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Relationship between pore size and velocity probability distributions
in stochastically generated porous media

M. Siena,1,* M. Riva,1,2 J. D. Hyman,3 C. L. Winter,2,3 and A. Guadagnini1,2

1Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy
2Department of Hydrology and Water Resources, University of Arizona, Tucson, Arizona, 85721, USA

3Program in Applied Mathematics, University of Arizona, Tucson, Arizona, 85721, USA
(Received 17 October 2013; revised manuscript received 6 December 2013; published 23 January 2014)

We perform a set of detailed numerical simulations of single-phase, fully saturated flow in stochastically
generated, three-dimensional pore structures with diverse porosities (φ) and degrees of connectivity, and analyze
the probability density functions (PDFs) of the pore sizes, S, and vertical velocity components, w, which are
aligned with the mean flow direction. Both of the PDFs are markedly skewed with pronounced positive tails. This
feature of the velocity PDF is dictated by the pore structure and determines the shortest travel times, one of the
key transport attributes that underpins the success or the failure of environmental remediation techniques. Using
a maximum likelihood approach, we determine that the PDFs of S and w decay according to an exponential
and a stretched exponential model, respectively. A strong correlation between the key parameters governing the
decay of the upper tails of the two PDFs is found, which provides a quantitative result for this analogy that so
far has been stated only qualitatively. The parameter governing the concavity of the tail of the velocity PDF
varies linearly with porosity over the entire range of tested values (0.2 � φ � 0.6). The parameters controlling
the spread of the upper tails of the PDFs of S and w appear to be linked by a power-law relationship.
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I. INTRODUCTION

Detailed knowledge of flow and transport in complex
porous systems is of relevance in several industrial and
environmental applications, ranging from oil recovery to
groundwater protection procedures. Recently, Bijeljic et al. [1]
numerically investigated the non-Fickian behavior of solute
transport on millimeter-scale micro-computed tomography
(CT) images of a bead pack, a sandstone, and a carbonate
sample. The authors showed that the computed propagators
relative to mean displacement along the main flow direction
(i.e., concentration versus displacement) (i) compare well with
nuclear magnetic resonance (NMR)-measured propagators
associated with similar conditions, and (ii) depend on the
distribution of velocities which is in turn dependent upon
the pore-space structure. Previous studies [2–7] explore the
effects of diverse pore structures on the distribution of local
velocities. However, a clear understanding and quantification
of this relationship is still lacking.

Kutsovsky et al. [2] analyzed the axial velocity distribution
in two bead pack configurations (with porosity, φ, approxi-
mately equal to 0.4) using NMR images for Reynolds numbers,
Re (based on bead diameters), ranging between 14.9 and
44.8. The authors showed that the axial velocity profile is
roughly parabolic in the pores. Moreover, the positive tail of
its probability density function, PDF, decays exponentially,
consistent with predictions obtained from a simple bundle-of-
tubes model. Similar results were shown by Lebon et al. [3]
in experiments performed with extremely low Re numbers
(between 0.36 and 1.8) in unconsolidated packings of spherical
beads with φ = 0.36.

Maier et al. [4] observed a correspondence between NMR
measurements and numerical results obtained by the lattice-
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Boltzmann method (LBM) in different bead packs with 0.37 �
φ � 0.43 and 0.6 � Re � 30. The authors found a qualitative
correspondence between the positive tail of pore sizes and
velocity distributions, i.e., the longer are the tails of the pore
sizes, the longer are those of the velocities.

Van Genabeek [5] adopted LBM to solve for flow in
two-dimensional lattices characterized by high φ values,
ranging from 0.6 to 0.99. The author showed that a stretched
exponential model fits the positive tail of the sample veloc-
ity distributions, the distribution parameters being strongly
related to φ. Araújo et al. [6] presented numerical flow
simulations in two-dimensional random media generated with
solid nonoverlapping disks and characterized by high porosity
values, 0.6 � φ � 0.9. The authors noticed a nearly Gaussian
distribution of the product between velocity and φ2. On the
other hand, they observed PDFs of local fluxes (computed as
the convolution of channel widths and velocity distributions) to
be represented satisfactorily by a stretched exponential model.
Rouyer et al. [7] studied the flow of noncolloidal spheres
immersed in a quasi-two-dimensional fluidized suspension
and found velocity fluctuation PDFs to vary from Gaussian to
exponential as particle concentration increases. In summary,
existing works in the literature indicate that velocity PDFs
in porous samples tend to be characterized by positive tails
which decay according to exponential [2–4] or stretched
exponential [5,7] models.

Here, we analyze and quantify the correlation between the
pore structure and the distribution of the local velocities, which
has so far been stated only qualitatively [4–7], using a direct nu-
merical simulation of flow through explicit three-dimensional
pore structures. This study is a step toward the identification
of analytical relationships that allow the distribution of pore
velocity values to be quantified from routine pore size analyses.
In particular, we are interested in characterizing the positive tail
of the density of the (normalized) velocity component along
the mean flow direction, w, due to its critical influence on
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the distribution of the shortest residence times of dissolved
solute particles in the system. The study is performed in
synthetically generated isotropic random porous media to
investigate the influence of intricate porous microstructures on
pore-scale velocity densities under a broad range of realistic
porosity values (0.2 � φ � 0.6) and Reynolds numbers (from
about 1 to more than 400). First, the pore-space generation
process is outlined and the resulting porous microstructures
are examined in detail (Sec. II A). Next, the numerical method
employed to simulate fluid flow through the generated porous
microstructures is briefly summarized in Sec. II B. The key
results of the numerical simulations are provided in Sec. III.
We conclude with some remarks in Sec. IV.

II. MATERIALS AND METHODS

A. Generation of three-dimensional porous media

Isotropic sample blocks of porous media are generated
using the procedure implemented in Hyman et al. [8], which
has been shown to provide realistic three-dimensional pore
structures [9], on cubic lattices with side L = 1.27 × 10−2 m
and uniform grid step �l = 10−4 m. First, a three-dimensional
lattice is populated with random variables sampled from the
uniform distribution on the closed interval [0, 1]. Then, this
field is convolved with a symmetric Gaussian kernel to produce
a spatially correlated topography. The geometry of the pore
space is determined by assigning nodes in the correlated topog-
raphy to the void space or to the solid matrix. A level threshold
is applied to the resulting topography so that a node is assigned
to the void or the solid matrix space if the generated value at
the node is, respectively, lower or higher than the threshold.
The resulting pore space offers no preferred direction to flow
because the topography is isotropic and statically stationary.
Three different values of connected porosity, i.e., φ = 0.2, 0.4,
and 0.6, and Gaussian kernel parameter, σ = 0.01, 0.03, and
0.05, are considered. The latter controls the spatial correlation
of the void space, as detailed below.

Figure 1 depicts examples of the void distribution along hor-
izontal cross sections in all nine blocks. The samples generated
with wider kernels are associated with pore spaces with fewer
and wider pores than those obtained with narrower σ values.
The connectivity of the void spaces increases with σ . To further
explore this aspect and to quantify the range of validity of our
analysis, we investigate the spatial correlation of the void space
by calculating the variogram of the indicator function, I (where
I = 1 in the pore voxels and I = 0 otherwise). As an example,
Fig. 2 shows plots of the variograms, γI (h), evaluated for φ =
0.4 and the three σ values, versus h, i.e., the spatial separation
distance or lag rescaled by the block size L. Similar depictions
are obtained for all blocks investigated.

The variograms γI (h) tend asymptotically to a sill that does
not depend on σ , its theoretical value being equal to φ(1 − φ).
On the other hand, the degree of correlation of the void spaces
is dictated by σ . This dependence can be quantified by fitting
standard variogram models to γI (h) and is illustrated by means
of maximum likelihood (ML) fits to each γI (h) (Fig. 2) of
spherical variogram models,

γ (h) =
{

s
(

3h
2r

− h3

2r3

)
for 0 < h � r

s otherwise
, (1)

 = 0.2  = 0.4  = 0.6 

 σ = 0.01 

 σ = 0.03 

 σ = 0.05 

FIG. 1. Example of void distribution along horizontal cross
sections in the nine samples. White regions represent the pore space.

where s is the sill of the variogram and r is the (isotropic) range
rescaled by the block size L. Similar results were obtained
using the exponential model (details not shown). The ML
estimates of the parameters s and r are collected in Table I. The
range r is almost constant within the porosity range considered
and increases almost linearly with σ .

An integral measure of spatial correlation is provided by
the integral scale of I , λ (m), defined as

λ

L
= 1

s

∫ ∞

0
[s − γI (h)]dh. (2)

According to Eqs. (1) and (2), λ/L = 3/8 r . Table I also
reports the ratios L/λ, which indicate that our block samples
are associated with sizes ranging from a relatively small
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FIG. 2. Sample variograms (symbols) of the indicator function
associated with the void space for the blocks with φ = 0.4 for three
σ values. Also shown are ML fits with the spherical model [Eq. (1)].
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TABLE I. ML estimates of s and r . The length of the side of each
cube in terms of integral scales of I , L/λ, is also reported.

σ φ s r L/λ

0.2 0.15 0.04 71.00
0.01 0.4 0.24 0.04 71.15

0.6 0.24 0.04 70.85

0.2 0.16 0.11 25.09
0.03 0.4 0.24 0.11 23.36

0.6 0.24 0.11 23.52

0.2 0.16 0.19 14.17
0.05 0.4 0.24 0.16 16.20

0.6 0.24 0.19 14.35

(L/λ ≈ 15) to a large (L/λ ≈ 70) number of integral scales
of the pore space.

To further characterize the media, we investigate the
structure of the pore spaces within a pore-network framework
using the maximal ball (MB) algorithm described in [10].
Figure 3 provides renderings of the pore networks obtained
for the blocks depicted in Fig. 1. Each pore is associated with
a coordination number, which represents the number of pores
connected to the pore under consideration. Table II reports
the total number of pores (Npores), the average coordination
number (〈Cn〉) and the ratio 〈Cn〉/Npores for each block. The
number of pores decreases with increasing values of σ and
φ. It appears that σ affects the total number of pores more
significantly than φ. In particular, Npores decreases by two
orders of magnitude as σ increases from 0.01 to 0.05. The
average coordination number increases with φ, indicating
that pores in high-porosity samples exhibit increased local
connectivity. The ratio 〈Cn〉/Npores provides a measure of
global connectivity in the pore network. This ratio increases

 = 0.2  = 0.4  = 0.6 

 σ = 0.01 

 σ = 0.03 

 σ = 0.05 

FIG. 3. Pore-network descriptions of the blocks reported in Fig. 1.

TABLE II. Topological information of the nine generated blocks.

σ φ Npores 〈Cn〉 〈Cn〉/Npores (%)

0.2 3024 3.36 0.11
0.01 0.4 2409 7.31 0.30

0.6 1453 10.64 0.73

0.2 215 3.10 1.44
0.03 0.4 171 5.28 3.09

0.6 107 7.98 7.46

0.2 49 2.90 5.92
0.05 0.4 49 5.14 10.49

0.6 39 5.68 14.56

significantly with increasing σ , consistent with the variogram
analysis presented above. The values of 〈Cn〉 obtained in all
synthetically generated blocks are similar to those measured
on samples of real rocks such as carbonate limestone, and
Fontainebleau and Berea sandstone [10–12] with porosity
values ranging from 0.1 to 0.6.

B. Pore-scale flow fields

Direct numerical simulations of single-phase, fully satu-
rated flow are performed using a continuous-forcing immersed
boundary (IB) approach embedded in the framework of the
EULAG software environment [13]. The model adopted in
this work is associated with a modified version of EULAG,
that has been adjusted and keyed to simulate pore-scale flow
in geometrically and topologically complex media [8,14].
EULAG numerically integrates the following set of equations for
mass balance and momentum conservation (i.e., Navier-Stokes
equations) for an incompressible fluid,

∇ · v = 0, (3)

dv
dt

= − 1

ρ
∇p + g + υ�v − αv, (4)

where d/dt is the total derivative, v (m s−1) is the Eulerian
fluid velocity vector, p (N m−2) is pressure, g (m s−2) is the
gravitational acceleration vector, and ρ and υ, respectively,
are density and kinematic viscosity (ρ = 103 kg m−3 and υ =
10−6 m2 s−1 for water). The last term in Eq. (4) represents an
additional source whose strength is governed by the parameter
α (s−1). This force is activated only at the solid nodes and acts
as a repelling force that brings flow velocities to zero within
the solid domain. This approach allows for flow simulations
to be carried out on uniform Cartesian grids, spanning both
the solid and pore-space regions in the domain, and avoids
time-consuming meshing procedures.

Equations (3) and (4) are numerically integrated forward in
time until steady-state conditions are reached. A key issue
to ensure the effectiveness of the approach is the proper
selection of the characteristic time scale, α−1, of the IB
repelling force. Following [14,15], here we set the time step
�t ′ = 10−5 s (and α−1 = �t ′/2), that is, respectively, three
and two orders of magnitude smaller than the characteristic
time scales associated with the viscous (=�l2/υ = 10−2 s)
and gravitational (=(2 �l/g)1/2 = 4.5 × 10−3 s) forces.
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Flow is forced through the pore space by the pressure gradi-
ent imposed by gravity along the vertical direction, z (see Fig. 1
for the coordinate system). We set impermeable boundary
conditions on the lateral sides of the samples. These settings
reproduce typical flow features occurring in permeameter-
like laboratory experimental setups, where the impervious
boundary condition along the lateral surface of the laboratory
column is ensured by the permeameter cell [1,2,4,7]. Periodic
boundary conditions are employed along the top and bottom
horizontal sides, thus requiring the medium structure to be peri-
odic along z. Periodicity is achieved by mirroring a generated
(nonperiodic) porous medium sample along z, the resulting
system being symmetric with respect to the middle horizontal
plane. The mirrored porous domain is only used for the purpose
of the flow solution (as illustrated, for example, by Hyman
et al. [9]). All statistical analyses presented in Sec. III are
performed on the pore space of the generated pore structures
(of size 128 × 128 × 128 voxels). Tests aimed at assessing the
influence of the mirroring procedure and of the impermeable
conditions set along the block’s lateral walls on the key
quantities of interest (i.e., pore size and velocity densities)
have been performed (details not reported) by analyzing the
statistics of interest (according to the methodology described
in Sec. III) on inner subdomains obtained by excluding layers
of thickness ranging between 8 and 16 voxels from each side
of the original blocks. These analyses show that the near wall
region associated with the block lateral boundaries and the
mirroring procedure do not significantly affect the distribution
of the key quantities of interest.

A Lagrangian description of the fluid velocity field is
obtained by tracking passive particles through the steady-state
velocities evaluated by EULAG. Every node in the void space
at the top horizontal cross section is used as an initial position
for a particle. Hence, the number of particles for each test
case depends on the porosity, as detailed in Sec. III C and in
Table V.

A fourth order Runge-Kutta scheme is used to numerically
integrate the trajectory equation with a time step �t = 10−5 s,
until the particle trajectory reaches the bottom of the block
or until the total travel time exceeds 10 s. This cutoff time
corresponds in each block to at least 20 times the expected
breakthrough (or passage) time, Texp (calculated by dividing
the length of the observation domain by the mean vertical flux)

of solute particles. This procedure mimics typical experimental
conditions, where the solute breakthrough curve is monitored
for a finite time interval corresponding to a multiple of
the expected breakthrough time. Some trajectories can be
significantly long in both time and space, due to passage
through either low-velocity regions of the flow, O(10−16 m/s),
or a region of recirculation. Some particles might still remain
in the system after the observation cutoff time because they
are either (i) in low-velocity regions [where local velocities
are O(10−16 m/s)] or (ii) in a region of recirculation for a very
long time.

III. RESULTS AND DISCUSSION

A. Pore size probability distributions

We indicate as pore size, S (m), the length of the sequence
of consecutive void voxels separating two solid voxels (or
separating one solid voxel and a voxel on the block faces) along
each of three Cartesian axes, x, y, z (Fig. 1). This is equivalent
to the definition of chord length provided by Torquato and
Lu [16].

The generation method described in Sec. II A produces
isotropic pore structures as confirmed by comparing sample
pore size probability density functions (PDFs) obtained along
different directions (details not shown). Figure 4 shows how
the sample PDFs of S/�l (pore size normalized by grid
spacing) change with φ setting σ = 0.03 [Fig. 4(a)] and
with σ when φ = 0.4 [Fig. 4(b)]. Similar behaviors were
obtained for all combinations of σ and φ (not reported). All
pore size samples are characterized by a pronounced positive
skewness of their empirical PDFs. The location (mean) and
spread (variance) parameters of these densities increase with
φ and σ . While the core of the sample distributions is well
described by the lognormal model (not shown), their positive
tails are best represented by the exponential model

f (S/�l) = αSe
−βS (S/�l). (5)

Here, αS = βSe
aSβS is a normalizing constant, βS is the model

parameter, and aS is the lower bound of the interval of
definition of the exponential distribution, i.e., the threshold
value of S/�l above which the pore sizes are interpreted by
Eq. (5). The exponential behavior of the positive tail of pore
size distributions has also been observed in several samples
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FIG. 4. Probability distributions (PDFs) of S/�l for (a) σ = 0.03 and (b) φ = 0.4. Symbols represent sample PDFs. Also shown are ML
fits of the tails of the distributions with the exponential model [Eq. (5)] (dashed).
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TABLE III. ML estimates of the parameters αS and βS of the
exponential model [Eq. (5)].

σ φ αS βS

0.2 1.55 0.48
0.01 0.4 0.56 0.28

0.6 0.29 0.18

0.2 0.33 0.16
0.03 0.4 0.18 0.11

0.6 0.09 0.07

0.2 0.23 0.11
0.05 0.4 0.11 0.07

0.6 0.04 0.03

of real porous media, e.g., [17]. ML fits based on Eq. (5)
are depicted in Fig. 4 (dashed lines). ML estimates of βS

(and therefore αS) are listed in Table III. Goodness of fit
of the exponential model [Eq. (5)] is verified on the basis
of the Kolmogorov-Smirnov (KS) test [18]. In all cases the
sample sizes are particularly large (on the order of 105).
Therefore, the Hosmer-Lemeshow test for logistic regression
models [19] is implemented. The full dataset [of size O(105)]
is divided into groups of equal size (5 × 103) and the KS test
is applied to each of these groups. The percentage of subsets
for which the KS test is fulfilled (with p values larger than 0.1)
ranges between 80% and 100% for all cases.

As reported in Table III, the ML estimates of βS tend
to decrease with φ and σ . In other words, the positive
tail of the pore size distributions increases with porosity
and with the degree of correlation of the pore structure. In
particular, Fig. 5 reveals that the coefficient βS appears to
be inversely proportional to the (dimensionless) integral scale
of the porosity, λ/L, and to decrease exponentially with φ

according to

β̂S(φ,λ) = C
e−kφ

λ/L
, C = 0.011, k = 2.5. (6)
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FIG. 5. β̂S estimated by Eq. (6) versus ML estimates of βS

evaluated in the nine samples. The 45° line and the associated
determination coefficient R2 are also reported.

TABLE IV. Mean, variance, coefficient of variation and percent-
age of negative values of w. The Reynolds numbers of the flow fields
are also included.

σ φ 〈w〉 (m s−1) σ 2
w [(m s−1)2] cw (%) w < 0 (%) Re

0.2 3.79 × 10−3 5.78 × 10−5 200 14 1.66
0.01 0.4 2.69 × 10−2 7.43 × 10−4 101 7 15.74

0.6 5.46 × 10−2 1.69 × 10−3 75 4 43.04

0.2 1.14 × 10−2 7.08 × 10−4 234 22 12.20
0.03 0.4 5.76 × 10−2 5.81 × 10−3 132 19 80.90

0.6 1.07 × 10−1 1.00 × 10−2 94 12 211.80

0.2 2.08 × 10−2 1.79 × 10−3 203 19 33.52
0.05 0.4 9.64 × 10−2 1.36 × 10−2 121 19 205.40

0.6 1.41 × 10−1 1.97 × 10−2 100 15 416.95

Since the mean value of S/�l is equal to aS + 1/βS according
to Eq. (5), from Eq. (6) one can note that the mean pore size
increases linearly with λ/L (and, therefore, linearly with σ ) and
exponentially with φ over the selected generation parameters.

B. Statistical analysis of Eulerian velocity fields

The resulting steady-state velocity fields computed through
EULAG are here analyzed to obtain an Eulerian description of
the flow statistics. The selected flow configuration (gravity as
driving force and impermeable lateral boundaries) results in
predominantly vertical flow. The horizontal velocity compo-
nents are characterized by zero-mean symmetric distributions
(details not shown).

Mean, 〈w〉 (m s−1), variance, σ 2
w (m2 s−2), and coefficient of

variation, cw = σw/〈w〉, of the vertical component of velocity,
w, are listed in Table IV for all nine blocks. The Reynolds
numbers of the flow fields, evaluated as Re = 〈w〉〈S〉/υ (〈S〉
being the sample average pore size S), are also included in
Table IV. We note that 〈w〉 and σ 2

w increase with the porosity
and with the degree of correlation (i.e., with σ ) of the void
space. On the other hand, cw decreases with φ, reflecting an
increase of the flow uniformity with increasing porosity. The
effect of σ on cw is negligible. Figure 6 depicts the way the
sample PDF of the normalized vertical component of velocity,
w/〈w〉, changes with φ for σ = 0.03 [Fig. 6(a)] and with σ for
φ = 0.4 [Fig. 6(b)]. Similar pictures are obtained for all test
cases analyzed (not reported). All sample distributions display
(i) a pronounced peak around w = 0.0, (ii) a marked asymmetry
around zero with a pronounced skewness towards positive w

values, consistent with the adopted coordinate system (see
Fig. 1), and (iii) a decrease of the spread of the distribution
with increasing φ.

The negative tail of the distributions is formed by values
of w that are associated with velocity vectors pointing in
the direction opposite to the mean flow (see Fig. 1 for the
adopted coordinate system), and are related to the occur-
rence of reversed flows or recirculation regions within the
three-dimensional internal structure of the pore space. The
appearance of negative w values has also been observed
in laboratory conditions [2] and numerical simulations [4]
associated with flow fields through bead packings.

The percentage of void nodes associated with w < 0 tends
to decrease with increasing porosity and to increase with
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FIG. 6. Probability distributions (PDFs) of w/〈w〉, for the blocks generated with (a) σ = 0.03 and three porosity values and (b) φ = 0.4
and three σ values. Also shown, (dashed) ML fits of the positive tails with the stretched exponential model [Eq. (7)].

σ , as shown in Table IV. Pore spaces characterized by low
φ and large σ values are related to non-negligible reversed
flows or recirculation zones (about 20% of total flow region).
The weight of these regions on the overall distribution of w

can be linked to the tortuosity (defined in Sec. III C) of the
flow trajectories. This aspect is investigated in the following
subsection.

C. Lagrangian based statistics

As noted in Sec. II B, the number of the released particles,
Np, is different for the various samples analyzed. Table V
reports the value of Np employed for each block together
with Nt , the number of particles that percolate through the
observation domain prior to the selected observation time
cutoff, which corresponds to about 20 times the expected
breakthrough time, Texp = L/〈w〉, as observed in Sec. II B.
The trajectory length, l, and the passage time, T , defined as the
time taken by a particle to fully percolate through the system,
are evaluated for each percolating particle. In all the test cases
Nt is sufficiently large to render stable statistics for l and T ,
with the exception of the test case associated with the smallest
porosity and the smallest degree of correlation of void spaces
(φ = 0.2 and σ = 0.01) where almost all particles remain
in the sample during the whole observation time (Nt = 3).

In all cases the percentage of observed percolating particles
increases with φ and σ .

Table V lists (i) the mean tortuosity, μt (the tortuosity of
each trajectory is evaluated as the ratio between l and the
side L of the cubic lattice), (ii) the tortuosity variance σ 2

t

and coefficient of variation ct = σt/μt , (iii) the mean passage
time, μT , normalized by Texp, (iv) the dimensionless passage
time variance, σ 2

T/T exp = σ 2
T /T 2

exp, and coefficient of variation,
cT/T exp = σT /μT . The mean tortuosity decreases with φ and
tends to increase with σ in all cases, although no significant
effects can be seen when σ changes from 0.03 to 0.05. The
coefficient of variation ct decreases with φ when σ = 0.01,
is almost insensitive to φ when σ = 0.03, and increases
with φ when σ = 0.05. Analogous features can be observed
for the passage time. Therefore, while the total length of
trajectories tends to shorten as the porosities of the media
increase, the variability of trajectory lengths strongly depends
on the correlation scale of the pore structures. For poorly
connected pores, i.e., in the case of σ = 0.01 (and therefore
small Reynolds numbers; see Tables IV and V), the mean
tortuosity tends to unity as φ increases, indicating straighter
trajectories, and tortuosity values tend to cluster around their
means as indicated by the small values of ct . When the pores
are well connected, as in the cases associated with σ = 0.05,
as φ increases (and Re is particularly high) the variability of

TABLE V. Mean, variance, and coefficient of variation of tortuosities and passage times. The number of released, Np , and percolating, Nt ,
particles are also reported.

σ φ Np Nt μt σ 2
t ct (%) μT /Texp σ 2

T/Texp
cT/Texp (%)

0.2 2291 3 1.48 1.40 × 10−2 8 0.68 0.28 78
0.01 0.4 6858 505 1.33 6.00 × 10−3 6 0.93 0.06 27

0.6 9757 2388 1.18 3.00 × 10−3 5 1.04 0.05 21

0.2 2089 410 1.97 1.10 × 10−1 17 0.75 0.23 64
0.03 0.4 5986 3355 1.54 7.30 × 10−2 18 0.96 0.13 37

0.6 10495 7397 1.37 5.40 × 10−2 17 1.27 0.14 29

0.2 2999 1089 2.01 1.15 × 10−1 17 1.04 0.49 68
0.05 0.4 6476 4838 1.57 1.69 × 10−1 26 1.08 0.15 36

0.6 11135 9328 1.58 2.78 × 10−1 33 1.63 1.15 66
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TABLE VI. ML estimates of the parameters αw , βw , and γw of
the stretched exponential model [Eq. (7)].

σ φ αw βw γw

0.2 0.29 0.70 0.78
0.01 0.4 0.41 0.44 1.57

0.6 0.43 0.31 2.44

0.2 0.15 0.44 0.85
0.03 0.4 0.31 0.39 1.37

0.6 0.18 0.15 2.68

0.2 0.20 0.38 1.08
0.05 0.4 0.21 0.23 1.87

0.6 0.19 0.16 2.48

tortuosity increases and the highest tortuosity values can be
observed. This is consistent with the high fraction of negative
w values observed in these cases (Sec. III B and Table IV).
The increase of the negative tail of w with Re has also been
noted by [4] in the range 0.6 < Re < 30.

D. Connection between pore structures and velocity fields

In this section we characterize the positive tail of the
distribution of the (normalized) vertical velocity component,
w, which influences the shortest residence times of dissolved
solute particles in the system. In particular, we address the
question of whether is it possible to estimate the positive tail
of w if only information about the pore structure is available.

Inspection of Fig. 6(a) reveals a marked change of the
concavity of the positive tail of the sample PDF of w with the
porosity. This feature is captured by the following stretched
exponential model [18]:

f (w/〈w〉) = αw(w/〈w〉)γw−1 exp[−βw(w/〈w〉)γw ], (7)

where αw = βwγw exp(βwa
γw
w ) is a normalizing constant, βw

and γw are the model parameters, and aw is the lower bound
of the interval of definition of the stretched exponential
distribution, i.e., the threshold value of w/〈w〉 above which
the vertical velocities are interpreted by Eq. (7). The choice
of the stretched exponential model is supported by the same
goodness-of-fit criterion described in Sec. III A. ML fits of
Eq. (7) to the tails of sample distributions are depicted by

dashed curves in Fig. 6. Table VI lists ML estimates of the
set of parameters βw,γw (and therefore αw) evaluated for all
blocks analyzed. The parameter γw controls the concavity of
the tail and strongly depends on φ as shown in Fig. 6(a) and
Table VI. The results listed in Table VI indicate that as φ

increases γw ranges from values below unity (indicating a
decay of the tail which is slower than exponential) to values
larger than 2 (indicating a decay of the tail which is faster than
Gaussian).

As mentioned in Sec. I, previous studies observed that
(measured and/or simulated) velocities in porous samples tend
to be characterized by positive tails which decay according
to exponential [2–4] or stretched exponential [5,7] models,
consistent with our results. Furthermore, the transition from
an exponential to a Gaussian decay (i.e., corresponding to
a variation of γw between 1 and 2) has been observed
qualitatively in [4] for different configurations of sphere
packings, in [5] for increasing porosity of synthetic square
lattices, and in [7] for decreasing particle concentrations in a
suspension (where, considering the analogy between a porous
medium and a suspension, a decrease in concentration is
interpreted to correspond to an increase in porosity).

Figure 7(a) reports the dependence of ML estimates of γw

on φ obtained for all nine blocks. The estimates of γw increase
linearly, i.e., γw(φ) = 4.2φ (and therefore the slope of the
positive tail of the PDF of w decreases linearly), with φ for the
broad range (0.2–0.6) of porosities here investigated regardless
of σ (i.e., irrespective of the degree of correlation of the pore-
space structure). The quality of the linear fit is quantified by
the coefficient of determination, R2, included in the figure,
which is close to unity. A similar trend was observed by [5] in
high-porosity (0.6 � φ � 0.99) two-dimensional lattices.

On the other hand, the parameter βw of the stretched
exponential model contributes together with γw to determine
the spread of the distribution, which decreases as both γw and
βw increase. Figure 7(b) displays the dependence of the ML
estimate of βw on the ML estimate of βS (obtained from the
exponential decay of the pore size distribution) rescaled by the
sample porosity, φ, on a log-log scale. The data collected in
this plot show good agreement with a power-law trend,

βw = A

(
βS

φ

)B

, A = 0.5, B = 0.42, (8)

1.E-1

1.E+0

1.E-2 1.E-1 1.E+0 1.E+1
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0 0.2 0.4 0.6 0.8
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w

2 0.94R 2 0.91R
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0.01
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0.05
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FIG. 7. ML estimates of (a) γw versus porosity and (b) βw versus βS/φ in log-log scale. The regression curves and the associated
determination coefficient R2 are also reported.
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as indicated by the high coefficient of determination (R2 =
0.91) reported in the figure. Equation (8) quantifies the rate at
which βw tends to increase (and therefore, for a given φ, the
way the spread of the velocity distribution decreases) with βS

(which governs the decrease and/or increase of the spread of
the pore size distribution) or with the variation of the integral
scale of the porosity variogram [as seen by considering jointly
Eqs. (6) and (8)]. In particular, for a given φ, βw decreases
and the variability of the velocity distribution increases as λ

increases, i.e., as the pores are associated with an increased
degree of global connection (see also Tables I and II).

IV. CONCLUSIONS AND REMARKS

We generate virtual samples of porous media characterized
by different porosity and pore-structure topology. Pore size
probability distributions for the generated samples are posi-
tively skewed; their positive tails can be properly described by
an exponential model [Eq. (5)] and increase as porosity, φ, and
void space correlation scale, λ, increase. The rate coefficient
of the pore distribution decreases linearly with λ and exponen-
tially with φ [Eq. (6)]. Numerical simulations of single-phase,
fully saturated, gravity driven flow through the generated sam-
ples are performed until steady-state conditions are obtained.

The probability distribution of the steady-state vertical velocity
component, w, displays a long positive tail and a negative
tail. The former can be appropriately modeled by a stretched
exponential expression [Eq. (7)], and increases as φ decreases,
regardless the value of λ. This implies that extremely large
(with respect to the mean) values of w (i.e., associated with
anomalous short travel times) are more likely to occur in low-
porosity rather than in high-porosity systems. The negative tail
is related to the occurrence of reversed flows or recirculation
regions within the internal three-dimensional structure of the
pore space. Systems characterized by small values of φ and
large λ values are related to a non-negligible fraction of
such zones. The importance of these regions on the overall
distribution of w can be linked to the tortuosity of the flow
trajectories developing in the three-dimensional pore space.

The structure of the PDF of w is complex, depending not
only on porosity but also on the pore size probability distribu-
tion and, in particular, on its spatial correlation. Nonetheless,
the relationship between the parameter γw governing the
positive tail of the PDF of w and φ is linear. We further provide
a quantitative relationship describing the way the parameter
βw, which contributes jointly with γw to determine the spread
of the PDF describing the tail of w, depends on βs , the key
parameter describing the tail of the pore size PDF model.
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