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Abstract: Today, cloud environments are widely used as execution platforms for most applications. In these
environments, virtualized applications often share computing resources. Although this increases hardware
utilization, resources competition can cause performance degradation, and knowing which applications can
run on the same host without causing too much interference is key to a better scheduling and performance.
Therefore, it is important to predict the resource consumption profile of applications in their subsequent iterations.
This work evaluates the use of machine learning techniques to predict the increase or decrease in computational
resources consumption. The prediction models are evaluated through experiments using real and benchmark
applications. Finally, we conclude that some models offer significantly better performance when compared to the
current trend of resource usage. These models averaged up to 94% on the F1 metric for this task.
Keywords: application profile – scheduling — cloud computing — intelligent agents

Resumo: Hoje, os ambientes de nuvem são amplamente utilizados como plataformas de execução de
grande parte das aplicações. Nesses ambientes, aplicações virtualizadas geralmente compartilham recursos
computacionais. Embora isto aumente a utilização do hardware, a competição por recursos pode causar perda
de desempenho, e saber quais aplicações podem ser executadas em uma mesma máquina fı́sica sem causar
muita interferência é a chave para obter um escalonamento mais adequado e um melhor desempenho. Desta
forma, é importante prever o perfil de consumo de recursos das aplicações nas suas iterações subsequentes.
Este trabalho avalia o uso de técnicas de aprendizado de máquina para a previsão do aumento ou redução
no consumo de recursos computacionais. Os modelos de previsão são avaliados através de experimentos
utilizando aplicações reais e sintéticas. Por fim, verifica-se que alguns modelos oferecem um desempenho
significativamente superior quando comparados com a tendência atual de utilização dos recursos. Tais modelos
alcançaram, em média, até 94% em termos de F1 nesta tarefa.
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1. Introduction
In recent years, the adoption of cloud computing platforms
has rapidly increased. This is true since this paradigm allows
better management of on-demand resources for applications
and cloud services can be accessed from virtually any com-
puting device connected to the network, such as smartphones
and Internet of Things (IoT) devices [1].

Besides day-to-day applications, computational clouds are
also used for high-performance massively parallel software
execution, as is the case in scientific applications [2]. In
general, these applications perform complex calculations to
simulate or predict phenomena according to a mathematical
model. The information obtained by these applications is

necessary for scientific research in several fields, such as
physics, chemistry and medicine.

Scientific applications may be classified into profiles ac-
cording to the runtime computational resources consump-
tion [3]. Each profile highlights the type, or set, of resources
that the application uses the most. Application profiles can be
used to identify application affinity, which indicates how well
they can run concurrently without interference. Low affinity
indicates a high degree of interference between applications
running concurrently, so a high affinity is often desired.

Some applications develop high affinity when executed
on the same real machine since the execution of one does
not significantly degrade the performance of the others [3].



Application of Profile Prediction for Proactive Scheduling

However, there are also sets of low affinity profiles that, if
executed concurrently, can cause interference, affecting appli-
cation performance when running on the same machine.

This interference phenomenon can be observed in cloud
computing environments. In this type of environment, appli-
cations from different users are usually isolated in instances
of a Virtual Machine (VM) that run concurrently and can
be scheduled in the same Physical Machine (PM). Thus, if
two low-affinity applications are scheduled in the same PM,
performance degradation may occur and, therefore, some ap-
plications may take longer to run than expected or services
may be unavailable.

Furthermore, in certain contexts such as public clouds, a
minimum performance level that the applications need to
achieve is usually stipulated. This can be defined in the
Service-Level Agreement (SLA), and interference between
applications may impact compliance with this agreement. For
these reasons, it is important to consider the affinity between
applications when running applications concurrently in the
cloud. One of the techniques that can be used to mitigate this
problem is to predict resources usage by a certain application.

Machine learning techniques, such as neural networks and
decision trees, are usually employed to perform predictive
tasks on a given phenomenon from a set of historical known
data. By applying these techniques in an application affinity
environment, it is possible to predict a profile for each appli-
cation based on its resource consumption history. In this way,
a dynamic scheduler can be built to avoid, or at least mitigate,
interference by preventing virtual machines with low affinity
from running concurrently.

The use of virtualization allows application clustering
for those that have affinity in the same PM and, at the same
time, application isolation for the ones that have low affinity
in different PM, thus, maximizing computational resources
usage while reducing performance degradation. With this goal
in mind, it is necessary that each one of the applications is
isolated in a VM and that there is a scheduler capable of using
these profile knowledge to control the execution of these VMs
in a distributed environment, such as a cloud.

In order to reduce interference in cloud computing, many
approaches use scheduling algorithms that take into account
application profiles known a priori, if any, for their initial
allocations. Yokoyama et al.[4] proposed, for example, the es-
timation of the affinity of applications and then uses this static
value to schedule these applications on the most appropriate
hosts to avoid interference. Some works also monitor the VM
resources consumption of each application to identify profile
changes and reallocate VMs through migrations [5].

Affinity-based scheduling models [4] show good results
by avoiding running applications with low affinity on the same
real machine, for those that always maintain the same profile.
Furthermore, with real-time monitoring of virtual machines,
it is possible to detect when an application changes its profile
and starts to cause, or suffer from, interference [5], allowing
a corrective reaction such as the migration of the VM, for

instance.
However, by only using a priori knowledge profiles and

monitoring their changes, it is not possible to anticipate unde-
sirable events and act proactively, in order to optimize appli-
cation scheduling.

In this context, machine learning techniques allow the de-
velopment of predictive models that learn applications behav-
ior from data collected through previous execution monitoring.
Such models can not only be used to improve the decisions
of a virtual environment scheduler, but also allow proactive
actions to be taken in undesirable cases.

The objective of this work is to evaluate the use of machine
learning techniques to predict changes in application profiles.
In this way, it is possible to reduce or even avoid interfer-
ence between applications with low affinity in computational
clouds.

By using the prediction of VM profiles, knowledge of
available hardware resources in each PM, and knowledge of
the current VM allocation, it is possible to detect when co-
allocated VMs may degrade system performance. By predict-
ing these undesirable events, techniques and tools known in
the literature can be applied to mitigate, or perhaps eliminate,
interference before too much damage is done.

This work is organized as follows. Section 2 presents
related works and some comparisons where possible, while
Section 3 presents the development of this work. Section 4
presents an analysis of the results obtained with the proposed
methodology. Finally, Section 5 presents the conclusion of
the work and discusses future works.

2. Related Work
This section presents related work that were used as inspira-
tion for the development of this article. In addition to the main
features of each work, comparisons are presented in order to
position this work in relation to the others. Table 1 presents a
summary of these comparisons.

Shahin[7] presents two algorithms to allow automatic
provisioning of new cloud instances using Long Short-Term
Memory (LSTM) networks in order to handle request over-
loads. In the first algorithm, a LSTM model is trained to
predict CPU utilization based on historical data that combines
normal loads with slashdot loads. A Slashdot is a sudden
ingress of valid traffic and common auto-scaling techniques
usually are not able to scale fast enough for this type of work-
load, which can lead to SLA violations. At runtime, the model
is fed with monitoring data and the predictions are passed to a
decision-making module. The second algorithm, on the other
hand, proposes the use of two prediction models, where the
first one is based only on normal load data and the other one is
based on slashdot loads. At each instant, both models gener-
ate a prediction and the associated Mean Absolute Percentage
Error (MAPE) is used to decide which prediction is used in
the decision making process. Both algorithms reduce the re-
sponse time compared to other approaches in the literature by
up to 300 ms.

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 29 • N. 3 • p.66/75 • 2022



Application of Profile Prediction for Proactive Scheduling

Table 1. Summary of related works
Article Goal Method Evaluation
Bernardo, Pin-
heiro e Pinto[6]

Slashdot cloud effects toleration EMA Reduction in the effects of slashdot

Oliveira et al.[5] Interference effects reduction EMA Reduction in up to 15% of total execution time
Shahin[7] Automatic scheduling LSTM Reduction in average response time of up to 300 ms
Wei et al.[8] On demand pricing resources HMM Increase in profit by about 25%
Guo e Yao[9] System load prediction GRU Smaller MSE and MAPE
Duggan et
al.[10]

SLA violations reduction RNN 85% less violations

This work Application Profile Prediction several up to 94% F1 score on average

As a source of workload, Shahin[7] used logs from HTTP
servers provided by NASA [11] (characterized by normal
loads) and by a free software installation festival [12] (charac-
terized by slashdot loads). The cloudsim software is used
to simulate the computational cloud environment and the
Deeplearning4j library is used as the implementation for the
machine learning models.

The analysis of only one resource, the CPU, does not allow
a complete characterization of the PMs workload. To improve
the prediction of computational resource consumption, Guo
e Yao[9] presents a prediction model based on the workload
evaluated as a linear combination of CPU, memory, network
and disk consumption, where the weights are empirically
defined. The authors compared prediction results for several
models, including LSTM and Gated Recurrent Units (GRU),
using the Mean Square Error (MSE) and MAPE. The error
rates obtained by the GRU models were less than half the rates
of the other approaches and only the LSTM had a near but
larger error. In addition to more accurate results, GRU showed
greater efficiency, as its training time was significantly lower,
about 71% of the training time of a LSTM model in the same
dataset.

To generate the workload data, Guo e Yao[9] monitored
the execution of applications for 10 days in an PM, with 8
days reserved for training and 2 days for testing. TensorFlow
library was used to implement the models.

Another proposed solution for the slashdot problem is
PHOENIX [6]. In this work, instead of creating more in-
stances of the application, as is done by Shahin[7], VMs are
migrated to balance the system load. The system migrates,
at runtime, VMs that present overload to another PM with
more available resources, or fixes the overloaded VM and
moves the others, isolating the overload. The system also
applies two types of load balancing: proactive, when there
is no overload; and reactive, when an overload is detected.
For overload detection, PHOENIX considers CPU, memory
and network usage, but does not apply machine learning tech-
niques. The overload detection algorithm is based on trend
analysis with an exponential moving average while using the
SLA fulfillment to evaluate the adopted approach.

In computational clouds, VMs migration is a widely used
technique to reallocate virtualized applications. One of the
reasons for relocating applications is to reduce performance

loss due to excessive concurrency, evidenced by low affinity
between applications.

Oliveira et al.[5] presents a scheduler capable of identi-
fying low affinity between applications running on the same
PM and migrating one of the applications to another ma-
chine, freeing resources and interrupting interference. The
system uses empirically defined consumption thresholds and
an Exponential Moving Average (EMA) to identify trends in
consumption that can detect changes in application profiles at
runtime. The VMs are non-intrusively monitored and, when
applications with low affinity profiles are identified as running
concurrently, one of the VMs is migrated to another PM.

The architecture proposed by Oliveira et al.[5] consists
of several monitors (one for each application) and a central
scheduler. These monitors collect application resource usage
data while assessing changes in consumption profile, notifying
the scheduler of detected changes. The scheduler then checks
whether the change can interfere with other applications, and,
if this happens, it migrate some VMs to a more suitable host
in the cloud environment.

Wei et al.[8] presents a solution for scheduling resources
in a Software as a Service (SaaS) computational cloud envi-
ronment that offers resources for other Platform as a Service
(PaaS) and SaaS clouds. In this proposed model, the price of
each infrastructure resource varies, not only with consump-
tion, but also with demand. The authors consider the price of
infrastructure provider resources, and consumers and service
providers needs. A Hidden Markov Model (HMM) model is
used to predict the demands for each resource, based on the
client’s consumption history obtained through experiments.
By using this information, the prices of the offered resources
are then evaluated.

The behavior of the service providers competing for re-
sources can then be modeled using tools applied in the finan-
cial market study. The authors use a model based on game
theory, called Imperfect Information Stackelberg Game Model
(IISG) to find a balance situation, that is, the set of all actions
taken individually by each service provider that best meets the
needs of the service providers, minimizing resource prices.

Several works seek to predict time series, in particular, the
consumption of computational resources presenting learning
models trained to predict the next element. However, tasks that
involve migrating VMs, creating new instances of applications
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and provisioning resources on demand in the cloud can take
several minutes. So it is necessary to make this prediction
with greater anticipation. Duggan et al.[10] compares the use
of various machine learning techniques, including a Recurrent
Neural Network (RNN), for predicting CPU consumption and
network bandwidth.

The experiments presented demonstrate that recurrent net-
works offer better performance. In addition, simulations were
performed based on application execution histories in a cloud
environment. In these simulations [10], it was possible to
anticipate the moment to migrate the VMs and, thus, reduce
SLA violations.

Duggan et al.[10] obtains the network consumption data-
set from a study conducted in the Amazon EC2 cloud, con-
sisting of monitoring a period of 1 day. A larger dataset is
generated, considering the Gaussian distribution of the data,
then, CPU data is taken from the Google cluster data trace
dataset, which is composed of a set of logs usage of about
12,000 machines in a cluster over a period of 29 days. The
cloud environment is simulated using Cloudsim software to
get an estimate of migration times.

Table 1 presents the main characteristics of each of the
works detailed in this Section. We can see that the main dif-
ference from the other works is that, in this work, machine
learning techniques are used to estimate the future affinity
between applications based on the prediction of resource con-
sumption.

3. Application Profile Prediction Models
We can define a computing environment as a set of physical
machines P, and a set of virtual machines V . Each virtual
machine runs an instance of some application from its suite
of applications A and each real machine runs a subset of
the virtual machines. For practical purposes, in this work, a
virtual machine is treated as an application instance since the
cardinality of the relationship between these entities is always
1:1.

Let ai and a j be applications with low affinity profiles
running on VMs vi and v j, respectively, which are running on
the same PM pi. In this case, the performance of pi will be
degraded, increasing the execution time of the tasks of this
PM, not just vi and v j. If their profiles are static, then it is
possible to develop a scheduler that avoids this situation by
not allocating, as far as possible, two VMs with low affinity
profiles in the same PM. Nonetheless, this is often empirically
verified not to be true.

As resource consumption profiles change over runtime, so
does affinity. Therefore, an initial scheduling that minimizes
interference, considering a static profile, is not enough to
maintain interference low throughout the entire run. Also,
monitoring the consumption of VM resources while running,
only allows you to perform reactive actions to control this
situation.

Our approach consists of using machine learning algo-
rithms in order to predict the computational resources con-

sumption profile of applications based on their monitoring,
thus, acting proactively. We chose the architecture proposed
by Oliveira et al.[5] to be the basis of our work because it
allows the addition of new strategies for monitoring and iden-
tifying profile changes. Figure 1 illustrates the general archi-
tecture of the scheduling system with a central scheduler and
multiple pairs of VMs and monitors.

The applications run on the VMs while the monitors col-
lect and process data about their resource consumption. From
this data, the monitors send notifications to a central scheduler
whenever a profile change is predicted. The scheduler can
then observe the profiles of the other VMs as well as the envi-
ronment, and thus, if profiles with low affinity are predicted
to be on the same host, it can decide to migrate some VMs to
avoid or reduce interference.

PM 1

(CPU) VM 1

Monitor

(I/O) VM 2

Monitor

(CPU) VM 5

Monitor

PM 2

(I/O) VM 3

Monitor

(CPU) VM 4

Monitor

Scheduler

Queue

(I/O) (CPU) (CPU) 

Cloud 
Environment

Figure 1. Scheduling system architecture based on the base
architecture proposed by Oliveira et al.[5].

Figure 2 illustrates data flow for an application in the
cloud environment. The Data Collector module is responsible
for monitoring the VM, extracting CPU and I/O (disk) usage
data. This component plays an important role both in the
training phase of the machine learning algorithms and in the
application of their derived classifiers, as it generates the
necessary raw attributes.

In order to train the classifiers that compose the Predic-
tor module, these generated attributes are evaluated in an
attribute engineering phase, to generate derived attributes that
capture the current trend and future states. To capture the
current trend, we create attributes with the difference in con-
sumption between consecutive steps of time. For the future
states, we create binary attributes that are the classification
targets. These attributes are true (1) if the future consumption
is greater than or equal to the current consumption and false
(0), otherwise.

Furthermore, a search for the best hyper-parameters is
performed, with the objective of comparing different versions
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Figure 2. Data flow architecture for a single VM

of the classifiers derived from the same algorithms, while
establishing the best setups for each profile. Each hyper-
parameter set that generates the classifier with the best results
in a validation subset of the training set is selected for the final
training with the full set.

The Analyzer module, on the other hand, implements
heuristics that can decide whether the trend predictions made
by the Predictor module consist of a likely profile switch.
Whenever its decision is true for the profile switching, a no-
tification is triggered for the Scheduler module. Finally, the
Scheduler module uses APIs provided by the Cloud Environ-
ment to request a migration of the VMs with predicted low
affinity profiles to more suitable PMs.

The cloud environment used in the experiments is Open-
Stack with a KVM virtualization system, and the virtual ma-
chines are configured with 4 CPU cores, 5GB of RAM and
20GB of disk each. Due to the KVM memory ballooning
driver, it is impractical to observe the real variation of memory
consumption in the guest with the implemented monitor. This
is due to the monitor treating each guest as a host process, and,
thus, it is only possible to know when consumption increases
[5, 13] and, due to this, only CPU and I/O consumption are
considered.

In order to have a binary class, an attribute target is de-
rived consisting of a boolean value xi ≥ xi+n, indicating if the
current consumption value of a given resource x will increase
or remain constant in n time steps in the future. Differences
between the last k observations (xi− xi−k) are also added to
aid trend predictions.

The prediction models receive, as input, the current value
and the latest differences (current trend) of all resources, and
its task is to predict whether or not it will increase or stabilize
in n steps in the future for a specific resource. For each
value of n, a different model is trained. The values used
in our experiments for n are 1, 20, 100 and 200 time steps,
indicating predictions in the near and distant future. As the
interval between observations is 3 seconds per time step, those
predictions translate for 3 seconds, 1, 5, and 10 minutes in the
future, respectively.

For each type of application, type of computational re-
source, and step in time, a prediction model is trained that
uses a hyper-parameter (grid search) with a stratified k-fold
validation scheme in relation to the target and randomized
attribute. The scikit-learn software library [14] was used, as
it offers efficient implementations of the chosen algorithms.
These choices were made based on the success in other similar
tasks, and, in order to allow a comparison with other works not
totally related. So the following machine learning algorithms
are used for the prediction models.

• Gaussian Naive Bayes (GNB): it evaluates the condi-
tional probability of the classes given the features [15].

• AdaBoost Classifier (ABC): it trains a classifier in the
training dataset and then trains copies of that classifier,
adjusting weights according to the performance of the
previous ones. Therefore, it can improve performance
of difficult instances. The implementation of the meta
estimator used in this work is presented in [16].

• Random Forest Classifier (RFC): it is a meta-estimator
that combines decision trees. Each tree is trained with
a subset of the training data, thus, it can improve per-
formance and control over-fitting [17].

• Multi-Layer Perceptron Classifier (MLPC): learns a rep-
resentation of data using a backpropagation algorithm
[18]. It can learn non-linear relationships.

• Support Vector Machine Classifier (SVC): searches for
the hyper-plane that separates the points by classes with
the larger possible margin. It then uses the hyper-plane
to predict a class for new points. The implementation
used in this work is described in [19].

In order to better evaluate the trained algorithms, a simple
baseline model is also used, which consists of replicating the
value of the previous trending observation. In other words,
if, in the last iteration, the trend indicates increased consump-
tion, the prediction will be increase (y=1) for the next steps,
otherwise, it predicts no increase (y=0).

The application monitor collects resource usage data at
each time step and is capable of issuing profile switch notifica-
tions. Oliveira et al.[5] proposed a non-predictive monitoring
algorithm that issues notifications only after profile change.
Upon receiving this message, the scheduler will check if the
profile change implies low affinity among all tasks from the
same host, and, if this occurs, the scheduler will decide to
migrate the task to a more suitable host. Algorithm 1 presents
an overview of the decision process adopted by Oliveira et
al.[5].

By incorporating the machine learning models, it is pos-
sible to predict the application profile by combining the in-
dividual predictions. Algorithm 2 is the responsible for that,
treating the predictions as a weighted vote, where the weights
higher for short-term forecasts.
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Algorithm 1: Profile Change Scheduling
input :task, host, pro f ile
output :migrates if profile change causes low affinity
affinity← calc affinity(task, host, pro f ile);
if affinity < 0.6 then

new host← choose best host(task,
pro f ile);
migrate(task, host, new host);

end

Algorithm 2: Monitoring with Prediction
input :V M, Weights, Resources, Window
output :profile change notification
history← List(size =Window);
profile← null;
while is running(V M) do

usage← collect usage(V M, Resources);
/* keep only the last Window

values */
history← append(history, usage);
for r in Resources do

ypred ← predict(history, r);
votes← sum(Weightsr ∗ ypred);
if votes > (sum(Weightsr)/2) and

profile ̸= r then
profile← r;
notify (profile);

end
end

end

4. Results and Discussion
This section presents an evaluation of the presented model-
ing in the context of its application for the prediction of the
following time steps, 1, 20, 100, 200, which, in our case, are,
respectively, 3 seconds, and 1, 5, and 10 minutes, respectively.
In these tests, we compare all proposed machine learning al-
gorithms for prediction and the baseline presented in Section
3.

The chosen applications used for the experiments were
Blast, Montage, IOzone and HPL. Blast and Montage are
real applications, while the other two are benchmarks. Blast
is a bioinformatics software used to search for similarities
between biological sequences like proteins in a database [20].
Montage is an astronomy application toolkit [21] that allows
the composition of satellite image mosaics. HPL, on the
other hand, is a benchmark that solves dense linear equations
systems in double precision (64 bit) [22]. HPL is usually
used to estimate the performance of distributed computing
environments such as clusters. Finally, IOzone is a tool to
test the speed of the file system [23]. It generates read and
write loads with various size settings and then measures the

performance of the storage system. In this paper, we use
IOzone to simulate an IO-bound application.

We ran several iterations of these applications in a cloud
environment while monitoring their resource consumption.
So, with the data monitoring, it was also possible to generalize
the applications observed behavior into classes of application.
For instance, the HPL application mainly displays a CPU
usage profile, as shown in Figure 3a. On the other hand, the
application IOzone mainly presents an I/O usage profile,
as shown in Figure 3b.
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Figure 3. Synthetic application sample monitoring

The Blast application has an intensive CPU usage profile
as well as HPL, however it is possible to notice in Figure 4a
that memory consumption RAM is also high and, therefore,
it is also possible to classify this application as Mem profile
usage.

Montage application exhibits more varied behavior over
time. This is due to the fact that this application runs a work-
flow in which each step may present a different profile. Fig-
ure 4b illustrates one monitoring of this application in which
it is possible to see how this application changes from a more
intensive CPU consumption to a more intensive I/O consump-
tion throughout its execution.

Resource consumption monitoring data from the applica-
tions was then used as a time series dataset for the machine
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Figure 4. Real-world application sample monitoring

learning models. In each execution, we diversified the avail-
able application parameters so that the dataset to represent a
global application profile and not a single run with a specific
set of parameters.

In the vast majority of cases, the performance of those
models surpasses the one provided by the baseline and, as
expected, deteriorates as we increase the time step, i.e., we
predict more in the future. Furthermore, in general, the ensem-
ble methods, ABC and RFC, outperform the others algorithms
by a small advantage. MLPC and SVC present a reasonable
performance compared to the others, with emphasis on the
MLPC when applied to CPU usage prediction for Blast. GNB,
on the other hand, presents, in general, the worst results and
also some unexpected behaviors. This behaviour is expected
since GNB assumes statistical independence among the used
attributes, which in our case, is not true.

4.1 Class Balancing
The proposed built target attributes for the binary classification
process, y= 1, which represents if consumption will be greater
or equal, in k time steps, and y = 0, otherwise, presented an
imbalance characteristic in terms of example amounts. So, for
certain training instances, there are many more examples for
one class than for the other. For example, in the case of CPU

usage prediction for the HPL application at 1 time step in the
future, there are only 191 examples with class (y = 0) while
for class (y = 1) there are 4658 examples. Table 2 presents
the class amounts for each case.

App Steps CPU
(y=0)

CPU
(y=1)

I/O
(y=0)

I/O
(y=1)

Blast

1 14925 69852 9651 75126
20 19237 65540 9829 74948
100 21839 62938 11973 72804
200 24675 60102 13881 70896

Montage

1 2870 4147 3800 3217
20 3588 3429 3838 3179
100 4497 2520 4832 2185
200 5750 1267 5582 1435

HPL

1 191 4658 1574 3275
20 578 4271 2030 2819
100 1679 3170 2941 1908
200 2479 2370 3776 1073

IOzone

1 7921 4707 6130 6498
20 6725 5903 6408 6220
100 7937 4691 7299 5329
200 9179 3449 8424 4204

Table 2. Number of examples of each class for each
application and steps.

Due to class imbalance, to quantify the performance eval-
uation of the provided models, the F1 metric was used [24].
F1 is defined as the harmonic mean between precision and
recall, and can be expressed by the following equation:

F1 = 2 · precision∗ recall
precision+ recall

.

Where precision and recall are information retrieval perfor-
mance metrics that allow evaluating a classifier from different
perspectives. Precision measures the number of correct values
retrieved from a specific class out of all class values that were
retrieved, while recall measures the number of correct values
out of all possible values for that class.

Figures 5 and 6 present the performance of the models
for the Montage application while Figures 7 and 8 present the
models for the Blast application. On average, the results for
F1 in the trend prediction task for consumption resource usage
had values of up to 94% score.

Among the real-world applications used, the models
showed better performance for Blast, both in CPU prediction
and in I/O. This is probably due to Blast not having much
variation in its consumption profile. On the other hand, Mon-
tage, which has several stages with different characteristics in
its workflow, showed the worst results.

The predictive models for HPL present better performance
when compared to the ones for IOzone, both benchmark ap-
plications. We believe this is affected by the greater variation
in terms of consumption by IOzone. An interesting behavior
here is that GNB has a better performance when compared to
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Figure 5. F1-score for CPU prediction in Montage
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Figure 6. F1-score for I/O prediction in Montage
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Figure 7. F1-score for CPU prediction in Blast

the other algorithms when predicting IO for time step 200, in
both applications. Figures 9 and 10 present the models for the
HPL application while Figures 11 and 12 present the same
models for the IOzone application.

Table 3 presents the “best” algorithms for each discussed
application class. For CPU usage prediction in the CPU class,
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Figure 8. F1-score for I/O prediction in Blast
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Figure 9. F1-score for CPU prediction in HPL
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Figure 10. F1-score for I/O prediction in HPL

the recommended algorithm is ABC, which achieved the best
performance for time steps 20 and 100, while having slightly
small performance in time steps 1 and 200. As for I/O pre-
diction, the algorithm RFC presented the best results in 3 of
the 4 time steps analyzed. Nevertheless, for time step 200, it
was outperformed by the baseline algorithm.
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Figure 11. F1-score for CPU prediction in IOzone
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Figure 12. F1-score for I/O prediction in IOzone

For the I/O class, the recommended algorithm in terms
of predicting CPU consumption is RFC, which achieved the
best performance for all time steps for this class. For CPU
prediction, the algorithm GNB was chosen because it achieved
the best performance in time steps 100 and 200, while slightly
being outperformed for time step 20 and being surpassed by
the baseline in step 1.

For class Mem, the best algorithm was ABC in terms of
CPU prediction. This algorithm achieved the best performance
in 3 of the 4 time steps analyzed, being only outperformed
in time step 1 by a small difference. For I/O prediction,
the chosen algorithm is RFC, which also achieved the best
performance in 3 of the 4 time steps, being only outperformed
in time step 20 by a small margin of difference.

Finally, for the Workflow class, the algorithm RFC is
recommended for both CPU and I/O consumption prediction.
This algorithm achieved the best performance for two time
steps in each prediction type while not being outperformed by
the baseline in any of the cases.

As only one application was selected for each class, the
chosen algorithms may not present high performance for new
applications. Keeping this in mind, it is important to maintain

Application Class Application CPU I/O
CPU HPL ABC RFC*
E/S IOzone RFC GNB*

Mem Blast ABC RFC
Workflow Montage RFC RFC

Table 3. Best algorithms for each class regardless of time
step. Algorithms marked (*) underperformed baseline at
some time step

data collection for new applications, while also training new
models to reflect new applications behaviour.

In the case of new applications, two strategies can be
adopted. If the application’s class information is unknown,
Oliveira et al.[5]’s approach can be used to identify profile
changes while the application’s consumption history is col-
lected, which can then be used to train a new specific model.
Secondly, it is possible to apply one of the class prediction
models assuming that the behavior of the new application is
similar to any of the applications already used for this class.
Likewise, in this case, also data collection is important to
update the model with this possible new behaviour. In both
cases, after collecting a sufficient sample amount, a specific
model for the new application can be trained in order to be
used to predict consumption increase in future executions.
Also, the class prediction model, if known, can be updated,
including the consumption history data of this new application
in the training.

As presented in the results provided in this section, the
use of machine learning algorithms has the ability to reliably
predict the increase in resource consumption by virtualized
applications up to several minutes into the future, especially
when compared to simple heuristics. By using this strategy,
cloud application scaling systems can act early to better miti-
gate performance loss due to interference.

5. Conclusions
Interference caused by resources competition can cause sig-
nificant performance loss in virtualized applications in cloud
environments. Many application schedulers in these environ-
ments try to reduce the effects of this problem by monitoring
application consumption and taking actions when interference
starts.

However, waiting for interference to start can be too late
to mitigate its effects, and predict a change in the profile
application in advance would allow the VM migration to
begin before the performance drop starts.

In this work, we evaluate the use of machine learning
algorithms to predict the increase in resource consumption,
enabling the detection of profile changes in applications run-
ning in a virtualized environment. Furthermore, we present an
scheduling architecture (Figures 1 e 2) that combines existing
architectures with machine learning techniques that can be
used to develop a proactive scheduler that acts in advance to
avoid the loss of performance by interference.
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We can conclude that these techniques allow us to predict
whether consumption will increase for up to several minutes
in the future. In our experiments, we observed up to 94% F1
score on average, in terms of capturing the future trend of
resources usage.

Likewise, it is expected that the present work can be in-
serted into a larger system that allows carrying out the entire
end-to-end decision process regarding the migration of virtu-
alized applications. In this context, it is expected to be able to
further explore the architectures developed here in possible
future works where a proactive dynamic scheduler can be im-
plemented with the development of new heuristics to identify
the applications profile, and consequently, profile changes
based on their consumption predictions.

Furthermore, it is possible to generalize application pre-
diction models, grouping them into classes according to ap-
plications behavior. This facilitates the applications handling,
for known classes, that do not have a trained model. If neither
the application nor its class are known, it would still be possi-
ble to act, applying the base algorithm proposed at Oliveira
et al.[5]. In all these cases, the dataset is incremented with
the application’s resource consumption history, allowing the
training of new models.

Future work also include exploring the use of other ma-
chine learning algorithms, increasing the hyperparameters
search space when training the models, predicting consump-
tion values with regression tasks to complement the trend
prediction that was presented in this work and the study of
new applications to improve predictive models for application
classes.
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