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Abstract: This paper presents a complete methodology for Bayesian in-
ference on a semi-Markov process, from the elicitation of the prior distribu-
tion, to the computation of posterior summaries, including a guidance for
its implementation. The inter-occurrence times (conditional on the transi-
tion between two given states) are assumed to be Weibull-distributed. We
examine the elicitation of the joint prior density of the shape and scale
parameters of the Weibull distributions, deriving a specific class of priors
in a natural way, along with a method for the determination of hyperpa-
rameters based on “learning data” and moment existence conditions. This
framework is applied to data of earthquakes of three types of severity (low,
medium and high size) that occurred in the central Northern Apennines in
Italy and collected by the CPTI04 (2004) catalogue. Assumptions on two
types of energy accumulation and release mechanisms are evaluated.
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1. Introduction

Markov Renewal processes or their semi-Markov representation have been con-
sidered in the seismological literature as models which allow the distribution
of the inter-occurrence times between earthquakes to depend on the last and
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next earthquake and is not necessarily exponential. The time predictable and
the slip predictable models studied in Shimazaki and Nakata (1980), Grandori
Guagenti and Molina (1986), Grandori Guagenti et al. (1988) and Betrò et al.
(1989) are special cases of Markov Renewal processes. These models are capable
of interpreting the predictable behavior of strong earthquakes in some seismo-
genic areas. In these processes the magnitude is a deterministic function of the
inter-occurrence time. A stationary Markov Renewal process with Weibull inter-
occurrence times has been studied from a classical statistical point of view in
Alvarez (2005). The Weibull model allows for the consideration of monotonic
hazard rates; it contains the exponential model as a special case which gives
a Markov Poisson point process. In Alvarez (2005) the model parameters were
fitted to the large earthquakes in the North Anatolian Fault Zone through max-
imum likelihood and the Markov Poisson point process assumption was tested.
In order to capture a non monotonic behavior in the hazard, in Garavaglia and
Pavani (2012) the model of Alvarez was modified and a Markov Renewal process
with inter-occurrence times that are mixtures of an exponential and a Weibull
distribution was fitted to the same Turkish data. In Masala (2012) a paramet-
ric semi-Markov model with a generalized Weibull distribution for the inter-
occurrence times was adapted to Italian earthquakes. The semi-Markov model
with generalized Weibull distributed times was first used in Foucher et al. (2009)
to study the evolution of HIV infected patients. Votsi et al. (2012) considered a
semi-Markov model for the seismic hazard assessment in the Northern Aegean
sea and estimated the quantities of interest (semi-Markov kernel, Markov Re-
newal functions, etc.) through a nonparametric method.

While a wide literature concerning classical inference for Markov Renewal
models for earthquake forecasting exists, to our knowledge comparatively little
Bayesian work has been carried out. Patwardhan et al. (1980) considered a semi-
Markov model with log-normal distributed discrete inter-occurrence times and
applied it to the large earthquakes in the circum-Pacific belt. They stressed that
it is relevant to use Bayesian techniques when prior knowledge is available and it
is fruitful even if the sample size is small. Maŕın et al. (2005) also employed semi-
Markov models in the Bayesian framework, applied to a completely different
area: sow farm management. They used WinBugs to perform computations (but
without giving details) and they elicited their prior distributions on parameters
from knowledge on farming practices.

From a probabilistic viewpoint, a Bayesian statistical treatment of a semi-
Markov process amounts to modeling the data as a mixture of semi-Markov
processes, where the mixing measure is supported on the parameters, by means
of their prior laws. A complete characterization of such a mixture is given in
Epifani et al. (2002).

In this paper we develop a parametric Bayesian analysis for a Markov Renewal
process modelling earthquakes in an Italian seismic region. The magnitudes are
classified into three categories according to their severity: low, medium and
high size, and these categories represent the states visited by the process. As in
Alvarez (2005), the inter-occurrence times are assumed to be Weibull random
variables. The “current sample” is formed by the sequences of earthquakes in
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a homogeneous seismic region and by the corresponding inter-occurrence times
collected up to a time T . When T does not coincide with an earthquake, the
last observed inter-occurrence time is censored. The prior distribution of the
parameters of the model is elicited using a “learning dataset”, i.e. data coming
from a seismic region similar to that under analysis. The posterior distribution
of the parameters is obtained through Gibbs sampling and the following sum-
maries are estimated: transition probabilities, shape and scale parameters of the
Weibull inter-occurrence times for each transition and the so-called cross state-
probabilities (CSPs). The transition probabilities indicate whether the strength
of the next earthquake is in some way dependent on the strength of the last
one; the shape parameters of the inter-occurrence times indicate whether the
hazard rate between two earthquakes of given magnitude classes is decreasing
or increasing; the CSPs give the probability that the next earthquake occurs at
or before a given time and is of a given magnitude, conditionally on the time
elapsed since the last earthquake and on its magnitude.

The paper is organized as follows. In Section 2 we illustrate the dataset
and we discuss the choice of the Weibull model in detail. Section 3 introduces
the parametric Markov Renewal model. Section 4 deals with the elicitation
of the prior. Section 5 contains the Bayesian data analysis with the estima-
tion of the above-mentioned summaries. We also test a time predictable and a
slip predictable model against the data. Section 6 concludes. Appendix A con-
tains the detailed derivation of the full conditional distributions and the JAGS
(Just Another Gibbs Sampler) implementation of the Gibbs sampler (Plum-
mer, 2010).

2. A test dataset

We tested our method on a sequence of seismic events chosen among those
examined in Rotondi (2010). The sequence collects events that occurred in a
tectonically homogeneous macroregion, identified as MR3 by Rotondi and cor-
responding to the central Northern Apennines in Italy. The subdivision of Italy
into eight (tectonically homogeneous) seismic macroregions can be found in
the DISS (2007) and the data are collected in the CPTI04 (2004) catalogue.
The catalogue provides the moment magnitude of every seismic event. The mo-
ment magnitude, denoted by Mw, measures the size of earthquakes with respect
to the energy released during the event. It is related to the seismic moment
M0 through the relationship: Mw = 2

3 (log10 M0 − 16.05); the seismic moment
measures the rigidity of the Earth multiplied by the average amount of slip
on the fault and the size of the area that slipped. See Hanks and Kanamori
(1979).

If one considers the earthquakes from CPTI04 (2004) with magnitude Mw ≥
4.5, the sequence is complete from year 1838: a lower magnitude would make
the completeness of the series questionable, especially in its earlier part. The
map of these earthquakes marked by dots appears in Figure 1. As a lower
threshold for the class of strong earthquakes, we choose Mw ≥ 5.3, as sug-
gested by Rotondi (2010). Then a magnitude state space with three states
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Fig 1. Map of Italy with dots indicating earthquakes with magnitude Mw ≥ 4.5 from 1838 to
2002, belonging to macroregions MR3 (blue) and MR4 (red) (Rotondi (2010)). Inclusion in
the macroregions was based on the association between events and seismogenic sources; the
contours of the regions have only an aesthetic function.

is obtained by indexing an earthquake by 1, 2 or 3 if its magnitude belongs
to intervals [4.5, 4.9), [4.9, 5.3), [5.3,+∞), respectively. Magnitude 4.9 is just
the midpoint between 4.5 and 5.3 and the released energy increases geometri-
cally as one moves through the endpoints, with a common ratio of 4: indeed
M0(5.3)/M0(4.9) = M0(4.9)/M0(4.5) = 10

3
2
0.4 ≃ 4.

The energy released from an earthquake with Mw = 4.9 does not match the
midpoint between seismic moments associated with magnitudes 4.5 and 5.3 (in
fact, this correspondence holds if Mw = 5.1). However, there seem to be no gen-
eral rule in the literature for splitting magnitude intervals. For example, Votsi
et al. (2012) used cut-points 5.5, 5.7 and 6.1, so that M0(6.1)/M0(5.7) ≃ 4 and
M0(5.7)/M0(5.5) ≃ 2, while the energy midpoint is at Mw = 5.9; following Alti-
nok and Kolcak (1999), Alvarez (2005) uses cut-points 5.5, 6.0 and 6.5; Masala
(2012) employed the magnitude classes Mw < 4.7, Mw ∈ [4.7, 5), Mw ≥ 5. All
these authors do not give any special reason for their choices.
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A more structured approach is attempted by Sadeghian (2012), who applied
a statistical clustering algorithm to magnitudes, and again by Votsi et al. (2012)
when they propose a different classification of states that combines both magni-
tude and fault orientation information. From a modelling viewpoint, this latter
approach is certainly preferable, because it is likely to produce more homoge-
neous classes. However we do not have enough additional information to attempt
this type of classification on our data in a meaningful way. An entirely different
approach is that based on risk, in which cut-points would change with the built
environment.

We now examine inter-occurrence times. Rotondi (2010) considers a nonpara-
metric Bayesian model for the inter-occurrence times between strong earth-
quakes (i.e. Mw ≥ 5.3), after a preliminary data analysis which rules out
Weibull, Gamma, log-normal distributions among others frequently used. On
the other hand, with a Markov Renewal model, the sequence of all the inter-
occurrence times is subdivided into shorter ones according to the magnitudes, so
that we think that a parametric distribution is a viable option. In particular, we
focussed on the macroregion MR3 because the Weibull distribution seems to fit
the inter-occurrence times better than in other macroregions. This fact is based
on qq-plots. The qq-plots for MR3 are shown in Figure 2. The plot for transitions
from 1 to 3 shows a sample quantile that is considerably larger than expected.
The outlying point corresponds to a long inter-occurrence time of about 9 years,
between 1987 and 1996, while 99 percent of the inter-occurence times are below
5 years. Obviously, the classification into macroregions influences the way the
earthquake sequence is subdivided.

Given the Markov Renewal model framework, inter-occurrence time distri-
butions other than the Weibull could be used, such as the inverse Gaussian,
the log-normal or the Gamma. However, the inverse Gaussian qq-plots clearly
indicate that this distribution does not fit the data. As for the log-normal, the
outlying point in the qq-plot of the (1, 3) transition becomes only a little less
isolated, but at the expense of introducing an evident curvature in the qq-plot
of the (1, 1) transition, whereas the remaining qq-plots are unchanged. The
Gamma qq-plots are indistinguishable from the Weibull qq-plots, but we pre-
fer working with the Weibull in view of the existing literature on seismic data
analysis where the Weibull is employed. In this respect, we could follow Masala
(2012) and choose the generalized Weibull, which includes the Weibull, but the
qq-plots are unchanged even with the extra parameter. From a Bayesian com-
putational point of view, there is no special reason for preferring the (possibly
generalized) Weibull to the Gamma, as neither of them possesses a conjugate
prior distribution and numerical methods are needed in both cases for making
inference.

In the existing literature, the Weibull distribution has been widely used to
model inter-occurrence times between earthquakes from different areas and with
different motivations, beyond those mentioned in Section 1. Abaimov et al.
(2007) argued that the increase in stress caused by the motion of tectonic plates
at plate boundary faults is adequately described by an increasing hazard func-
tion, such as the Weibull can have. Instead, other distributions have an inap-
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Fig 2. Weibull qq-plots based on least squares fits of earthquake inter-occurrence times (central
Northern Apennines) classified by transition between magnitude classes.

propriate tail behaviour: the log-normal hazard tends to zero with time and
the inverse Gaussian hazard tends to a constant. Goodness-of-fit checks for the
recurrence times of slip events in the creeping section of the San Andreas fault
in central California confirmed that the Weibull is preferable to the mentioned
alternatives. Hristopulos and Mouslopoulou (2013) considered a Weibull model,
for single faults (or fault systems with homogeneous strength statistics) and
power law stress accumulation. They derived the Weibull model from a the-
oretical framework based on statistical mechanics of brittle fracture and they
applied it to microearthquake sequences (small magnitudes) from the island of
Crete and from a seismic area of Southern California, finding agreement with
the data except for some deviations in the upper tail. Regarding tail behaviour,
we can make a connection with Hasumi et al. (2009), who analyzed a catalogue
of the Japan Meteorological Agency. These data support the hypothesis that
the inter-occurrence times can be described by a mixture of a Weibull distri-
bution and a log-Weibull distribution (which possesses a heavier tail); if only
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earthquakes with a magnitude exceeding a threshold are considered, the weight
of the log-Weibull component becomes negligible as the threshold increases.

3. Markov Renewal model

Let us observe, over a period of time [0, T ], a process in which different events
occur, with random inter-occurence times. Let us suppose that the possible
states of the process are in a finite set E = {1, . . . , s} and that the process starts
from state j0. Let us denote by τ the number of times the process changes states
in the time interval [0, T ] and by ti the time of the i-th change of state. Hence,
0 < t1 < · · · < tτ ≤ T . Let j0, j1, . . . , jτ be the sequence of states visited by the
process and xi the inter-occurrence time between states ji−1 and ji. Then

xi = ti − ti−1 for i = 1, . . . , τ

with t0 := 0. Furthermore, let uT be the time spent in jτ

uT = T − tτ ,

so the time uT is a right-censored time. Finally, our data are collected in the
vector (j,x, uT ), where (j,x) = (jn, xn)n=1,...,τ .

In what follows, we assume that the data (j,x, uT ) are the result of the
observation of a homogeneous Markov Renewal process (Jn, Xn)n≥0 starting
from j0. This means that the sequence (Jn, Xn)n≥0 satisfies

P (J0 = j0) = 1, P (X0 = 0) = 1 (1)

and for every n ≥ 0, j ∈ E and t ≥ 0

P (Jn+1 = j,Xn+1 ≤ t|(Jk, Xk)k≤n)

= P (Jn+1 = j,Xn+1 ≤ t|(Jn, Xn)) = pJnjFJnj(t). (2)

The transitions probabilities, pij , are collected in a transition matrix p =
(pij)i,j∈E and (Fij)i,j∈E is an array of distribution functions on R+ = (0,+∞).
For more details on Markov Renewal processes see, for example, Limnios and
Oprisan (2001). We just recall that, under Assumptions (1) and (2):

– the process (Jn)n≥0 is a Markov chain, starting from j0, with transition
matrix p,

– the inter-occurrence times (Xn)n≥0, conditionally on (Jn)n≥0, form a se-
quence of independent positive random variables, with distribution func-
tion FJn−1 Jn

.

We assume that the functions Fij are absolutely continuous with respect to the
Lebesgue measure with density fij . Hence, the likelihood function of the data
(j,x, uT ) is

L(j,x, uT ) =

(

τ−1
∏

i=0

pjiji+1
fjiji+1

(xi+1)

)1(τ>0)

×
∑

k∈E

pjτkF̄jτk(uT ), (3)
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where, for every x, F̄ij is the survival function

F̄ij(x) = 1− Fij(x) = P (Xn+1 > x|Jn = i, Jn+1 = j).

Furthermore, we assume that each inter-occurrence time has a Weibull density
fij with shape parameter αij and scale parameter θij , i.e.

fij(x) =
αij

θij

(

x

θij

)αij−1

exp

{

−

(

x

θij

)αij
}

, x > 0, αij > 0, θij > 0. (4)

For conciseness, let α = (αij)i,j∈E and θ = (θij)i,j∈E .
In order to write the likelihood in a more convenient way, let us introduce

the following natural statistics. We will say that the process visits the string
(i, j) if a visit to i is followed by a visit to j and we denote by

– xρ
ij the time spent in state i at the ρ-th visit to the string (i, j),

– Nij the number of visits to the string (i, j).

Then, assuming τ ≥ 1, Equations (3) and (4) yield the following representation
of the likelihood function

L(j,x, uT |p,α, θ) =
∏

i,k∈E

pNik

ik

×
∏

i,k∈E

⎡

⎣αNik

ik

1

θαikNik

ik

(

Nik
∏

ρ=1

xρ
ik

)αik−1

× exp

{

−
1

θαik

ik

Nik
∑

ρ=1

(xρ
ik)

αik

}

⎤

⎦

×

(

∑

k∈E

pjτk exp

{

−

(

uT

θjτk

)αjτk
}

)

. (5)

Our purpose is to perform a Bayesian analysis for p,α and θ which allows us
to introduce prior knowledge on the parameters. As shown in Appendix A, this
analysis is possible via a Gibbs sampling approach.

4. Bayesian analysis

4.1. The prior distribution

Let us assume that a priori p is independent of α and θ. In particular, the
rows of p are s independent vectors with Dirichlet distribution with parameters
γ1, . . . ,γs. This means that, for i = 1, . . . , s, the prior density of the i-th row is

π1,i(pi1, . . . , pis) =
Γ(ci)

∏s
j=1 Γ(γij)

s
∏

j=1

p
γij−1
ij (6)

on T = {(pi1, . . . , pis)| pij ≥ 0,
∑

j pij = 1} where γi = (γi1, . . . , γis), with

γij > 0 and ci =
∑s

j=1 γij . Notice that the first subscript in π1,i indexes the
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density of p. Similarly, the conditional density of θ, given α, and the density of
α will be indexed by 2 and 3, respectively. As far as θ and α are concerned, the
θij ’s, given the αij ’s, are independent with generalized inverse Gamma densities

π2,ij(θij |α) = π2,ij(θij |αij) =
αijbij(αij)mij

Γ(mij)
θ
−(1+mijαij)
ij

× exp

{

−
bij(αij)

θ
αij

ij

}

, θij > 0, (7)

where mij > 0 and

bij(αij) =
(

tijqij

)αij

[(1− qij)
−1/mij − 1]−1 (8)

with tijqij > 0 and qij ∈ (0, 1). In other terms, θ
−αij

ij , given αij , has a prior
Gamma density with shape mij and scale 1/bij(αij). In symbols, θij |αij ∼
GIG(mij , bij(αij),αij). We borrow the expression of the bij(αij)’s in (8) from
Bousquet (2010) and, as a consequence of this choice, tijqij turns out to be the
marginal quantile of order qij of an inter-occurrence time between states i and
j. Indeed, if π3,ij denotes the density of αij and X is such a random time, then

P (X > t) =

∫ +∞

0

∫ +∞

0
P (X > t|αij , θij)π2,ij(θij |αij)π3,ij(αij)dθijdαij

=

∫ +∞

0

[ bij(αij)

bij(αij) + tαij

]mij

π3,ij(αij)dαij , ∀t > 0.

Hence, in view of (8), if t = tijqij , we obtain P (X > tijqij ) = 1 − qij , for every
proper prior density π3,ij .

Finally, a priori, the components of α are independent and have densities
π3,ij such that

π3,ij(αij) ∝ α
mij−cij
ij (αij − α0,ij)

cij−1 exp{−mijdijαij}1(αij ≥ α0,ij),

α0,ij ≥ 0, cij > 0, mij > 0, dij ≥ 0. (9)

As far as the prior π3,ij is concerned, it is easy to see that:

a) if dij > 0, then π3,ij is a proper prior;
b) if α0,ij = 0 and dij > 0, then π3,ij is a Gamma density;
c) if cij = 1, α0,ij > 0 and dij > 0, then π3,ij is a Gamma density truncated

from below at α0,ij ;
d) if cij = mij , α0,ij > 0 and dij > 0, then π3,ij is a Gamma density shifted by

α0,ij ;
e) if cij = 1 and mij → 0, then π2,ij(θij |αij)π3,ij(αij) approaches the Jeffreys

prior for the Weibull model: 1/θij1(θij > 0)1(αij ≥ α0,ij);
f) if cij ≥ 1 and mij ≥ 1, then π3,ij is a log-concave function.
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The prior corresponding to the choices in c) was first introduced in Bousquet
(2006) and Bousquet (2010). Beside, a complete discussion of the elicitation of
Weibull priors can be found in Bousquet (2010) and the references therein. The
author also devotes particular attention to the matter of incorporating expert
opinions in the elicitation procedure. Readers interested in elicitation based on
experts opinions are referred also to O’Hagan et al. (2006).

As discussed in Gilks and Wild (1992), the log-concavity of π3,ij is necessary
in the implementation of the Gibbs sampler (see also Berger and Sun (1993)),
although adjustments exist for the non-log-concave case (see Gilks et al. (1995)).
Furthermore, we will show later that a support suitably bounded away from zero
ensures the existence of the posterior moments of the θij ’s.

4.2. Elicitation of the hyperparameters

In this section we focus our attention on the prior of (αij , θij), for fixed i, j.
Adapting the approach developed by Bousquet to our situation, we give a sta-
tistical justification of the prior introduced in Subsection 4.1. An interpretation
of the hyperparameters is also provided. For the sake of simplicity, let us drop
the indices i, j in all the notation and quantities.

Suppose that a “learning dataset” ym = (y1, . . . , ym) of m inter-occurrence
times between visits to state i followed by a visit to state j is available from
another seismic region similar to the one under analysis. Therefore the prior
scheme defined by Equations (7)–(9) can be interpreted as a suitable modifi-
cation of a posterior distribution of (α, θ), given the learning dataset ym. This
approach allows us to elicit the hyperparameters in a data-based fashion.

More precisely, consider for (α, θ) the posterior density, conditionally on ym,
when we start from the following improper prior:

π̃(α, θ) ∝ θ−1
(

1−
α0

α

)c−1
1(θ ≥ 0)1(α ≥ α0), (10)

for some suitable c ≥ 1 and α0 ≥ 0 (The condition c ≥ 1 guarantees that π̃(α, θ)
is a log-concave function with respect to α). Consequently, the posterior density
of θ, given α and ym, is

π̃2(θ|ym,α) = GIG(m, b̃(ym,α),α) (11)

and the posterior density of α is

π̃3(α|ym) ∝
αm−c(α− α0)c−1

b̃m(ym,α)
exp{−mβ(ym)α}1(α ≥ α0), (12)

with b̃(ym,α) =
∑m

i=1 y
α
i and β(ym) =

∑m
i=1 ln yi/m.

Notice that the posterior we obtain has a simple hierarchical structure:
π̃2(θ|ym,α) is a generalized inverse Gamma density and this provides both a
justification of the form of the π2,ij(θ|α) in (7) and an interpretation of the first
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parameter m. Indeed m is equal to the size of the learning dataset ym and so
it is a measure of prior uncertainty.

Now, if we replace the function b̃(ym,α) in (11) and (12) by the simpler
convex function of α introduced in (8), i.e. b(α) = tαq [(1 − q)−1/m − 1]−1, with
tq > 0 and q ∈ (0, 1), then π̃3(α|ym) takes the same form as in (9) with

d = ln tq −

∑m
i=1 ln yi
m

. (13)

In this way, we obtain a justification of the form of the prior density π3,ij in
(9) and an easy way to elicit its parameter dij when the learning dataset is
available. Furthermore, b(α) can be also elicited once the predictive quantile
tq is specified. Its specification can be accomplished, for example, in the two
following different ways:

1. an empirical quantile t̂q is estimated from the learning dataset;
2. an expert is asked about the chance, quantified by q, of an earthquake

before an assigned tq (but we will not follow this approach).

In the following, if a learning dataset of size m ≥ 2 is available, we consider
an empirical quantile t̂q of order q such that

ln t̂q −

∑m
i=1 ln yi
m

> 0.

Therefore, letting b̂(α) denote the value of b(α) corresponding to t̂q, we propose
a Bayesian analysis based on the prior

π2(θ|α) = GIG(m, b̂(α),α) (14)

and

π3(α) ∝ αm−c(α− α0)
c−1 exp

{

−m

(

ln t̂q −

∑m
i=1 ln yi
m

)

α

}

1(α ≥ α0), (15)

where m is the size of the learning dataset. In addition, we choose c = m so that
π3(α) is a shifted Gamma prior and consequently it is proper and log-concave.

The remaining hyperparameter α0 is chosen so that the posterior second
moment of θ is finite. If α is bounded away from zero, then

E(θ2) = E

(

Γ(m− 2/α)

Γ(m)

[

b̂(α)
]2/α

)

≤ K̃E(Γ(m− 2/α))

for a suitable constant K̃. As a consequence, if α0 = 2/m, then E(θ2) < +∞
and hence the posterior second moment of θ is also finite.

The choice α0 = 2/m is suitable only if m > 2. If m = 2, then α0 = 2/m = 1
and decreasing hazard rates are ruled out. In the absence of additional specific
prior information, this is an arbitrary restriction, so a value for α0 smaller than
1 must be chosen. Then, the prior second moment of θ is not finite anymore.
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On the other hand, for the posterior second moment to be finite, we need α >
2/(2 + N), where N is the number of transitions between the two concerned
states in the (current) sample. Thus the second moment of θ can stay non-
finite, even a posteriori, if 2/(2 +N) > α0. This would show that the data add
little information for that specific transition. To avoid this, we may let α0 be the
minimum between the value 2/3, corresponding to the smallest learning sample
size such that α0 < 1, and the value 2/(2 + N), necessary for the finiteness of
the posterior second moment. Therefore, α0 = min{2/3, 2/(2 +N)}.

Finally, if γ denotes the hyperparameter corresponding to the indexes i and j
in the Dirichlet prior (6), then we select γ = m+1, i.e. γ is equal to the number
of transitions from state i to state j in the learning dataset, plus one.

4.3. Scarce prior information

The construction of the prior distribution of (α, θ) must be modified for those
pairs of states between which no more than one transition was observed in the
learning dataset.

If m = 1, the single learning observation y1 determines b̂(α). As t̂q = y1
for any q, it seems reasonable to use q = 0.5, so y1 would represent the prior
opinion on the median inter-occurrence time. Since d = 0 when m = 1, π3(α)
is improper for any c > 0. We make it proper by restricting its support to an
interval (α0,α1). The value α1 = 10 is suitable for all practical purposes. As
before, the choice α0 = 2/m = 2 would be too restrictive, so we again select
α0 = min{2/3, 2/(2 + N)}. With regard to c, we put c = 2. Furthermore, the
elicitation of the hyperparameter of the Dirichlet prior is again γ = m+ 1 = 2,
i.e. the number of transitions observed in the learning dataset (just one) plus
one.

If m = 0, the prior information on the number of transitions is that there
have been no transitions, but there is no information in the model on the inter-
occurrence times. In this case we can represent in the model the absence of
information, by choosing

q = 0.5 and t̃0.5 ∼ U(t1, t2),

that is t̃0.5 is uniformly distributed over a big time interval (t1, t2), independently
from everything else. Hence, we use q = 0.5 and t̃0.5 to obtain b̂(α) and we obtain
the previous case by substituting m = 0 with m = 1.

For clarity, in Table 1, we summarize the hyperparameter selection for priors
(6), (14) and (15).

5. Analysis of the central Northern Apennines sequence

In this section we analyze the macroregion MR3 sequence, using the proposed
semi-Markov model.

We coded the Gibbs sampling algorithm in JAGS (Plummer, 2010), which
is designed to work closely with the R (2012) package, in which all statistical
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Table 1
Hyperparameter selection as the learning sample size m varies

m > 2 m = 2 m = 1 m = 0

tq t̂q t̂q y1 t̃q ∼ U(t1, t2)

c m m 2 2

α0
2
m

min
{

2
3
, 2
2+N

}

min
{

2
3
, 2
2+N

}

min
{

2
3
, 2
2+N

}

γ m + 1 m+ 1 m+ 1 2

computations and graphics were performed. Details of the Gibbs sampler are
in Appendix A. On the whole, 750,000 iterations for one chain were run for
estimating the unknown parameters in the model, and the first 250,000 were
discarded as burn-in. After the burn-in, one out of every 100 simulated values
was kept for posterior analysis, for a total sample size of 5,000. Convergence
diagnostics, such as those available in the R package CODA (Geweke, Heidel-
berger and Welch stationarity test, interval halfwidth test), were computed for
all parameters, indicating that convergence had been achieved.

Model fitting, model validation and forecasting will involve the following
steps:

1. the learning dataset for the elicitation of the prior distribution is chosen;
2. model fit is assessed by comparing observed inter-occurrence times

(grouped by transition) to posterior predictive intervals;
3. cross state-probabilities are estimated, as an indication of the most likely

magnitude and time to the next event, given information up to the present
time;

Finally, in Subsection 5.1 we evaluate two special kinds of semi-Markov mod-
els against our data: the time predictable model and the slip predictable model.
These models have already been considered in the seismological literature, see
for example Grandori Guagenti and Molina (1986) and Grandori Guagenti et al.
(1988).

1. For the elicitation of the prior distribution, the learning data are taken
from MR4 (represented in Figure 1), another macroregion among those con-
sidered by Rotondi (2010), who examines statistical summaries of the inter-
occurrence times and suggests that MR4 could be used as a learning set for
the hyperparameters of MR3. Peruggia and Santner (1996), in their analysis
of the magnitudes and of the inter-occurence times of eartquakes from another
Italian area, chose a subset of the incomplete older part of their series to elicit
prior distributions. This procedure is justified in their case because the old and
the new part of the series can be regarded as two different processes and the
cut-point between them appears to be clearly identified. If we did the same
with our series we would obtain different posterior distributions on changing
the cut-point position. However, the use of subsetting is amply documented in
the Bayesian literature in ways that can help overcome this ambiguity. See, for
example, Berger and Pericchi (1996), O’Hagan (1995) and Yu et al. (2011).
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Table 2
Summaries of datasets MR3, tables (a) and (c), and MR4, tables (b) and (d); MR4 is the

learning dataset used for hyperparameter elicitation. (a) and (b): number of observed
transitions [and relative frequencies]; (c) and (d): median inter-occurrence times (in days)

(a)

to 1 to 2 to 3
from 1 65 [0.580] 30 [0.268] 17 [0.152]
from 2 32 [0.585] 15 [0.283] 7 [0.132]
from 3 15 [0.536] 9 [0.321] 4 [0.143]

(b)

to 1 to 2 to 3
from 1 114 [0.640] 51 [0.287] 13 [0.073]
from 2 56 [0.659] 25 [0.294] 4 [0.047]
from 3 8 [0.421] 8 [0.421] 3 [0.158]

(c)

to 1 to 2 to 3
from 1 204 257 141
from 2 150 122 219
from 3 142 82 309

(d)

to 1 to 2 to 3
from 1 105 61 193
from 2 104 99 76
from 3 209 117 78

Transition frequencies and median inter-occurrence times appear in Table
2 for both the MR3 and the MR4 datasets. The Dirichlet hyperparameters
γ1, . . . ,γs are set equal to the rows of Table 2(b) plus one. The medians are
reported because we have selected q = 0.5 in Table 1: the medians in Table 2(d)
are smaller than the medians in Table 2(c) in six entries out of nine, in some
cases considerably smaller.

2. Let us consider the predictive check mentioned above. Figure 3 shows pos-
terior predictive 95 percent probability intervals of the inter-occurrence times for
every transition, with the observed inter-occurrence times superimposed. These
are empirical intervals computed by generating stochastic inter-occurrence times
from their relevant distributions at every iteration of the Gibbs sampler. Possi-
ble outliers, represented as triangles, are those times with posterior predictive
tail probability less than 2.5 percent. In Table 3 we report the expected value
(and standard deviation) of the inter-occurrence times. In Table 4 the numbers
of upper and lower extreme points and their overall percentage are collected.
While deviations from the nominal 95% coverage are acceptable for transitions
with low absolute frequency, such as (2, 3), (3, 3), (3, 2), the remaining transi-
tions require attention. We see that the percentage of outliers higher than the
nominal value is mostly due to the upper outliers, which occur as an effect of
the difference between the prior opinion on the marginal median of the inter-
occurrence times and the median of the observed sequence (compare Table 2(d)
to Table 2(c)). A few really extreme inter-occurrence times, such as the small
values observed at transitions (1, 1), (2, 1) and the large one at transition (1, 3),
match unsurprisingly the outlying points in the corresponding qq-plots in Fig-
ure 2. This fact could be regarded as a lack of fit of the Weibull model, but it
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Fig 3. Posterior predictive 95 percent credible intervals of the inter-occurrence times in days
with actual times denoted by (blue) solid dots. Suspect outliers are denoted by (red)-pointing
triangles. The (green) dotted line shows the posterior median and the (violet) dashed line the
posterior mean. The prior distribution was elicited from the MR4 learning set.

Table 3
Predictive means (and standard deviations) of inter-occurrence times for each transition

(in days); prior elicited from MR4

1 2 3
1 191 (12) 172 (18) 331 (70)
2 214 (22) 238 (43) 354 (145)
3 263 (58) 203 (55) 314 (134)

Table 4
Number of points having lower or upper posterior predictive tail probability less than

2.5 percent and their percentage; prior elicited from MR4

Upper outliers Lower outliers % of outliers
1 2 3 1 2 3 1 2 3

1 8 3 1 2 0 0 15.4% 10.0% 5.9%
2 4 3 1 1 0 0 15.6% 20.0% 14.3%
3 1 0 0 0 1 0 6.7% 11.1% 0.0%
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Table 5
Posterior means (with standard deviations) of the shape parameter α in (a) and of the scale

parameter θ in (b); prior elicited from MR4

(a) Shape parameter α

1 2 3
1 1.18 (0.06) 1.07 (0.08) 0.94 (0.10)
2 1.07 (0.07) 0.95 (0.10) 0.89 (0.14)
3 1.04 (0.16) 1.03 (0.16) 1.11 (0.21)

(b) Scale parameter θ

1 2 3
1 201.7 (13.2) 175.6 (19.1) 317.8 (67.0)
2 219.2 (22.5) 231.0 (40.5) 327.3 (132.4)
3 262.7 (57.2) 201.9 (52.2) 320.1 (133.5)

Table 6
Summaries of the posterior distributions of the transition matrix p. Posterior means

(with standard deviations); prior elicited from MR4

1 2 3
1 0.614 (0.028) 0.280 (0.026) 0.106 (0.018)
2 0.626 (0.041) 0.290 (0.038) 0.085 (0.023)
3 0.479 (0.070) 0.361 (0.067) 0.160 (0.051)

could also be due to an imperfect assignment of some events to the macroregion
MR3 or to an insufficient filtering of secondary events (i.e. aftershocks and fore-
shocks): earthquakes incorrectly assigned to MR3 and aftershocks or foreshocks
can give rise to very short inter-occurrence times; on the other hand, earthquakes
which should be in MR3 but which were attributed to other macroregions can
produce very long inter-occurrence times.

The shape parameters αij are particularly important as they reflect an in-
creasing hazard if larger than 1, a decreasing hazard if smaller than 1 and a
constant hazard if equal to 1. Table 5(a) displays the posterior means of these
parameters (along with their posterior standard deviations). Finally, Table 6
shows the posterior means of the transition probabilities. Notice that the last
row departs from the other two; we will return to this below.

3. Cross state-probability plots are an attempt at predicting what type of
event and when it is most likely to occur. A cross state-probability (CSP) P ij

t0|∆x

represents the probability that the next event will be in state j within a time
interval ∆x under the assumption that the previous event was in state i and t0
time units have passed since its occurrence:

P ij
t0|∆x = P (Jn+1 = j, Xn+1 ≤ t0 +∆x| Jn = i, Xn+1 > t0)

=
pij
(

F̄ij(t0)− F̄ij(t0 +∆x)
)

∑

k∈E pikF̄ik(t0)
. (16)

Figure 4 displays the CSPs with time origin at 31 December 2002, the closing
date of the CPTI04 (2004) catalogue. At this time, the last recorded event had
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Fig 4. Posterior mean and median of CSPs with time origin on 31 December 2002 up to 48
months ahead, along with 90 percent posterior credible intervals. Transitions are from state
2 to state 1, 2 or 3 (first to third panel, respectively). Months since 31 December 2002 are
along the x-axis. The learning set is MR4.

Table 7
CSPs with time origin on 31 December 2002, as represented in Figure 4;

prior elicited from MR4

1 Month 2 Months 3 Months 4 Months 5 Months 6 Months 1 Year 2 Years 3 Years 4 Years
to 1 0.045 0.080 0.113 0.140 0.164 0.184 0.256 0.296 0.303 0.304
to 2 0.038 0.069 0.099 0.125 0.149 0.169 0.257 0.327 0.348 0.356
to 3 0.023 0.041 0.061 0.078 0.095 0.109 0.180 0.256 0.291 0.309

been in class 2 and had occurred 965 days earlier (so t0 is about 32 months).
From these plots we can read out the probability that an event of any given type
will occur before a certain number of months. For example, after 24 months, the
sum of the mean CSPs in the three graphs indicates that the probability that
at least one event will have occurred is around 88%, with a larger probability
assigned to an event of type 2, followed by type 1 and type 3. The posterior
means of the CSPs are also reported in Table 7.
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Table 8
CSPs as the end of the catalogue shifts back by one-year steps. The numbers in boxes are
the probability that the next observed event has occurred at or before the time when it
occurred and is of the type that has been observed. The prior was elicited from MR4

end of catalogue: 31/12/2001; previous event type:2; inter-occurrence time: 600 days
1 Month 2 Months 3 Months 4 Months 5 Months 6 Months 1 Year 392 days 2 Years 3 Years 4 Years

to 1 0.069 0.122 0.173 0.215 0.251 0.282 0.392 0.401 0.451 0.461 0.462
to 2 0.038 0.068 0.097 0.123 0.146 0.166 0.248 0.256 0.310 0.328 0.333
to 3 0.015 0.027 0.039 0.050 0.061 0.070 0.113 0.118 0.158 0.178 0.187

end of catalogue: 31/12/2000; previous event type: 2; inter-occurrence time: 235 days
1 Month 2 Months 3 Months 4 Months 5 Months 6 Months 1Year 2 Years 757 days 3 Years 4 Years

to 1 0.085 0.152 0.217 0.271 0.318 0.358 0.506 0.586 0.587 0.598 0.600
to 2 0.035 0.063 0.090 0.113 0.133 0.151 0.222 0.273 0.274 0.286 0.289
to 3 0.009 0.017 0.024 0.031 0.037 0.042 0.066 0.089 0.090 0.099 0.103

end of catalogue: 31/12/1999; previous event type: 1; inter-occurrence time: 177 days
1 Month 2 Months 3 Months 4 Months 130 days 5 Months 6 Months 1 Year 2 Years 3 Years 4 Years

to 1 0.103 0.186 0.261 0.323 0.339 0.376 0.420 0.565 0.622 0.626 0.627

to 2 0.042 0.075 0.104 0.127 0.133 0.147 0.163 0.216 0.238 0.240 0.240
to 3 0.012 0.023 0.033 0.042 0.044 0.050 0.057 0.088 0.116 0.126 0.130

end of catalogue: 31/12/1998; previous event type: 3; inter-occurrence time: 280 days
1 Month 2 Months 3 Months 4 Months 5 Months 6 Months 188 days 1 Year 2 Years 3 Years 4 Years

to 1 0.057 0.103 0.147 0.183 0.217 0.245 0.251 0.356 0.431 0.451 0.457
to 2 0.046 0.081 0.114 0.142 0.166 0.185 0.189 0.257 0.299 0.308 0.311
to 3 0.024 0.043 0.062 0.078 0.094 0.107 0.109 0.162 0.204 0.217 0.222

end of catalogue: 31/12/1997; previous event type: 3; inter-occurrence time: 442 days
1 Month 2 Months 85 days 3 Months 4 Months 5 Months 6 Months 1 Year 2 Years 3 Years 4 Years

to 1 0.061 0.110 0.150 0.157 0.196 0.232 0.263 0.383 0.468 0.492 0.499
to 2 0.044 0.077 0.104 0.109 0.135 0.158 0.177 0.247 0.291 0.301 0.304

to 3 0.021 0.038 0.052 0.055 0.069 0.081 0.092 0.136 0.169 0.180 0.184
end of catalogue: 31/12/1996; previous event type: 3; inter-occurrence time: 77 days

1 Month 2 Months 3 Months 4 Months 5 Months 6 Months 1 Year 450 days 2 Years 3 Years 4 Years
to 1 0.061 0.108 0.154 0.192 0.227 0.256 0.370 0.398 0.444 0.462 0.467
to 2 0.055 0.097 0.138 0.171 0.200 0.224 0.312 0.332 0.360 0.369 0.372

to 3 0.018 0.033 0.048 0.060 0.072 0.081 0.120 0.130 0.146 0.153 0.155
end of catalogue: 31/12/1995; previous event type: 1; inter-occurrence time: 3100 days

1 Month 2 Months 3 Months 4 Months 5 Months 6 Months 288 days 1 Year 2 Years 3 Years 4 Years
to 1 0.082 0.141 0.190 0.227 0.256 0.278 0.324 0.340 0.359 0.360 0.360

2 0.118 0.208 0.286 0.348 0.399 0.440 0.535 0.573 0.630 0.637 0.639

3 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
end of catalogue: 31/12/1994; previous event type: 1; inter-occurrence time: 2735 days

1 Month 2 Months 3 Months 4 Months 5 Months 6 Months 1 Year 653 days 2 Years 3 Years 4 Years
to 1 0.085 0.144 0.196 0.23 5 0.267 0.291 0.358 0.377 0.379 0.380 0.380
to 2 0.114 0.198 0.274 0.334 0.385 0.425 0.555 0.607 0.611 0.618 0.619

to 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001
end of catalogue: 31/12/1993; previous event type: 1; inter-occurrence time: 2370 days

1 Month 2 Months 3 Months 4 Months 5 Months 6 Months 1 Year 2 Years 1018 days 3 Years 4 Years
to 1 0.090 0.153 0.209 0.251 0.285 0.310 0.384 0.406 0.407 0.407 0.408
to 2 0.108 0.188 0.260 0.317 0.366 0.404 0.530 0.584 0.590 0.591 0.592

to 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001
end of catalogue: 31/12/1992; previous event type: 1; inter-occurrence time: 2005 days

1 Month 2 Months 3 Months 4 Months 5 Months 6 Months 1 Year 2 Years 3 Years 1383 days 4 Years
to 1 0.082 0.140 0.192 0.231 0.262 0.286 0.357 0.378 0.380 0.380 0.380
to 2 0.106 0.185 0.258 0.317 0.367 0.407 0.544 0.608 0.617 0.618 0.618

to 3 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

The predictive capability of our model can be assessed by marking the time
of the next event on the relevant CSP plot. In our specific case, the first event in
2003 which can be assigned to the macroregion MR3 happened in the Forl̀ı area
on 26 January and was of type 1, with a CSP of 4.5%. This is a low probability,
but a single case is not enough to judge our model, which would be a bad one
if repeated comparisons did not reflect the pattern represented by the CSPs.
Therefore, we repeated the same comparison by re-estimating the model using
only the data up to 31 December 2001, 31 December 2000, and so on backwards
down to 1992. The results are shown in Table 8. The boxed numbers correspond
to the observed events and it is a good sign that they do not always correspond
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to very high or very low CSPs (relative to the remaining numbers on the same
line) as this would indicate that events occur too late or too early compared
to the estimated model. Correspondingly, if we were to plot the conditional
densities obtained by differentiating the CSPs with respect to ∆x, marking the
observed inter-occurrence times on the x-axis, we would observe that few of
them appear in the tails, with the exception of the last three arrays in the table.
This exception is related to the period from the last event in July 1987 to the
event in October 1996, during which no events with Mw ≥ 4.5 occurred: this is
the longest inter-occurrence time in the whole series and it is the outlying point
in the top right panel of Fig. 2, so it is not surprising that the boxed CSPs
are small. With regard to the existence of occasional very long interoccurrence
times, a reviewer noted that it is very difficult to find a parametric model that
would explain them and that perhaps an outlier accommodation mechanism is
needed, although this might disrupt the Markov renewal assumption.

5.1. Time predictable and slip predictable models

The examination of the posterior distributions of transition probabilities and of
the predictive distributions of the inter-occurrence times can give some insight
into the type of energy release and accumulation mechanism. We consider the
two mechanisms mentioned above: the time predictable model (TPM) and the
slip predictable model (SPM).

In the TPM, it is assumed that when a maximal energy threshold is reached,
some fraction of it (not always the same) is released and an earthquake occurs.
The consequence is that the time until the next earthquake increases with the
severity of the last earthquake. Thus, the inter-occurrence time distribution
depends on the current event type, but not on the next event type, that is, we
expect Fij(t) = Fi·(t), j = 1, 2, 3. The strength of an event does not depend on
the strength of the previous one, because every time the same energy level has
to be reached for the event to occur. So we expect pij = p·j, j = 1, 2, 3, that
is, a transition matrix with equal rows. If this is the case, the CSPs (16) would
simplify as follows,

P ij
t0|∆x =

pij
(

F̄ij(t0)− F̄ij(t0 +∆x)
)

∑

k∈E pikF̄ik(t0)
=

p·j
(

F̄i·(t0)− F̄i·(t0 +∆x)
)

F̄i·(t0)
, (17)

so that, under the TPM assumption, given i, they are proportional to each other
as j = 1, 2, 3 for any ∆x, and the ratio P ij

t0|∆x/P
ik
t0|∆x equals p·j/p·k for any pair

(j, k).
In the SPM, after an event, energy falls to a minimal threshold and increases

until the next event, where it starts to increase again from the same threshold.
The consequence is that the energy of the next earthquake increases with time
since the last earthquake. So, the magnitude of an event depends on the length of
the inter-occurrence time, but not on the magnitude of the previous one, because
energy always accumulates from the same threshold. In this case pij = p·j , but
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Table 9
Posterior means (with standard deviations) of the transition matrix p with the

noninformative prior

1 2 3
1 0.567 (0.046) 0.271 (0.041) 0.162 (0.033)
2 0.567 (0.064) 0.283 (0.059) 0.150 (0.046)
3 0.500 (0.085) 0.323 (0.079) 0.177 (0.064)

Fij(t) = F·j(t) again, so

P ij
t0|∆x =

p·j
(

F̄·j(t0)− F̄·j(t0 +∆x)
)

∑

k∈E p·kF̄·k(t0)
. (18)

Then, under the SPM assumption, the CSP are equal to each other as i = 1, 2, 3
for any ∆x, given j.

An additional feature that can help discriminate between TPM and SPM
is the tail of the inter-occurrence time distribution: for a TPM, the tail of the
inter-occurrence time distribution is thinner after a weak earthquake than after
a strong one; for an SPM, the tail of the inter-occurrence time is thinner before
a weak earthquake than before a strong one.

In the present case the posterior mean of the third row of p, see Table 6, is
clearly different from the other two rows, unlike the empirical transition matrix
derived from Table 2(a), because of the prior information from MR4. So, with
this prior, both the TPM and the SPM are excluded.

On the other hand, things change with the noninformative prior elicited with-
out a learning set. In this case, we let all the Dirichlet hyperparameters γij ’s
be equal to 2. Following Section 4.3, the missing learning set for each string
(i, j) is substituted by a unique fictitious observation t̃ij0.5 uniformly distributed
over (1, 5000) days, and mij is set to one; this establishes the prior for θij . The
prior of αij derived from Equation (15) with mij = 1 and cij = 2 (taken from
Table 1) is

π3(αij) ∝

(

1−
αij

α0,ij

)

1(α0,ij ≤ αij ≤ α1,ij)

with α0,ij = 2/(2+Nij) (see Table 2(a) for the Nij ’s) and α1,ij = 10. Note that
on our current sample, the lower limit α0,ij is always smaller than 2/3.

With this prior specification, the posterior distributions of the rows of the
transition matrix do not differ significantly, as seen from Table 9, so we can
assume pij = p·j for all indexes i and examine the ratios of CSPs to verify the
TPM and the SPM hypotheses.

Figures 5 and 6 display the posterior means of the ratios of the CSPs as a
function of ∆x for t0 = 0, with the noninformative prior. For the TPM the
generic ratio of two CSPs indexed by (i, j) and (i, k) should be approximately
constant and close to p·j/p·k, where the p·j represents the common values of
the entries in the j-th column of p, under the TPM. The horizontal lines in
Figure 5 are the posterior expectations of pij/pik, which would estimate p·j/p·k
if the TPM assumption were true. For the SPM, the ratio of CPSs, now indexed



2284 I. Epifani et al.
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Fig 5. Checking the TPM: posterior means of ratios of CSPs P ij
0|∆x

/P ik
0|∆x

, with time origin

at 0, up to 10 years ahead. Transitions are from state 1, 2 and 3 to state 1, 2 or 3. Hori-
zontal lines indicate the theoretical values of the ratios for the TPM. The prior distribution
is noninformative.

by (i, j) and (k, j), should be close to one. The plots indicate that it is not so,
therefore neither the TPM nor the SPM are supported by the data, even with
the noninformative prior.

As for the TPM, this finding is confirmed by the examination of the posterior
probabilities that αij < αik and θij < θik, for any given i and j ̸= k: Pr(αij <
αik|j,x, uT ) is 0.57 for string (2, 1) versus string (2, 3) and 0.53 for (3, 1) versus
(3, 2), but it is either larger than 0.74 or smaller than 0.37 for all the other
strings; Pr(θij < θik|j,x, uT ) is 0.59 for (1, 2) versus (1, 3) and is 0.55 for (3, 1)
versus (3, 2), but it is lower than 0.39 for all the other strings. As for the SPM,
we have examined Pr(αij < αkj |j,x, uT ) and Pr(θij < θkj |j,x, uT ) for any j and
i ̸= k: Pr(αij < αkj |j,x, uT ) is 0.53 for (2, 2) versus (3, 2), but it is either larger
than 0.74 or smaller than 0.37 for all the other strings; Pr(θij < θkj |j,x, uT ) is
between 0.44 and 0.62 for three comparisons but it is either larger than 0.72 or
smaller than 0.30 for the remaining ones.
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Fig 6. Checking the SPM: posterior means of ratios of CSPs P ij
0|∆x

/P kj
0|∆x

, with time origin

at 0, up to 10 years ahead. Transitions are from state 1, 2 and 3 to state 1, 2 or 3. Green
horizontal lines at one indicate the theoretical value of the ratios for the SPM. The prior
distribution is noninformative.

6. Concluding remarks

We have presented a complete Bayesian methodology for the inference on semi-
Markov processes, from the elicitation of the prior distribution, to the computa-
tion of posterior summaries including predictive probabilities of future events.
A guidance for its JAGS implementation is given too. In particular, we have
examined in detail the elicitation of the joint prior density of the shape and
scale parameters of the Weibull-distributed inter-occurrence times (conditional
on the transition between two given states), deriving a specific class of priors in
a natural way, along with a method for the determination of hyperparameters
based on “learning data” and moment existence conditions. This framework has
been applied to the analysis of seismic data, but it can be adopted for inference
on any system for which a Markov Renewal process is plausible.
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With regard to the seismic data analysis, other uses of our model can be
envisaged. The model can be applied to areas with a less complex tectonics,
such as Turkey, by replicating for example Alvarez’s analysis. Outliers, such
as those appearing in Figure 3, could point at events whose assignment to a
specific seismogenic source should be re-discussed. The analysis of earthquake
occurrence can support decision making related to the risk of future events. We
have not examined this issue here, but a methodology is outlined by Cano et al.
(2011).

In our analysis we do not take into account the spatio-temporal interactions
between earthquakes. The inclusion of the spatial information in a more ad-
vanced stochastic model would certainly improve the prediction capabilities of
earthquakes. A first step in this direction could be to use the data of the entire
catalogue, organized in homogeneous subregions, and build a Bayesian hierar-
chy of semi-Markov models which enable sharing of informations across regions,
while acknowledging existing local differences.

A final note concerns the more recent Italian seismic catalogue CPTI11
(2011), including events up to the end of 2006. Every new release of the cata-
logue involves numerous changes in the parameterization of earthquakes; as the
DISS event classification by macroregion is not yet available for events in this
catalogue we cannot use this more recent source of data.

Appendix A: Gibbs sampling

Here we derive the full conditional distributions involved in the Gibbs sampling,
we give indications on its JAGS implementation and we reproduce the JAGS
code.

A.1. Full conditional distributions

Let the last inter-occurrence time be censored i.e. uT > 0. Hence, in order to
obtain some simple full conditional distributions and then an efficient Gibbs
sampling, we introduce the auxiliary variable jτ+1 which represents the unob-
served state following the last visited state jτ . Moreover, let tq = (tijqij , i, j ∈ E).

Each hyperparameter tijqij may be either a known constant or tijqij is uniformly
distributed over an interval (t1, t2). Moreover, all of them are independent of
each other. Thus, the state space of the Gibbs sampler is (p,α, θ, jτ+1, tq) and
the following full likelihood derived from (5):

L(j,x, uT , jτ+1|p,α, θ) =
∏

i,k∈E

pNik

ik

×
∏

i,k∈E

⎡

⎣αNik

ik

1

θαikNik

ik

(

Nik
∏

ρ=1

xρ
ik

)αik−1

× exp

{

−
1

θαik

ik

Nik
∑

ρ=1

(xρ
ik)

αik

}

⎤

⎦

×

(

pjτ jτ+1
exp

{

−

(

uT

θjτ jτ+1

)αjτ jτ+1
})

(19)
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is multiplied by the prior and used to determine the full conditionals. For every
i and j, let

p(−i) = the transition matrix p without the i-th row,

α(−ij) = (αhk, h, k ∈ E, (h, k) ̸= (i, j)),

θ(−ij) = (θhk, h, k ∈ E, (h, k) ̸= (i, j)),

tq(−ij) = (thkqhk
, h, k ∈ E, (h, k) ̸= (i, j)),

Ñij = Nij + 1((jτ , jτ+1) = (i, j)), Ñi =
(

Ñij , j = 1, . . . , s
)

,

M̃ij(αij) =

Nij
∑

ρ=1

(xρ
ij)

αij + u
αij

T 1((jτ , jτ+1) = (i, j)),

Cij =

Nij
∏

ρ=1

xρ
ij .

The following result on the full conditional distributions of the Gibbs sampling
holds.

Proposition A.1. Let the prior on (p, α, θ, tq) be the following

i) p is independent of α and θ and the rows of p are s independent vectors with
Dirichlet distribution with parameters γ1, . . . ,γs and total mass c1, . . . cs,
respectively,

ii) the θij’s, given the αij’s and the tijqij ’s, are independent with θij |αij ∼

GIG(mij , bij(tijqij ,αij),αij), where

bij(t
ij
qij ,αij) =

(

tijqij

)αij

[(1− qij)
−1/mij − 1]−1,

and tijqij is either a known constant or tijqij is uniformly distributed over
(t1, t2),

iii) π3,ij(αij) ∝ α
mij−cij
ij (αij − α0,ij)

cij−1 exp{−mijdijαij}1(αij ∈ Iij), mij >
0, cij > 0, α0,ij > 0 and dij ≥ 0 where

Iij =

{

(α0,ij ,α1,ij) if dij = 0

(α0,ij ,∞) if dij > 0.

Then,

a) the conditional distribution of pi, given j, x, uT , jτ+1, p(−i), α, θ and tq

is a Dirichlet distribution with parameter Ñi + γi;
b) the conditional distribution of θ

αij

ij , given j, x, uT , jτ+1, p, α, θ(−ij) and tq
is an inverse Gamma distribution with shape mij+Nij and rate bij(tijqij ,αij)+

M̃ij(αij);
c) the conditional density of αij, given j, x, uT , jτ+1, p, α(−ij), θ and tq is

proportional to
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α
Nij+1+mij−cij
ij (αij − α0,ij)

cij−1

× exp

{

−

(

mijdij − log
Cij(tijqij )

mij

θ
Nij+mij

ij

)

αij

}

× exp

{

−
bij(tijqij ,αij) + M̃ij(αij)

θ
αij

ij

}

1(αij ∈ Iij), (20)

and it is log-concave if cij ≥ 1;
d) the conditional density of the unseen state Jτ+1, given j, x, uT , p, α, θ and

tq, is

pjτ j exp
{

−
(

uT

θjτ j

)αjτ j
}

∑

k∈E pjτk exp
{

−
(

uT

θjτk

)αjτ k
} ;

e) if tijqij is uniformly distributed over (t1, t2), then its conditional distribution
given j, x, uT , p, α, θ and tq(−ij) is a doubly-truncated at (t1, t2) general-

ized Gamma with parameters a = θij [(1−qij)−1/mij −1]1/αij , d = αijmij+1
and p = αij , i.e.

π(tijqij |j,x, uT ,p,α, θ, tq(−ij))

=
p/ad

Γ(d/p)

(

tijqij

)d−1
exp

{

−
(

tijqij/a
)p}

1(t1 < tijqij < t2).

Proof. As the row pi is independent of (p(−i),α, θ, tq), conditionally on the
data and jτ+1, then

π(pi|j,x, uT , jτ+1,p(−i),α, θ, tq)

∝ L(j,x, uT , jτ+1|p,α, θ)× π1,i(pi) ∝
∏

j∈E

p
Ñi,j

ij ×
∏

j∈E

p
γij−1
ij ,

where π1,i denotes the Dirichlet prior of pi. Hence point a) of Proposition A.1
follows.

As regards the full conditional distribution of θij , we have

π(θij | j,x, uT , jτ+1,p,α, θ(−ij), tq)

∝ L(j,x, uT , jτ+1 |p,α, θ)× π2,ij(θij |αij , t
ij
qij )

∝
∏

i,k∈E

[

αNik

ik

Cαik−1
ik

θαikNik

ik

× exp

{

−
M̃ik(αik)

θαik

ik

}]

× exp

{

−
bij(tijqij ,αij)

θ
αij

ij

}

× θ
−[1+αijmij ]
ij ∝ θ

−[1+αij(mij+Nij)]
ij exp

{

−
bij(tijqij ,αij) + M̃ij(αij)

θ
αij

ij

}

.

As one can see, the last function is the kernel of an inverse Gamma distribution
with parameters mij + Nij and bij(tijqij ,αij) + M̃i,j(αij) and point b) follows.
A similar reasoning yields a full conditional distribution for αij proportional
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to (20). Furthermore, concerning its log-concavity, notice that the function in
(20) can be written as the product of the following four log-concave functions:

α
Nij+mij

ij ,
(

1−
αij

α0,ij

)cij−1
, exp

{

−
(

mijdij − log
Cij(tijqij )

mij

θ
Nij+mij

ij

)

αij

}

,

exp
{

−
bij(tijqij ,αij) + M̃ij(αij)

θ
αij

ij

}

In particular, the second function is log-concave for cij ≥ 1 and the last term is
a product of log-concave functions of the kind αij #→ exp{−zαij}. Hence the log-
concavity follows from the property that the product of log-concave functions
is also log-concave.

Regarding point d), it is enough to observe that Equations (2) and (19) imply
that

P (Jτ+1 = j| j,x, uT ,p,α, θ) =
P (Jτ+1 = j, Xτ+1 > uT | j,x,p,α, θ)

∑

k∈E P (Jτ+1 = k, Xτ+1 > uT | j,x,p,α, θ)

=
pjτ j exp

{

−
(

uT

θjτ j

)αjτ j
}

∑

k∈E pjτk exp
{

−
(

uT

θjτk

)αjτ k
} .

Finally, if tijqij is uniformly distributed over (t1, t2), then

π(tijqij | j,x, uT ,p,α, θ, tq(−ij)) ∝ π2(θij |αij , t
ij
qij )1(t1 ≤ tijqij ≤ t2)

∝ bmij (tijqij ,αij) exp

{

−
b(tijqij ,αij)

θ
αij

ij

}

1(t1 ≤ tijqij ≤ t2)

∝
(

tijqij

)αijmij

exp

{

−

(

tijqij
θij [(1− qij)−1/mij − 1]1/αij

)αij
}

1(t1 ≤ tijqij ≤ t2)

The last equation is the kernel of a generalized Gamma, doubly-truncated at
(t1, t2), as introduced in Stacy (1962), so point e) follows.

A.2. JAGS implementation

Proposition A.1 implies that JAGS should be able to run an exact Gibbs sam-
pler. The model description we have adopted in the JAGS language is based on
the full likelihood (19). It is not important that the model description matches
the actual model which generated the data as long as the full conditional dis-
tributions, which are determined by the joint distribution of the data and the
parameters, remain unchanged. In detail, we consider the following joint distri-
bution:

L1(j,x, uT |jτ+1,p,α, θ)π(jτ+1|pjτ )π(p,α, θ|tq)π(tq)

where π(p,α, θ|tq) is the joint prior of (p,α, θ), given the matrix of hyperpa-
rameters tq = (tijqij , i, j ∈ E) as derived in Section 4 using Equations (6), (14)
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and (15),

π(jτ+1|pjτ ) = pjτ jτ+1

L1(j,x, uT |jτ+1,p,α, θ) = L(j,x, uT , jτ+1|p,α, θ)/pjτ jτ+1
.

and the density π(tq) of tq is such that the tijqij ’s are independent and either uni-
formly distributed over (t1, t2) or concentrated on the suitable empirical quantile
t̂ijqij obtained from the learning dataset (see Subsections 4.2 and 4.3).

The factors of the likelihood L1, to be extracted from Equation (19), are
modelled in JAGS as follows. For any value of i, the factor

∏

k∈E

pNik

ik

is contributed by a multinomial likelihood with probability vector pi and
∑

k Nik

trials. The factors in square brackets in (19) are contributed by the uncensored
Weibull inter-occurrence times for every string (i, k) and are obtained in JAGS
as Weibull densities with parameters αik and θik, using a “for” loop sweeping
the strings. The last factor, which accounts for the censored inter-occurrence
time uT , is handled by a special instruction, by which uT is first declared to be
a right censored time with upper censoring point T − tτ , and then is assigned a
Weibull distribution with parameters αjτ jτ+1

and θjτ jτ+1
.

The factor π(jτ+1|pjτ )π(p,α, θ|tq), representing the prior associated with
L1, is handled as follows. The additional prior on jτ+1 is a discrete distribution
on the integers 1, 2, 3, with probabilities taken from the row of p indexed by
jτ . Every row pi of p is assigned a Dirichled distribution directly. Whenever
mik ≥ 2, as cik = mik, the shape parameters αik have a shifted Gamma prior,
see Equation (15), obtainable by defining in JAGS a new non-shifted Gamma
variable with shape cik and rate mikdik, which, after summing the shift, is
assigned to αik; for the value of dik see Equation (13). The generalized Gamma
for θik is defined conditionally on αik: first a Gamma prior with shape mij

and rate b̂ik(αik) is assigned to a new random variable aik and then a−1/αik

ik is
assigned to θik.

In case there is either just one observation or no learning dataset ym, some
special instructions in the JAGS code are needed. In particular, if there is no
learning dataset, then the missing learning dataset is substituted, for every
string (i, k), by the fictitious observation t̃ik drawn from a uniform distribution
over (1,5000) days (so mik = 1 for all strings). Then, the priors of the θik retain
the same form, whereas the priors of the αik’s, derived from Equation (15) with
mik = 1 and c = 2 (a value taken from Table 1), are

π3(αik) ∝

(

1−
α0,ik

αik

)

1(α0,ik ≤ αik ≤ α1,ik)

with assigned α0,ik and α1,ik. This latter distribution is coded using the so-
called zeros trick: a fictitious zero observation from a Poisson distribution with
mean φik = − lnπ3(αik) is introduced; then a uniform prior over [α0,ik,α1,ik] is
assigned to αik. The effect on the formula of the joint distribution is that the
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likelihood L1 gets multiplied by the factor exp(−φik), contributed by the zero
observation; the multiplication by the uniform density gives back the correct
factor accounting for the prior of αik.

A.3. JAGS code

# JAGS CODE de f i n i ng the model ( l i k e l i h o o d and pr i o r d i s t r i b u t i o n s )
# The code i s t a i l o r e d f o r 3 s ta t e s , but can be adapted to a

d i f f e r e n t number o f s t a t e s
#
# VARIABLES and CONSTANTS appear ing in the s c r i p t
#
# k : number o f s t a t e s ( here k=3)
# t r a n s i t i o n s [ , ] : a 3 by 3 matrix conta in ing observed f r e qu en c i e s
# P [ , ] : a 3 by 3 matrix conta in ing the t r a n s i t i o n p r o b a b i l i t i e s
# N. from [ ] : a l ength thr ee vector ; N. from [ i ] i s the number o f

t r a n s i t i o n s which occurred in the data from s ta t e i , i = 1 ,2 ,3
# d i r i c h l e t . parameters [ , ] : a 3 by 3 matrix ; the i−th row conta ins

the hyperparameters o f the D i r i c h l e t d i s t r i b u t i o n o f the i−th
row of P

# l : i ndexes the t r a n s i t i o n ; i t ranges from 1 to tau , which i s the
number o f the l a s t observed t r a n s i t i o n

# x . exact [ ] : a l ength tau vector o f the observed i n t e r−occur r ence
t imes

# c t f [ ] i s a l ength tau vector ; any entry can take value from 1 to
9 , i ndex ing p o s s i b l e t r a n s i t i o n s in the f o l l ow i ng order : ( 1 , 1 ) ,
( 2 , 1 ) , ( 3 , 1 ) , ( 1 , 2 ) , ( 2 , 2 ) , ( 3 , 2 ) , ( 1 , 3 ) , ( 2 , 3 ) , ( 3 , 3 )

# alpha [ ] and a [ ] are l ength nine ve c to r s o f the shape and r a t e
parameters o f the Weibul l i n t e r−occur r ence t imes : p o s i t i o n s in
the vec to r s are matched to the t r a n s i t i o n with the same ru l e
used f o r c t f [ ] j u s t above

# j . s t a t e [ ] : a l ength tau vector o f the sequence o f observed s ta t e s
, except f o r the i n i t i a l s t a t e

# j . s t a r : the unobserved de s t i na t i on s ta t e o f the t r a n s i t i o n from j
. s t a t e [ tau ]

# t . cen : the l a s t r i ght−censored i n t e r−occur r ence time
# x . s t a r : the unobserved uncensored i n t e r−occur r ence time between

t r an s i t i o n tau and t r a n s i t i o n tau+1
# M[ ] : l ength nine vector o f m’ s , the f r equency o f every t r a n s i t i o n

in the l e a r n i ng data ; t h i s i s a vector o f ones i f ther e i s no
l e a r n i ng data ( s ee Sec t i on s 4 . 2 and 4 . 3 )

# CC [ ] : l ength nine vector with gene r i c entry [(1−q ) ˆ{−1/m
}−1]ˆ{−1}; q and m depend on the t r a n s i t i o n ( s ee Sec t i on s 4 . 2 ) ,
whereas they take value 0 . 5 and 1 thoughout i f ther e i s no

l e a r n i ng data ( s ee Sect i on 4 . 3 )
# Q.LAMBDA[ ] : l ength nine vector with the quan t i l e s o f the nine

i n t e r−occur r ence time d i s t r i b u t i o n s ( the t q ’ s i n Sect i on 4 . 2
and 4 . 3 )

# SCRIPT s t a r t s

# Semi Markov Model
model {
# Like l i hood and pr i o r f o r P

f o r ( i i n 1 : k )
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{
t r a n s i t i o n s [ i , 1 : k ] ˜ dmulti ( P [ i , 1 : k ] ,N.

from [ i ] )
P [ i , 1 : k ] ˜ ddi rch ( d i r i c h l e t . parameters [ i

, 1 : k ] )
}

# Weibul l model f o r i n t e r−occur r ence t imes .
# The r e l a t i o n s h i p between JAGS and our parameter i zat i on i s : shape

= alpha , r a t e = a , theta = 1/aˆ(1 / alpha )
f o r ( l i n 1 : tau )

{
x . exact [ l ] ˜ dweib ( alpha [ c t f [ l ] ] , a [ c t f [ l

] ] )
}

# Mixture o f Weibul l s f o r the l a s t censored i n t e r−occur r ence time
j . s t a r ˜ dcat ( P[ j . s t a t e [ tau ] , 1 : k ] )
i s . censored ˜ d i n t e r va l ( x . s tar , t . cen )
x . s t a r ˜ dweib ( alpha [ j . s t a t e [ tau ]+3∗( j . s tar −1) ] , a [ j .

s t a t e [ tau ]+3∗( j . s tar −1) ] )
#
# Pr ior on ( alpha , a ) Weibul l parameters when ther e are m>=2

t r a n s i t i o n s f o r a l l n ine pa i r s ( i , j ) i n the l e a r n i ng data
# alpha . t r i c k [ ] i s a l enght nine vector which , s h i f t e d by LOWER,

g i v e s alpha [ ]
# BM[ ] : l ength nine vector with the r a t e parameters o f the p r i o r s

o f the alpha ’ s ( the f a c t o r mul t ip ly ing alpha in eq . (15) )
# The next 6 l i n e s o f code should be commented out i f ther e i s no

l e a r n i ng data
#

alpha <− alpha . t r i c k+LOWER
theta <− 1 / ( a ˆ(1 / alpha ) )
f o r ( r in 1 : ( kˆ2) ){

alpha . t r i c k [ r ] ˜ dgamma(M[ r ] , BM[ r ] )
a [ r ] ˜ dgamma(M[ r ] , CC[ r ] ∗ (Q.LAMBDA[ r ] ) ˆ alpha [ r ] )

}

#
# Pr ior on ( alpha , a ) Weibul l parameters when ther e are no l ea r n i ng

data ( s ee Sect i on 4 . 3 )
# The ze r o s t r i c k i s used f o r the p r i o r o f alpha
# t [ ] : l enght two vector with the common upper and lower bounds f o r

the e n t r i e s in Q.LAMBDA[ ]
# LOWER[ ] , UPPER[ ] : l ength nine ve c to r s with the endpoints a lpha 0

and alpha 1 o f the support o f the shape parameters
# The next 8 l i n e s o f code should be commented out i f l e a r n i ng data

i s a v a i l a b l e
#

theta <− 1 / ( a ˆ(1 / alpha ) )
f o r ( r in 1 : ( kˆ2) ){

a [ r ] ˜ dgamma(M[ r ] , CC[ r ] ∗ (Q.LAMBDA[ r ] ) ˆ
alpha [ r ] )

Q.LAMBDA[ r ] ˜ dun i f ( t [ 1 ] , t [ 2 ] )
ze ro [ r ] ˜ dpoi s ( phi [ r ] )
phi [ r ] <− −l og ( 1 − LOWER[ r ] / alpha [ r ] )
alpha [ r ] ˜ dun i f (LOWER[ r ] , UPPER[ r ] )

}
}
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