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ABSTRACT13

End-uses at water supply systems typically follow a random pulse behaviour, which blurs14

as consumptions are aggregated upstream, affecting flow rate variability along the spatial scale.15

Instantaneous variability has impact on the capacity of a hydraulic model to represent rapidly16

changing flow network scenarios, but traditional models only simulate average conditions. This17

paper analyses the spatial scale effect in instantaneous flow variability by making use of a novel18

analytical approach to SIMDEUM microcomponent-based stochastic demand model. Analytical19

results show good correspondence to previous results at Benthuizen case study and demonstrate the20

potential use of the approach to assess the effect of network size in a realistic system. Results prove21

that demand coefficients of variation increase in the periphery of water systems according to power22
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laws, highlighting the necessity of considering real variability rather than average conditions in23

these areas where real water flows never correspond to average flows. This is of utmost importance24

when dealing with real measurements and water quality applications.25

INTRODUCTION26

Water demand has traditionally been considered as deterministic for the purpose of drinking27

water supply systems modelling, as average scenarios have been typically assumed to simplify hy-28

draulic simulations. The conventional “top-down” demand allocation process consists of assigning29

a demand multiplier pattern to the average or base demand on each node (Blokker et al. 2011a).30

Such an approach implies that water demand patterns are strongly correlated among all nodes.31

This is reasonable for water transport networks, which are the main arteries that supply water to32

sectorized urban areas, but it is not so appropriate for water distribution systems that ensure water33

provision on a more local scale (Filion et al. 2008). In such part of the network, the spatial and34

temporal variability of water demand is significant, and it is necessary to consider the stochastic35

nature of demands in order to make sure that sufficient (e.g. water supply at peak hours) and36

good-quality water (e.g. residence time and/or water quality) is provided to all users at all times.37

Otherwise, real flow and simulated average scenarios may differ significantly, and this can lead38

to a host of network issues (Buchberger and Wu 1995). The top-down simplification has worked39

well for several decades, but the limited availability and increased variability of water resources40

as a result of climate change (Zhang et al. 2019) and the growing requirements of a concerned41

society in terms of service quality (Mahmoud et al. 2018) have required to begin to focus on in-42

stantaneous stochastic demands (Vertommen et al. 2012; Pérez-Sánchez et al. 2017). This has led43

to the development of so-called “bottom-up” hydraulic models, which have been used to simulate44

the stochastic complexity of water demands since the end of the 90s (Creaco et al. 2017a).45

According to the literature review presented by Creaco et al. (2017a), the available stochas-46

tic demand models at high temporal and spatial resolutions when implementing a “bottom-up”47

approach can be classified in two different groups: (1) models that use stochastic processes to48

simulate the overall water demand at a household, without differentiating the contribution of each49

2 Díaz and González, June 16, 2020



inhabitant or appliance, and (2) models that construct the overall water demand at a household by50

adding demand microcomponents of each end-user at a fixture level (e.g. tap, washing machine,51

dishwasher). Buchberger and Wu (1995) presented the first type of models, which used Poisson52

Rectangular Pulses (PRP) to simulate the intensity, duration and frequency of water demands at a53

residence. According to this approach, parameters and probability functions that constitute a PRP54

can be obtained from flow measurements at monitored households (Buchberger and Wells 1996).55

This set up a basis for the analysis, over which different alternative pulsemodels have been presented56

(e.g. Alvisi et al. 2003, Creaco et al. 2015). These methods are relatively straightforward to build,57

as they depend on few parameters, but they require a significant amount of measurements, and58

parameter extrapolation to other populated areas is complicated (Creaco et al. 2017a). The second59

family of models follows the same idea of rectangular pulses, but they compute water consumption60

for each microcomponent from statistical information obtained from surveys. According to the61

aforementioned literature review, there is only one method within this category: the SIMDEUM62

model (Blokker et al. 2009; Blokker et al. 2010; Blokker et al. 2011a). SIMDEUM uses Monte63

Carlo simulations to compute demand patterns for each end-use, so it requires many parameters64

that are on the other hand easier to obtain.65

Experimental campaigns are still required around the globe to better characterize water con-66

sumption at different locations, but both types of models are nowadays considered feasible ap-67

proaches to estimate high-resolution water demands (Creaco et al. 2017a). It must be highlighted68

that bottom-up stochastic demand models were originally conceived to improve the knowledge69

about local flow fields and their consequences on water quality modelling (Buchberger and Wu70

1995), especially in the periphery of water distribution systems, where velocities and head losses are71

low and thus water quality assessment is crucial (Blokker et al. 2008). However, their application72

field has extended ever since, at least at a scientific level. For example, SIMDEUMmodel has been73

applied for hydraulic network modelling (including some first attempts on leakage and transient74

simulations) and water quality assessment, but it has also been used for the design of drinking water75

supply systems and installations, prediction of future demands and so on (Blokker et al. 2017).76
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These applications prove that demand pulse modelling has potential and will eventually impact on77

different aspects of the practical analysis and design of water supply systems. But they also show78

that such tools have evolved from their original micro-scale perspective, and it is not straightforward79

to operationally extend them to full-scale real distribution systems (Creaco et al. 2017b).80

The aim of this work is to present an analysis of stochastic demand behaviour, using a novel81

analytical approach in order to characterize network spatial scale effects in flow (i.e. aggregated82

demand) variability. The proposed approach belongs to the second group of stochastic demand83

methods, which (like SIMDEUM) generate residential water demand by adding upmicrocomponent84

consumption. The original SIMDEUM model is fed with survey-based parameters to provide85

plausible instantaneous water flows associated with Monte Carlo simulations, so it could be used86

to characterize the statistical behaviour of water demands. However, multiple simulations would87

be required, leading to excessive computational times for large urban areas or biased results if the88

number of simulations is insufficient (Blokker et al. 2011a). The new proposal directly provides89

statistical characterization (mean and variance values) of instantaneous demands. Such an approach90

is possible by assuming that end-uses and end-users are independent among each other, hence mean91

and variance values can be progressively added up (like in the PRP approach from Buchberger and92

Wu 1995) to assess the effect of spatial aggregation on demand uncertainty. This makes the change93

from the fixture or household level to the full-scale network and vice versa easier and it avoids the94

inconvenients associated with Monte Carlo simulations. As the new approach provides variance95

estimation, it can also be used to better characterize nonlinear trends in water quality modelling96

(Morton andHenderson 2008), which are far more complex than the simplified approaches typically97

used in engineering practice (Blokker et al. 2008). Moreover, as the model computes instantaneous98

water demand on a per second basis, results are potentially useful for real-time applications. Such is99

the case of state estimation techniques, which provide the most likely hydraulic state of the system100

based on the available noisy measurements gathered by a telemetry system (e.g. Kumar et al. 2008;101

Díaz et al. 2016; Díaz et al. 2018a; Díaz et al. 2018b), or other similar on-line tools (e.g. Wright102

et al. 2015; Sanz et al. 2016).103
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The rest of the paper is organised as follows. Firstly, the analytical microcomponent-based104

stochastic demand approach is presented. This includes a description of the underlying model105

hypotheses and the mathematical formulation that enables to analytically compute mean and vari-106

ance of instantaneous water demands. Then, the method is applied to Benthuizen case study and107

compared to previous results from the literature (Blokker et al. 2011a). Once it has been validated,108

analytical results are further discussed to analyse network spatial scale effects. Finally, relevant109

conclusions are duly drawn.110

METHODOLOGY111

Hypotheses112

The analytical stochastic demand approach presented in this paper is based on the following113

assumptions:114

• It is inspired on the original SIMDEUM model (Blokker et al. 2010), as this end-use ap-115

proach is nowadays a recognized methodology to simulate microcomponent-based stochas-116

tic water demand. Therefore, it uses the same information and it has the same expansion117

possibilities that SIMDEUM. As it will be explained later on, the present approach comes to118

combine the original PRP analytical approach to stochastic demand modelling (Buchberger119

and Wu 1995) with SIMDEUM’s survey-based focus.120

• Only residential water demand is here considered. However, the approach here presented121

could be extended to non-residential buildings (e.g. offices, schools, hospitals), like it has122

been done before with other models (Blokker et al. 2011b).123

• Bathroom tap (for washing/shaving and brushing teeth uses), outside tap (for garden use124

and others, e.g. cleaning), WC (6L/9L with or without water saving configuration), bathtub,125

shower (with or without water saving configuration), dishwasher, washing machine and126

kitchen tap (for consumption, doing dishes, washing hands and others) end-uses have been127

considered in this work, as originally proposed for the SIMDEUM model (Blokker et al.128

2010).129
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• The activation of an end-use is independent from the rest of openings associated with that130

end-use. This means that each inhabitant can start an end-use regardless of when he/she131

has previously used it.132

• The average number of openings (i.e. frequency) for each end-use is independent from the133

number of devices that enable that end-use. This means that, for example, the number of134

WC flushes of a user is independent from the number of WC devices in the household.135

• End-uses are independent among each other for a specific inhabitant: the same person can136

start several end-uses at the same time. This is reasonable for some long-duration uses (e.g.137

washing machine, dishwasher), but it may be questionable for some other cases of overlap138

(e.g. shower-kitchen tap).139

• Each inhabitant acts independently from the rest of inhabitants in the house, as each person140

is related to a specific type of pattern (like in Blokker et al. 2010). This assumption141

is reasonable for some households, but it impedes the simulation of family-coordinated142

activities.143

• Each house is independent from the rest of houses in the neighbourhood. This assumption is144

compromised for some specific events or festivities, but it works fine in ordinary conditions.145

The first three hypotheses are posed to delimit the scope of the model presented in this paper,146

whereas the rest focus on establishing independence among end-uses, inhabitants and households.147

The proximity of these hypotheses to the real behaviour has been validated, as it will be shown in148

the Case study and spatial scale effect analysis section.149

Mean instantaneous demand150

Water demands are random variables, so the expected value of any group of demands (Z) can151

be computed by adding the expected or mean value of each of the water demands (e.g. X and Y )152

(Haan 1977):153

Z = X + Y (1)154
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155

E(Z) = E(X + Y ) = E(X) + E(Y ) (2)156

This elementary property enables to compute the mean instantaneous demand at a specific time t157

and level of spatial aggregation s (µt,s) by addingmean values of water consumption for all end-uses158

and inhabitants within the household or households included in an area:159

µt,s =

nhou∑
i=1

µhoui =

nhou∑
i=1

©­«
nhabi∑
j=1

µhabj +

4∑
k=1

µktapk
ª®¬ ; (3)160

where nhou is the total number of houses, and µhoui is the instantaneous demand at household i. At161

the same time, household demand is composed by the addition of the total number of inhabitants162

in the house (nhabi ), who each ( j) have an individual demand µhabj , as shown in Figure 1. It must163

be highlighted that the mean instantaneous demand for the kitchen tap (µktapk ) is not considered164

individually but on an overall household-basis, as suggested by Blokker et al. (2010). Sub-index k165

refers to the four possible uses mentioned earlier on for the kitchen tap (consumption, doing dishes,166

washing hands and others). Note that µt,s refers to a specific level of spatial aggregation s. This167

may refer to a network node that represents one individual household, a full multi-story building,168

a neighbourhood, a District Metered Area (DMA) or a full town. The overall mean value can be169

easily scaled up by aggregating as many individual demands as required.170

Instantaneous demand for each inhabitant (µhabj ) must take into account the rest of end-uses171

stated in the Hypotheses section:172

µhabj =

2∑
l=1

µbtapl +

2∑
m=1

µotapm + µwcn + µbath + µshowero + µdishw + µwashm; (4)173

where µbtapl and µotapm refer to the aforementioned bathroom and outside tap uses, respectively. On174

the other hand, µwcn and µshowero represent the type of WC and shower that exist in the household,175

and µbath, µdishw and µwashm refer to a prototype bathtub, dishwasher andwashingmachine typically176

used (Blokker et al. 2010). Terms could be added if additional fixtures, types of end-use or types177

of devices were to be considered. In general, Eq. (4) represents the addition of end-use terms,178
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meaning that each inhabitant activates several times different end-uses along the day. In order to179

simplify notation, Eq. (4) will be from now on written as the addition of several end-uses (u) mean180

demand (µu):181

µhabj =

nuse∑
u=1

µu, (5)182

out of the nuse uses that are included in this work.183

In order to analytically compute the mean instantaneous demand of an end-use at time t,184

two exclusionary probability density functions must be considered: one that refers to the unitary185

probability of one opening of an end-use u being on/open at time t (Pou(t), with o for open) and186

another one that refers to the unitary probability of one opening of the end-use u being off/closed187

at that time t (Pcu(t), with c for closed):188

Pou(t) + Pcu(t) = 1 (6)189

Such probabilities refer to the probability of an end-use u being open/closed at time t when one190

opening occurs along a day. Note that duration of each end-use (see Table 1) is considerably smaller191

than the discretization time step typically assumed for demand patterns (i.e. every hour), and even192

smaller than 24 h, so Pou(t) � 1 (typically smaller than 1%) and Pcu(t) ≈ 1 for all end uses here193

considered.194

In reality, not only one opening takes place for each end-use u during a day, but a number of195

openingsmay occur, whosemean value is here called µNu (i.e. mean frequency of use). Considering196

previous conditions, it can be demonstrated that the daily (rather than unitary) probability of the197

end-use being on along a full day is equal to µNu · Pou(t). Considering this, and the fact that mean198

instantaneous demandmust account the probability of the end-use being on and off, it can be written199

that:200

µu = µNu · Pou(t) · µiou + (1 − µNu · Pou(t)) · µicu, (7)201

where µiou is the mean intensity of the end-use u when it is open (with o for open) and µicu its mean202
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intensity when it is closed (with c for closed). In this equation, the off (i.e. right-hand side term of203

the addition) is zero because the mean intensity when the end-use is not working is assumed to be204

null (µicu = 0), i.e. there is watertight closure for all end-uses. In order to further simplify notation,205

the intensity when open can be rewritten as µiou = µiu so that Eq. (7) can be expressed as:206

µu = µNu · Pou(t) · µiu . (8)207

Buchberger and Wu (1995) already highlighted the additive nature of mean (and even variance)208

water demands from homogeneous and nonhomogeneous PRP processes, but their work did not209

explain how mean intensity and duration values could be computed from available survey-based210

information. SIMDEUM development years later led to the tabulation of both µNu and µiu as211

survey-based parameters in countries like The Netherlands (Blokker et al. 2010). Therefore, the212

emphasis of this analytical approach must be put in characterizing Pou(t). Pou(t) represents the213

unitary probability of one opening of an end-use u being open at time t, hence it must consider all214

the previous instants such that the opening occurs and the end-use duration (i.e. time open) is long215

enough to keep acting at the evaluated time t. Considering typical end-use duration Cumulative216

Distribution Functions (CDF), Pou(t) can be computed as:217

Pou(t) =


Poud (t) =
∫ t
−∞ f j(x) ·

(
1 − Fdu (t − x)

)
· dx if duration follows a lognormal CDF

Pou f (t) =
∫ t

t−µdu
f j(x) · dx if duration is a fixed value

(9)218

According to SIMDEUM model, kitchen taps, bathroom taps, outside taps and shower fixtures219

follow a lognormal CDF Fdu (Poud (t)), whereas WCs, bathtubs, dishwashers and washing machines220

usually dischargewater over a fixed-duration (Pou f (t)). Pou f (t) can be easily computed by integrating221

f j(x), which is the per hour slope of the CDF of each type of resident’s demand pattern, i.e. it is the222

probability density function value of the end-use opening instant for each type of inhabitant. CDF223

and hence f j(x) computation for different types of end-users is carefully explained based on Table224

4 and Figure 1 at Blokker et al. (2010). In that work, five different types of resident exist (adults225
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with job away from home, adults without job away from home, seniors, teenagers and children),226

and the same are assumed here (i.e. there are five f j(x) patterns, one for each type of inhabitant).227

Patterns are here discretized every hour, so 24 f j(x) values must be considered for each type of228

end-user along a full day to identify the duration over which the fixed-value end-use is on, but this229

discretization could be refined if additional reliable pattern information was available. In order to230

compute Poud (t), we can simplify the daily pattern part of the integral in Eq. (9) as a summation231

for each hour:232

Poud (t) =
∫ t

−∞
f j(x) ·

(
1 − Fdu (t − x)

)
· dx233

=

[ t
3600 ]+1∑

h=
[
t−max(du )

3600

]
+1

f j(h) ·
(
min(t, 3600 · h) − (h − 1) · 3600 −

∫ x=min(t,3600·h)

x=(h−1)·3600
Fdu (t − x) · dx

)
,(10)234

where [] refers to the integer part of its argument, h ∈ Z, t is expressed in seconds since the235

beginning of the day (e.g. t = 36000 s equivalent to 10:00 in the morning) and max(du) is the236

maximum end-use duration, e.g. such associated with a CDF Fdu = 0.999. Eq. (10) shows that it is237

only necessary to solve the defined integral of a lognormal CDF Fdu (t − x) from a = (h − 1) · 3600238

to b = min(t, 3600 · h) in order to calculate Poud (t) and thus µu. It can be analytically derived that239

the integral of any lognormal duration CDF is equivalent to:240

∫ b

a
Fdu (t − x) · dx = −

{[
Φ

(
ln(t − x) − µ

σ

)
· (t − x)

]b

a
− e

σ2
2 +µ

[
Φ

(
ln(t − x) − (µ + σ2)

σ

)]b

a

}
,

(11)241

where Φ represents a standard normal CDF. Note that µ and σ are the mean and standard deviation242

of the associated normal distribution. As survey-based parameters in this case (Table 1) correspond243

to lognormal distributions (µdu, σdu ), in this work µ and σ at Eq. (11) have to be computed244

accordingly.245
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Instantaneous demand variance246

The variance of the sum (Z) of two random variables (X andY ), like in Eq. (1), can be generally247

written as (Haan 1977):248

Var(Z) = Var(X) + Var(Y ) + 2 · Cov(X,Y ) (12)249

Independence hypotheses assumed in thiswork ensure that there is null covarianceCov(X,Y ) among250

water consumption values, so demand variance at a specific time and level of spatial aggregation251

(σ2
t,s) can be computed by adding demand variances of all involved end-uses and inhabitants (see252

Figure 1):253

σ2
t,s =

nhou∑
i=1

σ2
houi =

nhou∑
i=1

©­«
nhabi∑
j=1

σ2
habj
+

4∑
k=1

σ2
ktapk

ª®¬ . (13)254

Eq. (13) is analogous to Eq. (3), so σ2
houi

, σ2
habj

and σ2
ktapk

represent the water consumption255

variance for each household, inhabitant and kitchen tap end-use involved, respectively. Note that256

all variances are referred to previously obtained mean values for the s and t level of aggregation257

being considered. This means that the variance of each end-use needs to be translated in order to258

consider mean instantaneous demand as described later on (see Eq. 16).259

Accordingly, each occupant’s water demand variance can be computed from the end-uses260

assumed to be available at the household:261

σ2
habj
=

2∑
l=1

σ2
btapl +

2∑
m=1

σ2
otapm + σ

2
wcn + σ

2
bath + σ

2
showero + σ

2
dishw + σ

2
washm, (14)262

whose notation can in turn be simplified by expressing the variance of each inhabitant’s water263

consumption as a summation of demand variances for each end-use:264

σ2
habj
=

nuse∑
u=1

σ2
u . (15)265

Note that the variance of each end-usemust be computedwith respect to the average consumption266
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of each end-use, as obtained before with Eq. (7) or (8). This is due to the fact that the second267

moment of a variable with respect to a position that is displaced from the origin must take into268

account the distance between such points (Haan 1977). Similarly to Eq. (7), demand variance for269

each-end use must be obtained considering two terms that refer to the daily probability of end-use270

u being on at time t and the associated intensity variance, and the probability of it being closed and271

the corresponding intensity variance:272

σ2
u = µNu · Pou(t) ·

(
σ2

iou + (µiou − µu)2
)
+ (1 − µNu · Pou(t)) ·

(
σ2

icu + (µicu − µu)2
)
. (16)273

The main difference between this expression and Eq. (7) is that here variance needs to be translated274

in order to take into account the mean instantaneous demand (µu) previously computed with Eq. (8).275

In order to simplify notation, parameters that characterize water intensity when the end-use is open276

can be written as µiou = µiu and σ2
iou
= σ2

iu
, as it can be assumed that µicu = σ

2
icu
= 0. Eq. (16) can277

then be written as:278

σ2
u = µNu · Pou(t) ·

(
σ2

iu + (µiu − µu)2
)
+ (1 − µNu · Pou(t)) · µ2

u, (17)279

where Pou(t) can be calculated according to Eqs. (9)-(11).280

Note that this analytical approach helps to characterize the traditional SIMDEUM model, as it281

requires exactly the same input parameters, but it enables to explicitly compute mean instantaneous282

demand and variance values (statistical properties). Such a simplified approach could be used for283

many applications where based on a stochastic model, water demand statistics are required, like284

generatingmean values, designing rules for maximumflows (Buchberger et al. 2012) or considering285

the probability of flow stagnation (Blokker et al. 2008).286

CASE STUDY AND SPATIAL SCALE EFFECT ANALYSIS287

The analytical approach for stochastic demand modelling is here applied to Benthuizen case288

study, presented in the literature before by Blokker et al. (2011a). The selected network is a test289
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area (circa 140 homes, 300 inhabitants) located within the town of Benthuizen (The Netherlands),290

which is convenient given that SIMDEUM was conceived over ten years ago for Dutch cases of291

application (Blokker and Vreeburg 2005) and thus most of the available survey-based parameters292

(needed to run both SIMDEUM and the analytical approach here presented) are associated with293

this country. According to the original publication, water flow had been measured in this town in294

2004 and 2006 (Beuken et al. 2008) to prove that the network had no leaks, but it was not until July295

2007 that flow was measured and a tracer was dosed at the entrance of the test area with the aim of296

comparing top-down and bottom-up demand allocation models. More specifically, Blokker et al.297

(2011a) used these measurements to compare the effect of stochastic demand modelling in terms of298

demand multiplier patterns and residence times for a branched and looped network configuration.299

In this work, the analytical approach is validated by comparing it to previous Benthuizen results.300

The model is run with Benthuizen’s population characteristics (Blokker et al. 2011a) and Dutch301

residential survey-based parameters (Blokker et al. 2010), which are here gathered in Table 1 to302

illustrate the variability included in the model. Note that variances in Table 1 have been computed303

according to Blokker et al. (2010) guidelines. This publication indicates that intensity variance can304

be assumed null for appliances with fixed intensity (WC, bathtub, shower, dishwasher and washing305

machine), but it can be computed assuming uniform distributions with null minimum intensity and306

twice the mean maximum intensity for taps. In what regards duration variances, the same authors307

recommend to consider the variance equal to 130% the mean value for taps, and 50% the mean308

value for showers when assuming a lognormal duration CDF. Therefore, parameters in Table 1309

only need to be complemented with f j(x) values from Blokker et al. (2010) (i.e. slopes of daily310

pattern CDF), which represent the average daily pattern for each type of end-user, in order to run311

the analytical approach here presented.312

The analytical solution obtained with 2011’s parameters is then compared to every-minute water313

flow measurements at the entrance to the test area, which equates to the aggregated demand for314

the full neighbourhood thanks to the fact that the area is free of leaks. In Blokker et al. (2011a)315

measurements weremade over 7 days, but only the associated weekdays are here considered in order316
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to avoid significant changes in daily patterns and/or model parameters. Note that Blokker et al.317

(2010) provide specific patterns for weekends, but duration, intensity and frequency parameters318

are kept the same regardless of the day of the week. As this assumption may lead to deviations319

in results, only weekdays (24th-27th and 30th July 2007) are considered in this paper. Systematic320

measurements start in the afternoon of 24th July and finish in themorning on 30th July. As indicated321

by Blokker et al. (2011a), all measurements are subtracted 8.67 l/min (i.e. 520 l/h) to account for322

the additional demand that was induced in the experimental campaign to maintain the minimum323

flow required by an electrical conductivity monitor system.324

Before presenting results, it must be highlighted that in this work the same SIMDEUM pa-325

rameters that were fitted by Blokker et al. (2011a) have been assumed. This paper’s goals do not326

include model calibration, which is a relevant issue given the high number of survey-based input327

parameters. The present work focuses on analytically computing main statistics from a stochastic328

urban water consumption model, characterizing the statistical properties of such instantaneous329

consumptions. The advance of these results is that they are an improved approach compared to330

using just a single Monte Carlo Simulation or the average of a reduced number of Monte Carlo331

simulations (as in Blokker et al. 2010).332

Analytical model validation333

Fig. 2 gathers results at the entrance of Benthuizen case study on the days here considered. In334

terms of measurements, graphs show each day’s flow-meter signal at the entrance of the test area335

(location 1 in Blokker et al. 2011a). In what regards the analytical model, each figure includes336

the aggregated mean demand-value and its associated 95% confidence interval for the whole337

neighbourhood under study, which can be computed with the corresponding variance. Note that338

thanks to the analytical approach, mean values and confidence intervals have only been computed339

once (i.e. parameters are the same for all weekdays) and they are only repeated in all figures for340

representation purposes. Also, it must be highlighted that the analytical model has been run only341

once every minute (at the central second of each minute) to accelerate the process. This implies342

that every second within each minute is assumed to have the same behaviour, which is reasonable343
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given that f j(x) values (i.e. the daily pattern) have been discretized every hour.344

In order to quantify agreement among records and the present model, run with Blokker et al.345

(2011a) parameters summarized in Table 1, percentages of exceedance are computed with respect to346

the confidence interval. Percentages of the number of times that metered signals surpass confidence347

interval thresholds have been computed, with values of 2.22%, 2.29%, 3.13%, 4.62% and 4.01%348

for each day, respectively. As these values are all below 5%, they are the first indication that the349

analytical approach represents well Benthuizen reality considering a 95% confidence level. Note350

that a distribution function comparison test is not possible here beacuse there are only a few days351

of measurements available, but statistical tests could be carried out if the sample size was greater.352

In any case, such an analysis would be recommended after convenient calibration.353

The average time required for the proposed methodology to compute mean and variance values354

for thewhole neighbourhood in an Intel Core i7-6700CPU3.40GHz 16GBRAMdesktop computer355

(using Matlab R2016a) is 0.6 seconds. This value is negligible with respect to the computational356

cost of a Monte Carlo simulation and its required sensitivity analysis to ensure that the effect of357

the number of simulations on mean and variance values can be disregarded (Blokker et al. 2011a),358

which would further increase if the network extended. This makes the approach affordable for359

real-time applications in similarly sized networks.360

Upstream network aggregation spatial scale effect in instantaneous flow variability361

Now that the methodology has been validated for Benthuizen case study, analytical results will362

be further explored in order to illustrate how the approach can contribute to make the transition from363

the household level (micro-scale) to the network dimension (macro-scale) and vice versa easier. In364

order to analyse spatial scale effects in instantaneous flow variability, theoretical conditions must365

first be stated. Suppose the case that there is an entity that includes N independent elements with366

the same mean (µ), variance (σ2) and coefficient of variation (CV = σ/µ). It can be assumed that:367

µtot = N · µ (18)368
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369

σ2
tot = N · σ2 (19)370

371

CVtot =
σtot

µtot
=

1
√

N
· CV, (20)372

where µtot , σ2
tot and CVtot represent the resulting mean, variance and coefficient of variation values373

for the whole entity. This means that CVtot is affected by the problem scale, following a law in374

which CV is inverse to the square root of the problem dimension. Henceforth the representation375

of cumulative coefficients of variation versus number of entities in a double logarithmic scale376

will always be associated with a straight line with a slope of -0.5. This tendency implies that377

as the number of elements (i.e. the level of aggregation) increases, the associated CV reduces.378

In terms of demand within water supply systems, this means that demand uncertainty relatively379

diminishes when zooming out of individual households. This behaviour of the coefficient of380

variation decreasing as the problem dimension increases is well-known at present (e.g. Blokker381

et al. 2008; Vertommen et al. 2012) and highlights the importance of monitoring the intrinsic382

stochastic uncertainty associated with demand values at hydraulic models. However, the power383

of this law has not been studied yet. It is -0.5 (fractal dimension) only under the aforementioned384

assumptions. The real exponent might differ since real end-uses do not all have equal mean and385

variance.386

Table 1 shows that very different end-uses in terms of frequency, duration and intensity co-exist387

in a real network. Moreover, Tables 2 and 3 provide the relative contribution of each end-use to the388

overall mean and variance Benthuizen demand (i.e. flow at the entrance), respectively. Note that389

mean (Eq. 3) and variance (Eq. 13) values are computed in the analytical approach as a summation.390

Tables 2 and 3 show the percentage of each end-use contribution for the whole neighbourhood391

at three different instants of day (night - at 02:00 -, morning - at 08:00 - and evening - at 20:00392

-) and the daily average. These results show that shower, WC, kitchen tap and washing machine393

end-uses dominate both mean and variance water consumption at this case study, no matter the394

time. Because these end-uses are quite different among them, the assumption of adding similar395
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terms, based on which Eq. (20) is obtained, cannot be made. The approach here presented can396

be used to analyse the scale effect in coefficients of variation for real water distribution networks,397

where heterogeneous uses coexist. Note that, from now on, spatial scaling effect analysis will focus398

on CV because this variable represents the ratio between standard deviation and mean values, i.e.399

the relative deviation of water demands. This choice is also justified by the fact that the engineering400

community usually works with average demand scenarios, and having an estimation of CV could401

help to compute standard deviations (i.e. assess variability) from values typically used in practice.402

Fig. 3 summarises how the demand coefficient of variation changes with the number of in-403

habitants, the number of households and mean demand values according to analytical results for404

Benthuizen case study at three different instants within the day (night - at 02:00 -, morning - at 08:00405

- and evening - at 20:00 -). First and second rows of the figures show the computed cumulative406

CV values versus the number of inhabitants and households, respectively, in the test area and their407

associated line of fit in a double logarithmic scale. The adjusted lines have a slope of approximately408

-0.5 no matter the time. This implies that even when real systems are heterogeneous, the scale409

power law keeps approximately equal to -0.5. The slight deviation with respect to the theoretical410

-0.5 value is because different types of end-uses and occupants (with different hourly patterns)411

coexist at Benthuizen, but the tendency clearly remains and the deviation from -0.5 is not high.412

The third row in Fig. 3 shows demand CV values versus mean demand values according to the413

analytical model here presented, and their associated lines of fit. These graphs show that dispersion414

has increased with respect to previous rows, but they also prove that it can still be roughly assumed415

that demand coefficients of variation keep a relationship with mean demands to the power of -0.5.416

In order to show that values in Fig. 3 are not the result of chance, Fig. 4 provides relative frequency417

histograms for the aforementioned slopes (i.e. exponents of power laws) every minute. These418

graphs illustrate that even though there are slight variations around the theoretical value, a -0.5419

value can be assumed to compute demand uncertainty in absence of better data.420

Assuming power laws can speed up the extension of scope from individual elements (e.g.421

fixtures or households) to whole areas within the system. Note that traditional pulse models, like422
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first family’s PRP household-based models or second family’s microcomponent-based SIMDEUM423

method, can also be repeatedly applied to individual households (i.e. micro level) in order to424

progressively extend demand uncertainty analysis to the full network reality or macro level (bottom-425

up approach). This processwould be expensive, as itwould requiremassive experimental campaigns426

or computational cost, respectively, but it can be done. However, the change from the macro to427

the micro spatial level cannot be afforded with existing methodologies, as they are based on428

individual parameters for specific households and end-uses, respectively. This means that up until429

now there was no straightforward manner of estimating high resolution demand uncertainty from430

average demand scenarios (top-down approach). In other words, it was not possible to complement431

top-down demand allocation strategies with bottom-up-based demand uncertainty estimations.432

Results from the analytical model here presented have shown that power laws could potentially433

be assumed to determine demand coefficients of variation (i.e. variance values) from average434

scenarios, bridging the gap between bottom-up and top-down approaches. Such a result can have435

interesting applications in real water networks. For example, if a similar branched water supply436

system (e.g. another part of Benthuizen’s supply network - out of the test area -) with a flow meter437

at the entrance (i.e. known µFM , σ2
FM and CVFM , with FM for flow meter) was under study, an438

equation to obtain water flows coefficients of variation (CV) from mean values (µ) at any point of439

the system could be derived:440

log(CV) ≈ log(CVFM) − 0.5 · log
(
µ

µFM

)
, (21)441

which is the same that442

CV ≈ CVFM ·
(
µ

µFM

)−0.5
(22)443

These equations are only valid for branched systems, where flows at any point are equal to the444

aggregated downstream water demand assuming that there are no leaks. The model could even be445

improved by including a new end-use to simulate leakage, as proposed by Blokker et al. (2010).446

Using Eq. (21) or (22) implies assuming a uniform (i.e. uniformly heterogeneous) behaviour447
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throughout the system, which may be a sufficient approximation at some locations (e.g. residential448

neighbourhoods) but not good enough at other areas (e.g. areas with important industry or public449

buildings). If the region where the method was to be applied was clearly non-uniform, the analytical450

model would have to be run according to realistic survey-based duration, intensity and frequency451

parameters. However, if the area can be assumed uniform, analytical equations could be used452

to better understand and quickly estimate demand uncertainty throughout the system. Note that453

Eqs. (21)-(22) are consistent with Fig. 3, as they imply that flow or aggregated demand coefficients454

of variation increase at water supply systems endpoints (i.e. low demands, low flows). This implies455

that in the periphery of the network, real water flows never correspond to average flows and thus,456

it is essential to assess not only mean values but also associated variances. The approach is useful457

to understand how variance statistical property of water consumption changes spatially, enabling458

spatial disaggregation of such properties under the assumption of similar water use patterns in the459

disaggregated area. Moreover, in case no better data are available, Benthuizen results (Figure 3)460

can be used to estimate consumption variability in areas with similar water end-users distribution461

and patterns. Nevertheless, it is always preferred to develop experimental campaigns for systematic462

validation.463

This example only aims to show the reader one possible use of analytically based stochastic464

demand models, but alternative applications could be developed based on the approach and results465

here presented. For example, a simplified method to estimate flow uncertainty from mean demands466

at looped networks could be developed, or a methodology to systematically calibrate the analytical467

stochastic demand model based on historical billing information could be posed. Also, changing468

population habits (e.g. as a result of climate change) or seasonal variations of demand could469

be easily incorporated in the analytical approach to assess the long-term performance of water470

supply systems. These applications are only mentioned for the purpose of motivation, but they are471

out of the scope of this paper and they are a subject for further research. Note that the present472

approach provides mean and variance of instantaneous water demands, but it is not straightforward473

to temporally aggregate that information, because time series coming from the model are affected474
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by correlation (Creaco et al. 2019), and this has to be taken into account when developing the475

analytical formulation of temporally aggregated consumption. Therefore, temporal aggregation is476

out of the scope of this paper.477

CONCLUSIONS478

This paper analyses network spatial scale effects in water supply system demands thanks to a479

novel analytical approach to stochastic demand modelling. The proposed methodology belongs to a480

family of pulse models that computes residential water demand on a household basis by aggregating481

microcomponents or end-uses at each home (kitchen tap, bathroom tap, outside tap, WC, bathtub,482

shower, dishwasher and washing machine). The approach is presented to complement the use of the483

recognized SIMDEUMmodel, which runs Monte Carlo simulations to estimate stochastic demand484

patterns based on easy-to-obtain survey-based parameters. As Monte Carlo simulations may be485

time-consuming for large urban areas, a set of analytical expressions is derived in this work to486

compute the mean and variance of instantaneous demands produced by the stochastic model. This487

is possible by assuming independence in terms of water consumption among end-uses, inhabitants488

and households. The method is essentially posed as a summation of individual and independent489

uses of water, which can be easily extended to consider different levels of spatial aggregation.490

The analytical approach has been here applied to Benthuizen case study by making use of491

a SIMDEUM model fitting previously obtained in the literature. Analytical results are further492

explored, empirically demonstrating that a power law can be used to relate water demand flow493

variations at different scales. The scale power law has been found approximately constant for494

different scale variables and times of day, and even when reality is set by heterogeneous end-uses,495

the power keeps equal to the theoretical case where all end-uses are similar. This simplifies the496

application of the method to cases where specific scale analyses have not been performed yet,497

and it highlights the necessity of considering real variability rather than only average conditions498

at network endpoints. This conclusion can in turn be used to derive analytical equations that499

facilitate the micro to macro spatial change of scale (and vice versa) for coefficient of variation500

characterization, always under the assumption of homogeneous water end-user distribution and501
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patterns. The approach here presented can, like other existing stochastic models, be utilized to502

progressively aggregate downstream water demands (i.e. micro to macro level) in a more efficient503

way. According to results after fitting the coefficient of variation spatial scale law, instantaneous504

demand variance can be computed from mean values, so high resolution spatial flow variability can505

be determined from average flow network scenarios. This makes the novel bottom-up approach506

a valuable asset to assist the traditional top-down demand allocation process, which could then507

consider demand variability and thus better simulate local pressures or water quality in the periphery508

of water supply systems, among other uses.509
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TABLE 1. Frequency, duration and intensity parameters for Benthuizen case study (Blokker et al.
2010)

Frequency Duration Intensity
Mean number of openings per day and inhab. Distrib. Mean (s) Var (s2) Others Distrib. Mean (l/s) Var (l2/s2)

End-use type / subtype µNu µdu σ2
du

µiu σ2
iu

Kitchen tap Consumption 4.73 Lognormal 16 20.8 Uniform 0.083 0.0023
Doing dishes 3.15 Lognormal 48 62.4 Uniform 0.125 0.0052
Washing hands 3.15 Lognormal 15 19.5 Uniform 0.083 0.0023
Others 1.58 Lognormal 37 48.1 Uniform 0.083 0.0023

Bathroom tap Washing and shaving 1.35 Lognormal 40 52 Uniform 0.042 0.0006
Brushing teet 2.75 Lognormal 15 19.5 Uniform 0.042 0.0006

Outside tap Garden 0.33 Lognormal 300 390 Uniform 0.1 0.0033
Other 0.11 Lognormal 15 19.5 Uniform 0.1 0.0033

WC 9L 6 Fixed 216 Fixed 0.042
9L with water saving 6 Fixed 108 Fixed 0.042
6L 6 Fixed 144 Fixed 0.042
6L with water saving 6 Fixed 72 Fixed 0.042

Bathtub 0.044 Fixed 600 Fixed 0.2
Shower No water saving 0.7 Lognormal 510 255 Fixed 0.142

With water saving 0.7 Lognormal 510 255 Fixed 0.123
Dishwasher 0.3 Fixed 21/cycle 4 cycles over 7200 s Fixed 0.167
Washing machine 0.3 Fixed 75/cycle 4 cycles over 7200 s Fixed 0.167
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TABLE 2. Instantaneous relative contribution of each end-use to Benthuizen demand mean values
according to analytical model results.

Instantaneous relative contribution (%)
End-use 02:00 08:00 20:00 Daily average

Kitchen tap 11.83 12.05 12.1 11.97
Bathroom tap 3.17 3.32 3.26 3.20
Outside tap 4.79 5.03 4.93 4.83
WC 26.20 27.49 27.00 26.44
Bath 1.18 1.24 1.24 1.18
Shower 37.21 39.03 38.31 37.55
Dishwasher 2.21 1.26 1.57 1.80
Washing machine 13.41 10.57 11.59 13.03
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TABLE 3. Instantaneous relative contribution of each end-use to Benthuizen demand variance
values according to analytical model results.

Instantaneous relative contribution (%)
End-use 02:00 08:00 20:00 Daily average

Kitchen tap 14.77 15.44 15.38 15.09
Bathroom tap 1.56 1.68 1.64 1.59
Outside tap 5.63 6.06 5.90 5.73
WC 9.66 10.28 9.98 9.76
Bath 2.08 2.24 2.22 2.10
Shower 43.33 46.45 45.17 44.02
Dishwasher 3.25 1.91 2.35 2.64
Washing machine 19.72 15.95 17.36 19.06
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Level 1 (subindex 𝑘, 𝑢): 
Fixtures or end-uses

Level 2 (subindex 𝑗): 
Inhabitants or end-users

Level 3 (subindex 𝑖): 
Households

Level 4 (𝑠): 
Spatial aggregation level 

(building, neighborhood, etc.)

Fig. 1. Spatial hierarchy of elements and agents used to computemean and variance of instantaneous
residential water demands. Subindices k and u refer to the possible uses of the kitchen tap (end-use
per household) and the end-uses per inhabitant (respectively), j to inhabitants, i to households and
s to the spatial aggregation level being considered.
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Fig. 2. Daily evolution of water flow at the entrance of Benthuizen test area: analytical model
results (mean and 95% confidence interval) vs flowmeasurements on 24th-27th and 30th July 2007.
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Fig. 3. Logarithmic representation of analytical model results for: (a) cumulative demand CV vs.
number of inhabitants (first row), (b) cumulative demand CV vs. number of households (second
row), and (c) demand CV vs. mean demand (third row) at Benthuizen case study.

32 Díaz and González, June 16, 2020



Fig. 4. Relative frequency histograms for logarithmic slopes (i.e. exponents of power laws)
resulting from the analytical model for: (a) cumulative demand CV vs. number of inhabitants (first
graph), (b) cumulative demand CV vs. number of households (second graph), and (c) demand CV
vs. mean demand (third graph) at Benthuizen case study.
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