours of joint bivariate 

probability density function

zi

zi

a) Original space

yi1

yi2

b) Standard normal space

LSE i1

 Leak detection region

 Contours of joint bivariate 

probability density function

 Leak detection region

 βi1

 βi2

 Pdetect i

 Pdetect i

LSE i2 LSE i1
LSE i2(µ  , µ   )

Zi Zi

Fig. 1 Graphic illustration of measurement-estimate joint probability density function and limit state equa-
tions (LSE) for a measurement i: a) original space, b) standard normal space

Problem (19) can be solved analytically, with βi1 and βi2 being the respective317

distances:318

βij =
√

a2
0

a2
1+a2

2
,

with

a0 = −l22

[
µZi

− µẐi
+ Φ−1

(
1− α

2

)√
Ωii

]
; if j = 1

a0 = −l22

[
µZi

− µẐi
− Φ−1

(
1− α

2

)√
Ωii

]
; if j = 2

a1 = −
(

l22
l11

+ l21
l11

)
a2 = 1;


∀i = 1, . . . ,m;∀j = 1, 2.

(20)
Once the distances to both LSEi1 and LSEi2 have been computed, it is only a319

matter of combining them with the normal distribution function to obtain the proba-320

bility of detection. In order to compute Pdetecti ; ∀i = 1, . . . ,m, three scenarios must321

be distinguished to cover all the possible relative positions of the limit state equations322

with respect to the joint bivariate distribution (see Figure 2). For each of these cases,323

the probability of leak detection (Eq. (16)) can be computed as:324

Pdetecti =

1− [Φ(βi2)− Φ(βi1)] = 1− Φ(βi2) + Φ(βi1) if Case a
1− [Φ(−βi2)− Φ(−βi1)] = 1 + Φ(βi2)− Φ(βi1) if Case b
1− [Φ(βi2)− Φ(−βi1)] = 2− Φ(βi2)− Φ(βi1) if Case c

 ;∀i = 1, . . . ,m,

(21)
Note that the joint bivariate distribution can be seen as a normal distribution whose325

axis is perpendicular to the limit state equations and passes through the origin. It must326

be noted that this procedure enables the probability of detecting a given leak located327

at a specific node to be computed according to each of the m available measurements328

i (Pdetecti ;∀i = 1, . . . ,m). Hence, the maximum value of this probability determines329

the overall network probability of detection (Pdetect) for a specific magnitude of leak330

at that location considering the existing measurement setting and the selected flow331

scenario, i.e. Pdetect = max(Pdetecti ;∀i = 1, . . . ,m).332
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Fig. 2 Relative positions of the limit state equations (LSE) with respect to the centre of the joint bivariate
distribution in the standard normal space: cases a, b and c

Finally, note that once Pdetect is obtained, the user should define the admissible333

threshold for leakage detection (Plim), which is the likelihood above which it can334

be said that the leak is noticed. For example, there could be considered to be a leak335

when there is a probability of detection greater than 80%. We believe that this is a336

reasonable value, as in water transport networks demand values are expected to be337

measured reasonably well and the likelihood of positive or false scenarios occurring338

is not that high. In any case, if this limit is increased, only greater values of leak will339

be detected at the leaking position; however, if this limit is reduced, lower values of340

leak could be identified but there will be a higher risk of false positive or false nega-341

tive scenarios occurring. This demonstrates the importance of selecting a reasonable342

detection threshold for the water transport network under consideration.343

4 Minimum leak assessment344

The aforementioned procedure for leak detectability assessment could also be used345

to test the overall response of a water system to leak detection, i.e. so as to plot346

the minimum leak that could be detected in different parts of the network with the347

available measurement setting and for a given operating condition. Note that the aim348

of the approach presented in this paper is to assess the leak detection possibilities349

of the system on the basis of the largest normalised residual test beforehand, and350

estimating the minimum leak that could be sensed in different parts of the network351

gives an idea of how well-prepared the system is for on-line detection according to352

the available instrumentation and detection strategy assumed.353

As schematically described in Figure 3, this application requires evaluation of354

leak detectability at each of the nodes in the system, one at a time. Once a node has355

been selected, the leak value at the node has to be initialised in order to artificially356

simulate the occurrence of a leak. This can be done by increasing its demand. Leaks357

could alternatively have been divided at the two end nodes of a pipe, but this would358

still be a simplification that would not preserve the energy balance equation of pipes359

and could lead to head loss errors [17]. For this reason, we have simplified the prob-360

lem by concentrating water loss at one node of the system at a time. Then, the flow361

network solution is computed. Note that, as mentioned before, the solution of the flow362

network represents the mean value of the measurements when the system is leaking363
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(µZi ). Therefore, state estimation can be undertaken (e.g. via mathematical program-364

ming) considering the values obtained from the flow network solution as metered365

variables. Subsequently, the probability of leak detection Pdetect is obtained from the366

limit state equations and the measurement-estimate joint bivariate distribution at the367

standard normal space, as commented before. If this probability is above the assumed368

Plim, the leak value has to be reduced in order to approach the minimum leak value.369

However, if the probability is below Plim the leak value has to be increased in order370

to better adjust the minimum value. In this paper, the leak value is updated according371

to the bisection method [4] up to Pdetect = Plim with a given tolerance. When this372

probability of detection is obtained, the leak is considered to be the minimum leak373

value for the node under study, and we can proceed with the next junction.374

Implementation of this process enables a map to be plotted that shows leak de-375

tectability within the system, thus intuitively providing an insight of where to locate376

additional metering devices to enhance network performance in terms of leak detec-377

tion, as will be shown in the case study. Note that this approach provides probabilistic378

information about how the different parts of the network behave in terms of leakage379

detection, but only mean values are assessed because metered values correspond to380

the flow network solution. As commented before, this analysis allows planners to381

evaluate the capability of the largest normalised residual test to detect leaks in real-382

time, i.e. considering the state estimation solution when online readings from meter-383

ing devices are gathered.384

5 Case study: Hanoi Network385

The Hanoi network presented by [16] has been used in this paper as a case study.386

More specifically, the modified version presented by [12], which considers nodes 3,387

16, 23 and 25 as transit nodes or nodes with null consumption, has been adopted here388

(see Figure 4) in order to introduce some hydraulic constraints for the computation389

of Ω. Therefore, in this particular case study we work with a head level vector x =390

(x1, x2, . . . , x32), a water demand vector q = (q1, q2, . . . , q32) and a flow vector391

Q = Q1−2, Q2−3, . . . , Q25−32. Appendix S1 gathers the specific components of392

such vectors for this particular example.393

Regarding the measurement configuration, we assume that the modified Hanoi394

network is a water transport network: water consumption is metered at all demand395

nodes, as is likely to be the case if they were DMAs in a sectorised water system.396

Also, the water level at the tank (x1) is measured. Note that these settings ensure the397

system is observable [11]. Moreover, two different scenarios that consider different398

sets of additional redundant devices are evaluated in this paper: (1) a pressure meter399

at node 30 (x30), i.e. one degree of redundancy exists, and (2) pressure meters at400

nodes x9, x18 and x30, and flow meters at pipes Q3−4 and Q23−24, i.e. five degrees401

of redundancy exist. Table 1 gathers the measurements included in each of these402

settings. In both scenarios all measurements are assumed to be independent, which403

is reasonable as all are readings from metering devices. In this paper, we assume404

that flow meters are subjected to standard deviation σq = 2%q or σQ = 2%Q,405

depending on whether they measure demand values or flows, with q and Q equal to406



Probabilistic leak detectability assessment via state estimation in water transport networks 13

Selection of leaking node i

Leak value initialisation

Flow network solution

State estimation solution

Probability of leak detection

Tolerance check

Pdetect = Plim Pdetect = Plim

Minimum leak 

value for node i

i = i+1

Leak value 
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Fig. 3 Flow chart for minimum leak assessment

the value of these variables according to the flow network solution when the leakage407

is included. Note that the flow network solution must be computed considering extra408

demand in the leaking node, but the metered demand at the leaking node itself must409

be the original value (see Appendix S2 for details). This is because leakage takes410

place in the water transport network, but the flow meter at the DMA remains unaware411

of its existence. Similarly, pressure meters are associated with σx = 0.01 bar and412

water level meters are subjected to σx = 0.01 m, which are typical values for current413

instrumentation. Regarding operating conditions, we assume average demand values,414

which correspond to those included in Appendix S1.415

Once both measurement scenarios have been explained, the aforementioned method-416

ologies are applied. Firstly, the probabilistic leak assessment proposed in this work417
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Table 1 Measurement scenarios for Hanoi network case study

Measurement scenario Pressure meters Flow meters Demand meters

One degree of redundancy x1, x30 - All nodes
Five degrees of redundancy x1, x9, x18, x30 Q3−4, Q23−24 All nodes

Tank node

Transit node 

Demand node

1

10

2

3 4 5 6

7

8

9

11

1213

141516

17

18

19

20

21

22

23

24

25 26 27

2829

30

31 32

Fig. 4 Case study: Hanoi network

is used to test if a specific leak value could be detected when one or five degrees of418

redundancy exist in the system. Then, the minimum leak assessment is carried out419

for the same settings. The confidence level is assumed to be 95% (α = 0.05) and the420

probability threshold is considered to be Plim = 0.8 all along.421

5.1 Probabilistic leak detectability assessment422

In this part of the paper, the probability of detecting a 200 m3/h leak occurring at423

node 6 is assessed with the two measurement settings previously described. Note that424

this value corresponds to water loss of approximately 1% of the total system inflow,425

which is reasonable for a network such as this. The probability of leak detection is426

computed with both the method presented in this paper and the largest normalised427

residual test considering a Monte Carlo sampling of 1000 measurement configura-428

tions. Note that the Monte Carlo simulation fundamentally consists in applying the429

largest normalised residual test 1000 times: for each measurement configuration, nor-430

malised residuals must be computed according to Eq. (8) and compared with the431

specified threshold Φ−1
(
1− α

2

)
. The probability of detection is computed by count-432

ing the number of measurement configurations that lead to residuals greater than the433

threshold.434
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Fig. 5 Measurement-estimate joint probability density function (f ) and limit state equations (LSE) for
measurement x30 when a 200 m3/h leak exists at node 6 in Hanoi network case study: a) original space,
b) standard normal space

5.1.1 One degree of redundancy (x30)435

As explained before, in order to evaluate the probability of detecting a leak according436

to the methodology presented in this paper, the joint bivariate covariance matrix must437

be computed for all the measurements that exist in the system, i.e. head levels at nodes438

1 and 30, and all water demand values. The covariance matrix for measurement x30439

is provided by way of illustration:440

Cx30,x̂30
=

[
0.0100 0.0095
0.0095 0.0095

]
. (22)

This matrix has been obtained by selecting the convenient rows and columns from441

covariance matrices of the metered and estimated variables. Note that element (1, 1)442

corresponds to the measurement variance, which is here assumed to be (0.1 m)2 for443

pressure meters. However, element (2, 2) shows the variance of the estimated vari-444

able, which is lower than the previous one because it refers to the result of the optimi-445

sation problem (1)-(6). Element (1, 2) is equal to element (2, 1), and they show that a446

correlation ρ = 0.9763 exists between measurement x30 and its estimated value x̂30.447

Once the joint covariance matrix is obtained, the measurement-estimate joint448

probability density function can be plotted as in Figure 5a. Also, limit state equa-449

tions can be derived and represented in the x30 − x̂30 space. As this figure shows,450

most of the joint distribution lies within the space between the two limit state equa-451

tions, thus the associated probability of leak detection is low. In order to quantify this452

probability, the joint distribution and the limit state equations are transformed to a453

standard normal space, where βx30,1
= 0.2085 and βx30,2

= 3.7115 according to Eq.454

(20). Bearing in mind that limit state equations are at each side of the origin (case455

c in Eq. (21)), the probability of detecting a leak based on measurement x30 can be456

calculated as Pdetectx30
= 2− Φ(βx30,2)− Φ(βx30,1) = 0.4175.457

Nevertheless, there are 28 measurements more that must undergo the same anal-458

ysis. Table 2 shows the probability of leak detection based on each of the available459
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Fig. 6 Histogram of the relative error in the computation of the Ω matrix in the 1000 Monte Carlo exper-
iment with respect to the mean matrix assumed for the proposed methodology: one degree of redundancy

measurements according to the methodology presented in this paper and the largest460

normalised residual test considering a Monte Carlo sampling of 1000 measurement461

configurations. Results prove that the new approach provides a good approximation462

while considerably reducing the computational time: 5.1 s are required to compute all463

Pdetecti measurements with the new methodology, whereas 2920.0 s are needed for464

the largest normalised residual test simulation in a MatLab 7.12.0 (R2011a) 64-bits465

version and a 23.3 GAMS 64-bits version when run in an Intel(R) Core(TM) i7-6700466

CPU 3.40 GHz 16 GB RAM desktop computer. Moreover, Figure 6 provides the467

relative error of the elements in the diagonal of the Ω matrix in the 1000 simulations468

with respect to the mean value used in the methodology put forward (gathered in469

Appendix S2). This figure shows that the relative error remains relatively low, thus470

validating the assumption of a constant Ω for the probabilistic assessment presented471

here.472

Finally, the probability of detection in the whole network can be obtained as473

the maximum value of the probabilities obtained for each measurement: Pdetect =474

max(Pdetecti ;∀i = 1, . . . ,m) = 0.4185 for the proposed approach and Pdetect =475

max(Pdetecti ;∀i = 1, . . . ,m) = 0.4010 for the largest normalised residual test476

Monte Carlo sampling. Note that in this case the probabilities of detection for all477

measurements are very similar with both methods because of low redundancy, but478

greater variability will be obtained when more meters are added. In any case, as this479

probability Pdetect ≈ 0.4 is below Plim = 0.8, it can be concluded that it is not480

possible to detect the leak with the available measurement setting.481
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Table 2 Probability of detection based on all available measurements when a 200 m3/h leak exists at
node 6 in Hanoi network case study: one degree of redundancy

Proposed methodology Largest normalised residual test
Measurement Pdetecti Pdetecti

x30 0.4175 0.3990
x1 0.4175 0.3990
q2 0.4166 0.3970
q4 0.4175 0.3990
q5 0.4170 0.3980
q6 0.4162 0.3970
q7 0.4184 0.4010
q8 0.4179 0.3990
q9 0.4175 0.3990
q10 0.4175 0.3990
q11 0.4175 0.3990
q12 0.4177 0.3990
q13 0.4173 0.3980
q14 0.4175 0.3990
q15 0.4175 0.3990
q17 0.4178 0.3990
q18 0.4185 0.4010
q19 0.4175 0.3990
q20 0.4166 0.3970
q21 0.4176 0.3990
q22 0.4174 0.3990
q24 0.4172 0.3980
q26 0.4167 0.3970
q27 0.4176 0.3990
q28 0.4174 0.3990
q29 0.4175 0.3990
q30 0.4175 0.3990
q31 0.4175 0.3990
q32 0.4171 0.3980

5.1.2 Five degrees of redundancy (x9, x18, x30, Q3−4, Q23−24)482

The same analysis is undertaken considering the five degrees of redundancy measure-483

ment setting. Table 3 provides the probability of detection for each measurement ac-484

cording to the methodology presented in this paper and the largest normalised resid-485

ual test with a Monte Carlo sampling of 1000 measurement configurations. Results486

prove that the new procedure provides a good approximation while significantly re-487

ducing the computational cost: 5.5 s are required to compute Pdetect with the method-488

ology described herein whereas 2876.2 s are needed in the sampling approach. Note489

that the approximate probability of detection in both cases is Pdetect ≈ 0.8. These490
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Table 3 Probability of detection based on all available measurements when a 200 m3/h leak exists at
node 6 in Hanoi network case study: five degrees of redundancy

Proposed methodology Largest normalised residual test
Measurement Pdetecti Pdetecti

x9 0.4193 0.4010
x18 0.0503 0.0430
x30 0.1103 0.0940
x1 0.4565 0.4320

Q3−4 0.0883 0.1020
Q23−24 0.0527 0.0460

q2 0.4551 0.4320
q4 0.6796 0.6650
q5 0.7882 0.7780
q6 0.8156 0.7950
q7 0.8170 0.7960
q8 0.7831 0.7760
q9 0.7432 0.7280
q10 0.7608 0.7440
q11 0.7608 0.7440
q12 0.7610 0.7460
q13 0.7605 0.7440
q14 0.7713 0.7580
q15 0.6614 0.6640
q17 0.2670 0.2440
q18 0.1541 0.1370
q19 0.2890 0.2510
q20 0.3616 0.3300
q21 0.3624 0.3300
q22 0.3621 0.3300
q24 0.0838 0.0950
q26 0.1479 0.1510
q27 0.1862 0.1860
q28 0.0792 0.0840
q29 0.0500 0.0450
q30 0.0558 0.0430
q31 0.0545 0.0420
q32 0.0531 0.0540

results prove that leakage awareness is possible in the Hanoi case study when more491

metering devices are included in the system. Also, Figure 7 shows that the Ω error492

has decreased with the addition of metering devices, reinforcing the validity of the493

constant Ω hypothesis.494
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Fig. 7 Histogram of the relative error in the computation of the Ω matrix in the 1000 Monte Carlo exper-
iment with respect to the mean matrix assumed for the proposed methodology: five degrees of redundancy

5.2 Minimum leak assessment495

In this section, the minimum leak that could be detected in different parts of the net-496

work is identified for both measurement settings. Note that the process for assessing497

minimum leaks (as described in Figure 3) fundamentally consists of repeating the498

probabilistic leak detectability assessment set out for different leakage values until499

the minimum is identified at every node of the system.500

5.2.1 One degree of redundancy (x30)501

Table 4 shows the minimum leak that could be detected at each node and the asso-502

ciated probability of detection once the algorithm for minimum leak assessment has503

converged (i.e. Pdetect ≈ 0.8) at all nodes. This information is also summarised in504

Figure 8, which provides the interpolated map of minimum leaks throughout the sys-505

tem. Note that nodes represent DMA themselves, which are connected to each other506

by means of the water transport network, and the shadowed region represents the area507

of each DMA. This figure shows that the values obtained are consistent with the mea-508

surement distribution throughout the network: leakage of around 80 m3/h could be509

detected in the surroundings of the redundant measurement x30, but only major losses510

could be noticed on the right-hand side of the system. Moreover, leakage could not be511

sensed at all if it was happening at the branch that provides water from the tank. This512

figure shows that additional meters should be placed on the right-hand side of the net-513

work to improve absolute leak detectability in the system according to the selected514

operating condition.515

The previous figure can also be obtained in relative terms by working with the516

minimum leak value divided by the maximum flow entering each node. Figure 9517
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Table 4 Minimum detectable leaks in Hanoi network case study: one degree of redundancy

Leaking node Minimum leak value (m3/h) Pdetect

2 - 0
3 386.7188 0.8006
4 367.1875 0.8043
5 343.7500 0.8048
6 320.3125 0.8033
7 316.4063 0.8071
8 287.1094 0.8034
9 267.5781 0.8041
10 253.9063 0.8042
11 253.9063 0.8042
12 253.9063 0.8041
13 253.9063 0.8042
14 234.3750 0.8055
15 201.1719 0.8039
16 185.5469 0.8008
17 230.4688 0.8067
18 289.0625 0.8040
19 347.6563 0.8049
20 304.6875 0.8048
21 304.6875 0.8048
22 304.6875 0.8048
23 187.5000 0.8074
24 149.4141 0.8038
25 131.8359 0.8040
26 154.2969 0.8009
27 161.1328 0.8040
28 151.3672 0.8032
29 100.5859 0.8051
30 75.1953 0.8017
31 78.1250 0.8043
32 109.3750 0.8042

shows the relative leak detectability map in the Hanoi case study with this one de-518

gree of redundancy measurement setting. It shows that on the lower right-hand side519

of the network there is better behaviour in terms of leakage awareness in this sce-520

nario, because even though the minimum leak that could be detected is greater when521

compared to the left-hand side (see Figure 8), the circulating flow is greater in this522

area (see Appendix S1). For this reason, around 20% relative leakage can be detected523

on the left-hand side, but this figure can fall to around 3% on the lower right-hand524

side. Therefore, additional meters should be added on the left-hand side of the sys-525

tem to improve relative leak detectability in the network based on the flow condition526

considered in the assessment.527
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Table 5 Minimum detectable leaks in Hanoi network case study: five degrees of redundancy

Leaking node Minimum leak value (m3/h) Pdetect

2 - 0
3 279.2969 0.8051
4 250.0000 0.8048
5 230.4688 0.8044
6 197.2656 0.8065
7 187.5000 0.8044
8 142.5781 0.8028
9 115.2344 0.8011
10 127.9297 0.8034
11 127.9297 0.8034
12 127.9297 0.8034
13 127.9297 0.8034
14 144.5313 0.8022
15 187.5000 0.8041
16 187.5000 0.8014
17 160.1563 0.8044
18 121.0938 0.8018
19 201.1719 0.8057
20 253.9063 0.8006
21 253.9063 0.8006
22 253.9063 0.8006
23 154.2969 0.8018
24 125.9766 0.8037
25 116.2109 0.8065
26 146.4844 0.8057
27 156.2500 0.8058
28 123.0469 0.8022
29 74.7070 0.8028
30 51.7578 0.8060
31 54.1992 0.8041
32 87.8906 0.8059

5.2.2 Five degrees of redundancy (x9, x18, x30, Q3−4, Q23−24)528

Table 5, Figure 10 and Figure 11 provide the same information when more meters529

are added. Table 5 and Figure 10 show an improvement in the overall leak detection530

capability and it is possible to sense leaks of up to 51.76 m3/h on the left-hand side531

of the system, which is remarkable considering that the tank provides 17565 m3/h532

to the network. This improvement is also noticeable in relative terms (Figure 11). As533

before, these figures help to see where meters should be placed in order to reduce534

the absolute and relative leak detectability in the system for the specified operating535

condition and, hence, are a useful tool for practitioners.536
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6 Discussion537

The purpose of this section is to discuss the potential and limitations the methodology538

set out here has to carry out an assessment of a probabilistic leak detectability of a wa-539

ter supply system. As mentioned in the Introduction, the method put forward here has540

been specifically developed for water transport networks because these systems tend541

to be better metered than traditional water distribution systems. Note that identifying542

water transport pipelines may be complicated in some cases, but the International Wa-543

ter Association (IWA) recommends dividing water distribution systems into DMAs544

that must be connected to each other by means of water transport networks in order to545

better control water loss. Hence, modern water utilities are currently upgrading their546

systems to water transport network-DMA schemes, with DMA design itself being an547

active topic of research [10,33]. In general, at least one flow meter exists at the en-548

trance to each DMA in order to measure the amount of water being provided to each549

sector, and additional devices are progressively being included to better characterise550

water flow through the main arteries. Note that instrumentation enhancement is also551

taking place on a DMA scale thanks to the reduction in terms of cost of both pressure552

and flow instrumentation [21]. Even if some of these measurements fail (e.g. sensor553

failure, communication failure), pseudo measurements (i.e. estimations of demand554

based on historical records) could be used instead [38]. This would mean increasing555

uncertainty in the problem and hence, it would have an impact on the leak detection556

potential of the network, but the methodology shown here would still be suitable.557

The availability of metering devices plays a crucial role when characterising wa-558

ter loss. If the number of meters were sufficient and not noisy, a simple water bal-559

ance could be applied. However, their inherent inaccuracy requires more sophisti-560

cated methods to take the effect of measurement noise into account. In this particular561

case, state estimation is used to provide the most likely hydraulic state of the sys-562

tem bearing in mind all the available measurements in the network. Note that state563

estimation techniques are required to process the on-line information provided nowa-564

days by telemetry systems, but despite their massive use in the power field they have565

hardly been implemented in the water industry. One of the reasons for this is that566

the leak detection problem, as well as calibration or topological analysis, have been567

addressed in isolation from the state estimation conception. This paper represents an568

effort to tackle one of these traditional water systems problems from the state estima-569

tion perspective, emphasizing the appeal of adopting a comprehensive state estima-570

tion approach to extract as much information as possible from the available on-line571

measurements in the network.572

Nevertheless, due to the immaturity of real-time state estimation techniques in573

water systems at present, the methodology explained here is oriented towards assess-574

ing if it would be possible to obtain leakage information from state estimation results575

rather than providing a method already suitable for the on-line detection of leaks. As576

mentioned in the Introduction, many off-line state estimation approaches have been577

developed over the past 20-30 years, but such techniques have not been successfully578

implemented on-line. For this reason, the methodology presented here enables tests579

to be carried out to find if a specific leak value could be detected at a given location580

with the available measurement setting, but it does not assess on-line measurements581
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provided by telemetry systems. We believe that this prior analysis is essential to show582

water utilities and practitioners the genuine possibilities of detecting leakage based583

on state estimation results.584

Moreover, the methodology explained herein can be used as the basis for optimal585

meter placement. Note that minimum leak value maps quickly show the regions of586

the network where there is less likelihood of noticing the loss of water, i.e. the regions587

of the network where more metering devices should be added. However, it must be588

stressed that the method shown at present provides clues but does not enable the most589

suitable location for additional metering devices to be identified systematically. This590

is because only one flow scenario has been considered in the case study for the prob-591

abilistic leak detectability assessment. However, water utilities are usually familiar592

with several normal operating scenarios in their networks and it is advisable to ap-593

ply this methodology to as many flow configurations as possible in order to further594

comprehend the leakage awareness capability of the existing measurement setting in595

different circumstances. For this reason, specific optimal meter placement schemes596

[24] based on state estimation are a subject for further research. In any case, the min-597

imum leak maps shown here are useful, because with them it can be determined if598

the available measurement setting is enough for the operating condition under con-599

sideration: if the minimum leak values are not within the desired levels, additional600

meters must be placed, but if they are, this analysis should encourage investors to601

implement state estimation techniques, which should in turn be adapted to detect and602

locate water loss in real time.603

Note that adaption of state estimation techniques to the detection of leakage on-604

line is not straight forward. The same strategy of analysing state estimation residuals605

according to the largest normalised residual test can be used, but several operational606

aspects must be addressed first. To begin with, the method set out here to identify607

leaks is analogous to the traditional procedure for bad data identification, but bad608

measurements and leaks can coexist in real time and both should be addressed to609

ensure the tool is performing well. Also, the possibility of more than one leak occur-610

ring at the same time should be explored, as they may cancel each other out in some611

cases. For this reason, we believe that consideration of sequent hydraulic states (i.e.612

based on an extended period simulation) is essential for on-line detection, increas-613

ing the confidence in prediction. Similarly, other challenges associated with network614

modelling should be conveniently solved in order to develop a consistent real-time615

tool. In this regard, uncertain model parameters (e.g. pipe roughness coefficients),616

or unknown settings of valves should be conveniently adjusted before using state617

estimation to detect leaks in real-time. In other words, parameter estimation (i.e. cal-618

ibration) should periodically be undertaken to ensure the hydraulic model remains619

valid. Note that a deviation in, for example, pipe roughness coefficients could mask620

abnormally high residuals. In this respect, [2] and [29] have presented some work621

on the possible causes for bad data, with the latter having identified five possible622

types: measurement noise, meter semi-failure, meter total failure, parametric model623

failure, and topological model failure. Therefore, residual processing tools must also624

be adapted to identify leaks as an additional cause of bad data. For this reason, the625

methodology set out here is an initial approach to the leakage awareness problem via626

state estimation, but further research is required to develop a robust on-line tool.627
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Once these limitations have been addressed, a suitable platform for on-line detec-628

tion based on the largest normalised residual test could be used for detecting leaks in629

water systems. According to the analysis shown in this paper, this test has potential630

for identifying if there is any leakage, but the reality is that it may also give an idea631

of where water is being lost (i.e. leak localisation). Note that in Tables 4 and 5 only632

Pdetect is shown, but the locations at which the maximum of Pdetecti ;∀i = 1, . . . ,m633

is attained are also important. High detection probabilities are the result of high resid-634

uals, which in turn correspond to great differences between measurements and esti-635

mated variables. Table 6 ranks the top five measurements associated with the greatest636

detection probabilities in the minimum leak assessment analysis of the previous case637

study when one and five degrees of redundancy exist. Results show that with one638

degree of redundancy, information cannot be extracted about the approximate loca-639

tion of the leak. However, the measurement set associated with greater probabilities640

of detection varies with the location of the leak when there are five redundant mea-641

surements. For example, measurements h1, q2, q19, q21 and q22 are associated with642

the greatest detection probabilities when the leak is artificially simulated at node 3,643

whereas measurements q32, q31, q30, q29 and q26 are selected when the leak is simu-644

lated at node 32. Therefore, it can be concluded that when sufficient redundant mea-645

surements exist, the largest normalised residual test also has potential to give an idea646

of where water loss is taking place. This fact, together with a systematic assessment647

of how the remaining hydraulic variables evolve over time, must be explored in order648

to set up a consistent methodology for leak localisation, which is beyond the scope649

of this paper. Furthermore, leak information could be used as an input for reliability650

assessment [18], which is an ongoing topic of research in the field [32,19].651

7 Conclusions652

In this paper, a new methodology for probabilistic leak detectability assessment is653

set out. This approach consists in analysing state estimation normalised residuals for654

a particular hydraulic state in the system, which are likely to be high when notice-655

able leakage exists. The procedure presented herein is conceived as a previous step656

that enables assessment of the extent to which leakage could be sensed in subsequent657

state estimation stage with the available noisy measurements. The probability of leak658

detection is calculated here considering the measurement-estimate joint bivariate dis-659

tribution rather than undertaking sampling experiments (i.e. Monte Carlo method)660

with the traditional largest normalised residual test, which is time-consuming. Addi-661

tionally, a procedure is shown to estimate the minimum leak that could be detected in662

different parts of the network at a later stage of state estimation.663

The potential of this methodology is set out by means of a case study, which cor-664

responds to a water transport network due to the better level of instrumentation of665

such networks in comparison with conventional water distribution systems. Results666

show that this alternative approach for computing the probability of leak detection667

provides sound approximation and is computationally much faster than the sampling668

procedure. Moreover, minimum leak value maps provide a fair overview of the sys-669
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Table 6 Ranking of top five measurements associated with the highest probabilities of detection in the
minimum leak assessment for Hanoi network case study

Set of 5 measurements with greatest Pdetecti

Leaking node One degree of redundancy Five degrees of redundancy

2 - -
3 q18, q7, q8, q17, q12 h1, q2, q19, q21, q22
4 q18, q7, q8, q17, q12 q4, q5, q6, q7, h1

5 q18, q7, q8, q17, q12 q5, q6, q4, q7, q8
6 q18, q7, q8, q17, q12 q7, q6, q5, q8, q14
7 q18, q7, q8, q17, q12 q7, q6, q8, q14, q12
8 q18, q7, q8, q17, q12 q8, q12, q10, q11, q13
9 q18, q7, q8, q17, q12 q9, q12, q10, q11, q13
10 q18, q7, q8, q17, q12 q12, q10, q11, q13, q14
11 q18, q7, q8, q17, q12 q12, q10, q11, q13, q14
12 q18, q7, q8, q17, q12 q12, q10, q11, q13, q14
13 q18, q7, q8, q17, q12 q12, q10, q11, q13, q14
14 q18, q7, q8, q17, q12 q14, q12, q10, q11, q13
15 q18, q7, q8, q17, q12 q15, q14, q5, q6, q7
16 q18, q7, q8, q17, q12 q15, q27, q26, q21, q22
17 q18, q7, q8, q17, q12 q17, q19, q18, h1, q2
18 q18, q7, q8, q17, q12 q18, q19, q17, h18, h1

19 q18, q7, q8, q17, q12 q19, q18, q17, h1, q2
20 q18, q7, q8, q17, q12 q21, q22, q20, h1, q2
21 q18, q7, q8, q17, q12 q21, q22, q20, h1, q2
22 q18, q7, q8, q17, q12 q21, q22, q20, h1, q2
23 q18, q7, q8, q17, q12 q28, q29, q21, q22, q20
24 q18, q7, q8, q17, q12 q24, q26, q27, q32, q31
25 q18, q7, q8, q17, q12 q26, q32, q27, q24, q31
26 q18, q7, q8, q17, q12 q27, q26, q24, q32, q15
27 q18, q7, q8, q17, q12 q27, q26, q24, q32, q15
28 q18, q7, q8, q17, q12 q28, q29, q31, q30, q32
29 q18, q7, q8, q17, q12 q29, q31, q30, q32, h30

30 q18, q7, q8, q17, q12 q30, q31, q29, q32, h30

31 q18, q7, q8, q17, q12 q30, q31, q29, q32, h30

32 q18, q7, q8, q17, q12 q32, q31, q30, q29, q26

tem response in terms of leak detectability, and they constitute the foundation on670

which optimal meter placement strategies can be based.671

Also, adaption of the largest normalised residual test for use in leakage awareness672

in real time is discussed. Several issues, such as the simultaneous presence of both673

erroneous measurements and leaks, the existence of more than one leak at a time, or674

consideration of parameter or topology uncertainty, must be addressed before using675

the test for on-line leak detection. Nevertheless, this application shows the poten-676

tial state estimation has for leak detection, which has been hardly explored to date.677
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Therefore, it should be used to motivate further research on state estimation related678

techniques applied to detecting leaks.679

References680

1. Andersen, J.H., Powell, R.S., Marsh, J.F.: Constrained state estimation with applications in water681

distribution network monitoring. Int. J. Syst. Sci. 32(6), 807–816 (2001)682

2. Bargiela, A.: On-line monitoring of water distribution networks. Ph.D. thesis, Univ. of Durham, UK683

(1984)684

3. Bargiela, A., Hainsworth, G.D.: Pressure and flow uncertainty in water systems. J. Water Resour.685

Plann. Manage. 115(2), 212–229 (1989)686

4. Burden, R.L., Faires, J.D.: Numerical analysis, 3rd Edition. PWS Publishers, Boston, USA (1985)687

5. Cabrera, E., Almandoz, J., Arregui, F., Garcı́a-Serra, J.: Auditorı́a de redes de distribución de agua.688

Ingenierı́a del Agua 6(4), 387–399 (1999)689

6. Caro, E., Conejo, A.J., Mı́nguez, R.: A sensitivity analysis method to compute the residual covariance690

matrix. Electr. Power Syst. Res. 81(5), 1071–1078 (2011)691

7. Caro, E., Conejo, A.J., Mı́nguez, R., Zima, M., Andersson, G.: Multiple bad data identification con-692

sidering measurement dependencies. IEEE Trans. Power Syst. 26(4), 1953–1961 (2011)693

8. Carpentier, P., Cohen, G.: State estimation and leak detection in water distribution networks. Civ.694

Eng. Syst. 8(4), 247–257 (1991)695

9. Coulbeck, B.: Optimisation and modelling techniques in dynamic control of water distribution sys-696

tems. Ph.D. thesis, Univ. of Sheffield, UK (1977)697

10. Diao, K., Zhou, Y., Rauch, W.: Automated creation of district metered area boundaries in water dis-698

tribution systems. J. Water Resour. Plann. Manage. 139(2), 184–190 (2013)699
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