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ABSTRACT15

State estimation (SE) techniques can be applied to compute the most likely hydraulic state of a16

water distribution system from the available measurements at a given time. Different approaches17

exist in the technical literature to undertake such an analysis, but in all of them it is assumed that18

pump and valve statuses are known beforehand. Such consideration may lead to unrealistic results if19

real-time unnotified changes in the operation of the network take place, thus limiting the usefulness20

of the information provided by telemetry systems. Thiswork drops the known-status assumption and21

presents the concept of topological state estimation (TSE), which permits not only to compute the22

1 Díaz et al., May 24, 2018



hydraulic state of the system, but also the current pump and valve status according to the existing23

measurements. More specifically, a novel methodology for TSE is set out in this paper. The24

proposed method is derived from the original mixed integer non-linear programming formulation25

of the problem, which is transformed in an iterative mixed integer quadratic programming problem26

by linearizing some hydraulic constraints. The potential of the methodology is presented by means27

of an illustrative example and a large case study, where pumps, gate valves and check valves exist.28

Results show that TSE would successfully contribute to make the most of available telemetry29

systems, hence expanding the online monitoring possibilities of water distribution networks.30

Keywords: weighted least squares, network topology, monitoring, observability, reliability31

INTRODUCTION32

Nowadays, telemetry systems have become essential for the online monitoring of large water33

distribution networks. Such systems collect real-time data of the metering devices distributed34

throughout the network, which can eventually be converted into information about its hydraulic35

state. In this regard, state estimation (SE) has been considered as an efficient technique to process36

available measurements in both power supply (Schweppe and Wildes 1970) and water systems37

(Coulbeck 1977) for many years. A SE algorithm provides the most likely hydraulic state of38

a network by minimising the differences between the available measurements and the estimated39

variables (i.e. pressure, flow and demand) at a given time, which are related to each other by the40

flow governing equations (Díaz et al. 2016b).41

SE has been traditionally posed as a weighted least-squares (WLS) problem in the water42

domain (Bargiela 1984; Brdys and Ulanicki 2002). Nevertheless, alternative approaches have been43

presented over the years to enhance the performance of the state estimator. On the one hand,44

Sterling and Bargiela (1984) adapted the weighted least-absolute-values (WLAV) estimation from45

the power field (Irving et al. 1978) in order to better deal with gross errors, and Powell et al. (1988)46

even developed a method combining the advantages of WLS and WLAV in one algorithm. On47

the other hand, Bargiela and Hainsworth (1989) highlighted the importance of evaluating state48

estimation uncertainty, based on which the so called set-bounded state estimation (SBSE) problem49
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was formulated (Brdys and Chen 1993; Gabrys and Bargiela 1996), and several other uncertainty50

evaluation strategies were presented (Nagar and Powell 2000; Díaz et al. 2016a). Concurrently,51

variations of the traditional WLS have been developed with different purposes, such as dealing52

with low measurement redundancy (Andersen and Powell 2000), introducing measurement bounds53

in the objective function (Andersen et al. 2001), or using graph theory to reduce the complexity54

of the problem (Carpentier and Cohen 1991; Kumar et al. 2008). In all of these approaches, the55

state estimator was applied to a measurement configuration assuming a given network topology,56

i.e. considering a given pump and valve status configuration. In this paper we denote network57

topology as the pump and valve status configuration of the system, i.e. its connectivity. This is58

common practice in water distribution system management in general (Giustolisi et al. 2008), and59

state estimation applications in particular (Díaz et al. 2017b).60

However, the status of pumps and valves (i.e. network topology) changes with frequency in61

water distribution systems to adapt the network to the population needs. Some of these changes are62

considered normal operation procedures that are required in order to provide high-quality supply at63

different times. Such is the case of the intentional starting or stopping of a pump, or the deliberate64

closure of a given valve. Also, the status of pumps and valves in the system can change due to the65

failure of one of the elements in the network (e.g. pipe burst, pump out of service) or as a response66

to such failures in order to enhance reliability (Wright et al. 2015), i.e. the ability of the system67

to perform well in abnormal operation conditions (Goulter 1995). Therefore, even though water68

utilities are normally aware of some usual operating scenarios, it is difficult to keep record of all69

the changes that take place in the network topology in real-time applications, i.e. it is complicated70

to keep an up-to-date hydraulic model of the system. This constitutes a major limitation for the71

online implementation of SE techniques, as the aforementioned methodologies assumed a given72

topology that may not exactly simulate the current situation of the water distribution network. It is73

worth mentioning that if the assumed topology is not consistent with the actual system, SE results74

may be unrealistic, as measurements provided by telemetry systems correspond to a reality that is75

different from the hydraulic simulation model.76
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The importance of incorporating changes in the network topology has been discussed before in77

the context of solving (Giustolisi et al. 2008) and calibrating (Lansey and Basnet 1991; Liberatore78

and Sechi 2009; Laucelli et al. 2011; Sophocleous et al. 2016) water systems. Also, Díaz et al.79

(2017b) delved in the possibilities of topological observability analysis inwater distribution systems.80

This approach adapted the traditional observability analysis, which is a prior necessary step to any81

SE algorithm (Carpentier and Cohen 1991; Díaz et al. 2016), to the possibility of now knowing82

the pump and valve status beforehand. This method permits to identify not only the hydraulic83

variables that could be computed in a subsequent SE process, but also the status of which pumps84

and valves could be inferred from the available measurements. Nevertheless, this analysis only85

permits to asses if there are sufficient algebraic relationships to infer the pump or valve status from86

the available measurements, but as measurements are prone to errors, it does not guarantee that the87

estimated status is correct. When measurement uncertainty is high, sometimes there may not be88

enough statistical significance to infer the pump or valve status, even if they are observable. To take89

into account noisy measurements and properly estimate the status of controlling devices, a method90

for topological state estimation (TSE) must be developed.91

TSE drops the assumption of the network topology being known at each time, enabling to92

consider that pumps and valves can be either open or closed, and the correct status must be inferred93

from the available measurements. Therefore, such methodology permits not only to compute94

the hydraulic state of the system, but also the current network topology by including as many95

binary variables as the number of pumps and valves that exist in the network. The inclusion96

of binary variables leads to a mixed integer non-linear programming (MINLP) problem that is97

difficult to solve, especially when a large number of controlling devices exist in the system. The98

aim of this work is to present a novel methodology for TSE that transforms such a challenging99

formulation into an iterative mixed integer quadratic programming (MIQP) problem. The proposed100

algorithm iteratively linearizes the hydraulic constraints that introduce non-linearity to the problem101

(i.e. headloss equations and characteristic curves of the pumps in the system) and solves the102

TSE optimisation problem, which is formed by a quadratic objective function and a set of linear103
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hydraulic constraints. Expressions for the consistent simulation of pumps, gate valves and check104

valves are here provided. Moreover, the proposed method permits to take into account that either105

the characteristic curve of a pump is known or completely unknown, being possible to estimate the106

most likely pumping head even in the latter case. In this study, it is assumed that the number and107

location of meters have been previously assessed via topological observability analysis, and the108

measurements from the meters were synthetically generated. Also, the hydraulic network model109

used in this study has been previously calibrated.110

The paper is organised as follows: firstly, the formulation of TSE as a MINLP problem is111

explained, including a description of the objective function, the general hydraulic constraints and112

the specific topological hydraulic constraints required to simulate the presence of pumps and113

valves. Then, the adopted solution strategy, which converts the MINLP problem in an iterative114

MIQP problem, is provided. The novel methodology is subsequently applied to a small example,115

which permits to illustrate the potential of TSE. Afterwards, the C-Town case study is analysed to116

prove that the method is robust for larger systems, and finally, relevant conclusions are drawn.117

TOPOLOGICAL STATE ESTIMATION118

Problem formulation119

Objective function120

The TSE problem can be posed as a non-linear WLS mathematical programming problem with121

objective function:122

Minimize
hi ;∀i∈V


∑

∀i∈Vm

(
h̃i − hi

σh
i

)2

+
∑

∀i, j∈LPI
m

(
Q̃i, j −Qi, j

σQ
i, j

)2

+
∑

∀i∈VQ
m

(
q̃i − qi

σ
q
i

)2 , (1)123

where the squared difference between existing measurements and estimated variables is to be124

minimised. In terms of variables, hi;∀i ∈ V refers to head levels at all the nodes in the system (V),125

Qi, j ;∀i, j ∈ LPI is the water flow through the pipe elements in the system (LPI), and qi;∀i ∈ VQ
126

is the water consumption at demand nodes (VQ). On the other hand, variables overlined with127

a tilde represent the value of the measurement in the subset of nodes and pipes where variables128
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are measured. Therefore, Vm, LPI
m and VQ

m represent the subset of nodes where head levels are129

measured, the subset of pipeswhere flows aremetered, and the subset of nodeswherewater demands130

are measured, respectively. Consequently, σh
i ;∀i ∈ Vm, σQ

i, j ;∀i, j ∈ LPI
m , and σq

i ;∀i ∈ VQ
m are131

the standard deviations for measurements of head, flow and demand, respectively. Variables and132

measurements are independent of time t all along this work because a pseudo-static approach is133

considered for TSE, i.e. flow is steady and each estimation can be understood as an instantaneous134

snapshot of the system. Also, it must be highlighted that only measurement uncertainty is taken135

into account in Eq. (1). This is the traditional scope for state estimation methodologies, which136

normally assume that the hydraulic model (e.g. pipe infrastructure information, tank dimensions)137

has been previously calibrated (Díaz et al. 2016).138

At this point, it is important to identify the state variables of the problem, which are the139

minimum set of variables that enable to characterise the hydraulic state of the system. Note that if140

the status of pumps and valves is known, nodal heads can be considered the state variables of the141

system, as any combination of head levels leads to a certain and credible flow solution (Díaz et al.142

2016). However, if some of the statuses of pumps and valves are unknown, the state variable set143

must also include the unknown binary variables, without which the state of the system cannot be144

fully defined. As it will be presented later on, binary variables enable to simulate that pumps and145

valves can either be open or closed, and the TSE algorithm must determine their status based on146

the existing measurements. Once state variables are computed, the rest of variables (i.e. flows and147

demands) can be inferred thanks to the rest of hydraulic constraints, which are now presented.148

Hydraulic constraints149

In this work, the Hazen-Williams headloss equation is assumed all along:150

hi − h j = Ki, jQi, j |Qi, j |c−1;∀i, j ∈ LPI, (2)151

where Ki, j is the flow resistance pipe coefficient, c = 1.852 is the Hazen-Williams exponent and152

hi and h j refer to the head levels at the initial and final nodes of the pipeline. Note that adopting153

6 Díaz et al., May 24, 2018



the Darcy-Weisbach equation instead of the Hazen-Williams approach would require calculation154

of the friction factor from an implicit function. Therefore, and even though the Hazen-Williams155

formula for pipe head loss applies over a limited range of flows, it is a common choice in the field156

because its explicit formulation is easy to compute (Eck and Mevissen 2012). In this work, flow157

is taken as positive when water moves from the lower to the higher numbering node. For each158

node, two subsets can be defined. ΩO
i contains the water outflows from node i to the rest of nodes159

j > i connected to i with a pipe. On the other hand, ΩI
i corresponds to the inflows to node i from160

the rest of nodes j < i connected to i. Note that the head level can be estimated from the node161

elevation and pressure. However, as pumps and valves must be included in the hydraulic model for162

TSE purposes, computation of the head level at each node must also take into account the energy163

provided by pump elements (∀i, j ∈ LP, being LP the set of all pumps in the network):164

hi = ei + pi +
∑

k,l∈LP

δi,k,l hP
k,l ;∀i ∈ V, (3)165

where ei;∀i ∈ V is the elevation at the node (considered a constant parameter), and pi;∀i ∈ V166

is its pressure, being V the set of all nodes in the network. The following summand refers to the167

pumping head hP
k,l ;∀k, l ∈ LP that any pump can inject at a specific node. If node i is the final node168

of a given pump k, l ∈ LP, then Kronecker delta δi,k,l is equal to one, and the pumping head must169

be added. The open/closed status of the pump is later on introduced in the formulation through170

topological hydraulic constraints. Gate valves and check valves are also considered in this paper,171

but they are not included in Eq. (3) because we assume that there is no headloss through them, as172

it will be presented afterwards.173

The continuity equation can be written as:174

qi = −
∑
∀ j∈ΩI

i

Qi, j +
∑

∀ j∈ΩO
i

Qi, j ; ∀i ∈ (VQ ∪VT), (4)175

where qi is negative at demand nodes (∀i ∈ VQ, being VQ the subset of demand nodes) and null176
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at the so called transit nodes (∀i ∈ VT, beingVT the subset of transit nodes). Note that Eq. (4) is177

only applied at demand and transit nodes, because in a pseudo-static estimation tanks and reservoirs178

can be represented by only their head level. An additional condition is in fact that water demand at179

transit nodes is zero:180

qi = 0;∀i ∈ VT. (5)181

Physical limits must also be defined for pipe and node elements as follows:182

Qi, j ≤ Qmax
i, j ;∀i, j ∈ LPI (6)183

184

−Qi, j ≤ Qmax
i, j ;∀i, j ∈ LPI (7)185

186

hi ≤ hmax
i ;∀i ∈ V (8)187

188

hi ≥ hmin
i ;∀i ∈ V, (9)189

where Eqs. (6)-(7) impose a maximum Qmax
i, j for the absolute value of the water flow through190

pipes, and Eqs. (8)-(9) establish a maximum (hmax
i ) and minimum (hmin

i ) value for head levels,191

respectively.192

Topological hydraulic constraints: pumps193

Specific expressions must also be derived for pump elements (∀i, j ∈ LP), which are here194

treated as link elements of zero length whose end nodes are at the same elevation. These elements195

can be either open or closed, and the on/off (i.e. 1/0) status of each pump is taken into account196

by introducing a binary variable for each existing pump bP
i, j ;∀i, j ∈ LP. To derive the hydraulic197

constraints of such elements, two situations must be distinguished beforehand. Pumps only admit a198

predefined unidirectional flow (i.e. there is no possibility of having reverse flow through a pump),199

but this unidirectional flow can either be of positive or negative sign for a specific pump according200

to the aforementioned sign criterion. Therefore, we need to differentiate two subsets ∀i, j ∈ LP
+ and201

∀i, j ∈ LP
− in order to correctly simulate that a particular device is pumping water in the positive202
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or negative direction of flow, respectively. Figure 1 shows that there is a hP
i, j increase of pressure at203

node j when the device is located to pump water in the positive direction of flow (from i to j), but204

this additional energy is applied to the initial node i in devices that pump the water in the negative205

direction (from j to i). In addition to this classification, two types of pumps are differentiated in206

this work attending to the available information about the pump: pumps with known characteristic207

curve (∀i, j ∈ LP
K, being L

P
K the subset of pump links with known characteristic curve), and pumps208

with unknown characteristic curve (∀i, j ∈ LP
U, being L

P
U the subset of pump links with unknown209

characteristic curve). This distinction is made because even thoughmanufacturers normally provide210

the characteristic curve for each pump at the time of sale, some network operators know nothing211

about the characteristic curve of some pumps, for example if they are working on a longstanding212

and/or undocumented water system. As presented by Díaz et al. (2017b), when the characteristic213

curve of the pump is available, a known relationship exists between the pumping head and the214

circulating flow, thus the curve can be introduced as a constraint and no additional information215

is required to characterise the system. On the contrary, if the characteristic curve of the pump is216

unknown, an additional unknown is added to the problem, and thus more measurements are needed217

to guarantee the system observability.218

According to this classification, two independent pairs of subsets exist for the general pump219

set LP: subsets LP
+ and LP

− account for the flow direction through the pump, i.e. LP ≡ LP
+ ∪ LP

−220

and LP
+ ∩ LP

− ≡ �, whereas subsets LP
K and LP

U indicate the available information about the221

characteristic curve of the element, i.e. LP ≡ LP
K∪L

P
U andLP

K∩L
P
U ≡ �. Therefore, the hydraulic222

constraints related to pump elements can be defined as:223

hP
i, j ≥ 0;∀i, j ∈ LP (10)224

225

− M(1 − bP
i, j) ≤ pi − p j ≤ M(1 − bP

i, j);∀i, j ∈ LP (11)226

227

Qi, j ≤ Qmax
i, j bP

i, j ;∀i, j ∈ LP
+ (12)228

229

Qi, j ≥ Qmin
i, j bP

i, j ;∀i, j ∈ LP
+ (13)230
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−Qi, j ≤ Qmax
i, j bP

i, j ;∀i, j ∈ LP
− (14)231

232

−Qi, j ≥ Qmin
i, j bP

i, j ;∀i, j ∈ LP
− (15)233

234

hP
i, j =

(
Ai, j(Qi, j)2 + Bi, j |Qi, j | + Ci, j

)
bP

i, j ;∀i, j ∈ LP
K (16)235

236

hP
i, j ≤ hP,max

i, j bP
i, j ;∀i, j ∈ LP

U, (17)237

where Ai, j, Bi, j,Ci, j ;∀i, j ∈ LP
K are the parameters of the characteristic curve of each pump, M is238

a large enough positive constant, and bP
i, j is the binary variable at pump link from node i to node239

j. Eq. (10) forces the pumping head to be positive no matter the scenario, because a pump always240

supplies energy to the system regardless of the injection point (see Figure 1). Constraint (11) forces241

the pressure at each side of the pump to be the same when the pump is open (bP
i, j = 1), but it permits242

a hydraulic disconnection between nodes i and j when the pump is closed (bP
i, j = 0), i.e. pi and p j243

can be significantly different when there is no flow through the pump. Hence, constant M must be244

large enough to model the difference in pressure head between nodes. Eqs. (12)-(13) determine245

the maximum (Qmax
i, j ) and minimum (Qmin

i, j ) flow through pumps in which the water moves from246

node i to node j, and Eqs. (14)-(15) are analogous for elements with negative flow. Constraint247

(16) provides the characteristic curves when they are available, forcing the pumping head to be248

null when the pump is closed. Similarly, Eq. (17) enables the pumping head to reach a pre-set249

maximum value hP,max
i, j ;∀i, j ∈ LP

U when information about the characteristic curve is not available,250

and fixes the pumping head to zero when the pump is not working.251

Topological hydraulic constraints: gate valves252

Gate valves enable isolation of different segments and/or areas within a given water distribution253

system. These controlling devices only have two positions, which are represented in this work by254

binary variables bGV
i, j ;∀i, j ∈ LGV, i.e. bGV

i, j = 1 when they are open, and bGV
i, j = 0 when they are255

closed, beingLGV the subset of gate valve links. As assumed with the pumps, valves are introduced256

in the hydraulic model as elements of zero length whose nodes keep the same elevation. In this257

particular case, we assume that there is no headloss through such valves when they are fully open.258
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Hence, the only constraints are:259

− M(1 − bGV
i, j ) ≤ hi − h j ≤ M(1 − bGV

i, j );∀i, j ∈ LGV (18)260

261

Qi, j ≤ Qmax
i, j bGV

i, j ;∀i, j ∈ LGV (19)262

263

−Qi, j ≤ Qmax
i, j bGV

i, j ;∀i, j ∈ LGV. (20)264

Eq. (18) ensures that the energy gradient is zero when the valve is open (i.e. no energy losses), and265

enables hi and h j to differ when the valve is closed. This expression is analogous to Eq. (11) for266

pumps, because as the elevation at end nodes is the same in gate valves and no losses are assumed267

hi − h j = pi − p j . Analogously to the pump case, constant M must be large enough to model the268

difference in pressure head between nodes. Eqs. (19)-(20) establish that the absolute value of flow269

through the valve must be lower than the maximum allowed in the network. Hence, if the valve is270

closed, bGV
i, j = 0 and the flow through the pipe is zero.271

Topological hydraulic constraints: check valves272

Check valves are placed in water distribution systems with the aim of avoiding inverse flows273

(Deuerlein et al. 2009). Consequently, they are directional devices that require the allowed direction274

of flow to be defined beforehand. As with pumps, the general set for check valves (∀i, j ∈ LCV)275

must then be divided in two subsets: LCV
+ when the water is only allowed to move from the lower to276

the higher numbering node, and LCV
− if only negative flow is allowed, with LCV ≡ LCV

+ ∪LCV
− and277

LCV
+ ∩ LCV

− ≡ �. The following constraints are required to simulate the status bCV
i, j ;∀i, j ∈ LCV of278

such controlling devices:279

− M(1 − bCV
i, j ) ≤ hi − h j ≤ M(1 − bCV

i, j );∀i, j ∈ LCV (21)280

281

Qi, j ≤ Qmax
i, j bCV

i, j ;∀i, j ∈ LCV
+ (22)282

283

−Qi, j ≤ Qmax
i, j bCV

i, j ;∀i, j ∈ LCV
− (23)284
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285

Qi, j ≥ 0;∀i, j ∈ LCV
+ (24)286

287

−Qi, j ≥ 0;∀i, j ∈ LCV
− . (25)288

Eqs. (21)-(23) are equivalent to (18)-(20) for gate valves, i.e. it is assumed that no energy loss289

occurs when the valve is open andmaximum values of flow are established. Eqs. (24)-(25) force the290

water to move in the positive and negative direction, respectively, and impose null flow otherwise.291

Solution methodology292

Eqs. (1)-(25) define the MINLP problem required to implement TSE in any water distribution293

system. More specifically, Eqs. (1)-(9) set out the traditional non-linear programming (NLP)294

problem for SE, which is then complemented with hydraulic constraints that simulate the presence295

of pumps, gate valves and check valves. Therefore, if the status of pumps and valves is known296

beforehand thanks to a goodmonitoring or the installation of position sensors in controlling devices,297

binary variables can be considered fixed, and problem (1)-(25) can be treated as a NLP problem.298

However, as the network topology is not likely to be fully known in large systems, and the objective299

of TSE is to infer both the hydraulic state and the pump/valve status of the system from a set of300

available measurements, TSE must be generally addressed as a MINLP problem.301

Developing robust solutionmethodologies forMINLPproblems is a challenging issue at present,302

and their computational implementation is expected to experience a significant rise in the years to303

come (Berthold 2014). Even though various solvers are commercially available to solve MINLP304

problems, their suitability highly depends on each particular problem, especially if the problem is305

nonconvex (Bussieck and Vigerske 2011), as it is the case of TSE. As selecting a reliable and robust306

solver that works well in different networks is not straightforward, the original MINLP problem307

is transformed in this work into an iterative MIQP problem. The change from MINLP to MIQP308

requires to linearize the non-linear equations of problem (1)-(25), i.e. the headloss equation and the309

characteristic curves associated with pumps. Note that linearizing the Hazen-Williams equation is310

not a novel idea, and a literature review can be found in Eck and Mevissen (2012). For example,311
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a piecewise linearization for Eqs. (2) and (16) could be adopted. However, this strategy implies a312

significant increase in the number of binary variables in order to accurately represent the curvature313

of such non-linear functions (Morsi et al. 2012). Alternatively, a successive linearization strategy314

is here adopted. It is true that linearization may lead to instabilities along the iterative process, but315

as the algorithm is conceived for on-line state estimation, it is likely to run with a pre-specified316

frequency. Therefore, major simultaneous changes are not expected from one state estimation to317

the next. This enables the state estimation problem to be initialised from the previous result, i.e. the318

linearization occurs around a point which is reasonably close to the estimated flow scenario. Once319

Eqs. (2) and (16) are linearized, the objective function remains as the only non-linearity of problem320

(1)-(25), thus the optimisation problem can be solved with a MIQP approach. Current state-of-321

the-art MIQP solvers, such as CPLEX (www-01.ibm.com/software/commerce/optimization/cplex-322

optimizer) or Gurobi (www.gurobi.com), can solve this type of problems very efficiently. In any323

case, the problem linearization comes at the cost of an iterative algorithm, which will be presented324

once the linear versions of the aforementioned equations are posed.325

Eq. (2) can be linearized around an initial flow Q0i, j ;∀i, j ∈ LPI as follows:326

hi − h j = (1 − c)Ki, j |Q0i, j |c−1Q0i, j + Ki, jc|Q0i, j |c−1Qi, j ;∀i, j ∈ LPI. (26)327

Similarly, the characteristic curve of any pump (Eq. (16)) can be linearized with respect to328

Q0i, j ;∀i, j ∈ LP
K as:329

hP
i, j =

[
Ci, j − Ai, j(Q0i, j )2 + (2Ai, j |Q0i, j | + Bi, j) sign(Q0i, j )Qi, j

]
bP

i, j ;∀i, j ∈ LP
K, (27)330

however, as the characteristic curve is affected by the binary variable bP
i, j ;∀i, j ∈ LP

K, the previous331

expression is still non-linear. In order to provide a linear alternative to Eq. (16), Eq. (27) can be332

linearized as follows:333

hP,min
i, j bP

i, j ≤ hP
i, j ≤ hP,max

i, j bP
i, j ;∀i, j ∈ LP

K (28)334
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335

hP,min
i, j (1−bP

i, j) ≤ Ci, j−Ai, j(Q0i, j )2+(2Ai, j |Q0i, j |+Bi, j) sign(Q0i, j )Qi, j−hP
i, j ≤ hP,max

i, j (1−bP
i, j);∀i, j ∈ LP

K,

(29)336

where hP,min
i, j ;∀i, j ∈ LP

K and hP,max
i, j ;∀i, j ∈ LP

K have been introduced as parameters, and represent337

the minimum and maximum pumping head at pump link from node i to node j. Hence, when338

the pump is closed (bP
i, j = 0), Eq. (28) fixes the pumping head to zero, and when the pump is339

open (bP
i, j = 1), Eq. (29) forces hP

i, j to the linearized characteristic curve, i.e. Eqs. (28)-(29) are340

equivalent to Eq. (27).341

Therefore, the MINLP problem (1)-(25) can be formulated as the MIQP problem (1), (3)-(15),342

(17)-(26), (28)-(29), which incorporates the linearized Hazen-Williams headloss equations and343

characteristic curves (if known). In this paper, the CPLEX solver is used to solve such problem for344

a given initialisation. As state estimation techniques are normally fed with online telemetry data,345

the initial value for Q0i, j ;∀i, j ∈ (LPI ∪ LP
K) can be obtained from the previous TSE, or from any346

other flow scenario in the system. Then, the MIQP solution must be used as initialisation for the347

following iteration, enabling a linearization that is progressively closer to the optimal solution. In348

order to speed convergence and enhance stability, a sub-relaxation method is here adopted when349

the iteration number k exceeds a selected value klim:350


Q(k+1)

0i, j = Q(k)i, j if k ≤ klim

Q(k+1)
0i, j = Q(k)i, j λ + (1 − λ)Q

(k)
0i, j if klim < k < kmax,

(30)351

with klim = 10. The maximum number of iterations and the subrelaxation factor are set out as352

kmax = 100 and λ = 0.3, respectively, all along this work. The iterative algorithm (summarised353

in Figure 2) finishes when the relative error of the objective function between successive iterations354

becomes lower than a specified tolerance, which is considered 10−6 in this paper. Then, the355

algorithm can be formally written as follows:356

Algorithm 1 MIQP approach for TSE357

Input: Measurements and standard deviation of measurements, model parameters, available infor-358
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mation of pumps, flow direction in pumps and check valves, and Q0i, j ;∀i, j ∈ (LPI ∪ LP
K), which359

can be obtained from a previous TSE result or from any other flow scenario in the system.360

Step 1: Solve MIQP problem. The linearized MIQP problem (1), (3)-(15), (17)-(26), (28)-(29) is361

solved for Q0i, j ;∀i, j ∈ (LPI ∪ LP
K).362

Step 2: Check tolerance. If the relative error of the objective function is lower than 10−6 continue363

with step 3, otherwise, update the iteration counter k → k + 1, update Q0i, j ;∀i, j ∈ (LPI ∪ LP
K)364

according to Eq. (30), and continue with step 1.365

Step 3: Output. Estimated head levels at nodes ĥi;∀i ∈ V, water flows through link elements366

Q̂i, j ;∀i, j ∈ L with L = {LPI,LP,LGV,LCV}, demands at junction nodes q̂i;∀i ∈ VQ, and binary367

variables for pumps b̂P
i, j ;∀i, j ∈ LP, gate valves b̂GV

i, j ;∀i, j ∈ LGV and check valves b̂CV
i, j ;∀i, j ∈ LCV.368

This algorithm at present is heuristic, since it cannot be assured that a global solution of the369

original MINLP problem has been achieved. Nevertheless, the algorithm proposed in the paper370

presents good convergence properties and, as it will be shown in the following examples, it is com-371

putationally efficient. As opposed to other approximate methods lacking rigorous grounding, such372

as genetic algorithms or simulated annealing, the proposed solution approach is a mathematically373

sound heuristic based on the application of a well-known optimization technique.374

ILLUSTRATIVE EXAMPLE375

The small water system presented by Díaz et al. (2017b) is used as an illustration in this376

paper. Figure 3 provides the network layout, in which 6 junctions and 2 reservoirs are connected377

to each other through 7 pipes, a gate valve and a pump. TSE is here undertaken considering378

two different scenarios in what regards the available information about the pump: (1) the pump379

has a characteristic curve defined by A6,8 = −2.2204 · 10−16 h2/m5, B6,8 = −0.3126 h/m2 and380

C6,8 = 125.2806 m, and (2) there is no information whatsoever about the characteristic curve of381

the pump. Also, we assume that water levels at both reservoirs are metered, water demands at all382

nodes are pseudomeasured, and a number of flow meters exist. As shown in Figure 3, two settings383

of flow meters are considered in this example for the sake of comparison: a first set of three flow384
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meters located in pipes 1-2, 3-7 and 2-5, and a second set of four flow meters located in pipes 1-2,385

3-7, 2-5 and 4-8. It must be highlighted that all measurement configurations have been previously386

assessed with a topological observability analysis (Díaz et al. 2017b), which is a prior necessary387

step to TSE. Such an analysis enables to guarantee that there are enough algebraic relationships to388

infer the hydraulic variables and the pump and valve statuses from the available measurements.389

Since the method is heuristic, we have to check its performance under a controlled setting,390

and for this reason, measurements at each of such locations are synthetically generated in this391

work, i.e. sampling experiments are undertaken. With this purpose, a known pump/valve status392

is assumed (e.g. both the valve and the pump are considered opened), and the flow network393

solution is computed. Then, 1000 measured values are synthetically generated for each of the394

available measurements by considering a random variable distribution with mean equal to the395

corresponding flow, head or demand value obtained from solving the flow network, and a standard396

deviation. It must be highlighted that even though we assume a network topology to generate the397

measurements, pump/valve binary variables are freed before running the TSE algorithm in order to398

test the ability of the method to correctly determine the network topology. The standard deviations399

assumed for each type of measurement are σh
i = 0.01 m;∀i ∈ Vm, σq

i = 20% qi;∀i ∈ VQ
m400

and σQ
i, j =

√
1
6 + (2%Qi, j)2;∀i, j ∈ LPI

m , where qi and Qi, j represent the value of demand and flow401

variables in the flow network solution. It is worthmentioning that a greater uncertainty is introduced402

in each demand because we assume that water consumptions are pseudomeasured, i.e. estimated403

from historic data, as it may be the case in a real water system (Bargiela and Hainsworth 1989). On404

the other hand,σQ
i, j is constituted by a fixed uncertainty of

1√
6
that comes fromconsidering that flow is405

metered as volume inm3 and the difference in volume over time provides ameasurement of flow, and406

a variable term that depends on the water flow itself, as it normally occurs in real flowmeters. Once407

measurements have been computed, Monte Carlo simulations are undertaken: the TSE problem408

is solved considering each of the 1000 artificially generated measurements/pseudomeasurements.409

The process is repeated for all different combinations of pump and valve status: open valve-open410

pump, open valve-closed pump, closed valve-open pump, and closed valve-closed pump. In all411
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of these cases the algorithm for TSE described in Figure 2 is initialised Q0i, j ;∀i, j ∈ (LPI ∪ LP
K)412

from the flow network solution associated with an open valve and pump, which is here subjected413

to a 5% noise to avoid straightforward solutions when open valve-open pump is the real network414

topology. This permits to evaluate to what extent the methodology presented in this paper permits415

to detect changes in the network topology. Note that synthetic measurements are here used to test416

the algorithm, or otherwise you need a real network with a huge set of metering devices in order to417

use some of them for validation.418

Now, TSE results considering the characteristic curve of the pump known and unknown are419

presented. We assume Qmax
i, j = 10 m/s · Si, j ;∀i, j ∈ L, hmax

i = max(hmax
i ) + 200 m;∀i ∈ V,420

hmin
i = −hmax

i ;∀i ∈ V, M = 300, Qmin
i, j = 0.01 m/s · Si, j ;∀i, j ∈ LP, hP,max

i, j = 200 m;∀i, j ∈ LP
421

and hP,min
i, j = 0 m;∀i, j ∈ LP

K all along this paper, where Si, j is the pipe cross-sectional area.422

Known characteristic curve423

Table 1 provides the TSE results of Monte Carlo simulations when the characteristic curve of424

the pump is known. For each of the four network topologies assumed, the percentage of success425

in estimating the pump status (SP), the percentage of success in estimating the gate valve status426

(SGV ), the average number of iterations required for the TSE algorithm to converge (k), and the427

maximum number of iterations required to achieve convergence (max(k)) are provided for the two428

measurement settings in which 3 and 4 flow meters exist. Additionally, this table gives the average429

of the mean squared error in terms of flows (MSE) for the 1000 simulations, and the time needed by430

the Monte Carlo method to converge in an Intel(R) Core(TM) i7-6700 CPU 3.40 GHz 16GB RAM431

desktop computer. The mean squared error for each of the measurement configurations considered432

for the analysis can be computed as:433

MSE =
1

nL

∑
∀i, j∈L

(Q̂i, j −Qi, j)2, (31)434

with nL = 9 link elements in the illustrative network. Eq. (31) provides the mean squared difference435

between the estimated flows (Q̂i, j ;∀i, j ∈ L) and the real values in the system, which correspond to436
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their values in the corresponding flow network solution Qi, j ;∀i, j ∈ L. Therefore, its average over437

1000 simulations provides an insight of how much TSE results differ from the real network state.438

Beginningwith the results obtained for the 3 flowmetersmeasurement configuration, the success439

in estimating the gate valve status (SGV ) is 100% no matter the real network state. This is fully440

expected because of the fact that all inflows and outflows to the valve are metered. Nevertheless,441

SP ranges between 61.8 and 92.0% depending on the network topology. This can be explained by442

the fact that only water level meters and demand pseudomeasurements are available near the pump443

location, and this does not seem to be enough to correctly estimate the pump status in all cases. As444

presented by Díaz et al. (2017b), measurement noise may lead to an incorrect status determination445

during TSE even if the variable has been identified as observable in a prior observability analysis.446

This is due to the fact that this analysis only considers the number and location of meters, but447

measurement uncertainty can only be taken into account through TSE itself. We want to highlight448

that this is not a limitation of the TSE algorithm, as it provides the best possible estimation by taking449

into account the available noisymeasurements. It has been verified that if measurements were exact,450

a 100% success would be obtained for both the gate valve and the pump in all cases. However,451

real water systems are subjected to noise, and this affects the capability of the algorithm to detect452

changes in the pump/valve status. This reality can be counteracted with the addition of metering453

devices. Table 1 shows that SP increases to 100% in all scenarios when an additional flow meter is454

located in pipe 4-8, i.e. this measurement configuration would permit to guarantee that the pump455

and valve status could be correctly detected regardless of the high uncertainty of the measurements456

and pseudomeasurements, where uncertainty is particularly important. Consequently, MSE is457

reduced by one order of magnitude when a fourth flow meter is added.458

In what regards the number of iterations, k varies between 2 and 7 depending on the original459

network state. Note that when both devices are closed, the method converges in few iterations, as460

it is easy for the algorithm to detect that the pump is closed if the characteristic pump is available.461

Finally, it must be highlighted that the mean convergence time required for each simulation to462

converge is between 2 and 3 seconds in all cases.463
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Unknown characteristic curve464

Table 2 provides the same results when the characteristic curve of the pump is unknown. As it465

happened before, SGV = 100% in all cases no matter the number of flow meters installed. On the466

contrary, SP changes depending on the real network state. As information about the characteristic467

curve is no longer available, it is expected that the success in the estimation of the correct pump468

status reduces with respect to the previous scenario. Such is the case of open valve-closed pump469

and closed valve-closed pump cases when either 3 or 4 flow meters exist. Nevertheless, SP values470

in Table 2 are improved with respect to those in Table 1 in the open valve-open pump and closed471

valve-open pump cases when three flow meters are adopted. This result is not intuitive, but can472

be explained: by removing the information about the characteristic curve of the pump, we allow473

the TSE algorithm to estimate the head gain and flow through the pump freely, i.e. no specific474

relationship is required between hP
6,8 and Q6,8 and they are both independently adjusted to minimise475

the objective function. Therefore, the method is correctly identifying the pump/valve status at the476

cost of failing to accurately estimate the rest of the hydraulic variables in the system, which are no477

longer subjected to a h−Q constraint in the proximity of the pump. Consequently, MSE values are478

increased from Table 1 to Table 2, as the estimated flows and the real water flows differ considerably479

regardless of the improvement in the network topology estimation.480

In what regards the number of iterations, the loss of information about the characteristic curve481

of the pump negatively affects the speed of the method in this example. Table 2 shows that even482

max(k) = kmax = 100 is reached in some cases, which considerably burdens k. More specifically,483

100 iterations have been achieved in 3% of the measurement configurations of the Monte Carlo484

simulation in the open valve-open pump scenario, and this percentage changes to 3.3% and 1.5%485

in the open valve-closed pump and closed valve-closed pump cases, respectively. In most of these486

scenarios, the reason why the algorithm achieves kmax is that there is an oscillation between bP
6,8 = 0487

and bP
6,8 = 1 along the iterative process. The relative error of the objective function between these488

two possibilities is in all cases lower than 10%, i.e. the noise of the measurements is such that489

there is a negligible difference between considering the pump open or closed. This phenomenon490
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disappears when a fourth flow meter is added, thus it can be concluded that even though the system491

is observable when there is no information about the characteristic curve of the pump, the algorithm492

may find it difficult to converge if there are few metering devices subjected to a significant noise.493

Such limitation comes from the nature of the measurements rather than from the method itself.494

Regardless of this situation, the mean time for each TSE remains between 2 and 3.5 s.495

C-TOWN CASE STUDY496

In this section, the algorithm for TSE is tested in the well-known C-Town case study, firstly pre-497

sented in the so called “Battle of Background Leakage Assessment for water networks” (Giustolisi498

et al. 2014). This system presents 1 reservoir, 7 tanks, 388 nodes, 432 pipes, 11 pumps (grouped499

in 5 pumping stations S1, S2, S3, S4 and S5), 1 gate valve, and 1 check valve. In this work, we500

consider the steady state of the network, neglecting the demand patterns and controls provided501

when the problem was first posed for leakage detection purposes.502

This water system is here tested under two different assumptions for TSE purposes: (1) in-503

formation about the characteristic curves of the 11 existing pumps is known, and (2) there is no504

information about the characteristic curve of any of them. In each of them, three measurement505

settings are considered. Firstly, we assume that only water levels are metered and demands at506

junction nodes are pseudomeasured. Secondly, flow meters are added at four of the eight pipes507

that come out of the tanks and the reservoir in the system, more specifically, at the ones associated508

with the highest flows. Finally, four additional flow meters (eight in total) are included in the rest509

of entrances to the network. For each of these measurement settings, we synthetically generate510

measurements as in the illustrative example, assuming the same standard deviations. In this case,511

only two network topologies are considered for the artificial generation of measurements in each512

of the settings: firstly all pumps are working, the gate valve is open and the check valve is closed513

to avoid inverse flow, and secondly pumps PU1, PU4, PU6 and PU10 are closed, i.e. one pump514

is closed in pumping stations S1, S2, S3 and S5. As before, the TSE algorithm is initialised from515

the flow network solution associated with everything opened subjected to a 5% noise. Moreover, a516

Monte Carlo simulation of 1000 measurement configurations is applied to each of such topologies517
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and measurement settings. We assume the same model parameters as the illustrative example.518

Known characteristic curves519

Table 3 shows TSE results for the network topologies and measurement settings considered520

when the characteristic curve of all pumps is known. This table provides the percentage of success521

in determining the number of pumps working in each pumping station (SPSi ;∀i = 1, 2, 3, 4, 5), the522

percentage of success in determining the status of the gate valve (SGV ) and the check valve (SCV ), the523

mean (k) and maximum (max(k)) number of iterations required for the algorithm to converge, the524

mean squared error of flows over the 1000 simulations (MSE), and the time required to undertake525

the sampling experiment in the aforementioned desktop computer. The success criterion for pumps526

is now to correctly determine the number of pumps working per pumping station rather than527

correctly estimating the status of each individual pump, because all the pumps in each pumping528

station present the same characteristic curve.529

This table shows that the status of the pumps and valves in the system cannot be determined with530

certainty when only water levels at reservoirs and water consumptions are measured. Even though531

the system is observable under such configuration, measurement inaccuracy does not enable a good532

TSE. Status estimation is specially bad for SPSi ;∀i = 1, 2, 3, 4, 5, whereas SGV and SCV remain above533

80%nomatter the real status of the system. SGV and SCV present the same values when all pumps are534

working and when some of them are not, because the same water level and demand measurements535

apply. The situation considerably improves when 4 or 8 flow meters are added. In both cases,536

the number of working pumps and the status of the valves are inferred correctly in all Monte537

Carlo simulations. As before, MSE is considerably reduced with the addition of measurements,538

i.e. a better estimation can be obtained when metering devices are added. This improvement is539

higher when four flow meters are added, and lower for the next four extra flow meters. This fact540

highlights the importance of having redundant measurements, i.e. more measurements than the541

strictly required to make the system observable, to counteract measurement inaccuracy.542

On the other hand, it is worth mentioning that k and max(k) are not significantly increased with543

respect to the illustrative example network, and the average time for each TSE remains 3-4 s, i.e.544
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the algorithm has potential for real time implementation. In this regard, we want to highlight that545

the aim of this work is to present a methodology that enables to infer both the network topology546

and hydraulic state of the system from the available measurements, but additional issues must be547

exploredwith view to its on-line implementation. For example, hydraulic uncertainty is unavoidable548

in real-time scenario, thus the hydraulic model needs to be periodically updated in order for TSE549

to be reliable. Recently, Díaz et al. (2017a) have proposed a calibration method to adjust model550

parameters based on multi-period state estimation results. Also, demand estimation in real-time551

is challenging since most large networks have limited data that can be used to estimate demands.552

This is the main reason why state estimation techniques have not been systematically applied to553

water systems on an operational level yet, and the only real applications are all related to water554

transport networks (González et al. 2017; Vrachimis et al. 2016). Water transport networks are555

pipeline systems that providewater to distinct DistrictMeteredAreas (DMA),where incoming flows556

are normally monitored. Hence, in this type of systems demand uncertainty can be considerably557

reduced. Further research should apply the methodology here proposed to a real system, as there are558

always aspects that the model has not reflected and that may introduce errors in the determination of559

the states of the elements. Additionally, sensitivity analysis, leak detection strategies and uncertainty560

evaluation should be progressively incorporated to TSE in order to address the on-line monitoring561

issue in all its complexity (Díaz 2017). In this regard, explicit expressions for state estimation562

sensitivity analysis have been recently proposed (Díaz et al. 2017c) to further the understanding of563

state estimation solutions.564

Unknown characteristic curves565

Table 4 provides the same results when the characteristic curves of the pumps in the system566

are considered unknown. It must be highlighted that such assumption leads to an unobservable567

system for all scenarios, and this implies that state estimation results cannot be trusted (Díaz et al.568

2017b). It is worth mentioning that some high percentages of SP, SGV and SCV are obtained in569

some of the configurations, but they must not be relied upon, as they are mere coincidence. This570

justifies the inconsistencies between Tables 3 and 4 in terms of MSE . These results highlight the571
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importance of observability analysis techniques, without which we would just believe the results572

of the TSE algorithm gathered in Table 4. For this reason, topological observability analysis is a573

prior necessary step that enables to pre-assess the suitability of measurement configurations.574

To finish with, we want to highlight that these last scenarios in which no information about the575

characteristic curves of pumps is available, few meters exist, and all pumps and valves statuses are576

to be determined, are not consistent with the reality of current water systems. For example, system577

outflows are metered rather than pseudomeasured in actual water transport networks that provide578

water to DMAs. Moreover, the characteristic curve of most pumps is normally known, and even579

many of the statuses of the pumps and valves in the network are known thanks to the existence of580

position sensors in many controlling devices. This implies that their binary variables can be fixed581

and only some unknown statuses need to be inferred, thus reducing the complexity of the original582

MINLP problem. The aim of these examples is to show that the methodology proposed in this583

paper is robust and can be used in conjunction with observability analysis techniques to assess the584

behaviour of the system in real-time even when changes in the network topology take place.585

CONCLUSIONS586

In this work, the importance of undertaking TSE rather than traditional SE is highlighted, and587

a novel methodology for TSE is presented. Implementing TSE rather than traditional SE permits588

to drop the assumption that the network topology is known beforehand, enabling to infer both the589

pump and valve status and the hydraulic state of the system from available measurements. This is of590

utmost importance at present, as changes in the network topologymay take place in order to improve591

the quality of the supply service and the system reliability. TSE complements available techniques592

for topological observability analysis, as it permits to take into account measurement noise when593

estimating pump/valve status rather than only analysing if sufficient algebraic relationships exist.594

The method for TSE has been set out as a MINLP problem, where the presence of pumps595

and valves is simulated through binary variables. Due to the complexity of developing a robust596

method for solving such a challenging problem, it has been here transformed into an iterative MIQP597

problem by linearizing Hazen-Williams headloss equations and the characteristic curves of pumps.598
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Only pumps, gate valves and check valves have been introduced in this work as controlling devices,599

but additional hydraulic constraints could be similarly added to the optimisation problem in order600

to simulate the presence of other types of valves.601

The proposed methodology has proven to work robustly in conjunction with topological ob-602

servability analysis in an illustrative example and a larger case study. Different hypotheses have603

been tested about the information available in the network and the number of metering devices,604

showing that the approach is versatile and can track changes in the topology even when there605

is no information about the characteristic curve of an individual pump or group of pumps. The606

computational cost of the new algorithm proves that it has potential for on-line implementation,607

although several related issues must be addressed before its real-time application (e.g. hydraulic608

uncertainty, sensitivity analysis). Additionally, it could constitute a powerful tool when used to609

train network operators on how to respond to incidences. Furthermore, it could be used as a basis610

on which other methods for optimal meter placement could be based, not only assessing the best611

location for additional devices, but also taking into account the possibility of installing position612

sensors, which would fix the binary variables thus reducing the complexity of the problem. These613

are subjects for further research.614
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TABLE 1. TSE results for 1000 Monte Carlo sampling experiments in the illustrative example
network: known characteristic curve

Case Parameters Measurement configuration:
3 flow meters

Measurement configuration:
4 flow meters

SP (%) 61.8 100
SGV (%) 100 100

Open valve k 6.0890 6.1530
Open pump max(k) 26 44

MSE (m6/h2) 1.1776e3 1.8999e2
Time for 1000
simulations (s)

3.0442e3 2.6467e3

SP (%) 73.9 100
SGV (%) 100 100

Open valve k 5.5500 5.2980
Closed pump max(k) 28 26

MSE (m6/h2) 1.2199e3 1.9406e2
Time for 1000
simulations (s)

2.5596e3 2.5725e3

SP (%) 79.9 100
SGV (%) 100 100

Closed valve k 3.6750 5.1060
Open pump max(k) 6 7

MSE (m6/h2) 2.1496e3 2.0453e2
Time for 1000
simulations (s)

2.4007e3 2.5176e3

SP (%) 92.0 100
SGV (%) 100 100

Closed valve k 2.2650 2.0130
Closed pump max(k) 5 5

MSE (m6/h2) 2.0227e3 3.2767e2
Time for 1000
simulations (s)

2.2927e3 2.2792e3
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TABLE 2. TSE results for 1000 Monte Carlo sampling experiments in the illustrative example
network: unknown characteristic curve

Case Parameters Measurement configuration:
3 flow meters

Measurement configuration:
4 flow meters

SP (%) 68.5 100
SGV (%) 100 100

Open valve k 13.6280 5.8170
Open pump max(k) 100 28

MSE (m6/h2) 2.3341e3 2.0352e2
Time for 1000
simulations (s)

3.3303e3 2.6164e3

SP (%) 64.9 98.8
SGV (%) 100 100

Open valve k 10.7860 5.3150
Closed pump max(k) 100 26

MSE (m6/h2) 1.9212e3 1.9410e2
Time for 1000
simulations (s)

3.1276e3 2.6472e3

SP (%) 95.3 100
SGV (%) 100 100

Closed valve k 4.8240 2.9730
Open pump max(k) 9 5

MSE (m6/h2) 2.6955e3 3.0500e2
Time for 1000
simulations (s)

2.6066e3 2.3710e3

SP (%) 53.7 98.8
SGV (%) 100 100

Closed valve k 6.5030 2.0420
Closed pump max(k) 100 5

MSE (m6/h2) 2.0565e3 3.2768e2
Time for 1000
simulations (s)

2.7773e3 2.3212e3
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TABLE 3. TSE results for 1000 Monte Carlo sampling experiments in C-Town case study: known
characteristic curve

Case Parameters Measurement
configuration: no

flow meters

Measurement
configuration: 4
flow meters

Measurement
configuration: 8
flow meters

SPS1 (%) 0.0 100 100
SPS2 (%) 0.4 100 100
SPS3 (%) 0.0 100 100
SPS4 (%) 0.0 100 100

Open GV SPS5 (%) 0.1 100 100
Closed CV SGV (%) 96.3 100 100
Open pumps SCV (%) 83.0 100 100

k 2.9160 4.0830 3.9990
max(k) 13 6 5

MSE (m6/h2) 5.0407e4 2.2044 1.5199
Time for 1000
simulations (s)

3.0164e3 3.2103e3 4.2936e3

SPS1 (%) 0.3 100 100
SPS2 (%) 7.8 100 100
SPS3 (%) 0.1 100 100
SPS4 (%) 0.0 100 100

Open GV SPS5 (%) 3.1 100 100
Closed CV SGV (%) 96.3 100 100

Some closed pumps SCV (%) 83.0 100 100
k 2.9160 5.7030 5.0480

max(k) 13 10 6
MSE (m6/h2) 3.3290e4 2.3889 1.5028
Time for 1000
simulations (s)

3.0233e3 3.5202e3 4.4427e3
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TABLE 4. TSE results for 1000 Monte Carlo sampling experiments in C-Town case study:
unknown characteristic curve

Case Parameters Measurement
configuration: no

flow meters

Measurement
configuration: 4
flow meters

Measurement
configuration: 8
flow meters

SPS1 (%) 0.0 0.0 0.0
SPS2 (%) 0.0 0.0 0.0
SPS3 (%) 0.0 0.0 0.0
SPS4 (%) 0.0 0.0 0.0

Open GV SPS5 (%) 0.0 0.0 0.0
Closed CV SGV (%) 98.0 100 100
Open pumps SCV (%) 83.1 100 100

k 2.8220 12.8430 4.1860
max(k) 14 100 15

MSE (m6/h2) 4.8366e4 1.1997e3 6.4974
Time for 1000
simulations (s)

2.9525e3 5.8960e3 3.4802e3

SPS1 (%) 0.8 81.3 99.9
SPS2 (%) 1.0 100 100
SPS3 (%) 0.0 100 100
SPS4 (%) 0.0 0.0 0.0

Open GV SPS5 (%) 0.0 4.6 100
Closed CV SGV (%) 98.0 100 100

Some closed pumps SCV (%) 83.1 100 100
k 2.8220 2.8600 5.5760

max(k) 14 14 17
MSE (m6/h2) 3.1292e4 5.1755e2 6.3411
Time for 1000
simulations (s)

2.9742e3 3.2190e3 3.8039e3
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Fig. 1. Scenarios within a pump element: positive and negative flow
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TSEk = TSEk-1

Set initial flow value Q0

Solve MIQP with CPLEX
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Fig. 2. Flow chart for TSE: Iterative linearization approach
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