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Abstract. CLTLoc (Constraint LTL over clocks) is a quantifier-free ex-
tension of LTL allowing variables behaving like clocks over real num-
bers. CLTLoc is in PSPACE [9] and its satisfiability can polynomially
be reduced to a SMT problem, allowing a feasible implementation of a
decision procedure. We used CLTLoc to capture the semantics of metric
temporal logics over continuous time, such as Metric Interval Temporal
Logic (MITL), resulting in the first successful implementation of a tool
for checking MITL satisfiability [7]. In this paper, we assess the expres-
sive power of CLTLoc, by comparing it with various temporal formalisms
over dense time. When interpreted over timed words, CLTLoc is equiv-
alent to Timed Automata. We also define a monadic theory of orders,
extending the one introduced by Kamp, which is expressively equivalent
to CLTLoc. We investigate a decidable extension with an arithmetical
next operator, which allows the expression of timed non-ω-regular lan-
guages.

1 Introduction

Linear Temporal Logic (LTL) is one of the most popular descriptive languages
for modeling temporal behavior. Its time model is the structure (N, <), allow-
ing the expression of positional orders of events, e.g., “if a query is received,
then a reply will be delivered within 5 positions from now”, but now allowing
the formulation of real time constraints, that typically require a dense time do-
main. The absence of real time constitutes a major limitation of LTL, which
has been addressed by adding variables, primitive operations or suitable modal-
ities embedding real time, e.g., [19,12]. The reference model in this field is MTL
(Metric Temporal Logic) [17,3], an extension of LTL that allows a temporal
modality UI (and SI), over a real time interval I. On a dense time domain,
both satisfiability and model checking for MTL are undecidable [4], but var-
ious decidable fragments have been defined. MITL [2] restricts intervals I in
UI to be non punctual, e.g., a punctual eventuality such as trueU[a,a]φ is not
allowed. MITL is EXPSPACE-complete and it is closed under all Boolean oper-
ations. A smaller fragment of MTL, called QTL [15], is obtained by restricting
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the temporal modalities to U(0,∞) and to F(0,1), but it is actually equivalent to
MITL. For many years, punctual eventualities were considered the main source
of undecidability over dense time. In [10,20] this result has been revised: decid-
ability has been shown not to solely depend on banning punctual intervals. For
instance, Flat-MTL [10] and Safety MTL [20] allow both punctual eventualities
and invariance properties, but they add some syntactical restrictions on the Until
modality. They are not closed under negation, but their satisfiability is decidable.
However, satisfiability of Safety-MTL formulae is non-elementary, while for Flat-
MTL is EXPSPACE-complete. The dual version of Flat-MTL (i.e., consisting of
the negation of formulae in Flat-MTL) is called coFlat-MTL: unfortunately, its
satisfiability is undecidable (although model checking is EXPSPACE-complete).

The above research on MTL fragments, although also considered satisfiability,
was mainly focused on devising logics that are suitable for model-checking of
timed automata, while the interest in satisfiability has been quite limited. On the
other hand, the need for full descriptive formalisms specifying reactive systems,
and possibly with tractable complexity, is widely accepted [21].

Operational models, such as Büchi Automata (BA), are the most adopted
and widely used alternative to temporal logic. Timed Automata (TA) [1] are the
standard operational formalism for real time modeling. In [24], Büchi’s famous
result about the equivalence of Monadic Second-order Logic (MSO) and BA
automata was extended to real time, by showing that the Monadic second-order
logic Ld (augmenting MSO with a function measuring time between positions)
is equivalent to TA. Because of its undecidability, MTL is not the proper logical
formalism to capture TA, whose emptiness is decidable. Also, MTL does not
embed explicit clocks, which are instead essential resources in TA: their absence
makes the relationship between the expressiveness of clock constraints in TA and
the syntactical restrictions of the various MTL fragments far from being evident.

In general, real time logics such as MTL are well suited to be interpreted
with the continuous-time semantics, where atomic formulae are interpreted as
state predicates, i.e., continuous flows or signals (i.e., mappings associating val-
ues in R+ with states). On the other hand, TA are naturally defined on the
pointwise semantics, where atomic formulae are interpreted as instantaneous
events associated with a timestamp, hence leading to an interpretation over
timed words (sequences of timestamped events). TA can precisely be captured
over the continuous-time semantics by various logic formalisms, such as quanti-
fied MITL [13] and Second-order real-time Sequential Calculus [2]. However, no
temporal logic has so far been shown equivalent to TA in the pointwise semantics,
where the construction of [2] cannot be applied.

In this paper, we bridge the gap between TA and temporal logic over the
pointwise semantics. We consider Constraint LTL over clocks (CLTLoc), a quan-
tifier-free extension of LTL that still considers discrete positions, but it has
also a finite set of variables over a dense time domain, behaving like clocks
of TA, to measure time elapsing among events occurring at discrete positions.
Unlike MTL, clocks are explicit resources in CLTLoc and, as in TA, they can
be compared with constants over N (or Q). In [7], we prove that satisfiability of



CLTLoc is PSPACE-complete, by combining results on the decidability of CLTL
[11],[5] over R with Region Graphs [1] capturing time behavior of variables.
Moreover, the satisfiability of CLTLoc can be reduced to an instance of a SMT
(satisfiability Modulo Theory) problem. A decision procedure was then easily
devised and implemented (http://code.google.com/p/zot), by adopting SMT
solvers such as Z3 [18]. CLTLoc has been successfully employed to reduce MITL
over continuous semantics [6,8], allowing us to implement the first effective tool
solving the satisfiability of MITL (http://code.google.com/p/qtlsolver).

In this paper, we prove the equivalence of CLTLoc and TA over timed se-
quences, and that CLTLoc is expressively complete with respect to an extension
of the monadic first-order logic used by Kamp in [16], called Timed Monadic
First-Order logic (T-MFO). This result extends the Kamp’s equivalence between
LTL and MFO to timed models. T-MFO is similar to logic LT of [3], but it uses a
restriction on atomic formulae and suitable time behavior functions to represent
clocks of CLTLoc. As a consequence, as it is the case for LTL, CLTLoc with
past modalities is equivalent to CLTLoc with only future operators. In analogy
to TA, the number of clocks that are allowed in CLTLoc formulae determines
the expressiveness of the language. We prove, in fact, that there is an infinite
hierarchy of languages based on the number of clocks. An arithmetical “next”
modality may also be allowed, e.g., to state formulae such as Xx = y, meaning
that the value of clock x at the next position and the current value of clock y are
equal. This modality allows the expression of properties of the length of intervals
between two positions, e.g., timed non-regular behaviors where the period can
be any real number, which cannot be defined by any temporal logic over dense
time so far investigated. The paper is organized as follows: Sect. 2 introduces
CLToc, MTL, MITL and TA; Sect. 3 shows the equivalence of CLTLoc and TA;
Sect 4 defines the logic T-MFO. showing its equivalence with CLTLoc. Sect. 5
investigates CLTLoc extended with the next arithmetical modality.

2 Languages

Constraint LTL over clocks [7] (CLTLoc) is a semantic fragment of CLTL [11]
where formulae are defined with respect to a finite set AP of atomic propositions,
a finite set V of clocks and a pair D = (R, {<,=}).

Temporal terms α are defined by the syntax α := c | x | Xα, where c is a
constant in N and x ∈ V . Operator X only applies to temporal terms, with the
meaning that Xα is the value of temporal term α in the next position.

Formulae are defined as follows:

φ := p | α ∼ α | φ ∧ φ | ¬φ | Xφ | Yφ | φUφ | φSφ

where ∼ is a relation of {<,=} and X, Y, U and S are the usual “next”,
“previous”, “until” and “since” operators of LTL, with the same meaning.

For n ∈ N, n ≥ 0, let CLTLoc(Xn) denote the class of CLTLoc formulae
allowing atomic formulae of the form Xhx ∼ y, Xhx ∼ c, where x, y are clocks,
c is constant and h is an integer with 0 ≤ h ≤ n and let CLTLocX denote the
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class of formulae defined as
⋃
n∈N CLTLoc(Xn). Throughout the paper, we write

CLTLoc instead of CLTLoc(X0). For convenience, one can still use in CLTLoc
the operator X in formulae of the form Xx ∼ c, as a shorthand for X (x ∼ c).
Sections 3 and 4 study the expressiveness of CLTLoc, while Section 5 deals with
CLTLocX. The semantic definitions of CLTLocX in the remainder of this section
also apply to its syntactic fragment CLTLoc.

The semantics of CLTLocX is defined with respect to a strict linear order
(N, <) representing positions in time.

The valuation of clocks can be defined by a mapping σ : N×V → R, assigning,
for every position i ∈ N, a value σ(i, x) to each clock x ∈ V . Intuitively, a clock
x measures the time elapsed since the last time when x = 0, i.e., the last “reset”
of x. To ensure that time progresses at the same rate for every clock, σ is called
a valuation when satisfies the following condition: for every position i ∈ N, there
exists a “time delay” δi > 0 such that for every clock x ∈ V :

σ(i+ 1, x) =

{
σ(i, x) + δi, time progress

0 reset x.

By definition of the sequence of δi, it follows that time progress is strongly
monotonic and, moreover, resets in a valuation are represented by value 0, leading
to a very simple definition of CLTLocX: there is no distinction between the action
of resetting a clock x and of testing whether x = 0 in the current valuation. To
consider monotonic time progress instead, i.e., allowing δi ≥ 0, CLTLocX must
be enriched with a special operator to represent clock resets whose semantics is
different from the one of tests x ∼ c.

We assume that at every position there is at least one clock which is not
reset: if this is not the case, just add a new clock Now, which is never reset.
Hence, the time delay δi is uniquely defined in each position i > 0 as σ(i +
1,Now)−σ(i,Now). The initial value of clocks, σ(0, x) may be any non-negative
value. When comparing CLTLoc with MTL and TA, other assumptions may be
introduced to deal with some specific cases, e.g., requiring that clocks start from
0 at position 0 (which is obtained by syntactically imposing x = 0 at 0).

An interpretation for a CLTLocX formula φ is a pair (π, σ), where σ is a val-
uation and π : N→ ℘(AP ) maps every position to a set of atomic propositions.
The semantics of φ at position i ∈ N over (π, σ) is defined in Table 1. The only
case requiring an explanation is the clause for interpreting α1 ∼ α2. Given a
temporal term α containing an occurrence of a variable xα let the depth |α| of
α be the total amount of temporal shift needed in evaluating α: |xα| = 0 and
|Xα| = |α| + 1. The value σ(i, α) is then defined as: σ(i, α) = σ(i + |α|, xα). If
α has an occurrence of a constant cα then σ(i, α) = cα. Hence, we can always
assume that X does not appear in front of a constant. A CLTLocX formula φ is
satisfiable if (π, σ), 0 |= φ, for some (π, σ); in this case, (π, σ) is called a model
of φ, and we write (π, σ) |= φ.

To compare the expressiveness of CLTLocX with other formalisms, we in-
troduce the satisfiability of CLTLocX formulae over timed ω-words (or timed
ω-sequences). A timed ω-word over ℘(AP ) is a pair (π, τ) where π : N→ ℘(AP )



(π, σ), i |= p⇔p ∈ π(i) for p ∈ AP
(π, σ), i |= α1 ∼ α2 ⇔σ(i+ |α1|, xα1) ∼ σ(i+ |α2|, xα2)

(π, σ), i |= X (φ)⇔(π, σ), i+ 1 |= φ

(π, σ), i |= Y (φ)⇔(π, σ), i− 1 |= φ ∧ i > 0

(π, σ), i |= φUψ ⇔∃ j ≥ i : (π, σ), j |= ψ ∧ ∀ i ≤ n < j, (π, σ), n |= φ

(π, σ), i |= φSψ ⇔∃ 0 ≤ j ≤ i : (π, σ), j |= ψ ∧ j < n ≤ i, (π, σ), n |= φ

Table 1. Semantics of CLTLocX (propositional connectives are omitted).

and τ is a monotonic function τ : N → R such that ∀i τ(i) < τ(i + 1) (strong
monotonicity). Without loss of generality, to simplify some of the proofs that
follow, we depart slightly from the standard definition of timed words, consider-
ing the first position 0 as “special”. Given a CLTLocX interpretation (π′, σ), let
τ and π be such that: τ(0) = 0, π(0) = ∅ and for every i ≥ 0

τ(i+ 1) = σ(i,Now), π(i+ 1) = π′(i).

Then, (π, τ) is called the timed ω-word associated with (π′, σ) and it is denoted
by [(π′, σ)]. A relation |= can be defined for every timed ω-word (π, τ) and
CLTLocX formula φ as follows. Let (π, τ) |= φ hold if there exists an interpreta-
tion (π′, σ) such that (π′, σ) |= φ and (π, τ) = [(π′, σ)]. A CLTLocX formula φ
is satisfiable over timed ω-words, if (π, τ) |= φ, for some (π, τ).

3 Equivalence of CLTLoc and Timed Automata

This section shows that the set of timed ω-words satisfying a CLTLoc formula
is timed ω-regular, i.e., it is accepted by a Timed Automaton. In particular,
CLTLoc is an extension of LTL capturing exactly timed ω-regular languages.

We recall the basic definitions of Timed Automata. Let X be a finite set of
clocks with values in R. Γ (X) is the set of clock constraints over X of the form
x ∼ c | ¬γ | γ ∧ γ, where ∼∈ {<,=}, x ∈ X and c ∈ N. A clock valuation is a
function v : X → R. We write v |= γ when the clock valuation satisfies γ. For
t ∈ R, v + t denotes the clock valuation mapping clock x to value v(x) + t, i.e.,
(v + t)(x) = v(x) + t.

A Timed Automaton is a tuple A = (Σ,Q, T, q0, B) where Σ is a finite
alphabet, Q is a finite set of control states, q0 ∈ Q is the initial state, B ⊆ Q
is a subset of control states (corresponding to a Büchi condition) and T ⊆
Q×Q× Γ (X)×Σ × 2X is a set of transitions.

A transition has the form q
γ,a,S−−−→ q′ where q, q′ ∈ Q, γ is a clock constraint

of Γ (X), a is a symbol of Σ, and S is a set of clocks to be reset. Two transitions

q
γ,a,S−−−→ q′ and p

γ′,b,P−−−−→ p′ of T are consecutive when q′ = p. A (finite or infinite)
sequence of consecutive transitions in T is a path in A. A pair (q, v), where
q ∈ Q and v : X → R is a clock valuation, is a configuration of A. A run ρ of A
over a timed ω-word (π, τ) ∈ (Σ × R)ω is an infinite sequence of configurations



(q0, v0)
π(1)−−−→
τ(1)

(q1, v1)
π(2)−−−→
τ(2)

. . . , where q0 ∈ I, v0(x) = 0 for all x ∈ X, vi(x)

is either 0 or vi−1(x) + τ(i) − τ(i − 1) for all x ∈ X and i > 0; moreover, the

sequence q0
γ1,π(1),S1−−−−−−→ q1

γ2,π(2),S2−−−−−−→ q2 . . . , such that vi−1 + τ(i)− τ(i− 1) |= γi
and x ∈ Si iff vi(x) = 0, must be a path of A. Let inf (ρ) be the set of control
states q ∈ Q such that q = qi for infinitely many positions i ≥ 0 in ρ. A run is
accepting when a Büchi condition holds, i.e., inf (ρ) ∩B 6= ∅.

Since we consider strictly monotonic time sequences τ , a transition with a
guard x = 0 can never be taken (hence, it can be replaced with false): such
a transition would be fired at i only when a transition at i − 1 resets x, thus
entailing τ(i) = τ(i − 1), contradicting strict monotonicity. From now on, we
assume that guards of the form x = 0 are not allowed in a TA.

3.1 From Timed Automata to CLTLoc

Following a rather standard approach, we provide a CLTLoc formula which
captures the semantics of a TA. To this end, we introduce a set of fresh clocks
XQ representing the control states of A. More precisely, a clock cq ∈ XQ is
associated with each control state q ∈ Q; the value of cq is 0 whenever A is
in q, and it is left to grow (i.e., cq > 0) otherwise. Since in CLTLoc, unlike in
TA, a clock cannot be read and reset at the same time, following the approach
of [7] for each x ∈ X we introduce two CLTLoc clocks, x1 and x2, which are
alternately reset. In addition, we introduce a third clock, x12, which is used to
keep track of whether x1 < x2 (x12 is 0 if, and only if, x1 < x2). We define a
set of formulae whose conjunction φA describes a given TA A. The first formula
(where G (φ) = ¬(trueU¬φ)) is globally quantified and states that if x1 is reset
then it cannot be reset again, unless x2 is reset before it; in addition, x12 = 0
until x2 is reset:

x1 = 0⇒ ¬X ((x2 > 0)U(x1 = 0)) ∧ x12 = 0 ∧X

(
G (x12 = 0 ∧ x2 > 0) ∨
(x12 = 0)U(x2 = 0)

)
.

A symmetrical formula is defined also for x2, but evaluated at position 1 rather
than at the origin. A clock constraint x ∼ c for a clock x of A is expressed by
the formula (x12 = 0 ∧ x1 ∼ c) ∨ (x12 > 0 ∧ x2 ∼ c). For all q ∈ Q, the following
formula translates the transition relation of A:

G(cq = 0⇒
∨

q
γ,a,S−−−→q′∈T

X (a ∧ cq′ = 0 ∧ φγ ∧ φS)) (1)

where φγ is the CLTLoc formula that captures the clock constraint γ and φS is
the conjunction of formulae of the form x1 = 0 ∨ x2 = 0 for each x ∈ S. The
first transition from the initial state must be dealt with separately, because at
that position all clocks in the TA are set to 0, by the following formula, to be
evaluated at the initial position:∨

q0
γ,a,S−−−→q′∈T

a ∧ cq′ = 0 ∧ φγ ∧ φS . (2)



To represent valid runs of A, suitable formulae are introduced that guarantee
the uniqueness of the control state and of the input symbol at each position i.
The Büchi acceptance condition is obtained by enforcing that at least one final
control state qj ∈ B is visited infinitely often. These formulae are rather trivial
and are not shown here for brevity. Finally, let φA be the conjunction of all
previous CLTLoc formulae that capture the semantics of A.

Theorem 1. Let A be a TA with k ≥ 1 clocks and n ≥ 1 control states, and
let (π, τ) be a timed word over alphabet Σ. Then, (π, τ) is accepted by A if, and
only if, (π, τ) |= φA. Moreover, φA has 3k + n clocks.

3.2 From CLTLoc to Timed Automata

The timed automaton recognizing the language of timed words that are models
of a given CLTLoc formula is easily obtained by exploiting the Vardi-Wolper
construction [23] for LTL formulae. We take care of clock constraints that are
handled as atomic formulae and, in particular, all formulae of the form x = 0 are
converted into resets. Observe that, with the assumption of strictly monotonic
time sequence, CLTLoc formulae x = 0 are equivalent to resets of TA.

Theorem 2. Let φ be a CLTLoc formula with k clocks. Then, there exists a
k-clock TA Aφ recognizing the timed language defined by φ: for all timed words
(π, τ) over alphabet ℘(AP ), (π, τ) |= φ if, and only if, (π, τ) is recognized by Aφ.

From the equivalence of CLTLoc and TA some results follow immediately.
The first statement derives from the universality problem for TA.

Corollary 1. The validity problem for CLTLoc is Π1
1 complete.

Let CLTLocX,U be the set CLTLoc formulae with no past operators S and Y.

Corollary 2. CLTLoc is equivalent to CLTLocX,U.

The number of clocks plays a crucial role for the expressiveness of TA. In
fact, timed regular languages can be arranged in a strict hierarchy, determined
by the minimum number of clocks necessary for accepting a given language.

Theorem 3. [14] For all k ≥ 0, the class of timed languages accepted by TA
with k clocks is strictly included in the class of timed languages accepted by TA
with k + 1 clocks.

Example 1. Consider the family of timed languages {Lk}k>0 where Lk is the
set of timed words over the alphabet {a} of the form (π, τ), such that π : N →
{∅, {a}}, π(i) = {a} for all i > 0 and there exist at least k distinct pairs (i, j),
0 < i < j ∈ N, such that τ(j)− τ(i) = 1 (i.e., there are at least k distinct pairs
of a’s at exactly distance 1). In [22], it was shown that every Lk is accepted by
a TA with k clocks, but it cannot be accepted by any TA with k − 1 clocks.

The above hierarchy result can easily be extended to CLTLoc. Let CLTLock be
the set of CLTLoc formulae where at most k clocks occur, i.e., |V | ≤ k.

Theorem 4. For all integers k > 0, CLTLock is strictly more expressive than
CLTLock−1.



4 Timed Monadic First Order Logic of Orders

We define the logic T-MFO, an extension of the monadic first order logic of
order (MFO) that Kamp [16] showed to be equivalent to LTL. We then prove
that CLTLoc is expressively complete with respect to T-MFO. T-MFO has two
kinds of elements: monadic predicates whose domain is N, and monotonic unary
functions N→ R relating positions in N to timestamps in R. Similarly to the logic
LT of [3], T-MFO includes a special function, denoted as t : N→ R, associating
each discrete position with its absolute timestamp. For simplicity and without
loss of generality, in this section we assume that, given a CLTLoc formula, all
clocks that appear in it are reset in position 0.

(N, <) is the theory of discrete positions, whereas (R, <,=,+) is the structure
where timestamps are evaluated. The elements of T-MFO are:

– a set AP of monadic predicates over the set N of discrete positions;
– relation < and function +1 on discrete positions;
– a set T of unary functions N → R from discrete positions to timestamps;

one of them is called t;
– relations <,= and function +1 on timestamps.

In (N, <), the constant 0 and the successor function +1 can be defined by means
of < and first-order quantification, but we introduce them as primitive to over-
come the syntactic restrictions introduced next. Let tx and ty be unary functions
of T from discrete positions to timestamps. We restrict the atomic formulae on
timestamps to be of the form tx(i) ∼ ty(j)+c, where ∼∈ {<,=} and +c (c ∈ N)
corresponds to the application c times of function +1. In addition, we impose
that atomic formulae only have one free variable. As a consequence, the atomic
formulae that can be written on timestamps have the form

β(i) := tx(i+ h) ∼ ty(i+ k) + c

where either tx or ty may be t and h, k are constants in N and ∼∈ {<,=} (the
case where both are t is straightforward, because β reduces to either true or false
based on ∼, h and k).

Function t of T captures the passing of time, and is similar to function f used
in [3]. Hence, the following constraint holds: ∀i t(i + 1) > t(i). The functions
of set T are intended to capture the timestamps when clocks are reset – more
precisely, tx(i) is the last timestamp where clock x is reset. As a consequence,
the functions obey the following constraints: tx(0) = t(0) and

∀i ((tx(i+ 1) = tx(i) ∨ tx(i+ 1) = t(i+ 1))) .

Finally, formulae of T-MFO are defined by the following grammar (where
p ∈ AP and i, j are variables over N):

φ := p(i) | β(i) | i < j | ¬φ | φ ∧ φ | ∀iφ.

We consider only formulae of T-MFO that do not contain free individual vari-
ables. The semantics for T-MFO formulae is defined with respect to a structure



MI = (N, <, I) (or simply I) where interpretation I specifies the sets pI ⊆ N
for each p ∈ Σ and the behavior of all functions of T . The satisfaction relation
|= is defined in the standard way. A T-MFO formula φ is satisfiable if there is I
such that I, 0 |= ψ; in this case, we say that I is a model of φ.

Given an interpretation I, define the corresponding timed word (π, τ) as:

– For all p ∈ AP , p ∈ π(i) iff i ∈ pI .
– For all i ∈ N, τ(i) = t(i).

Relation |= can be extended to timed words. Let (π, τ) be a timed word and φ
be a T-MSO formula. We write (π, τ) |= φ if there exists an interpretation I
that is a model for φ such that (π, τ) is obtained from I.

4.1 From CLTLoc to T-MFO

Every CLTLoc formula φ can be translated into a T-MFO formula by introducing
a monadic predicate p(i) for each CLTLoc proposition p, and a function tx(i) for
each clock x. The following definition of translation r, mapping CLTLoc formulae
to T-MFO formulae, follows [3] and is defined inductively on the structure of the
CLTLoc formula. First, we introduce mapping ri, for i ≥ 0, which is the same
as Fi of [3] for p ∈ AP , ¬, ∧, X and U, plus the following:

ri(x ∼ c) = t(i) ∼ tx(i) + c.

Let φ be a CLTLoc formula. Then, r0(φ) is the corresponding T-MFO formula.

Theorem 5. Let φ be a CLTLoc formula and (π, σ) be a CLTLoc interpreta-
tion. If (π, σ) |= φ then there exists an interpretation I such that I, 0 |= r0(φ).
Conversely, let I be an interpretation such that I, 0 |= r0(φ). Then, there is an
interpretation (π, σ) such that (π, σ) |= φ.

4.2 From T-MFO to CLTLoc

To obtain the opposite equivalence, we again exploit Kamp’s results proving the
equivalence between MFO and LTL. To extend the result to T-MFO, we have
to show how atomic formulae β(i) can be translated into CLTLoc, since MFO
does not have formulae in this form.

Theorem 6. Let φ be a T-MFO formula. There exists a CLTLoc formula φ′

such that, for all timed words (π, τ), (π, τ) |= φ if, and only if, (π, τ) |= φ′.

As a consequence of Theorem 6, formulae of the form t(i) ∼ ty(i + h) + c
and t(i + h) ∼ ty(i) + c (i.e., where one of tx, ty in terms β is t) are enough
to characterize timed ω-languages; in fact, by exploiting the equivalence with
CLTLoc, one can always remove formulae β where neither tx nor ty is t.

Corollary 3. Let φ be a T-MFO formula. Then, there is a T-MFO formula φ′

without instances of formula tx(i+h) ∼ ty(i+k) + c, with tx 6= t 6= ty, such that
for each timed word (π, τ), it is (π, τ) |= φ if, and only if, (π, τ) |= φ′.



5 Timed non-regular languages

Many extensions of the class of TA have been proposed with the goal of increas-
ing its expressiveness. For instance, [1] introduced diagonal constraints, i.e., of
the form x ∼ y + c, as guards of transitions. They proved, however, that this
extension does not augment the expressiveness of TA, since the construction of
the region graph can be generalized to consider diagonal constraints, by refining
the equivalence relation ' on clock valuations.

In CLTLoc one can also allow diagonal constraints, but as in the case of TA,
they do not augment the expressiveness of the language; the occurrence of a
formula x ∼ y+ c, with c ∈ N a constant in and x, y two clocks, can equivalently
be rewritten in CLTLoc as (x > 0 ∧ y > 0)S(y = 0 ∧ x ∼ c). In fact, since time
progression is the same for both clocks x and y, the formula x ∼ y+c is satisfied
at a position i ∈ N if there exists a position j ≤ i such that at j both y = 0 and
x ∼ c hold, and from position j+ 1 up to i, neither x nor y are reset. Therefore,
x > 0 ∧ y > 0 holds in every position in the interval [j + 1, i].

When considering CLTLocX, i.e., when temporal terms include also X, the
expressive power increases. Notice that atomic formulae of the form Xnx ∼
Xmy, for m ≤ n, may be ignored since they can equivalently be rewritten as
Xm(Xn−mx ∼ y).

Example 2. Let L be the set of timed ω-words over the alphabet {a} such that
a is periodical. Formally, an ω-word (π, τ) is in L if, and only if, π : N→ {{a}}
and for all i ∈ N, τ(i+ 2)− τ(i+ 1) = τ(i+ 1)− τ(i). L is defined in CLTLoc(X)
with two clocks x, y as: y = 0 ∧ x > 0 ∧G(a ∧ Xy = x ∧ Xx = y). Condition
Xx = y states that for all i ≥ 0 the value of x at position i + 1 is the same
of y at position i. Similarly for Xy = x. The formula imposes that at position
0 y = 0 and x may assume any real value α > 0. Therefore, for all i ∈ N,
if i is even then σ(i, y) = 0, σ(i, x) = α, else σ(i, y) = α, σ(i, x) = 0. Hence,
σ(i + 1,Now) − σ(i,Now) = α. It is now obvious that (π, σ) is a model of the
formula if, and only if, [(π, σ)] is a timed ω-word of L.

Theorem 7. The language of Ex. 2 is not timed regular, but it is in CLTLoc(X).

The following immediate property of operator X is crucial in showing that
the timed non-regular language L of Example 2 is in CLTLoc(X).

For a clock z ∈ V , for a position m ∈ N, let R(z,m) = max{j | 0 ≤ j ≤
m ∧ σ(j, z) = 0}, i.e., the largest position between 0 and m where z is reset.

Statement 1 Let σ : N×V → R be a valuation such that all clocks are reset at
least at position 0. For i > 0, x, y ∈ V , let Rx = R(x, i + n), and Ry = R(y, i).
Then, σ(i,Xnx) = σ(i, y) if, and only if, Ry < Rx and:

σ(Rx,Now)− σ(Ry,Now) = σ(i+ n,Now)− σ(i,Now)

In fact, σ(i,Xnx) = σ(i + n, x) = σ(i + n,Now) − σ(Rx,Now), and σ(y, i) =
σ(i,Now) − σ(Ry,Now): it follows that σ(i,Xnx) = σ(i, y) ⇔ σ(i + n,Now) −



σ(Rx,Now) = σ(i,Now) − σ(Ry,Now). Hence, a formula of the form Xnx = y
compares the time distance of positions i and i + n with the time distance of
positions Ry and Rx (where y and x were last reset). A special case is when
Rx = i+ n and Ry = i, which entails that σ(i,Xnx) = σ(y, i) = 0.

For all k ≥ 0, let CLTLoc(Xn, k) be the class of CLTLoc(Xn) formulae
with at most k clocks. The number of clocks induces an infinite hierarchy over
CLTLoc(Xn, k):

Theorem 8. For all k, n ≥ 1, the class of languages in CLTLoc(Xn, k − 1) is
strictly included in the class of languages in CLTLoc(Xn, k).

We notice that CLTLoc(Xn, k) 6⊆ CLTLoc(k + 1) for k ≥ 2, since the exam-
ple of Theorem 7 can be defined with just two clocks, and the language Lk in
the proof of Theorem 8 is the same of Ex. 1, which obviously is in CLTLock.
Therefore, operator X cannot be used to replace some of the clocks:

Corollary 4. For all k ≥ 2, the class of languages in CLTLoc(k + 1) is incom-
parable with the class of languages in CLTLoc(Xn, k).

The operator Xn also induces an infinite hierarchy:

Theorem 9. For all k, n ≥ 1, the class of languages in CLTLoc(Xn−1, k) is
strictly included in the class of languages in CLTLoc(Xn, k).

6 Conclusions

This paper studies the expressiveness of Constraint LTL over clocks (CLTLoc),
whose main interest of CLTLoc is that its decidability procedure, based on SMT
solvers, has actually been implemented, allowing the verification of real time
logics such as MITL or QTL.

CLTLoc is equivalent to Timed Automata in the pointwise semantics and it
is expressively complete with respect to an extension of Kamp’s monadic first-
order logic. Its family of languages is organized in an infinite hierarchy based on
the number of clocks. When an arithmetical “next” operator is allowed, CLTLoc
defines also timed non-ω-regular languages, while still being decidable.
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