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Abstract
Land-cover/land-use thematic maps are a major need in urban and country planning. This 
paper demonstrates the capabilities of Object Based Image Analysis in multi-scale thematic 
classification of a complex sub-urban landscape with simultaneous presence of agricultural, 
residential and industrial areas using pan-sharpened very high resolution satellite imagery. 
The classification process was carried out step by step through the creation of different 
hierarchical segmentation levels and exploiting spectral, geometric and relational features. 
The framework returned a detailed land-cover/land-use map with a Cohen’s kappa 
coefficient of 0.84 and an overall accuracy of 85%.
Keywords: OBIA, hierarchical classification, land cover, VHR satellite data, pan 
sharpening.

Introduction
In the last few decades, remote sensing has become one of the most performing techniques 
for data acquisition over large areas and, nowadays, land-cover/land-use (LC/LU) thematic 
maps are of primary importance in all the activities related to the organization, protection 
and planning of our environment. In particular, urban and rural planning require an increase 
of detail and accuracy of the LC/LU maps.
Human interpretation still remains the main approach to information extraction from remotely 
sensed imagery but, even if accurate, it is highly dependent upon experts’ skills [Zhang and 
Zhu, 2010]. Consequently, the growing demand of standardization for the processing of 
large dataset promoted the development of a wide range of classification algorithms and 
strategies, especially tuned for local mapping and urban planning [Masser, 2001; Frassy 
et al., 2012]. For example, the INSPIRE Directive adopted by the 27 Member States of 
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the European Union in 2007 established a common infrastructure for spatial information to 
support Community environmental policies with key components specified through technical 
implementing rules [European Commission, 2007; European Commission, 2008].
The on-going increase of the satellite’s spatial resolution has a great impact on image 
classification but it does not directly implies better results [Gianinetto et al., 2004; Liu et 
al., 2006]. In fact, nowadays very high resolution (VHR) imaging systems are typically 
limited to only four spectral bands in the visible and near-infrared. Compared to most 
medium-resolution multispectral systems, this restricted spectral setting may lead to an 
overall decrease in the classification accuracy at pixel level [Aplin et al., 1999]. Things 
have changed with the launch of WorldView-2 (8-band) and in the next future new satellites 
with even higher spectral resolution are expected to be operative (e.g., WorldView-3) but, 
today, 4-band VHR sensors are the standard for civilian Earth Observation.
On the other hand, with sub-meter multispectral imagery the spatial extent, shape, structure 
and texture of land features appear fairly clear because the mixture of different land-cover 
classes in a single pixel is directly proportional to the pixel size. Furthermore, VHR optical 
images are also useful to retrieve different kind of landscape detail, such as topography-
related features, which can be used as additional information during the classification 
process [Gianinetto, 2008, 2009].
Concerning the thematic classification of VHR data, a limitation of pixel-based approaches 
is the absence of semantic information on shape and relation to neighbourhood [Webb, 2003; 
Canty, 2009; Bhaskaran et al., 2010]. To overcome this issue, Object-Based Image Analysis 
(OBIA) uses segmentation to group source image pixels into self-existent and resoluble 
entities [Golinkoff, 2013] satisfying the Tolber’s first law of Geography: “Everything is 
related to everything else, but near things are more related than distant things” [Tobler, 
1970]. Consequently, in OBIA textural and relational information are used as additional 
information to the spectral properties and this approach can be extremely performing for 
mapping LC/LU with high and VHR data [Zhou et al., 2009].
Many authors describe OBIA studies based on single source data and basic derivatives, such 
as NDVI [van der Sande et al., 2003; Bock et al., 2005; Mathieu et al., 2007; Shiro, 2008; 
Bhaskaran et al., 2010]. Other authors combine multi-sources data as VHR imagery and 
LIDAR surveys [Chen et al., 2007; Pascual et al., 2008; Zhou and Troy, 2008]. Gong et al. 
[1992] stated that increasing the spatial resolution of image data lead to an increase in spectral 
variability within LC/LU classes. Furthermore, roads, bare soil, trees and grassland textural 
information are difficult to be fully exploited, especially in heterogeneous urban areas with 
a complex mosaic of buildings. Therefore, for single source data, some authors suggested to 
improve the classification accuracy through the introduction of first and second order textural 
features such as Gray Level Co-occurrence Matrices (GLCM) or Local Spatial Statistics 
[Rusmini et al., 2012]. Su et al. [2008] reported improvements in urban areas classification 
with the introduction of four GLCM textural features (i.e. homogeneity, contrast, angular 
second moment and entropy) and one Local Spatial Statistics feature (i.e. Moran’s I), while 
Johansen et al. [2007] demonstrated that the introduction of GLCM textural features (i.e., 
homogeneity, contrast and dissimilarity) improved the mapping of forest ecosystems.
This paper describes a practical framework of OBIA for a complex landscape with a mixture 
of settlements, agricultural areas and industrial areas for the simultaneous classification of both 
urban and agricultural features into a single workflow using VHR pan-sharpened imagery. 
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Most of past studies distinguished between OBIA methods used for urban LC/LU mapping 
[Mathieu et al., 2007; Chen, 2009; Bhaskaran et al., 2010] and OBIA methods used for natural/
agricultural LC/LU mapping [van der Sande et al., 2003; Bock et al., 2005; Shiro, 2008] 
because features are remarkably different in the two environments in terms of size, shape, and 
pattern. Compared to past literature, the novelty of this research is the use of OBIA for image 
classification of VHR satellite images in a complex scenario consisting of a mosaic of urban 
areas and agricultural plots. Issues concerning the different features’ size was handled by using 
multiple hierarchical segmentation levels, while issues related to spectral mixtures among 
different classes were faced through the introduction of adjunctive input parameters, such as 
GLCM parameters, shape descriptors, spectral indexes and pan-sharpened synthetic bands.

Study area
The study area is located in the Province of Venice (Italy) and includes the villages of Dese, 
Praello, and the industrial area of Marcon, seven kilometres far from the Lagoon of Venice 
(Fig. 1). Originally dominated by agriculture, in the last decades the site has been partially 
urbanized and nowadays the test area consists of a complex landscape with agricultural 
fileds (78%) alternated to motorways, railways, and settlements (12%), and industrial sites 
(7%). Moreover, being close to the Venetian Lagoon, the area shows a complex system of 
channels and artificial water bodies (3%).

Figure 1 - Overview of the study area, Province of Venice (Italy).
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Methods
Dataset
QuickBird multispectral image (panchromatic: 405-1053 nm, blue: 430-545 nm, green: 
466-620 nm, red 590-710 nm and near-infrared: 715-918 nm) was collected on May 16, 
2002 (spring in the experimental conditions) under clear sky conditions, with a spatial 
resolution of 0.64 m for the panchromatic and 2.56 m for the visible and near-infrared. The 
QuickBird image was taken with 11-bit radiometric resolution at a sun elevation angle of 
60.9° and with off-nadir view angles of 8.63° for in-track and 9.21° for cross-track. Prior to 
delivery, the image was radiometrically corrected.

Data pre-processing
When using single date imagery for classification purposes, if no external training set, 
external reference data or spectral libraries are used, then image processing can be performed 
without any atmospheric correction [Song et al., 2001; Zhang and Couloigner, 2006; Del 
Frate et al., 2007; Pacifici et al., 2009; Zhou et al., 2009].
QuickBird data were first rectified to the world geodesic survey 1984 (WGS84) datum 
and the Universal Transverse Mercator (UTM) coordinate system and then pan-sharpened 
to increase the spatial resolution and the intra-class variability of the multispectral bands 
[Gong et al., 1992]. Two widely used techniques have been used: (i) Gram-Schmidt (GS) 
spectral sharpening [Laben, 2000] and (ii) Principal Components (PC) spectral sharpening 
[Shah et al., 2008]. For both methods, multispectral data have been resampled using cubic 
convolution and bilinear interpolation. The best dataset for thematic classification was 
selected by analysing the Spectral Fidelity Index [Tsai, 2004; Wang et al., 2005]. As shown 
in Equation 1, Q expresses the spectral fidelity and it takes into account the correlation, the 
average brightness and the contrast of both multispectral and pan-sharpened images [Canty, 
2009]:

Q f g
f g f g
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f g
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+

⋅
+
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σ σ
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where f is the multispectral image, g is the pan-sharpened image, f g
_ _

,  are the mean of bands f 
and g, σ f

2 , ( )σ g
2   are the variance of bands f and g and σ fg  is the covariance of bands f and g.

Table 1 - Spectral fidelity measures for the pan-sharpened QuickBird data.
Spectral bands GS Bilinear GS Cubic PC Bilinear PC Cubic

PSMS 1 0.842 0.915 0.912 0.962

PSMS 2 0.830 0.869 0.898 0.936

PSMS 3 0.814 0.810 0.879 0.893

PSMS 4 0.632 0.579 0.614 0.548

Mean 0.779 0.793 0.826 0.835

Based on results shown in Table 1, the Principal Components cubic convolution pan-
sharpened image was selected as input data for thematic classification (Fig. 2).
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Figure 2 - Comparison between the multispectral (left) and pan-
sharpened (right) images.

Image Segmentation
Image segmentation is the process of completely partitioning the scene into non-overlapping 
regions [Schiewe, 2002] and it is a critical step in object-based classification procedures 
being the selection of the input layers a major factor [Kong et al., 2006; Zhou and Troy, 
2008]. An added value of OBIA is the so called hierarchical segmentation: the capability to 
create multiple segmentation levels connected together so that borders of broader objects 
are always borders of finer ones which allows to exploit semantic relations among upper 
and lower objects in classification procedures.
About 50% of the published papers related to OBIA used eCognition [Blaschke, 2010] for 
image segmentation [Aguilar et al., 2013]. Consequently, in this study eCognition was adopted. 
According to past studies [Johansen et al., 2007; Mathieu et al., 2007; Shiro, 2008; Su et al., 
2008], image segmentation was performed on the basis of the following input layers:

a) Pan-sharpened multispectral bands (PSMS);
b) Homogeneity, contrast and dissimilarity GLCM computed with a 3x3 kernel size on 
the panchromatic band, as defined in Equations 2-4;
c) Normalized Difference Vegetation Index [Maselli, 2012], Normalized Difference 
Water Index and Spectral Shape Index [Chen et al., 2009], as defined in Equations 5-7:
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where i and j are either the data values in the window and the coordinates of the co-occurrence 
matrix space; p(i,j) are the normalized frequencies with which two neighbouring resolution 
cells separated by a fixed shift occur in the image, one with data value i and the other with 
data value j and N is the dimension of the co-occurrence matrix.
Five hierarchical segmentation levels have been created according to the spatial and spectral 
characteristics of the features to be classified, with scale factor, shape and compactness as 
input parameters (Tab. 2). Shape and Compactness are secondary parameters and control the 
shape and the dependency of objects to spectral and geometrical features [Maxwell, 2010]. 
The scale factor [Frauman and Wolff, 2005] was estimated through the rate of change of the 
local variance (Eq. 8) among a series of segmentation levels calculated with growing scale 
factors [Drǎguţ, 2010]:

RoC LV LV
LV

=
− −

−




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⋅ [ ]( )1

1
100 8

where RoC is the rate of change, LV is local variance of a generic level and (LV–1) is the 
local variance of the adjacent lower segmentation level.

Table 2 - Input layers and parameters used for image segmentation.
Input Layers Level 1 Level 2 Level 3 Level 4 Level 5
PSMS 1 No Yes Yes Yes Yes
PSMS 2 No Yes Yes Yes Yes
PSMS 3 Yes Yes Yes Yes Yes
PSMS 4 Yes Yes Yes Yes Yes
Dissimilarity Yes No Yes No No
Homogeneity Yes Yes Yes Yes Yes
Contrast Yes Yes No No Yes
NDVI Yes No No No Yes
NDWI Yes Yes No No No
SSI Yes No No No No
Scale 48 52 107 180 440
Shape 0.2 0.4 0.3 0.4 0.7
Compactness 0.9 0.3 0.8 0.9 0.8
Starting level Pixel Level Level 1 Level 1 Level 1 Level 1
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This method is based on the idea of local variance (LV) of the objects’ heterogeneity 
within a scene [Woodcock and Strahler, 1987]. If the image spatial resolution is 
considerably finer than the objects in the scene, most of the measurements will be highly 
correlated with their neighbours and the LV will be small. On the other hand, if the 
objects approximate the size of the image resolution, the likelihood of neighbours, being 
similar, will decrease and the LV will rise. Based on this assumption and considering an 
image pixel as a segmentation object, if the objects’ scale correctly represents the image 
features then the LV increases relatively. Figure 3 shows the results and the thresholds 
used for the scale factor determination.
Once defined the segmentation parameters, the upper (Level 1) and the lower (Level 5) 
hierarchical levels have been created and preserved for the entire process. In between these 
two levels, other three hierarchical levels were in turn created (Levels 2, 3 and 4) to exploit 
the semantic relations among the upper and lower levels and finally deleted. Table 2 shows 
a summary of the input parameters used.
At the end of classification process, Level 1 contained a detailed 17-class LC/LU map 
while Level 5 contained a broad 6 macro-classes map used to “drive” the generation of the 
more detailed one (Fig. 4).

Figure 3 - Rate of change of the local variance used for the estimation of the scale factor (red 
dots).



Gianinetto et al.		  	 Hierarchical classification of VHR pan-sharpened data

236

Figure 4 - Hierarchical levels created to exploit the semantic 
relations among the upper and lower segmentation levels.

Image Classification
OBIA allows the user to exploit spatial, geometrical and semantic relations among objects 
together with their spectral characteristics. To achieve a detailed LC/LU map, a broad 
classification into 6 macro-classes was first generated.
Classes were defined through a set of rules and organized in hierarchical groups, so that a 
child class inherited properties from the parent one. The classification process was carried 
out either by specifying thresholds for each rule (crisp classification) [Comber et al., 2012], 
by specifying a set of probability density functions (fuzzy classification) [HongLei et al., 
2013] or through a k-Nearest Neighbour (NN) approach [Chirici et al., 2012]. Figure 5 
shows the workflow.

Figure 5 - Workflow of the segmentation/classification procedures (L.x means 
segmentation level x).
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Unvegetated, vegetated, and dark features
Once created the finer segmentation level (Level 1), the first step was the partitioning 
into ‘Vegetated’ and ‘Unvegetated’ areas by means of an NDVI threshold: 0.4 was found 
suitable for the purpose. Secondly, among the ‘Unvegetated’ areas, the intermediate class 
‘Dark Features’ was extracted with the following rule:

brightness PSMS PSMS
brightness PSMS
NDWI

( & )
( )
.

3 4 170
4 395

0 06

<
<

>









[ ]9

This class contained shadows, dark objects (like railway) and water bodies.
Appearing as a straight line, the railway was separated using its main direction and the 
curvature/main length ratio, while shadows and water were differentiated through the SSI 
and NDWI indices. Shadows and water bodies both had high NDWI values, while SSI 
values were lower for the first (<274.7) and higher for the second class (>274.7), hence the 
two classes were differentiated through this threshold.1

Macro-classes definition
The coarser segmentation level (Level 5) was then created using a high scale parameter (440) 
and giving equal weight to spectral content and textural information (GLCM). With Level 5, 
a 6 macro-classes thematic map (Fig. 7) was generated on the basis of the following rules:

a) Shadows’ number and size were assumed to be related to the number and size of 
buildings (Fig. 6);

Figure 6 - Example of segmentation and classification of buildings: 
(top) residential buildings; (bottom) industrial buildings.
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b) Agricultural areas showed a very small buildings’ density, while settlements and 
industrial areas showed higher values;
c) Industrial areas were characterized by relatively few wide warehouses, while 
settlements were agglomerates of numerous small to medium residential houses;
d) Presence of water bodies or canals characterized the macro-class ‘Water’;
e) Vegetation density discriminated between vegetated and unvegetated agricultural 
areas;
f) Main roads were detected with segmentation as well as elongated narrow objects 
with a main direction. The classification of this layer was performed through a k-NN 
algorithm.

Training samples were selected on the image and membership probability functions were 
calculated for the following most meaningful parameters: compactness (Eq.10), asymmetry 
(Eq.11), mean brightness (Eq.12), mean NDVI, mean homogeneity, sub-objects shadows 
density (Eq.12), sub-objects shadows mean area (Eq.13) and sub-objects water density 
(Eq.14):
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l w

A
j j

j
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where lj is the length of the object j, wj is the width of the object j, Aj is the area of the object 
j, Nj is the number of object’s shadows in the super-object j, Asj is the area of the super-
object j, As is the area of objects shadow and Aw is the area of objects water.

Figure 7 - Coarse 6-classes classification map.

Buildings
Two main type of buildings were present in the study area: residential houses and industrial 
buildings. Since the former had a mean footprint of 200 m2 and the latter a mean footprint 
of 2,500 m2, then the same segmentation level could not be used for the classification of 
both the categories.
Residential houses (smaller houses) were classified at the finer segmentation level (Level 1) 
within the already defined class ‘Unvegetated’, because that level well depicted residential 
buildings (Fig. 6). The presence of shadows was also used for the identification of buildings 
as in the satellite data, shadows lied to North/North-East of edifices. Consequently, the 
North coordinate of the shadows’ centroids were calculated and residential buildings were 
detected among those objects with a distance ranging from -5 m to +21 m calculated between 
the closest shadow’s centroid and the object’s centroid. Because the shadows derived from 
the class ‘Unvegetated’, there was no chance of confusion with the trees’ shadows.
Residential buildings were assumed to exist in the macro-classes ‘Agricultural Vegetated’, 
‘Agricultural Unvegetated’, and ‘Settlements’. Adjunctive thresholds were defined for the 
following parameters: border index (≤2), compactness (<3), length/width (≤3.9), mean 
NDVI (≤0.25) and rectangular fit (≤0.62).
Residential buildings were further divided into tile roofs and grey roofs based on the 
different response in PSMS2 and PSMS3 (Fig. 8). Seventy-four buildings were used as 
training samples for the calculation of the mean and standard deviation of the ratio PSMS2/
PSMS3 and the threshold PSMS2/PSMS3=1.27 was used to distinguish between the two 
sub-classes (mean PSMS2/PSMS3=1.45 and standard deviation PSMS2/PSMS3=0.12 for 
grey roofs, mean PSMS2/PSMS3=1.08 and standard deviation PSMS2/PSMS3=0.13 for 
tile roofs).
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Figure 8 - Tile roofs and grey roofs reflectance behaviour. The ratio PSMS3/
PSMS2 was used for their discrimination.

Level 1 was too fine for the detection of industrial buildings, so a new coarse segmentation 
level (Level 4) was created (scale parameter=180) only where the macro-classes ‘Industrial 
Areas’ at Level 5 and ‘Unvegetated’ at Level 1 were present. This segmentation strategy 
allowed the extraction of the shape of wide warehouses as shown in Figure 6. The 
classification process exploited the same features used for residential buildings with only a 
little tuning on the parameter’s values to consider the characteristics of the new objects.

Vegetated
Many authors suggested the use of GLCM textural features for classification of vegetation 
[Arivazhagan and Ganesan, 2003; Johansen et al., 2007; Murray et al., 2010; Aguilar, 
2013]. In this study, according to Su et al. (2008), three different GLCM features were 
used: (i) contrast, (ii) homogeneity and (iii) dissimilarity. The classification of vegetated 
areas was carried out at the finer segmentation level (Level 1) within the already existent 
class ‘Vegetated’. The following four sub-classes were defined: (i) forest, (ii) grass, (iii) 
cultivated and (iv) riparian vegetation. No ground truth was available for crop farming, so 
different cultivations could not be differentiated.
The first class to be extracted was ‘Forest’. It has to be mentioned that QuickBird imagery 
was taken on April, when natural vegetation is vigorous but most of the cultivations in the 
study area are not yet sown (e.g., maize, paddy fields, soy), or at the very beginning of 
their phenological cycle (e.g, wheat, barley, beetroot) [Parati and Bonini Baraldi, 2003]. 
Tree canopy showed higher values of dissimilarity, contrast and NDVI with lower values 
of homogeneity, due to the alternation of shadowed and bright spots. The class ‘Forest’ was 
therefore defined through the following rule:

(homogeneity<0.68) AND (dissimilarity<0.55) AND (NDVI>0.40)  
AND (standard deviation NIR>45)
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The remaining vegetated area was assigned to the other three classes (‘Grass’, ‘Cultivation’ 
and ‘Riparian Vegetation’) by using the following spatial and relational attributes:

a) ‘Grass’ was defined as vegetation in residential areas, homogeneous and relatively
small vegetated patches in the proximity of main roads and small spontaneous vegetation
patches in unvegetated agricultural fields;
b) ‘Riparian Vegetation’ was defined along channels with both NDVI and homogeneity
high values;
c) ‘Cultivation’ was defined as the remaining vegetated areas without trees with existence
of super-objects ‘Agricultural Vegetated’.

Road network
Once dark features, buildings, and vegetation have been classified, roads were extracted from 
the remaining ‘Unvegetated’ areas. Many authors stated that road network is unlikely to be 
classified through spectral properties alone [Zhang and Couloigner, 2006; Mokhtarzade and 
Zoej, 2007; Pacifici et al., 2009]. For example, Shackelford and Davis [2003] increased the 
fuzzy classification performance with the introduction of multiresolution textural features, 
while Chen et al. [2009] demonstrated the usefulness of spatial features in object-based 
classification.
In our study area, the spectral separability of roads from parking lots and grey roof buildings 
was extremely low. To enhance the spatial characteristics of roads, a new fine segmentation 
level (Level 2) was created from the remaining ‘Unvegetated’ areas at segmentation Level 
1. The new level was similar to the previous one but the compactness parameter changed
from 0.9 to 0.3 to better detect elongated objects.
The road network was extracted through spatial and relational features. In particular, the
following spatial parameters were used: compactness (Ci>2.8), length/width ratio (Ri>2.4)
and area index (Si>0.85), as defined in Equations 15-17:
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where li and wi are length and width of object i, Pi is the number of inner pixels of object i 
and Ai is the area of object i.
Being roads present in all macro-classes but ‘Agricultural Unvegetated’, a relational rule was 
created to exclude their presence from such macro-class. Once extracted, the road network 
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could be further classified through spectral and relational features into the following three 
sub-classes:

a) ‘Motorways’: roads with existence of super-objects ‘Main Roads’ at segmentation 
Level 5;
b) ‘Dirt Roads’: roads with high brightness values (>300);
c) ‘Paved Roads’: all the remaining roads.

Figure 9 shows the vectorized road network extracted from the QuickBird imagery 
superimposed to the available reference data (1:5,000 Regional Technical Map). It must be 
observed that pathways along the channel in the South-East of the image were not recognized 
due to vegetation cover. On the other hand, in the North-East part of the study area the 
reference network of the Regional Technical Map resulted out of date when compared to 
the one extracted from the QuickBird images.

Figure 9 - Comparison of the extracted road network from QuickBird 
imagery with the 1:5,000 Regional Technical Map (official reference at 
Italian national level). Left: overall view; top right: subset on the industrial 
area; bottom right: subset on the channel banks.

Unvegetated
Last the classification of the remaining ‘Unvegetated’ areas at Level 1 into: ‘Arable Land’, 
‘Bare Soil’, and ‘Paved/Artificial Surfaces’.
Since unvegetated patches were wider than the objects existing in segmentation Level 1, a 
new medium-scale segmentation level (Level 3) was created for the remaining unclassified 
areas. The classification was carried out according to the following rules:

a) ‘Arable Land’: unvegetated areas within macro-classes ‘Agricultural Unvegetated’ or 
‘Agricultural Vegetated’;
b) ‘Bare Soil’: bright unvegetated areas (brightness>582) within macro-classes 
‘Industrial’ or ‘Settlements’;
c) ‘Paved/ Artificial Surfaces’: dark unvegetated areas (brightness<582).
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Finally, the objects classified as ‘Arable Land’ but close to buildings (closer than 15 m) were 
post-classified as ‘Bare Soil’ or ‘Paved/Artificial Surfaces’ according to their brightness 
values, while objects classified as ‘Arable Land’ but close to caves were post-classified as 
‘Bare Soil’ even if they appeared dark due to soil moisture.

Validation
Usually, map validation is performed through the use of pixel-based testing set. This is 
also true for per-pixel vs. object-based classification comparison studies [Bock et al., 2005; 
Mathieu et al., 2007; Chen et al., 2009; Zhou et al., 2009], although few authors suggested 
to carry out the accuracy assessment at object level when dealing with object-based change 
detection [Laliberte et al., 2004; Gamanya et al., 2009]. However, when dealing with object-
based change detection.
In this study, the thematic map was validated on the basis of the 1:5,000 Regional Technical 
Map [Regione del Veneto, 2011] together with human interpretation of the QuickBird 
imagery. The error matrix was calculated using 673 per-pixel testing samples selected with 
an equalized random sampling scheme.

Results and discussion
Figure 10 shows the detailed hierarchical classification map consisting of 17 LC/LU.
The resulting Cohen’s Kappa coefficient (κ) and Overall Accuracy (OA) were respectively 0.84 
and 85%. Tables 3 and 4 show the confusion matrices, User (UA) and Producer Accuracies (PA), 
Commission (CE) and Omission Errors (OE) and K per class for the LC/LU classification.

Figure 10 - Final LC/LU detailed classification map of the study area.
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Table 3 - Confusion matrix of the classification map, calculated with equalized random sampled 
testing points.
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Caves 37 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 41

Railway 0 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39

Channels 0 0 35 0 0 0 0 0 0 0 0 0 1 0 3 0 0 39

Shadows 0 0 0 35 0 2 0 0 0 0 1 0 0 0 0 3 0 41

Tile Roof 
Buildings 0 0 0 0 37 1 0 0 0 0 0 0 0 0 1 0 0 39

Gray Roof 
Buildings 0 0 0 0 4 29 0 0 0 0 1 0 0 0 4 0 1 44

Industrial 
Buildings 0 0 0 0 0 0 32 0 2 0 0 0 0 0 0 2 0 42

Motorways 0 0 0 0 0 0 0 38 0 0 0 0 0 0 1 0 0 40

Paved 
Roads 0 0 0 0 0 0 1 0 30 2 0 0 0 0 0 1 4 36

Dirt Roads 0 0 0 0 0 0 0 0 2 29 0 0 0 0 8 2 0 39

Trees 0 0 0 1 0 0 0 0 0 0 31 5 5 1 1 0 0 38

Grass 0 0 0 0 0 0 0 0 0 0 0 39 1 2 0 0 0 41

Riparian 
Vegetation 0 0 0 0 0 0 0 0 0 0 2 0 36 1 1 0 0 39

Cultivations 0 0 0 0 0 0 0 0 0 0 0 3 1 36 0 0 0 36

Bare Soil 0 0 0 0 0 1 0 0 0 2 0 0 0 2 26 2 6 40

Paved/
Artificial 
Surfaces

0 0 0 0 0 0 4 0 1 1 0 0 0 0 1 25 4 40

Arable Land 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 38 39

Total 37 39 35 36 41 33 37 38 35 34 36 47 44 42 51 35 53 673

Overall, a high classification accuracy was obtained for most of the classes. In particular, 
‘Caves’, ‘Railways’, ‘Motorways’ and ‘Channels’ had a κ=1.0. All the vegetated areas 
(‘Trees’, ‘Grass’, ‘Riparian Vegetation’ and ‘Cultivations’) showed homogeneous values of 
UA (82%<UE<86%) and PA (86%<PA<90%), with the only exclusion of the class ‘Trees’ 
that highlighted a higher CE (about 30%).
Buildings were generally misclassified with pavements and bare soil or with other building 
classes: tile and grey roofs did not have a sharp spectral difference, colour of bare soil was 
similar to tiles, while pavements showed basically the same spectral features of grey roofs. 
Nevertheless, all the three building classes (‘Tile Roof Buildings’, ‘Grey Roof Buildings’, 
and ‘Industrial Buildings’) showed quite good KIA per class (0.86<κ<0.90) and UA 
(86%<UA<90%).
On the other hand, ‘Bare Soil’, ‘Arable Land’ and ‘Paved/Artificial Surfaces’ showed 
lower UA or PA compared to the other land-cover classes. This outcome sounds reasonable 
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considering the similarity of their spectral signatures. In particular, ‘Bare Soil’ showed a 
very low K per class (κ=0.48). Inside unvegetated objects, this class was assumed to have 
high brightness values and not to be very close to buildings. Furthermore, dark areas next 
to caves (due to soil moisture) were forced to belong to ‘Bare Soil’. On one hand, the above 
mentioned rules allowed the integration in the same class of areas with very different spectral 
signatures, but on the other hand they led to further errors in the final classification map.

Table 4 – Accuracy assessment of the classification map.

Classes User Acc. 
(%)

Prod. Acc. 
(%)

Comm. 
(%)

Omiss. 
(%)

K per 
class

Caves 100.00 90.24 9.76 0.00 1.00
Railway 100.00 100.00 0.00 0.00 1.00
Channels 100.00 89.74 10.26 0.00 1.00
S������hadows 97.22 85.37 14.63 2.78 0.97
Tile Roof Buildings 90.24 94.87 5.13 9.76 0.90
Grey Roof Buildings 87.88 74.36 25.64 12.12 0.87
Industrial Buildings 86.49 88.89 11.11 13.51 0.86
Motorways 100.00 97.44 2.56 0.00 1.00
Paved Roads 85.71 78.95 21.05 14.29 0.85
Dirt Road 85.29 70.73 29.27 14.71 0.84
Trees 86.11 70.45 29.55 13.89 0.85
Grass 82.98 86.00 7.14 17.02 0.82
Riparian Vegetation 81.82 90.00 10.00 18.18 0.81
Cultivations 85.71 90.00 10.00 14.29 0.85
Bare Soil 50.98 66.67 33.33 49.02 0.48
Paved/Artificial Surfaces 71.43 69.44 30.56 28.57 0.70
Arable Land 71.70 95.00 5.00 28.30 0.70

Conclusion
The limited spectral resolution of actual sub-meter imaging systems and the increasing 
demand of standardization for map updating makes thematic classification of complex sub-
urban environments not a simple task.
In past, OBIA has been used for the classification of urban or natural/agricultural LC/LU, 
but not for the classification of a complex patchy landscape in the same framework. This 
study showed a practical application of Object-Based Image Analysis for land-cover/land-
use classification using VHR pan-sharpened satellite imagery in which issues related to 
differences in the features’ size of the natural and urban environments were handled using 
multiple hierarchical levels. The framework here presented may be considered as a general 
scheme and should be replicated in different areas with a limited tuning.
Overall, the method proposed showed an accuracy of about 85% (for both OA and κ), 
which is very close to other author’s findings considering only the urbanized environment 
[Aguilar et al., 2013] with similar input data (GeoEye-1 or WorldView-2 pan-sharpened 
images). Moreover, the use of shadows in discriminating buildings proved to be effective in 
a complex sub-urban area, pushing the buildings classification accuracy near to 90%.



Gianinetto et al.		  	 Hierarchical classification of VHR pan-sharpened data

246

Acknowledgements
The study is part of the research project “Evaluation of COSMO-SkyMed performances and 
simulation of future ORFEO system with existing optical data” related to the integration 
of optical and radar VHR data for thematic classification, sponsored and funded by the 
Italian Space Agency (ASI) in the framework “The demonstration of the COSMO-SkyMed 
capabilities and exploitation for science and civilian applications”.

References
Aguilar M.A., Salda M.M., Aguilar F.J. (2013) - GeoEye-1 and WorldView-2 pan-sharpened 

imagery for object-based classification in urban environments. International Journal of 
Remote Sensing, 34 (7): 2583-2606. doi: http://dx.doi.org/10.1080/01431161.2012.74
7018.

Aplin P., Atkinson P.M., Curran P.J. (1999) - Fine Spatial Resolution Simulated Satellite 
Sensor Imagery for Land Cover Mapping in the United Kingdom. Remote Sensing of 
Environment, 68 (3): 206-216. doi: http://dx.doi.org/10.1016/S0034-4257(98)00112-6.

Arivazhagan S., Ganesan L. (2003) - Texture classification using wavelet transform. Pattern 
Recognition Letters, 24 (9-10): 1513-1521. doi: http://dx.doi.org/10.1016/S0167-
8655(02)00390-2.

Bhaskaran S., Paramananda S., Ramnarayan M. (2010) - Per-pixel and object-oriented 
classification methods for mapping urban features using Ikonos satellite data. Applied 
Geography, 30 (4): 650-665. doi: http://dx.doi.org/10.1016/j.apgeog.2010.01.009.

Blaschke T. (2010) - Object Based Image Analysis for Remote Sensing. ISPRS Journal 
of Photogrammetry and Remote Sensing, 65: 2-16. doi: http://dx.doi.org/10.1016/
j.isprsjprs.2009.06.004.

Bock M., Xofis P., Mitchley J., Rossner G., Wissen M. (2005) - Object-oriented methods 
for habitat mapping at multiple scales - Case studies from Northern Germany and 
Wye Downs, UK. Journal for Nature Conservation, 13 (2-3): 75-89. doi: http://dx.doi.
org/10.1016/j.jnc.2004.12.002.

Canty M.J. (2009) - Image Analysis, Classification and Change Detection in Remote 
Sensing with Algorithms for ENVI/IDL, 2nd edition, Taylor & Francis.

Chen Y., Shi P., Fung T., Wang J., Li X. (2007) - Object-oriented classification for urban 
land cover mapping with ASTER imagery. International Journal of Remote Sensing, 28 
(20): 4645-4651. doi: http://dx.doi.org/10.1080/01431160500444731.

Chen Y., Su W., Li J., Sun Z. (2009) - Hierarchical object oriented classification using 
very high resolution imagery and LIDAR data over urban areas. Advances in Space 
Research, 43 (7): 1101-1110. doi: http://dx.doi.org/10.1016/j.asr.2008.11.008.

Chirici G., Corona P., Marchetti M., Mastronardi A., Maselli F., Bottai L., Travaglini D. 
(2012) - K-NN FOREST: a software for the non-parametric prediction and mapping of 
environmental variables by the k-Nearest Neighbors algorithm. European Journal of 
Remote Sensing, 45: 433-442. doi: http://dx.doi.org/10.5721/EuJRS20124536.

Comber A., Fisher P., Brunsdon C., Khmag A. (2012) - Spatial analysis of remote sensing 
image classification accuracy. Remote Sensing of Environment, 127: 237-246. doi: 
http://dx.doi.org/10.1016/j.rse.2012.09.005.

Del Frate F., Pacifici F., Schiavon G., Solimini C. (2007) - Use of Neural Networks for 
Automatic Classification From High-Resolution Images. IEEE Transactions on 



247

European Journal of Remote Sensing - 2014, 47: 229-250

Geoscience and Remote Sensing, 45 (4): 800-809. doi: http://dx.doi.org/10.1109/
TGRS.2007.892009.

Drǎguţ L., Tiede D., Levick S.R. (2010) - ESP: a tool to estimate scale parameter for 
multiresolution image segmentation of remotely sensed data. International Journal of 
Geographical Information Science, 24 (6): 859-871. doi: http://dx.doi.org/10.1080/136
58810903174803.

European Commission (2007) - Directive 2007/2/EC of the European Parliament and of 
the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in 
the European Community (INSPIRE). Official Journal of the European Union, L 108: 
1-14.

European Commission (2008) - Commission Regulation (EC) No 1205/2008 of 3 December 
2008 implementing Directive 2007/2/EC of the European Parliament and of the Council 
as regards metadata. Official Journal of the European Union, L 326: 12-30.

Frassy F., Candiani G., Maianti P., Marchesi A., Rota Nodari F., Rusmini M., Albonico C., 
Gianinetto M. (2012) - Airborne remote sensing for mapping asbestos roofs in Aosta 
Valley. In: Proccedings of the 2012 IEEE International Geoscience and Remote Sensing 
Symposium (IGARSS 2012), pp. 7541-7544. doi: 10.1109/IGARSS.2012.6351886.

Frauman E., Wolff E. (2005) - Segmentation of very high spatial resolution satellite images 
in urban areas for segments-based classification. The International Archive of the 
Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVI (part 8/
W27): 1-4.

Gamanya R., De Maeyer P., De Dapper M. (2009) - Object-oriented change detection for 
the city of Harare, Zimbabwe. Expert Systems with Applications, 36 (1): 571-588, doi: 
http://dx.doi.org/10.1016/j.eswa.2007.09.067.

Gianinetto M., Scaioni M., Borgogno Mondino E., Giulio Tonolo F. (2004) - Satellite images 
geometric correction based on non-parametric algorithms and self-extracted GCPs. In: 
Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium 
(IGARSS 2004), 6: 3755-3758, doi: http://dx.doi.org/10.1109/IGARSS.2004.1369939.

Gianinetto M. (2008) - Automatic digital terrain model generation using Cartosat-1 stereo images. 
Sensor Review, 28 (4): 299-310, doi: http://dx.doi.org/10.1108/02602280810902596.

Gianinetto M. (2009) - Evaluation of Cartosat-1 Multi-Scale Digital Modelling Over 
France. Sensors, 9: 3269-3288. doi: http://dx.doi.org/10.3390/s90503269.

Golinkoff J.S. (2013) - Area Dependent Region Merging: A Novel, User-Customizable 
Method to Create Forest Stands and Strata. European Journal of Remote Sensing, 46: 
511-533. doi: http://dx.doi.org/10.5721/EuJRS20134630.

Gong P., Marceau D.J., Howarth P.J. (1992) - A comparison of spatial feature extraction 
algorithms for land-use classification with SPOT HRV data. Remote Sensing of 
Environment, 40 (2): 137-151. doi: http://dx.doi.org/10.1016/0034-4257(92)90011-8.

HongLei Y., JunHuan P., BaiRu X., DingXuan Z. (2013) - Sensing Classification Using 
Fuzzy C-means Clustering with Spatial Constraints Based on Markov Random Field. 
European Journal of Remote Sensing, 46: 305-316. doi: http://dx.doi.org/10.5721/
EuJRS20134617.

Johansen K., Coops N.C., Gergel S.E., Stange Y. (2007) - Application of high spatial resolution 
satellite imagery for riparian and forest ecosystem classification. Remote Sensing of 
Environment, 110 (1): 29-44. doi: http://dx.doi.org/10.1016/j.rse.2007.02.014.



Gianinetto et al.		  	 Hierarchical classification of VHR pan-sharpened data

248

Kong C., Xu K., Wu C. (2006) - Classification and Extraction of Urban Land-Use 
Information from High-Resolution Image Based on Object Multi-features. Journal 
of China University of Geosciences, 17 (2): 151-157. doi: http://dx.doi.org/10.1016/
S1002-0705(06)60021-6.

Laben C.A., Brower B.V. (2000) - Process for enhancing the spatial resolution of 
multispectral imagery using pan-sharpening. United States Patent 6011875, Eastman 
Kodak Company.

Laliberte A.S., Rango A., Havstad K.M., Paris J.F., Beck R.F., McNeely R., Gonzalez A.L. 
(2004) - Object-oriented image analysis for mapping shrub encroachment from 1937 to 
2003 in southern New Mexico. Remote Sensing of Environment, 93 (1-2): 198-210. doi: 
http://dx.doi.org/10.1016/j.rse.2004.07.011.

Liu Y., Li M., Mao L., Xu F., Huang S. (2006) - Review of remotely sensed imagery 
classification patterns based on object-oriented image analysis. Chinese Geographical 
Science, 16 (3): 282-288. doi: http://dx.doi.org/10.1007/s11769-006-0282-0.

Maselli F. (2012) - A method to improve the spatial features of NDVI data series. 
European Journal of Remote Sensing, 45: 407-420. doi: http://dx.doi.org/10.5721/
EuJRS20124534.

Masser I. (2001) - Managing our urban future: the role of remote sensing and geographic 
information systems. Habitat International, 25 (4): 503-512. doi: http://dx.doi.
org/10.1016/S0197-3975(01)00021-2.

Mathieu R., Freeman C., Aryal J. (2007) - Mapping private gardens in urban areas using 
object-oriented techniques and very high-resolution satellite imagery. Landscape and Urban 
Planning, 81 (3): 179-192. doi: http://dx.doi.org/10.1016/j.landurbplan.2006.11.009.

Maxwell S.K. (2010) - Generating land cover boundaries from remotely sensed data 
using object-based image analysis: Overview and epidemiological application. 
Spatial and Spatio-temporal Epidemiology, 1: 231-237. doi: http://dx.doi.org/10.1016/
j.sste.2010.09.005.

Mokhtarzade M., Zoej M.J.V. (2007) - Road detection from high-resolution satellite images 
using artificial neural networks. International Journal of Applied Earth Observation and 
Geoinformation, 9 (1): 32-40. doi: http://dx.doi.org/10.1016/j.jag.2006.05.001.

Murray H., Lucieer A., Williams R. (2010) - Texture-based classification of sub-Antarctic 
vegetation communities on Heard Island. International Journal of Applied Earth 
Observation and Geoinformation, 12 (3): 138-149. doi: http://dx.doi.org/10.1016/
j.jag.2010.01.006.

Pacifici F., Chini M., Emery W.J. (2009) - A neural network approach using multi-scale 
textural metrics from very high-resolution panchromatic imagery for urban land-use 
classification. Remote Sensing of Environment, 113 (6): 1276-1292. doi: http://dx.doi.
org/10.1016/j.rse.2009.02.014.

Parati P., Bonini Baraldi A. (2003) - La nuova carta della copertura del suolo nel bacino 
scolante nella laguna di Venezia: metodologia e prima applicazione nel settore agro-
ambientale. In: Proceedings of the 7th National Conference of Environmental Agencies.

Pascual C., Garcìa-Abril A., Garcìa-Montero L.G., Martìn-Fernàndez S., Cohen W.B. (2008) 
- Object-based semi-automatic approach for forest structure characterization using 
lidar data in heterogeneous Pinus sylvestris stands. Forest Ecology and Management, 
255 (11): 3677-3685. doi: http://dx.doi.org/10.1016/j.foreco.2008.02.055.



249

European Journal of Remote Sensing - 2014, 47: 229-250

Regione del Veneto (2011) - La Carta Tecnica Regionale.
Rusmini M., Candiani G., Frassy F., Maianti P., Marchesi A., Rota Nodari F., Dini L., 

Gianinetto M. (2012) - High-resolution SAR and high-resolution optical data integration 
for sub-urban land-cover classification. In: Proceedings of the 2012 IEEE International 
Geoscience and Remote Sensing Symposium (IGARSS 2012), pp. 4986-4989. doi: 
http://dx.doi.org/10.1109/IGARSS.2012.6352492.

Schiewe J. (2002) - Segmentation of high-resolution remotely sensed data concepts, 
applications and problems. In: Proceedings of the Symposium on Geospatial Theory, 
Processing and Applications.

Shackelford A.K., Davis C.H. (2003) - A hierarchical fuzzy classification approach 
for high-resolution multispectral data over urban areas. IEEE Transactions on 
Geoscience and Remote Sensing, 41 (9): 1920-1932. doi: http://dx.doi.org/10.1109/
TGRS.2003.814627.

Shah V.P., Younan N.H., King R.L. (2008) - An Efficient Pan-Sharpening Method 
via a Combined Adaptive PCA Approach and Contourlets. IEEE Transactions on 
Geoscience and Remote Sensing, 46 (5): 1323-1335. doi: http://dx.doi.org/10.1109/
TGRS.2008.916211.

Shiro O. (2008) - Land cover classification based on image objects for high resolution 
satellite image. Southeast Asian Studies, 46 (4): 578-592.

Song C., Woodcock C.E., Seto K.C., Lenney M.P., Macomber S.A. (2001) - Classification 
and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric 
Effects? Remote Sensing of Environment, 75 (2): 230-244. doi: http://dx.doi.org/10.1016/
S0034-4257(00)00169-3.

Su W., Li J., Chen Y., Liu Z., Zhang J., Low T.M., Suppiah I., Hashim S.A.M. (2008) - 
Textural and local spatial statistics for the object-oriented classification of urban areas 
using high resolution imagery. International Journal of Remote Sensing, 29 (11): 3105-
3117. doi: http://dx.doi.org/10.1080/01431160701469016.

Tobler W. (1970) - A computer movie simulating urban growth in the Detroit region. 
Economic Geography, 46 (2): 234-240. doi: http://dx.doi.org/10.2307/143141.

Tsai V.J.D. (2004) - Evaluation of multiresolution image fusion algorithms. In: Proceedings 
of the 2004 IEEE International Geoscience and Remote Sensing Symposium, 1: 621-
624. doi: http://dx.doi.org/10.1109/IGARSS.2004.1369104.

van der Sande C.J., de Jong S.M., de Roo A.P.J. (2003) - A segmentation and classification 
approach of IKONOS-2 imagery for land cover mapping to assist flood risk and 
flood damage assessment. International Journal of Applied Earth Observation and 
Geoinformation, 4 (3): 217-229. doi: http://dx.doi.org/10.1016/S0303-2434(03)00003-5.

Wang Z., Bovik A.C., Simoncelli E.P. (2005) - Structural Approaches to Image Quality 
Assessment. Handbook of Image and Video Processing, 2nd edition, Burlington: Academic 
Press, pp. 961-974. doi: http://dx.doi.org/10.1016/B978-012119792-6/50119-4.

Webb, A.R. (2003) - Statistical Pattern Recognition, 2nd edition. Malvern, John Wiley & Sons.
Woodcock C.E., Strahler A.H. (1987) - The factor of scale in remote sensing. Remote Sensing 

of Environment, 21 (3): 311-332. doi: http://dx.doi.org/10.1016/0034-4257(87)90015-0.
Zhang Q., Couloigner I. (2006) - Benefit of the angular texture signature for the separation 

of parking lots and roads on high resolution multi-spectral imagery. Pattern Recognition 
Letters, 27 (9): 937-946. doi: http://dx.doi.org/10.1016/j.patrec.2005.12.003.



Gianinetto et al.		 Hierarchical classification of VHR pan-sharpened data

250

Zhang R., Zhu D. (2010) - Study of land cover classification based on knowledge rules 
using high-resolution remote sensing images. Expert Systems with Applications, 38 (4): 
3647-3652. doi: http://dx.doi.org/10.1016/j.eswa.2010.09.019.

Zhou W., Huang G., Troy A., Cadenasso M.L. (2009) - Object-based land cover classification 
of shaded areas in high spatial resolution imagery of urban areas: A comparison study. 
Remote Sensing of Environment, 113 (8): 1769-1777. doi: http://dx.doi.org/10.1016/
j.rse.2009.04.007.

Zhou W., Troy A. (2008) - An object-oriented approach for analysing and characterizing 
urban landscape at the parcel level. International Journal of Remote Sensing, 29 (11): 
3119-3135. doi: http://dx.doi.org/10.1080/01431160701469065.

© 2014 by the authors; licensee Italian Society of Remote Sensing (AIT). This article is an open 
access article distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/4.0/).


