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ABSTRACT6

Nowadays, state estimation (SE) techniques are applied to different network systems in order7

to convert system measurements into real information about the network state. SE applications to8

water systems are relatively novel, but these techniques have been implemented in other fields for9

decades. In those applications, observability analysis (OA) is required prior to application of SE10

techniques with different purposes: i) to identify redundant information, ii) to detect elements that11

make no contribution in the subsequent SE process or iii) to identify observable islands. However,12

no discussion has been found in the pertinent literature as regards any interest in applying OA to13

water networks, with there being only a few basic applications. The aim of this paper is twofold:14

firstly, to present the implementation of a novel algebraic OA approach to water networks, which is15

based on the application of a Gauss elimination technique to the measurement Jacobian matrix, and16

to discuss and justify the interesting aspects of implementing an OA in Water Transport Networks17

(WTN) prior to using SE whilst also presenting the issues that this technique may resolve. The18
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(Spain). E-mail: Sarai.Diaz@uclm.es.

2Dr. Eng, Dept. of Civil Eng., Univ. of Castilla-La Mancha, Av. Camilo José Cela s/n, 13071 Ciudad Real (Spain).
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results obtained highlight the algorithm potential for real supply systems, improving the knowledge19

of what information provided by SCADA systems is really worth compiling.20

Keywords: State estimation, network monitoring, optimal meter placement, observable islands21

INTRODUCTION22

Water supply is nowadays moving forward as there is an attempt to improve serviceability. The23

first step to reach this goal is computing service quality indicators (Abdelbaki et al., 2014) and as-24

sessing how the network performs (Cabrera et al., 1999; Chae, 2012). These tasks require adequate25

knowledge of how the network behaves and its hydraulic status under different flow circumstances.26

With this in mind, and also with the purpose of supporting the decision-making process in water27

systems, there is an actual trend to merge comprehensive Information Communication Technology28

(ICT) programs, usually made up of SCADA systems, Geographic Information Systems (GIS),29

and Hydraulic Modelling Systems (HMS). This integrated platform is intended to improve the ef-30

ficiency of network operations and asset maintenance, for which SE techniques are adopted as an31

effective way to process the information gathered by SCADA systems.32

SE techniques were conceived in the 70s with the aim of characterizing the electric state of33

complex power systems (Schweppe and Wildes, 1970) and were implemented in the water industry34

shortly afterwards (Coulbeck, 1977). Generally speaking, a state estimator is an algorithm that35

computes the current state of a system through the combination of the information provided by36

on-line measurements and network flow equations. However, for any state estimator to function37

correctly, the measurement set should at least provide estimation of the state variables, which is38

the minimal set of variables that allows the status of the network to be fully characterized. In this39

regard, the first issue is: is any configuration of measurement devices valid to fully characterize40

the hydraulic state of the network? The answer is no: the measurement set must ensure that all41

variables within the system can be infered from the system equations, i.e., the system must be42

observable. This explains, in general, the necessity of carrying out OA before using SE.43

However, the necessity of OA in water systems has been overlooked over the years. This is44

because telemetry data has been typically complemented by predictions of consumption, which45
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are referred to as pseudo-measurements, to make up for the lack of measurement devices. In46

this respect, both measurements and pseudo-measurements are plagued with uncertainty that may47

lead to deviations in the SE process, but this is particularly important for pseudo-measurements,48

which can vary largely since they are just estimations based on existing data (Walski, 1983). To49

tackle this problem, great effort has been made to characterize the uncertainty associated with50

these estimations and their effect in the overall SE process (Bargiela and Hainsworth, 1989), as51

well as to implement online estimation of demand so as to carry out the subsequent SE efficiently52

(Kang and Lansey, 2009; Preis et al., 2011; Okeya et al., 2014). Note that if pseudo-measurements53

together with tank levels are considered to be the available measurements, the system of equations54

to solve the water flow through the network is a compatible system and determined with a unique55

solution (the number of equations is equal to the number of unknowns), i.e. the water system would56

always be observable. Nevertheless, the use of pseudo-measurements as a substitute for real water57

demand increases the uncertainty of SE (Nagar and Powell, 2004), thereby reducing the possibility58

of detecting changes in the network behavior and effectively monitoring the system.59

In this paper, we drop this classical assumption by initially removing pseudo-measurements60

and focusing on Water Transport Networks (WTN). WTN have a low number of demand points61

related to District Metered Area (DMA) consumption, which are typically measured to control the62

flow into each sector. This is crucial for the management of large systems (Tzatchkov et al., 2006)63

and makes it possible to avoid the use of pseudo-measurements by installing metering devices in64

appropriate locations. In this regard, OA permits information to be obtained about the minimum65

number and location of alternative measurement devices to achieve or, at least, enhance observabil-66

ity without making use of pseudo-measurements. Therefore, this strategy reduces the uncertainty67

factor for SE and permits testing of how the possible loss of one or several measurements (due to68

sensor failure, communication failure, etc.) affects observability of the WTN.69

There are additional reasons to make use of OA. SE procedures use the relationships among70

variables due to the network topology and the flow equations governing the water movement71

throughout the network, hence they permit estimates of variables to be obtained which are not72
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directly measured. OA is a previous analysis of which variables are observable from the available73

measurement set which is monitored by the telemetry system, thereby enabling those regions of74

the system where SE would provide reliable results to be identified. Moreover, OA is especially75

required if iterative methods based on least-squares are used, because those methods only work for76

observable systems, i.e. if any of the state variables are not observable according to the measure-77

ment configuration, then it is not possible to obtain the estimate of the system (Abur and Expósito,78

2004). The problem is even more critical if mathematical programming or heuristic techniques,79

such as genetic algorithms, are used for minimizing the SE errors, because those procedures pro-80

vide a solution for the SE problem even when the system might be unobservable and this might81

go unnoticed. For this reason, OA is quite established in power systems, where sensor placement82

problems are to be dealt with while conceiving and operating the network.83

Another important issue discussed in the pertinent technical literature is uncertainty does not84

just depend on the number and accuracy of the meters installed, but also on their distribution85

throughout a network (Bargiela and Hainsworth, 1989; Kang and Lansey, 2009, 2010). This re-86

search led to several studies that presented optimal meter placement schemes in water systems (Yu87

and Powell, 1994; Kang and Lansey, 2010), which followed the same lines of research as in electric88

power networks (Clements, 1990; Ramesh et al., 2007). Starting from the work by Walski (1983),89

who was amongst the first to directly address the issues of the sampling design in the context90

of model calibration for water distribution systems (Kapelan et al., 2003), different criteria have91

been tested, such as those based on the quantification of calibration uncertainty (variance reduction92

methods) such as alphabetic optimality criteria (D-optimality, A-optimality, V-optimality) as dis-93

cussed by Kiefer and Wolfowitz (1959) or Savic et al. (2009), among others. These criteria would94

be directly applicable for the optimal location of sensors for state estimation. However, in this95

paper we present OA as a tool that provides information for the selection of sensor locations based96

on the increased resilience of the system in the face of the loss of one or several measurements,97

i.e., ensuring that the system is robust enough to remain fully or highly observable regardless of the98

loss of any measurement. Note that there is another research trend for optimal location of sensors99
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associated with detection of contamination events for which this method is not directly applicable.100

Its application would require the equations and variables governing the evolution of contamination101

within the system to be adapted, which is beyond the scope of this paper.102

In summary, implementing OA as a previous and complementary step to SE in WTN answers103

the following questions: i) whether any set of measurements is enough to appropriately carry out104

SE, ii) how robust is that measurement set in the face of the potential loss of measurements, iii)105

which variables are observable and unobservable, iv) which pseudo-measurements are required to106

fulfill the observability condition , and v) how to locate new sensors in order to increase resilience107

against the loss of one or several assets.108

Regarding OA techniques, these have been deeply explored in power systems but the only con-109

dition studied in order for the system to be observable in water networks is that the measurement110

Jacobian matrix is full rank (Nagar and Powell, 2004; Vale and Schenzer, 2014). This approach111

provides a yes or no answer for observability checking, and should be applied to every possible112

subset of measurements to be considered within the system. It is the most basic method, but un-113

suitable for medium-large networks. Therefore, it is worth exploring how other but more efficient114

existing OA methodologies can be of application to water supply networks. In this regard, there115

have been three different approaches, essentially, for addressing observability problems in power116

systems: graphical (or topological) methods, numerical (or algebraic) methods and hybrid com-117

binations. Topological methods (Krumpholz et al., 1980; Clements et al., 1982; Quintana et al.,118

1982; Nucera and Gilles, 1991) are associated with topological algorithms based on building a119

spanning tree of full rank and generally involve combinatorial computational complexity. They120

have been applied to water systems by Carpentier and Cohen (1991). Algebraic alternatives have121

not been applied to water systems in the available literature so far, but they have been applied sys-122

tematically in the power supply field. They make use of either the gain matrix (Monticelli and Wu,123

1985a,b; Gou and Abur, 2000, 2001) or the measurement Jacobian matrix of the system (Exposito124

and Abur, 1998; Gou, 2006; Castillo et al., 2005, 2006, 2007; Solares et al., 2009; Pruneda et al.,125

2010), which they factorize or transform to extract observability information. Some authors have126
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adopted hybrid techniques (Contaxis and Korres, 1988; Korres and Katsikas, 2003), and other al-127

ternative approaches based on mathematical programming techniques have been briefly explored128

(Habiballah and Irving, 2001; Caro et al., 2013). Of all the available contributions in the technical129

literature, the algebraic proposal by Pruneda et al. (2010) is especially suitable for water networks130

due to the possibility of simultaneously analyzing the observability of a set of available measure-131

ments and the remaining potential measurements in the system. This approach starts from the full132

Jacobian matrix of possible measurements within the network and transfers columns to rows us-133

ing a Gauss-based elimination technique to progressively express state variables as functions of134

available measurements. It basically analyzes how the incorporation of any measurement affects135

the observability of both state and network variables. Therefore, the algorithm allows to check ob-136

servability for the given subset, but also to identify critical and redundant measurements, thereby137

enabling identification of observable variables and islands if the system is not fully observable.138

For the aforementioned reasons, the aim of this paper is twofold. Firstly, to adapt and imple-139

ment the algebraic OA procedure previously developed by Pruneda et al. (2010) to water systems140

and, secondly, to evaluate and discuss the advantages and usefulness of OA when applied to WTN.141

This approach permits observability information of the full system to be extracted by analyzing142

any subset of available measurements, thereby avoiding repetitive calculations. Moreover, this143

proposal provides information about the existing control points and other potential measurements144

that might substitute or reinforce them and so helps to identify optimum locations for the instal-145

lation of future devices. Furthermore, a robust methodology is put forward in order to prioritize146

sensor investment within the network management policy, either in cities with existing but poorly147

metered SCADA systems or where these platforms are to be installed from scratch.148

The rest of the paper is organized as follows: in the first section an overview of the SE and149

OA problems is set out. Then, the structure of the measurement Jacobian matrix of the system150

for water networks is explored. Note that this matrix is the starting point for application of the151

OA method. The algorithm for OA is outlined in the following section, including the process152

for detection of observable islands. Subsequently, an illustrative example is presented to explore153
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in detail what possible applications the methodology offers, followed by a discussion on how154

the developed methodology could be applied to real WTN. Finally, relevant conclusions are duly155

drawn.156

STATE ESTIMATION AND OBSERVABILITY ANALYSIS: A GENERAL OVERVIEW157

As previously mentioned, in general, an algorithm for SE must provide the most likely state of158

the network given a series of available measurements at a given instant in time. It is like taking159

an instantaneous snapshot of the network status, i.e. pseudo-static state estimation, allowing to160

calculate the state variables from the measurement set. Let us consider the vector of measurements161

z ∈ Rm including pressures at nodes, tank levels, pipe flows and DMA consumptions, the vector of162

state variables x ∈ Rn including nodal heads and the nonlinear relationship g : Rn → Rm between163

measurements and state variables for a certain system, which results from the application of the164

mass and energy conservation equations. Thus, this relationship can be mathematically written as:165

z = g(x) + ϵ, (1)166

which represents a system of nonlinear equations, where ϵ are the errors associated with mea-167

surements. These errors are traditionally assumed to be gaussian with zero mean, i.e. unbiased168

E[ϵ] = 0, and variance-covariance matrix R.169

SE consists in finding the most likely values of the state variables x by solving the following170

Weighted Least Squares (WLS) problem:171

Minimum

x

F (x) = ϵTR−1ϵ = [z − g(x)]T R−1 [z − g(x)] , (2)172

where x̂ corresponds to the optimal solution of problem (2). Note that errors are multiplied by the173

inverse of the variance-covariance matrix associated with error measurements, and since they are174

usually independent, it is a diagonal matrix. Therefore, the objective function attempts to minimize175

the sum of square errors defined by equation (1), giving more credibility to those measurements176
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with lower standard deviation errors.177

Problem (2) can be solved using the normal equations method (Exposito and Abur, 1998),178

which allows calculating the optimal solution of state variables at iteration ν + 1 by iteratively179

solving the following linear system of equations:180

[JT
(ν)R

−1J(ν)]x̂(ν+1) = [JT
(ν)R

−1](z − g(x̂(ν))), (3)181

where J(ν) ∈ Rm×n is the Jacobian measurement matrix at point x̂(ν), and ν is an iteration counter.182

According to (3), a theoretical and sufficient condition for the existence of a unique solution183

for the SE problem (2) is that the system is determined compatible, i.e. J matrix has full rank n. As184

mentioned before, this minimum condition is usually satisfied in water systems at the expense of185

considering estimations as actual measurements to overcome the scarcity of measurement devices.186

However, this strategy is often very poor and may lead to unrealistic results if uncertainties in both187

network parameters and measurements are taken into account (Nagar and Powell, 2004). Note that188

in this paper we refer to the SE problem as the one considering uncertainties in measurements,189

while the problem including also network parameter uncertainties is called calibration and is out190

of the scope of this work.191

The full rank jacobian condition, which makes matrix [JT
(ν)R

−1J(ν)] invertible, identifies the192

system as observable or unobservable. However, besides this condition, OA has received very little193

attention in water systems. The measurement Jacobian matrix plays a crucial role for the system194

to be observable. Besides, the matrix maintains the structural relationships among measurements195

and state variables even if the equation (1) is linearized around any point x0:196

∆z = J0∆x+∆ϵ (4)197

where ∆z = z − g(x0) is the measurement residual vector, ∆x is the incremental change in the198

system state and ∆ϵ corresponds to the incremental change in errors.199

The information about the relationships among measurements and other variables for OA pur-200
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poses is gathered in the measurement Jacobian matrix at any given flow state. Thus, this analysis is201

independent with respect to the uncertainty associated with measurements, demands and network202

parameters, since it is only based on the relationships among variables due to the network topol-203

ogy. For this reason, it is customary to now define the state variables and how the measurement204

Jacobian matrix can be calculated for any given flow status of the network x0.205

MEASUREMENT JACOBIAN MATRIX IN WATER NETWORKS206

In general, the Jacobian matrix of a system is the matrix of all first-order partial derivatives of a207

vector-valued function. Therefore, for the particular case of water networks, the Jacobian matrix is208

a way of rewriting the system’s governing flow equations and grouping them according to its state209

variables, with respect to which partial derivatives are computed.210

Any water network can be represented as a network N = (V ,L), formed by a set of ver-211

tex or nodes (V) interconnected by a group of links (L). Particularly, nodes can be divided in212

demand/source nodes (VQ, where water is either subtracted or introduced in the system), transit213

nodes (VT, where flow neither leaves nor enters the system), tank nodes (VR, tanks or reservoirs214

where change in volume is significant) or reservoir nodes (VR∞ , where change in volume is negli-215

gible and the volume can be considered as infinite). Distinction between different types of nodes216

is important to model their behavior through the convenient equations, as shown later. Flow di-217

rection within pipes is assumed positive whenever water moves from lower to higher numbering218

node. Therefore, two subsets ΩO
i and ΩI

i are defined for each node i corresponding, respectively, to219

water outflows from node i to the rest of nodes with numeration j > i and connected to i through220

a pipe, and water inflows to node i from the rest of nodes with numeration j < i and connected to221

i through a pipe.222

Once the basic definitions of the hydraulic model network have been set up, the Jacobian matrix223

computation process can be explained. It requires the selection of the set of state variables, the224

specific network model definition and the organization of this information within a matrix which225

considers all possible measurements in the system. It is important to point out, as previously226

mentioned, that in this work we propose a pseudo-static approach that considers flow as steady,227
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hence subsequent times can be analyzed as if they were independent. For this reason we consider228

equations independent of time t.229

Selection of the state variables230

In general, the hydraulic variables involved in water networks at a given instant in time are the231

water flow through each pipe (Qij; ∀ij ∈ L), the pressure at each node (pi; ∀i ∈ V), the head232

level associated with each of the nodes (hi; ∀i ∈ V), and the water demand and/or provision to233

the system in each node (qi; ∀i ∈ VQ), which is positive for source, negative for demand and null234

for transit nodes. The rest of parameters required to define the status of the system, such as node235

elevations (ei; ∀i ∈ V), pipe lengths (Lij; ∀ij ∈ L) and diameters (Dij; ∀ij ∈ L), and roughness236

coefficients (rij; ∀ij ∈ L), are assumed to be known within SE and OA problems.237

According to Brdys and Ulanicki (2002), a set of state variables is a minimal set of vari-238

ables whose values are sufficient to compute, by using the network model, the value of any other239

network variable. Therefore, selection of the state variables is not unique (Andersen and Powell,240

2000). For instance, Brdys and Ulanicki (2002) select as state variables all nodal heads hi; ∀i ∈ V .241

In contrast, Nagar and Powell (2004) select as state variables nodal heads at non reservoir nodes242

hi; ∀i ∈
(
VQ ∪ VT

)
. We have selected as state variables all nodal heads hi; ∀i ∈ V (including243

reservoir heads) for three reasons: i) any combination of nodal heads leads to a certain and cred-244

ible flow solution (which may not happen if considering pipe flows as state variables), ii) it also245

facilitates observable islands detection, as shown later, and iii) it allows the consideration of error246

measurements in reservoir or tank water levels. According to this selection, there are as many state247

variables as the number of nodes in the network (n).248

The network model: relationships among measurements and state variables249

Equation (1) states that there is a functional relationship among measurements and state vari-250

ables. This nonlinear relationship is derived from the network’s hydraulic model, i.e. from the251

application of mass conservation to all non-reservoir junctions (∀i /∈ VR ∪ VR∞) and branch flow-252

head characteristics within pipes (Brdys and Ulanicki, 2002).253

In this work, we consider that there are three type of measurements: i) nodal heads (assuming254
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that the node elevation is known and pressure or water levels can be measured, respectively, by255

means of piezometers and water level sensors), ii) pipe flows , and iii) demands, thus the vector256

including all possible measurements in the network corresponds to:257

z =
(
h̃i; ∀i ∈ V , Q̃ij; ∀ij ∈ L, q̃i; ∀i ∈ (VQ ∪ VT)

)T

. (5)258

Note that the tilde refers to measurements, which can be either associated with readings from a259

metering device or pseudo-measurements, as those different types of measurements are equivalent260

from the OA perspective. The relationship between measurements and state variables based on the261

network model is explicitly gathered in Supplemental Data, section A.262

The measurement Jacobian matrix263

The measurement Jacobian matrix includes the first-order partial derivatives of all the variables264

that can be measured in the system with respect to the nodal heads, i.e. state variables. Therefore,265

the Jacobian matrix contains as many columns as the number of nodes n, each of which is associ-266

ated with a nodal head hi; ∀i ∈ V , and as many rows as the total number of measurements (m)267

that can be metered within the system, represented by the vector given in (5). The structure of the268
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Jacobian matrix for a generic water network is as follows:269

J =

h1 . . . hi ... hn



h̃1
∂h̃1

∂h1
. . . ∂h̃1

∂hi
. . . ∂h̃1

∂hn

...
... · · · ... · · · ...

h̃n
∂h̃n

∂h1
. . . ∂h̃n

∂hi
. . . ∂h̃n

∂hn

Q̃1
∂Q̃1

∂h1
. . . ∂Q̃1

∂hi
. . . ∂Q̃1

∂hn

...
... · · · ... · · · ...

Q̃np

∂Q̃np

∂h1
. . .

∂Q̃np

∂hi
. . .

∂Q̃np

∂hn

q̃1
∂q̃1
∂h1

. . . ∂q̃1
∂hi

. . . ∂q̃1
∂hn

...
... · · · ... · · · ...

q̃nq

∂q̃nq

∂h1
. . .

∂q̃nq

∂hi
. . .

∂q̃nq

∂hn

(6)270

where np and nq represent, respectively, the number of pipes where flow can be measured and the271

number of nodes where demands can be metered and/or estimated. Explicit expressions required272

to build the Jacobian matrix can be found in Supplemental Data, section B.273

Let us remind the reader that in order to apply the proposed technique, a numerical instance of274

the Jacobian matrix J0 is required to particularize (6) for any likely and realistic physical status of275

the system x0, with the additional condition of avoiding null flows within pipes. This situation in-276

duces the mathematical indetermination 1
0

in expressions related to
∂Q̃ij

∂hk

(see Supplemental Data,277

section B), which produces numerical ill-conditioning of the Jacobian matrix. Besides, since the278

aim of this work is to focus on OA, it is also possible to perform the normalization of each row by279

dividing all its elements by its corresponding maximum absolute value. This strategy reduces nu-280

merical errors derived of the application of the observability algorithm. It should be noted that the281

use of an algebraic method analyzes not only topological but also numerical observability. Never-282

theless, provided that the pipe parameters and the reference network status is realistic, it is unlikely283

to detect unobservable numerical systems that are, at the same time, topologically observable.284
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ALGEBRAIC OBSERVABILITY ANALYSIS285

The algorithm used in this paper to undertake water networks observability analysis is an adap-286

tation of the one proposed by Pruneda et al. (2010) for power systems. In the next subsections, we287

focus in both the OA algorithm itself and the method for island identification.288

Algorithm for observability analysis289

The proposed methodology starts from the computed and normalized measurement Jacobian290

matrix J0. However, this proposal requires the reorganization of the Jacobian matrix rows to place291

in first position those associated with the subset of available measurements in the network (Ja292

of size ma × n), which are those available for observability purposes. Then, the rest of candidate293

measurements within the system are included, i.e. (Jc of size mc×n), which are those not available294

but accessible at a certain cost. Therefore, the structure of the reorganized Jacobian matrix becomes295

W =

 Ja

Jc

. Note that the total number of possible measurements is equal to m = ma +mc.296

The fundament of the algorithm is to transform this original Jacobian matrix W into a matrix297

W∗ through a Gauss-based elimination technique. In order to facilitate the method understanding,298

the following vectors Uw, V w, IUw and IVw are defined and updated throughout the transformation299

process, which is as follows:300

Input: Matrix W and the sets of available and candidate measurements.301

Step 1: Initialization. Set the iteration counter to ν = 1. Note that the counter indicates the row302

within W where the pivot element (see step 2) is looked for. Set null the binary vectors303

IUw and IVw associated with the state variables (columns of matrix W) and measurements304

(rows of matrix W), respectively, as shown in Table 1. Additionally, initialize vectors Uw305

and V w containing, respectively, the state variables and the list of available and candidate306

measurements corresponding to the rows of matrix W (dimension m×1). Note that available307

measurements have been marked with superindex “a” and candidate measurements with308

superindex “c”. Continue in step 2.309
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Step 2: Maximum absolute value. Locate the largest absolute value and non-null component of310

matrix Ja associated with a null element in vector IUw . Let us assume that it corresponds311

to component wk,j in Table 1 at iteration ν = k. This element is selected as pivot, which312

means that the corresponding j-th and k-th elements in vectors Uw and V w, respectively,313

are going to be exchanged as illustrated in Table 2. In addition, the corresponding column j-314

component of vector IUw is set to 1. If there is not such a component, go to step 4, otherwise,315

continue in step 3.316

Step 3: Matrix update. Once the pivoting element located in row k and column j is selected, the317

actual matrix has to be updated using a Gauss elimination strategy as follows:318

1. Replace the pivoting element wk,j by 1
wk,j

.319

2. Update the rest of elements associated with the pivot j-th column dividing by the320

pivoting element as shown in Table 2.321

3. Transform the rest of elements related to the k-th row multiplying them by − 1
wk,j

.322

4. The remaining elements of the matrix wf,e not belonging to the k-th row and j-th323

column, i.e. not boldfaced in Table 2, are transformed: wf,e ← wf,e − wf,jwk,e

wk,j
.324

Step 4: Observability checking. Once the matrix is transformed, check if any of the elements325

of vector V w is observable so far. Note that any element of V w associated with row f is326

observable if all the elements in the row f associated with null column components in vector327

IUw are equal to zero. If that it is the case, set the corresponding component in IVw equal to328

1. It must be noticed that in Table 2 a nodal head measurement has been pivoted, thus it is329

for sure observable (it directly provides the value of a state variable) and position k within330

vector IVw is set to one. If ν = ma continue with step 5, otherwise, update the iteration331

counter ν ← ν + 1 and continue with step 2.332

Step 5: Output. The process has finished. If all elements in IUw are equal to 1, the state is ob-333

servable; otherwise, it is not. Return vectors Uw, IUw , V w, and IVw and the transformed334
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matrix W∗.335

According to the functioning of the observability algorithm explained above, if the system is336

observable, n rows associated with available measurements in W are transferred to columns in337

matrix W∗, and conversely, all columns related to state variables in W are transferred to rows in338

matrix W∗. This fact indicates that the system is observable because all the state variables can339

be now determined from the available measurements. However, if full transfer is not achieved,340

some of the existing measurements allow the observability of certain variables. This information341

is contained in vector IVw .342

Regarding the classification of measurements by type, available measurements transferred to343

columns are called essential, because they are needed to characterize the hydraulic state of the344

system. Besides, if their loss makes the state unobservable, essential measurements are also called345

critical. In contrast, available or candidate measurements that only depend on essential measure-346

ments are called redundant, while if they are related to essential measurements and state variables,347

they are called non-redundant.348

Note that vector Uw starts the algorithm containing the state variables and finishes the pro-349

cess containing the essential measurements and those non-observable state variables that cannot350

be transferred to rows, if any. Similarly, vector V w contains the available and candidate measure-351

ments before the application of the algorithm and finishes with state variables and non-essential352

measurements. Binary vector IUw indicates if the corresponding components in vector Uw are353

essential or not, while binary vector IVw indicates if the corresponding state variables and mea-354

surements related to V w are observable or redundant, respectively. Therefore, apart from providing355

observability information of the system, the transformed matrix W∗ also allows to identify critical356

and redundant measurements of the analyzed network. Hence, if the state is observable, the matrix357

can be used to determine the set of redundant measurements that can replace a set of essential358

measurements so that the state of the system remains observable. On the contrary, if the system359

is unobservable, the matrix helps to identify the variables that can be observed with the available360

measurements, which is the required information for island identification.361
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An additional feature of the adopted algorithm is that the transformation to exchange rows and362

columns is reversible, as pointed out by Pruneda et al. (2010). Therefore, in case the transformed363

matrix has been initially computed and one measurement is lost, the method could be applied364

backwards without the need to start the process from scratch.365

Before continuing with the island identification algorithm, it is important to highlight some366

peculiarities of the OA algorithm for water networks:367

1. Full observability requires at least one available nodal head measurement. Note that in368

power systems this condition is equivalent to the requirement of setting a reference bus369

(Pruneda et al., 2010).370

2. Demands at transit nodes (VT) are equal to zero and are treated as measurements. Thus,371

the minimum number of available demand measurements (q̃i;∀i ∈ (VQ ∪ VT) in ma) is372

equal to the number of transit nodes within the system.373

Method for island identification374

If the state of the system is unobservable for a given set of available measurements, it is of375

interest to identify observable islands. In water supply networks, we can define observable islands376

as regions of the system where all state variables are known regardless of the lack of full observ-377

ability of the network. The procedure to detect them consists on grouping the observable variables378

that can be identified from matrix W∗, including either state variables or other hydraulic variables,379

such as flows.380

The method for island identification starts by assuming that each of the nodes associated with381

observable state variables constitute islands themselves. Thus, the set of islands I = [{1}, ...,382

{i}, {j}, ... {n}] can be defined if state variables h1, ..., hi, hj , ... hn are observable, which is383

guaranteed if the corresponding element in the resulting vector IVw is equal to one. Next step is to384

extend island coverage, thus it is required to analyze observability in their surroundings. With this385

purpose, observable branches are evaluated. We define as observable branches those lines (pipes)386

that can be observed with the available measurements according to the resulting transformed matrix387
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W∗. Therefore, if the flow through a pipe that goes from node i to junction j is observable, the388

observable island associated with i can be extended to j or vice versa. To avoid duplication, only389

j is added to the observable island related to i, thus I = [{1}, ..., {i, j},..., {n}]. Repeating this390

procedure step by step through all the observable branches, junctions are grouped in observable391

islands.392

The interest of this method for island identification is that it enables us to show graphically393

those areas where nodal heads and flows are observable. However, information about demands is394

not given explicitly. Note that demands at nodes within observable islands are only observable if395

all the flows that enter or leave the junction are included in the island. This idea is represented396

by drawing the limit of the observable island through the middle of the node, as shown in the397

following example.398

ILLUSTRATIVE EXAMPLE399

A small water network proposed by Wurbs and James (2002) is used to illustrate the OA400

methodology. Figure 1 shows the layout of the system, including the initial assumed flow di-401

rections. The system is formed by two elevated reservoirs at nodes 1 and 6 ∈ VR∞ , and four402

intermediate junctions, each of which is subjected to constant demands (∈ VQ) and connected to403

each other through seven pipes. Network parameters are given in Supplemental Data, section C.404

Measurement Jacobian matrix405

The measurement Jacobian matrix of the network can be derived following the previously406

presented methodology. The resulting normalized matrix particularized for the state given in Sup-407
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plemental Data, section C, results in:408

J0 =

h1 h2 h3 h4 h5 h6



h̃1 1 0 0 0 0 0

h̃2 0 1 0 0 0 0

h̃3 0 0 1 0 0 0

h̃4 0 0 0 1 0 0

h̃5 0 0 0 0 1 0

h̃6 0 0 0 0 0 1

Q̃1,2 1 −1 0 0 0 0

Q̃2,3 0 1 −1 0 0 0

Q̃2,5 0 1 0 0 −1 0

Q̃3,5 0 0 1 0 −1 0

Q̃3,4 0 0 1 −1 0 0

Q̃4,5 0 0 0 1 −1 0

Q̃4,6 0 0 0 1 0 −1

q̃2 −0.51 1 −0.23 0 −0.26 0

q̃3 0 −0.26 1 −0.40 −0.34 0

q̃4 0 0 −0.34 1 −0.33 −0.33

q̃5 0 −0.29 −0.34 −0.38 1 0

(7)409

Nodal head measurements can be easily identified, as they are associated with the 6×6 identity410

matrix. Similarly, flow measurements are represented by those rows where there is a 1 at the initial411

node and a −1 at the final node thanks to the proposed normalization. Finally, the four last rows412

correspond to nodal demands at non-reservoir nodes (∀i /∈ VR∞) expressed in terms of the state413

variables involved through the expressions presented in Supplemental Data, section B.414

Observability analysis415

We analyze two different initial measurement configurations, resulting in observable and un-416

observable states, respectively.417
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Observable case418

Before applying the algorithm for observability analysis, the measurement Jacobian matrix419

must be reorganized to place in first position the rows corresponding to the available measurements420

within the system (Ja), and then the group of candidate measurements (Jc), which are available at421

a certain cost. The first example assumes the following measurements are available: nodal heads422

at reservoirs (h̃1 and h̃6) and water flow in pipes 1-2 (Q̃1,2), 2-3 (Q̃2,3), 2-5 (Q̃2,5) and 3-4 (Q̃3,4).423

Note that nodal demands are not included as available information because only readings from424

metering devices are taken as available measurements in this theoretical WTN. Table 3 provides425

the corresponding measurement Jacobian matrix and Figure 2 shows the measurement layout.426

The application of the described algorithm leads to the resulting transformed matrix W∗ given427

in Table 4. Since all elements in the resulting vector IUw are equal to one, we can conclude428

that the system state is observable. Besides, since all state variables are observable, all candidate429

measurements are redundant, i.e. all elements in IVw are equal to 1. Candidate measurements also430

represent the rest of hydraulic variables within the network and thus we can conclude that all those431

variables can also be calculated. Measurements h̃1, h̃6, Q̃1,2, Q̃2,3, Q̃2,5 and Q̃3,4, belonging to432

vector Uw are essential, because they have been transferred from vector V w to Uw. Moreover,433

they are critical, because if any of them is lost, the system would become unobservable.434

As mentioned before, the transformed matrix also provides information about the set of re-435

dundant measurements that can replace a set of essential measurements so that the state of the436

system remains observable. In this respect, all non-null elements in matrix W∗ allow replacements437

preserving observability. Therefore, as the structure of the matrix results more determinant for ob-438

servability analysis than the values themselves, non-null elements have been shaded in light grey.439

For example, element w∗
13,1 = 1 ̸= 0 indicates that redundant measurement Q̃4,6 (corresponding440

row element in V w) can replace the essential measurement h̃1 (corresponding column in Uw). For441

the same reason, nodal head measurements h̃2, h̃3, h̃4, h̃5 and demand measurement q̃4 can also442

replace the essential measurement h̃1. This application has potential, because it permits to de-443

tect how a nodal head measurement can be substituted by a different kind of measurement, being444
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possible to maintain observability if flow measurement devices are installed at certain locations.445

Similarly, if the set of essential measurements Q̃2,3 and Q̃2,5 is lost, they can be replaced by the446

set of redundant measurements Q̃3,5 and Q̃4,6, because they have an associated invertible matrix447

within W∗, i.e.:448 ∣∣∣∣∣∣∣
−1 1

−1 0

∣∣∣∣∣∣∣ = 1 ̸= 0.449

Alternatively, the same set of essential measurements could be replaced by nodal head measure-450

ments h̃3 and h̃5, or by any combination of two demand measurements.451

Let us assume that we want information about the observability of the system if only measure-452

ments Q̃2,3 and Q̃2,5 are available. Note that without further calculations, it is possible to ensure that453

no state variables are observable because they all depend on other essential measurements, which454

we are assuming as no longer available. Besides, it is also possible to conclude that measurement455

Q̃3,5 would result redundant, because it only presents non-null elements in columns associated with456

available measurements Q̃2,3 and Q̃2,5. Similarly, if only h̃1 and Q̃1,2 were available, state variables457

h1 and h2 would be observable, and measurement h̃2 would be redundant.458

Finally, this approach also helps to identify locations where measurement devices should be459

placed to improve resilience against the loss of measurements. As commented before, SE calcu-460

lates the most likely hydraulic state of the network from the available measurements. However, as461

the use of instrumentation is associated with measurement errors or even instrumentation might fail462

to deliver its measurement, redundancy is required to correct those deviations and ensure reliable463

results even in case one or several assets are damaged. The algorithm for observability analysis464

confirms that including nodal demand measurements is very convenient, because as shown by ma-465

trix W∗ for the illustrative example, those rows representing demand measurements (q̃2, q̃3, q̃4 and466

q̃5) present non-null elements in many of the essential measurements involved. Thus, they provide467

a very complete overview of the system, reason why pseudo-measurements have been traditionally468

taken into account at the cost of increasing the uncertainty for the later SE process. Moreover, this469

approach permits to identify those measurements which provide the highest redundancy. In this470

20



particular case, measuring the demand at node 4 (q̃4) would be interesting to enhance the resilience471

of the system, as it would make all the essential measurements non-critical, i.e. it would keep the472

system observable even if any other measurement is lost. Matrix W∗ also permits to identify how473

other non-demand redundant measurements, such as Q̃4,6 or h̃4, would enhance redundancy for SE.474

This justifies why this methodology helps to consider where to locate the minimum measurement475

devices required to achieve observability (if it is not attained) and where to place additional control476

points (once observability is guaranteed) to enhance robustness in the subsequent SE process.477

Unobservable case478

In this case, we consider that the set of available measurements includes both nodal heads at479

the reservoir nodes (h̃1 and h̃6) and flow measurements in pipes 1-2 (Q̃1,2), 2-3 (Q̃2,3), 2-5 (Q̃2,5)480

and 3-5 (Q̃3,5), as shown in Figure 3. The only difference with respect to the observable case481

previously analyzed is that measurement Q̃3,4 is replaced by Q̃3,5.482

Once again, this scenario can be analyzed implementing the algorithm to the newly organized483

Jacobian matrix, where Q̃3,5 is part of the available measurement subset instead of Q̃3,4 as in484

Table 3. Execution of the proposed methodology leads to the transformed matrix shown in Table 5,485

where non-null elements have been shaded in light grey.486

From Table 5 the following observations are pertinent:487

1. State variable h4 has not been pivoted, because all its Ja column components are null. Thus488

the system is unobservable and includes one redundant measurement Q̃3,5.489

2. Matrix W∗ provides information of how to achieve observability, i.e. including in the avail-490

able measurement set any of the measurements h̃4, Q̃3,4, Q̃4,5, Q̃4,6, q̃3, q̃4 or q̃5. Note that491

their corresponding row elements associated with the unobservable state variable h4 present492

non-null components. This information could also have been extracted from Table 4, be-493

cause the essential and critical measurement Q̃3,4 could be replaced by h̃4, Q̃4,5, Q̃4,6, q̃3,494

q̃4 or q̃5, but no others. This fact proves that the application of the algorithm to one subset495

of measurements provides the observability information of the entire network regardless of496
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the subset of available measurements being considered, and without the need to start the497

process from scratch.498

3. Vector IVw allows to know which other variables are observable. For instance, q2 can be499

calculated because its corresponding element on that vector is equal to 1. Note that the500

element in its row associated with the column related to the unobservable state variable h4501

is null, i.e. its information can be extracted from the remaining measurements.502

4. If, for instance, measurement Q̃3,4 becomes available, the system would become observable503

and the essential measurements h̃1, Q̃1,2, Q̃3,4 and h̃6 would become critical, because all of504

them present null elements in the row related to the redundant measurement Q̃3,5.505

If we focus on the detection of observable islands, we start having 5 initial islands which506

correspond to the nodes where state variables are observable in first place: {1}, {2}, {3}, {5} and507

{6}. Also, we can identify the observable branches in the network for this case scenario: Q̃1,2,508

Q̃2,3 and Q̃2,5 as essential measurements, and Q̃3,5 as redundant measurement. Therefore, we can509

undertake the presented algorithm to group the observable information, as shown in Table 6. At the510

end of the process the observable islands are {1,2,3,5} and {6}, as shown in Figure 3. It must be511

noticed that this procedure allows to guarantee that nodal heads and flows are observable, but not512

demands. For example, nodal demand 2 (q2) is observable because the corresponding measurement513

q̃2 is redundant according to matrix W∗, but nodal demands 3 and 5 are not, because they depend514

on the flow in pipes 3-4 and 4-5, which cannot be observed.515

DISCUSSION: APPLICABILITY TO REAL WATER TRANSPORT NETWORKS516

The previous illustrative example shows the potential of the methodology presented to analyze517

the topology of a simple network, but its applicability to real systems needs to be discussed. To518

begin with, note that the computational complexity of the method is analogous to that of the Gauss519

elimination method for solving linear systems of equations, which can be efficiently solved even for520

large scale systems. Moreover, the Jacobian matrix required for the analysis has been normalized to521

decrease the probability of numerical errors due to ill-conditioning. Thus, from the computational522
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point of view, it is highly suitable for its practical implementation in large water supply systems.523

From a practical point of view, we have restricted the application of the OA algorithm for real524

networks to the case of Water Transport Networks that supply sectorized areas. Hence, OA could525

be applied to this primary network, and would enable an approximate picture of the real system526

observability. Moreover demand management within DMA would be improved even for the worst527

case scenario of unexpected individual or simultaneous failure of essential meters. For example,528

let us suppose we run the OA algorithm just for the primary network, obtaining the transformed529

matrix W ∗. Note that this calculation can be done off-line without computational time limitations530

to store the matrix in the system for its posterior on-line use. If we wish to carry out OA prior531

to SE and factor in the specific loss of measurements at a specific instant in time, we could run532

the algorithm in reverse order by removing measurements and updating matrix W ∗ consequently.533

Thus, it is possible to quickly answer the question of whether the system remains observable or not,534

and if the latter is the case, which measurements and/or pseudo-measurements could be included535

to recover observability.536

CONCLUSIONS537

In this paper the necessity of applying OA before any SE method has been justified, espe-538

cially for its automatic application in real-time. From the practical perspective, its application is539

especially relevant for WTN, where the use of pseudo-measurements is not required. This makes540

WTN suitable for the implementation of OA techniques, which enables the set of metering devices541

that makes the network observable to be identified without relying on pseudo-measurements. This542

strategy would permit any state of the network in the subsequent SE process to be characterized,543

even when unexpected changes occur, which is a present and future requirement in order to obtain544

the maximum benefit from modern ICT systems within water supply systems.545

In particular, the novel implementation for WTN of an algebraic OA method adapted from546

power systems (which allows extraction of the maximum amount of information possible as re-547

gards observability issues) is presented in this paper. The methodology presented herein allows548

observability checking, identification of critical and redundant measurements and detection of ob-549
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servable islands. Moreover, it has the following additional features: i) it informs if any measure-550

ment set makes the system observable, and if it is not, which variables would be observable and551

unobservable, thus if we run an SE algorithm based on optimization techniques, it is possible to552

know what information is really trustworthy and what information must be discarded, ii) it shows553

how observability changes if any of the measurements disappears from the meter set (sensor failure,554

communication failure, etc.), and so constitutes a useful tool for carrying out a rapid analysis of555

observability of the resulting system in case the SCADA system fails to deliver any measurement,556

iii) it provides a criteria for the location of measurements with special emphasis on observability557

issues, and iv) it provides criteria to install new sensors if the operator wants to increase resilience558

against loss of sensors and/or measurements, thereby ensuring that the most important variables in559

the system remain observable.560

The method has potential for use in large networks, due to its simplicity in terms of computa-561

tional performance. Additionally, the possibility of running the algorithm in reverse order would562

reduce the number of iterations required to update matrix W ∗ thereby reducing the number of mea-563

surements lost , which is considerably faster than starting the process from scratch and suitable for564

its real-time application. Therefore, this approach is a robust and practical method for analyzing565

specific measurement configurations within WTN and supports the installation of measurement566

devices in modern networks provided with SCADA systems.567

On a final note, it must be pointed out that work is underway to prove how observability issues568

affect SE results within water transport networks. Also, note that how to tackle unknown valve and569

tank statuses (so called topological observability in electric systems) is a topic of ongoing research.570
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TABLE 1. First step of the algorithm for observability analysis at iteration ν = k

IVw V w 0 . . . 0 . . . 0 ←− IUw

↓ ↓ h1 . . . hj . . . hn ←− Uw

0 h̃a
1 w1,1 . . . w1,j . . . w1,n

...
...

... · · · ... · · · ...
0 h̃a

k wk,1 . . . wk,j . . . wk,n
...

...
... · · · ... · · · ...

0 h̃a
i wf,1 . . . wf,j . . . wf,n

0 Q̃a
1 w(f+1),1 . . . w(f+1),j . . . w(f+1),n

...
...

... · · · ... · · · ...
0 Q̃a

ij

... · · · ... · · · ...

0 q̃a1
... · · · ... · · · ...
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...

... · · · ... · · · ...
0 q̃ai wma,1 . . . wma,j . . . wma,n

0 h̃c
1 w(ma+1),1 . . . w(ma+1),j . . . w(ma+1),n

...
...

... · · · ... · · · ...
0 h̃c

i

... · · · ... · · · ...

0 Q̃c
1

... · · · ... · · · ...
...

...
... · · · ... · · · ...

0 Q̃c
ij

... · · · ... · · · ...

0 q̃c1
... · · · ... · · · ...

...
...

... · · · ... · · · ...
0 q̃ci wm,1 . . . wm,j . . . wm,n
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TABLE 2. Second, third and fourth step of the algorithm for observability analysis
at iteration ν = k

IVw V w 0 . . . 1 . . . 0 ←− IUw

↓ ↓ h1 . . . h̃a
k . . . hn ←− Uw

0 h̃a
1 w1,1 − wk,1

w1,j

wk,j
. . . w1,j

wk,j
. . . w1,n − wk,n

w1,j

wk,j

...
...

... · · · ... · · · ...

1 hj −wk,1

wk,j
. . . 1

wk,j
. . . −wk,n

wk,j

...
...

... · · · ... · · · ...

0 h̃a
i wf,1 − wk,1

wf,j

wk,j
. . . wf,j

wk,j
. . . wf,n − wk,n

wf,j

wk,j

0 Q̃a
1 w(f+1),1 − wk,1

w(f+1),j

wk,j
. . . w(f+1),j

wk,j
. . . w(f+1),n − wk,n
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... · · · ... · · · ...

0 Q̃a
ij

... · · · ... · · · ...
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... · · · ... · · · ...
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...

... · · · ... · · · ...
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wma,j

wk,j
. . . wma,j

wk,j
. . . wma,n − wk,n

wma,j

wk,j

0 h̃c
1 w(ma+1),1−wk,1

w(ma+1),j

wk,j
. . . w(ma+1),j

wk,j
. . . w(ma+1),n−wk,n

w(ma+1),j

wk,j

...
...

... · · · ... · · · ...

0 h̃c
i

... · · · ... · · · ...

0 Q̃c
1

... · · · ... · · · ...
...

...
... · · · ... · · · ...

0 Q̃c
ij

... · · · ... · · · ...

0 q̃c1
... · · · ... · · · ...

...
...

... · · · ... · · · ...

0 q̃ci wm,1−wk,1
wm,j

wk,j
. . . wm,j

wk,j
. . . wm,n−wk,n

wm,j

wk,j

32



TABLE 3. Illustrative example W matrix for the observable case.

W 0 0 0 0 0 0
ν = 0 h1 h2 h3 h4 h5 h6

0 h̃1 1 0 0 0 0 0
0 h̃6 0 0 0 0 0 1
0 Q̃1,2 1 -1 0 0 0 0
0 Q̃2,3 0 1 -1 0 0 0
0 Q̃2,5 0 1 0 0 -1 0
0 Q̃3,4 0 0 1 -1 0 0
0 h̃2 0 1 0 0 0 0
0 h̃3 0 0 1 0 0 0
0 h̃4 0 0 0 1 0 0
0 h̃5 0 0 0 0 1 0
0 Q̃3,5 0 0 1 0 -1 0
0 Q̃4,5 0 0 0 1 -1 0
0 Q̃4,6 0 0 0 1 0 -1
0 q̃2 -0.51 1 -0.23 0 -0.26 0
0 q̃3 0 -0.26 1 -0.40 -0.34 0
0 q̃4 0 0 -0.34 1 -0.33 -0.33
0 q̃5 0 -0.29 -0.34 -0.38 1 0

33



TABLE 4. Illustrative example transformed matrix W* for the observable case

W∗ 1 1 1 1 1 1
ν = 6 h̃1 Q̃1,2 Q̃2,3 Q̃3,4 Q̃2,5 h̃6

1 h1 1 0 0 0 0 0
1 h6 0 0 0 0 0 1
1 h2 1 -1 0 0 0 0
1 h3 1 -1 -1 0 0 0
1 h5 1 -1 0 0 -1 0
1 h4 1 -1 -1 -1 0 0
1 h̃2 1 -1 0 0 0 0
1 h̃3 1 -1 -1 0 0 0
1 h̃4 1 -1 -1 -1 0 0
1 h̃5 1 -1 0 0 -1 0
1 Q̃3,5 0 0 -1 0 1 0
1 Q̃4,5 0 0 -1 -1 1 0
1 Q̃4,6 1 -1 -1 -1 0 -1
1 q̃2 0 -0.51 0.23 0 0.26 0
1 q̃3 0 0 -0.60 0.40 0.34 0
1 q̃4 0.33 -0.33 -0.66 -1 0.33 -0.33
1 q̃5 0 0 0.71 0.38 -1 0
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TABLE 5. Illustrative example transformed matrix W* for the unobservable case

W∗ 1 1 1 0 1 1
ν = 6 h̃1 Q̃1,2 Q̃2,3 h4 Q̃2,5 h̃6

1 h1 1 0 0 0 0 0
1 h6 0 0 0 0 0 1
1 h2 1 -1 0 0 0 0
1 h3 1 -1 -1 0 0 0
1 h5 1 -1 0 0 -1 0
1 Q̃3,5 0 0 -1 0 1 0
1 h̃2 1 -1 0 0 0 0
1 h̃3 1 -1 -1 0 0 0
0 h̃4 0 0 0 1 0 0
1 h̃5 1 -1 0 0 -1 0
0 Q̃3,4 1 -1 -1 -1 0 0
0 Q̃4,5 -1 1 0 1 1 0
0 Q̃4,6 0 0 0 1 0 -1
1 q̃2 0 -0.51 0.23 0 0.26 0
0 q̃3 0.40 -0.40 -1 -0.40 0.34 0
0 q̃4 -0.67 0.67 0.34 1 0.33 -0.33
0 q̃5 0.38 -0.38 0.34 -0.38 -1 0
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TABLE 6. Identification of observable islands for the illustrative example unobserv-
able case

Observable branch Observable islands

{1} {2} {3} {5} {6}
Q1,2 {1, 2} {3} {5} {6}
Q2,3 {1, 2, 3} {5} {6}
Q2,5 {1, 2, 3, 5} {6}
Q3,5 {1, 2, 3, 5} {6}
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FIG. 1. Network layout of the illustrative example. Modified from Wurbs and James
(2002)
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FIG. 2. Layout of the observable case for the illustrative example
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FIG. 3. Layout of the unobservable case for the illustrative example
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