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Abstract Anisotropy, usually orthotropy, arises in

structural materials, particularly metals, due to pro-

duction processes like laminations and concerns

primarily parameters which govern the plastic behav-

ior. Identification of such parameters is investigated

here by a novel approach with the following features:

experimental data provided by indentation curves only

(not by imprint geometry); indenter shape with

elliptical cross-section derived from classical conical

or spherical shape and optimized by sensitivity

analyses; indentation test repeated in near places after

indenter rotation; deterministic inverse analyses cen-

tered on discrepancy function minimization and made

computationally economical by an ‘a priori’ model

reduction procedure.

Keywords Anisotropy � Elastoplasticity �
Indentation � Inverse analysis

1 Introduction

Estimation of parameters in material models is often

necessary for diagnostic analyses of possibly deteri-

orated existing structures and plant components and

for controls of industrial production processes and

their products. Since many years indentation tests have

been used as practical, mostly nondestructive meth-

odology for material characterization. Not only hard-

ness, like in the remote origin of this experimental

methodology (see e.g. [1, 2]), but also material

properties such as Young’s modulus and yield stress

can be inferred from the indentation tests. The

transition from hardness tests to indentation tests,

intended to assess mechanical properties of structural

materials, has been promoted by the possibility of

performing such experiments economically on site, by

their ‘‘quasi-non-destructiveness’’ (i.e. without

extracting specimens for laboratories) and by the

growing need to accurately identify parameters

involved in modern structural analyses procedures.

Clearly ‘‘non-destructive’’ are resonance tests which

are at present employed for mechanical characteriza-

tions of anisotropic materials but they exhibit obvious

limitations to linear elasticity.
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challenge which arises in diverse technological areas.

Although indentation-based methods to identify elas-

tic–plastic material properties for isotropic materials

are well established, methods for anisotropic materials

are still a timely research subject. In [11, 12] a method

based on dimensionless functions and on information

consisting of indentation curve and on some geomet-

rical features of the imprint is proposed for the

identification of three parameters: two yield stresses

and a hardening coefficient. The same experimental

information had been used in [4] to identify by means

of inverse analysis, seven parameters: three elastic

moduli, three plastic parameters and the friction

coefficient between indenter and specimen surface.

In [13] a Kalman filter based approach is adopted in

order to estimate five parameters (two elastic moduli,

two yield stresses and one hardening coefficient) using

information collected from a dual indentation method.

The employment of laser profilometers on site (or in

laboratory after transferring to it imprint shapes by

suitable casts) provides experimental data additional

to indentation curves in order to estimate tensorial

quantities [14], but obviously implies additional costs

and time. For assessment of residual stress tensor

components a new indentation procedure based on

instrumented indenter only, with novel optimized

elliptical cross-section was recently proposed and

investigated in [15]. The results achieved in [14, 15]

and validated by numerical exercises concern the three

stress components which govern a plane stress state

near the surface of a weld or of a structural component

produced by metal forming.

The present study aims at the development of a

procedure for mechanical characterization of aniso-

tropic materials by means of indentation curves alone.

The parameter identification procedure studied

herein is characterized by the following peculiar

methodological features: (i) novel indenter shape

derived from either conical or spherical original

geometries, with elliptical cross-section governed by

parameters to be optimized by sensitivity analyses; (ii)

experimental data acquired from indentation curves

only, generated by two tests, in near sites, with the

ellipse principal axis rotated by 90�; (iii) inverse

analysis based on such experimental data and carried

out economically by mathematical programming

minimization of the ‘‘discrepancy function’’; (iv) the

minimization algorithm made much faster by means of

an ‘‘ad hoc’’ software, generated once for all, on the
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Anisotropy of elastic and plastic properties are 
often exhibited by rolling sheets, composites and 
coatings. In order to determine the mechanical prop-

erties of these materials, still tensile and compressive 
tests are usually performed along different directions. 
Such invasive and ‘‘destructive’’ procedure might be 
advantageously replaced by the indentation based 
method proposed herein, apt to test the material locally 
without extracting specimens and without measuring 
imprint geometry.

The recently proposed parameter identification 
methodologies based on indentation experiments 
include the following developments, accompanied by 
improvements and innovations in experimental equip-

ments (details, e.g. in references [3–8]): (i) inverse 
analysis methods, namely mathematical and numerical 
techniques for the transition from quantities measur-

able in the test to the sought parameters; (ii) measure-

ments concerning the imprint geometry (e.g.: by laser 
profilometers at macro-scale, by atomic force micro-

scope at the nano-scale), besides or instead of, the 
loading versus penetration relationship (‘‘indentation 
curves’’) provided by the ‘‘instrumented’’ indenter.

The latter development, i.e. recourse to experimen-

tal data on imprint, was proposed in order to enrich the 
input for inverse analyses, [3], and has been investi-

gated to various purposes, including calibration of 
anisotropic models, [4]. In fact tensorial entities, such 
as residual stresses or material anisotropy models, 
cannot be ‘‘calibrated’’ through parameter estimation 
based on a single indentation test by a traditional 
indenters with axially symmetric tip (Brinell, Rock-

well, Vickers, etc.): the resulting indentation curves 
(on loading and unloading phases of the test) obvi-

ously reflect only direction-insensitive, average, fea-

tures of the investigated system.

Indentation of anisotropic solids has been the 
subject of research carried out from both theoretical 
and applicative point of views; see, e.g.: [5–8]. 
Methods based on indentation to estimate elastic 
properties of anisotropic materials have been devel-

oped particularly in the biomechanical field, see e.g.

[9, 10]. These techniques rest on correlation formulae 
of the sought parameters with the ‘‘indentation mod-

ulus’’ (i.e., the initial slope of the indentation curve 
during unloading), which can be evaluated as weighted 
average of the elastic constants as shown in [5, 7, 8].

Calibration of anisotropic elastic–plastic material 
models still represents a practically meaningful



basis of ‘‘a priori’’ performed finite element simula-

tions of the tests and ‘‘compressed’’ by a ‘‘proper

orthogonal decomposition’’ (POD) procedure for

‘‘model reduction’’.

Since ‘‘elliptical’’ indenters, upon whom the pro-

posed procedure is based, are not yet available in the

market, truly experimental data could not be used to

validate the novel method. Therefore ‘‘pseudo-exper-

imental’’ data were used, i.e. data which are generated

through the same finite element model adopted to

simulate the indentation test, by assigning certain

values to the sought parameters, values which then are

compared to those found as output of the inverse

analysis procedure.

The paper is organized as follows. Sect. 2

describes the adopted material model with some

‘‘ad hoc’’ conjectures on lower and upper bounds of

each parameter to estimate. The anisotropic model

considered in this paper is Hill’s constitutive law

for associative, ‘‘perfect’’ (i.e. ductility with negli-

gible hardening) elasto-plasticity, see e.g. [16–18].

The proposed new geometry of indenter and test

simulations by a finite element (FE) commercial

code, [19], accounting for large-strain regime, are

preliminarily presented in Sect. 3. Sensitivity anal-

yses apt to quantify the influence of the sought

parameters on measurable data are employed in

Sect. 4, primarily for the design of novel indenters

by optimization of the parameters governing their

shapes. Section 5 is devoted to applications of the

above mentioned POD preliminary procedure asso-

ciated to ‘‘trust region algorithm’’ (TRA), with

reference, for details, to available literature, e.g.

[20]. Section 6 presents parameter estimation exer-

cises based on a constrained optimization technique

with attention paid to possible non-convexity of the

discrepancy function to minimize and to relevant

literature as e.g. [21–24]. Conclusions and pros-

pects of further research on this and related items

are outlined in Sect. 7.

2 Anisotropic material modeling with parameters

to estimate

The material model adopted in the present study is the

classical associative elastic-perfectly-plastic constitu-

tive model proposed by Hill (1948) [16], which can be

expressed by the following relationships, e.g. [17]:

_eij ¼ _eel
ij þ _epl

ij ; _rij ¼ Dijkl _eel
kl; _epl

ij ¼ _k
of

orij

ðð1ÞÞ

f rij

� �
¼ k11 r22 � r33ð Þ2þk22 r11 � r33ð Þ2

þ k33 r22 � r11ð Þ2þk23r
2
23 þ k13r

2
13 þ k12r

2
12 � 1

ð2Þ

f � 0; _k� 0; f _k ¼ 0 ð3Þ
In the above equations eij represents the strain

tensor decomposed into the elastic eel
ij and plastic epl

ij

components; Dijkl is the fourth-order anisotropic

elasticity tensor; f(rij) is the yield function which

defines the elastic domain (constant here in the

absence of hardening) and the direction of the plastic

strains according to an associative flow rule and k
represents the plastic multiplier.

Linear elasticity in an orthotropic material is char-

acterized by the following engineering constants, which

define the elastic tensor components Dijkl: principal

direction elastic moduli E1, E2, E3, Poisson’s ratios

m12, m23, m13, and shear moduli G12, G23, G31.

The yield criterion proposed by Hill is a straight-

forward generalization to anisotropy of Huber–Mises

criterion. The six material parameters kij in Eq. (2) are

related to the yield stresses (rY
11, rY

22, rY
33, same in

tension and compression) along the three orthotropy

axes and to the three shear yield stresses in the three

planes of symmetry (sY
12, sY

23, sY
13), according to the

following relationships:

k11 ¼
1

2

1

rY2
22

þ 1

rY2
33

� 1

rY2
11

� �
;

k22 ¼
1

2

1

rY2
11

þ 1

rY2
33

� 1

rY2
22

� �
;

k33 ¼
1

2

1

rY2
11

þ 1

rY2
22

� 1

rY2
33

� �
ð4aÞ

k12 ¼
1

sY2
12

k23 ¼
1

sY2
23

k13 ¼
1

sY2
13

ð4bÞ

The numerical tests for the preliminary validation of

the proposed method will be restricted to orthotropic

materials with transversal isotropy, the isotropy plane

being orthogonal to x1 axis. Such restriction turns out to

be frequently acceptable in engineering practice con-

cerning laminated products. Consequently, the indepen-

dent plasticity parameters are defined by the following

relationships:
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rY
22 ¼ rY

33 � rY
t ; rY

11 � rY ;

sY
12 ¼ sY

23 ¼ sY
13 � rY

t

. ffiffiffi
3
p ð5Þ

The last equation is a reasonable assumption which

reduces the number of parameters to be identified, see

e.g. [4].

Five independent parameters characterize the elas-

tic response of a transversally isotropic material,

namely:

E2 ¼ E3 � Et; E1 � E ð6aÞ

m12 ¼ m13 � m; m23 � mt; G12 ¼ G13 � G;
G23 ¼ Et=2 1þ mtð Þ ð6bÞ

Assuming that the Poisson’s ratios are a priori

known and that the coefficient G can be estimated

according to G ¼ E=2 1þ mð Þ, the whole set of

parameters to be identified consists of the elastic

moduli E and Et and the yield stresses rY and rY
t .

The classical assumption of ‘‘perfect plasticity’’

and unbounded ductility are adopted here in view of

two circumstances, namely: such assumptions are

acceptable in present engineering practice for ductile

metals in many structural components; simplifications

of material models are suitable in the present

preliminary study of potentialities and limitations of

a novel method in inverse analyses. Such limitations

will be tackled and partly removed in future develop-

ments with consideration of hardening, softening and

limited ductility.

3 Preliminary design of the experiment by its

simulation

starting from an original conical Rockwell shape (see

Fig. 1a) and (B) the other starting from an original

spherical shape (see Fig. 1b). Denoting with D0(x) the

diameter of the original circular cross-section at

arbitrary coordinate x measured along the perpendic-

ular axis, the new shape of the elliptical cross-section

in both cases is defined by the following relationships:

D ¼ aD0ðxÞ; d ¼ 1

a
D0ðxÞ; r ¼ D xð Þ

d xð Þ ¼ a2 ð7Þ

where coefficient a controls the ‘‘ellipticity’’ of the

resulting indenter shapes. Clearly, a second parameter

governs the geometry of the new diameters, namely: (A) as

for the indenter generated from a cone, and here called

henceforth ‘‘elliptical’’, this parameter is the opening angle

b of the original cone (Fig. 1a); (B) for the sphere-

generated indenter (denominated ‘‘ellipsoidal’’ hence-

forth) the radius R of the original sphere (Fig. 1b).

In the computational examples presented in what

follows, to the coefficient a is attributed value 1.4,

while to the other two parameters the following values

are assumed: b = 60� and R = 0.4 mm. The conse-

quent indenter shapes are visualized in Fig. 2a, b for

‘‘elliptical’’ and ‘‘ellipsoidal’’ indenters, starting from

conical and spherical shapes respectively.

For the computational exercises to be presented in

the sequel of this paper, the following features are

assumed for the indenter material: diamond, isotropic

linear elasticity with Young’s modulus E = 1100 GPa

and Poisson’s ratio v = 0.1. The structural material to

be characterized in preliminary investigations of this

novel procedure is aluminum, made anisotropic by

some production process like lamination.

To the specimen, orthotropic behavior is attributed

with isotropy according to Eqs. (5) and (6) in the

‘‘transversal plane’’ (axes 2 and 3 in the reference system

employed in Sect. 2) orthogonal to the lamination

direction (axis 1) and to the surface of the structure or

specimen to be indented. The following elastic–plastic

parameters are assumed: E = 70GPa, Et = 50GPa,

m = 0.3, mt = 0.3, G = 27 GPa, rY
t = 70 MPa, rY =

100 MPa. These values can be regarded as typical and

representative for orthotropic aluminum sheets.

The maximum load applied on the indenter within

the indentation test is assumed equal to 200 N. The

penetration, namely imprint depth, is expected to

reach values between 0.1 and 0.3 mm, depending on

the geometry of the indenter used.
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The indentation test to be performed within the present 
study must provide experimental data in the form of 
indentation curves, to be used as inputs in the inverse 
analysis procedure, namely digitalized pairs of pre-

selected loading force and corresponding penetration 
of the indenter tip into the specimen. In order to 
strengthen sensitivity of the indentation curves with 
respect to the parameters of an anisotropic material, a 
novel shape is attributed to the indenter tip, namely the 
indenter cross-section orthogonal to its axis is assumed 
to be an ellipse with ratio r between maximum D and 
minimum d (principal) diameters.

Within this preliminary study, two alternative kinds 
of indenter shapes are considered: (A) one generated



The finite element (FE) test simulations are carried

out by the commercial code Abaqus 6.10.1, [19], with

consideration of the indenter as linear elastic. The

discretization mesh consists of 8-node hexahedron

elements, with a total amount of about 32000 DOF.

Figure 3 shows the adopted mesh for an indentation test

by an ellipsoidal (originally spherical) indenter. Similar

is the mesh considered for tests by elliptical indenter.

The domain considered for the FE simulations and

visualized in Fig. 3 is such that on its boundary connecting

it to the surrounding material zero displacements may be

imposed as boundary conditions of reasonable approxi-

mation. The whole domain will be considered in the FE

analyses, unless double symmetry can be exploited, i.e.

when principal directions are a priori known.

It is worth noting that FE simulations will be

performed here in a ‘‘large-strain’’ regime as obviously

required by responses to indentations. However, con-

sequences on modeling are not discussed here, as they

are general computational features dealt with in the

literature and implemented in the adopted commercial

code Abaqus, [19]. Critical assessments of modeling

and implementation in the above code can be omitted

herein because the data for inverse analyses are

‘‘pseudo-experimental’’, namely computed by the same

test simulations (same code) employed for inverse

analyses, with comparable possible inaccuracy.

4 Indenter shape optimization by sensitivity

analysis

Preliminary optimization of the indenter shape by

means of comparative numerical exercises is presented

in this Section, in order to evidence the possibility to

Fig. 1 New indenter shapes

starting from: a conical

indenter; b spherical

indenter; c elliptical cross-

section, same for both

shapes

Fig. 2 Shapes of two novel indenters with a = 1.4: a ‘‘ellipti-

cal’’ constructed starting from a conical indenter with angular

amplitude b = 600; b ‘‘ellipsoidal’’ generated from a spherical

indenter with R = 0.4 mm

Fig. 3 A typical finite element mesh for test simulations

(double symmetry exploited only when principal directions are

known)

Meccanica (2014) 49:1587–1599 1591



Figures 4 and 5 summarize results obtained with

six different geometries of tested indenters. The first

three are of the ‘‘elliptical’’ type visualized in Fig. 2a,

starting from a classical conical shape (like Rockwell

indenter). Three different values are attributed to the

parameters governing the resulting ‘‘ellipticity’’ (see

Fig. 1 and Eq. 7), specifically a = 1.2, a = 1.4 and

a = 2. The same value is assumed in all three

indenters for the opening angle b of the original cone,

namely b = 60�, like for the most popular Rockwell

cone.

In the second set of exercises presented herein three

indenters have as original geometry a spherical

indenter with radius equal to 0.4 mm (Fig. 2b).

Relatively small value of original sphere radius is

attributed to this indenter in order to keep comparable

penetration depths of two types of indenters: ‘‘ellip-

tical’’ (starting from cone) and ‘‘ellipsoidal’’ (starting

Fig. 5 Couples of indentation curves resulting from the double

indentations performed by three ellipsoidal indenters: a with

a = 1.2; b with a = 1.4; c with a = 2.0

1592 Meccanica (2014) 49:1587–1599

Fig. 4 Couples of indentation curves resulting from the double 
indentations performed by three different ‘‘elliptical’’ indenters: 
a with a = 1.2; b with a = 1.4; c with a = 2.0

assess anisotropic properties using data collected from 
indentation curves only. An orthotropic material model 
is considered for the specimen with transversal isotropy, 
with assumptions and reference values of parameters 
specified in Sect. 3. Two indentation tests are simulated 
with the principal directions of indenter cross-section 
coinciding with the orthotropic directions, therefore 
rotated by 90� from the first test to the second test. If the 
two resulting indentation curves turn out to be more 
separated from each other, the indenter shape is 
preferable, since larger is the direction-dependence of 
the experimental data from the sought parameters (i.e. 
of orthotropic material parameters). This criterion is 
adopted herein for a preliminary selection of the 
indenter shape. Later sensitivity analysis will be 
performed in a traditional sense, namely by computing 
the derivatives of measurable quantities with respect to 
sought parameters, see e.g. [25].



from sphere), with the same value of indentation force.

To the ‘‘ellipsoidal’’ indenter, the same values are

assumed for parameter a, which governs ellipticity

according to Eq. (7), namely: a = 1.2, a = 1.4 and

a = 2.

Numerical exercises like those with some results

visualized in Figs. 4 and 5, have led to the following

conclusions: (i) relatively large (and hence accurately

measurable) turn out to be in all six test simulations the

abscissa differences between the two indentation

curves generated by the two tests with maximum

diameter of the indenter-cross section parallel to the

principal directions of orthotropic material model; (ii)

such difference, first increases when ellipticity factor a
changes from 1.2 to 1.4, and then slightly decreases for

further enlargement of a, up to the value of 2.0; (iii) at

equal loading force, growing ellipticity ratio a reduces

the penetration depth (hence the test ‘‘damage’’

decreases) and increases in percentage (and slightly

decreases in absolute value) the difference of maxi-

mum depths between the two tests.

It is worth noting that the imprint, which is caused

by indentation intended to calibrate mechanical model

of a material as a continuum, should be by at least one

or two orders of magnitude larger than representative

lengths of the material microstructure and of surface

roughness after cleaning. Such requirement turns out

to be satisfied by all six examples of Figs. 4 and 5,

under the common maximum force of 200 N.

The above remarks, founded on a limited set of

merely orientative numerical simulations, lead to the

following choice as indenter shape for the subsequent

study: originally conical with angle a = 600, trans-

formed into elliptical indenter with ellipticity param-

eter a = 1.4.

Now, with reference to the above selected elliptical

indenter and to the double indentation tests (performed

twice in the orthotropic principal directions on the

specimen surface), the following usual sensitivity

analysis represents a useful check of the proposed

procedure. The reference values specified in Sect. 3

are attributed to all material parameters and are

indicated by overlined symbols ( �E; �Et; �rY ; �rY
t ). Each

one of the four parameters to identify (namely

E, Et, rY and rY
t represented in Table 1 by the

common symbol X) are incremented in turn of a small

percentage, here 5 %, of its reference value. Before

and after such increment the maximal penetration

depths, say dI and dII, of the two indentations are

computed by FE test simulations. By such numerical

results the derivatives of the two measurable quantities

dI and dII with respect to the sought parameters are

approximated by forward finite differences. These

finite differences after adimensionalization by refer-

ence values ( �X and consequent �dI and �dII) are gathered

in Table 1 and quantify the sensitivities as influence of

parameters to estimate on measurable quantities.

The above results of computations according to the

traditional sensitivity concepts, see e.g. [25, 26], show

that the identification of the four parameters considered

herein is quite possible by the proposed double

indentation procedure. Clearly, the above evidenced

influence of the four parameters on some dominant

measurable quantity is transferable to a norm concern-

ing all the experimental data to be dealt with for the

inverse analyses presented in the subsequent Section.

5 Inverse analysis

5.1 Discrepancy minimization by mathematical

programming

On the basis of experimental data, parameters

enclosed in the computational model of the system

can be estimated by diverse approaches, either deter-

ministic or stochastic, see e.g. [26, 27].

Here the simplest, most popular, deterministic

approach is adopted, namely: the estimates to compute

( �E; �Et; �rY ; �rY
t , included in vector p̂) are the parameter

values which minimize a suitable ‘‘discrepancy func-

tion’’ x, specifically:

x p̂ð Þ ¼ min
p

x pð Þf g; x pð Þ ¼ u pð Þ � �uk k ð8Þ

Here vector �u gathers the N experimental data (or

‘‘pseudoexperimental’’), while vector u contains their

Table 1 Adimensionalized sensitivities of the two measurable

indentation depths dI and dII with respect to the parameters to

estimate (X)

E Et rY rY
t

DdI

DX
�

�X
�dI

0.067 0.079 0.124 0.132

DdII

DX
�

�X
�dII

0.030 0.119 0.128 0.127
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Clearly, the TRA iteration sequence for the dis-

crepancy minimization requires a large number of

direct analyses for the computation of (first order) finite

differences of function x(p) at each step. Specifically,

all together in each one of the above numerical

examples, computing time for one identification have

been approximately 80 h of CPU time by a computer

with processor i5 and 6 GB of RAM memory.

Fig. 6 Convergence of TRA minimization of discrepancy

function x from initialization 1: a elastic parameters and

b plastic parameters

Fig. 7 Same as in Fig. 6, starting from different initializations

1594 Meccanica (2014) 49:1587–1599

counterparts computed by test simulations as functions 
of the variable parameter vector p. In these validation 
exercises N = 100 measurements of indenter pene-

tration are considered at 25 equal interval stages of 
both loading and unloading branches of the indenta-

tion curves generated by the two tests. The discrep-

ancy function x, Eq. (8), is here the Euclidean norm of 
the difference between the two vectors. No computa-

tional changes would be implied by the formulation of 
function x as a quadratic form of such a difference 
centered on the inverse of the covariance matrix of the 
expected measurement errors, if available in practical 
applications. To the present purposes the covariance 
matrix is assumed as unit matrix, consistently with 
Eq. (8).

The minimization of the discrepancy function is 
performed here by a ‘‘Trust Region Algorithm’’ 
(TRA), using its implementation in Matlab, see [20]. 
Details of TRA are available in a vast literature on 
mathematical programming procedure, e.g. [21]. Only 
the following main peculiar features are here 
reminded: for initialization a parameter vector p is 
chosen within the ‘‘search domain’’ in the space of the 
sought parameters; at the beginning of each iteration 
step first-order derivatives of x(p) are approximated 
by finite differences and employed to generate 
approximations of gradient g and jacobian J of x; 
with Hessian approximation by means of g and J a 
quadratic programming problem is solved in the 
parameters increments Dp as linear combination of g 
and J under constraints which include ‘‘trust region’’ 
bounds; solution p̂ is reached at x minimum according 
to a preselected convergence criterion. As remedies 
for possible lack of convexity of x(p) and possible 
consequent local minimum, the TRA can be applied 
again with other initializations.

In pseudo-experimental exercises the absolute 
minimum might be checked by assessment of com-

patibility of x p̂ð Þ with round-off errors accumulation 
along TRA applied to computed pseudo-experimental 
data.

In Figs. 6 and 7 the convergence of TRA applied to 
the present example is visualized starting from two 
quite different initializations. In both numerical exer-

cises after 14 and 16 iterations all the 4 variable 
parameters exhibit an ‘‘error’’ less than 0.5 %, as 
difference from their values employed in the test 
simulation which had generated the pseudo-experi-

mental data employed in the two inverse analyses.



Even longer computing times would probably be

necessary by other algorithms (such as Genetic

Algorithms) apt to reach the absolute minimum of

the discrepancy function x(p). Therefore recourse to a

‘‘model reduction’’ procedure as outlined in what

follows provides meaningful practical advantages in

industrial applications of the above inverse analysis.

5.2 Proper orthogonal decomposition

for economical inverse analysis

The model reduction procedure adopted herein is a

‘‘proper orthogonal decomposition’’ (POD) followed

by interpolations through ‘‘radial basis functions’’

(RBF). Mathematical and computational details are

available in, e.g., [21, 23, 24] and will not be

considered here. Only an operative outline, with some

numerical features and results, is provided in what

follows.

(a) In the four-dimensional space of the sought

parameters the ‘‘search domain’’ is defined through the

lower and upper bounds suggested for each parameter

by a hypothetical ‘‘expert’’ in the specific engineering

area (see, Table 2). Here the interval center coincides

with the ‘‘reference value’’ of the parameters (spec-

ified in Sect. 3) and each interval is subdivided in 3

equal subintervals. Such subdivision is exploited to

generate a regular grid of M = 44 = 256 ‘‘nodes’’.

Alternative approaches based on randomness, might

be considered in other applications.

(b) By conferring to the P = 4 material parameters

the values which are the coordinates of each one of the

grid nodes selected in (a), the two tests are simulated

by the chosen FE code M times. This is a heavy

computational burden, as already mentioned: in the

present example about 350 h by a computer with

processor i5 and 6 GB of RAM memory.

(c) The vectors ui, i = 1…M, (called ‘‘snapshots’’ in

the relevant literature) are gathered in a matrix U of

order N 9 M (here 100 9 256), which is employed to

generate the (symmetric, positive semidefinite, of order

M and rank N) matrix D = UT�U. Eigenvectors and

eigenvalues of matrix D are computed, and eigenvectors

corresponding to the smaller eigenvalues (i.e. those

smaller by 5 orders of magnitude and more with respect

to the largest one) are neglected so that only N̂ are

preserved (here N̂ ¼ 5). After this ‘‘truncation’’ a

matrix Û of order N̂ x N is computed such that:

ui ffi ûi ¼ Û � ai; i ¼ 1. . .M ð9Þ

The matrix Û (usually called ‘‘reduced optimal

reference basis’’) generates snapshots approximations

governed by ‘‘amplitude’’ vectors ai with dimension

N̂, computed by the following equation:

A � a1 . . . aM½ � ¼ Û � U ð10Þ
Intuitive motivation and mathematical proofs of the

above computational development can at present be

found e.g. in [22, 23].

(d) Now let p be a parameter vector (within the

search domain) at a stage of the TRA applied to the

minimization of the discrepancy function x(p).

Instead of simulating the test by FE, the corresponding

‘‘snapshots’’ u(p) can be assessed by the reduced basis

Û when the amplitude vector ai is known. In order to

compute ai, ‘‘radial basis functions’’ (RBF) gi are

considered here for all M (=256) nodes:

gi pð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� pik k þ c2

p ; i ¼ 1. . .M ð11Þ

The RBF theory, including the strategy for the

selection of the ‘‘coefficient’’ c (here c = 1), is

available e.g. in [28]. A component ak (k = 1…M)

of the amplitude vector as function of variable vector

p is expressed as linear combination of the RBFs,

Eq. (11), and the coefficients bj
k, with j = 1,…, M, are

computed by imposing, when p coincides with a grid

node pi, that the dependent variable ak coincides with

the corresponding component of the amplitude ak(pi)

provided by Eq. (10).

Therefore, the computations to perform are reduced

to the solution of a system of linear algebraic equations

with the coefficients bj
k, j = 1,…,M and k ¼ 1; . . .; N̂

as unknowns gathered in matrix B, namely:

A ¼ B �G with B ¼ bk
j

h i
ð12Þ

where the known matrix A is computed by Eq. (10),

while the known matrix G collects the values of

Table 2 Lower and upper bounds which define the ‘‘search

domain’’ in the space of the parameters [MPa]

E Et rY rY
t

Lower bounds 40,000 40,000 50 50

Upper bounds 120,000 120,000 150 150
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adopted RBF (Eq. 11), computed in all M ‘‘nodes’’,

namely:

G ¼ gi pj

� �	 

ð13Þ

(e) When the coefficients bj
k have been computed,

once for all, as solution of Eq. (12), for any new

parameter vector p, generally different from the M

grid nodes, the components of the corresponding

‘‘reduced amplitude’’ vector a are provided by inter-

polation through RBF, namely:

ak pð Þ ¼
XM
j¼1

bk
j � gj pð Þ; k ¼ 1; . . .N̂ ð14Þ

Through the reduced basis Û the resulting ampli-

tude vector a leads to the ‘‘snapshot’’ u, namely:

uðpÞ ¼ Û � aðpÞ ð15Þ
Equations (14) and (15) replace further test simu-

lation by FE, since they generate, for any vector of

sought parameters within the search domain, an

approximation of the vector of the measurable quan-

tities. Of course, the accuracy of such approximation

depends, in an easily controllable way, on the ‘‘trun-

cation’’ in terms of eigenvalues of matrix D, and on the

above RBF interpolations.

(g) Finally, numerical comparisons should be

performed between discrepancy minimization by an

algorithm like TRA with repeated FE simulations of

the test and by the same algorithm fed by the above

described POD-RBF procedure, stages (a) to (e). Such

comparison, exemplified in what follows, should

concern both the further approximations implied by

POD and the advantages of POD in terms of comput-

ing efforts for the parameter estimation.

5.3 Numerical checks on estimation stability

and accuracy

input of 10 inverse analyses according to POD ? TRA

procedures (see, Sect. 5.2) are quantified, in terms of

percentage mean value and Gaussian standard devia-

tion, on the output of estimate sets.

Another computational check led to results in

Table 2b: data on indenter penetration depth are

increased by 1, 3 and 5 microns as measurement errors

and employed as inverse analysis inputs; the conse-

quences on the outputs are gathered in percentages.

The conclusions of the above and similar other

numerical exercises are as follows: (i) in the parameter

identification context investigated herein, the resulting

estimates are reachable by a fashionable economical

POD ? TRA computational procedure as for the four

main parameters through double indentations by

means of ellipsoidal indenters; (ii) anisotropic, trans-

versally isotropic plasticity parameters turn out to be

more accurately identifiable than Young’s moduli.

6 On ‘‘a priori’’ assumptions of constitutive

parameters

6.1 Calibration of transversally anisotropic

models

An increase in the number of constitutive parameters

to identify implies exponential growth of computing

Table 3 Consequences (in percentage) on parameter estimates

caused by perturbation of the measurements on indentation

curves: (a) average and standard deviations due to random

experimental noises in percentage (based on 10 random noise

extractions); (b) estimation changes due to additive errors in

experimental data on penetration depth

Noise ± 1 % Noise ± 3 % Noise ± 5 %

(a)

E 1.42 ± 3.77 3.02 ± 3.77 5.08 ± 4.22

Et 1.33 ± 0.75 3.29 ± 3.05 5.56 ± 4.55

rY 0.53 ± 0.33 1.23 ± 0.93 2.19 ± 1.32

rY
t

0.67 ± 0.31 1.21 ± 1.01 2.71 ± 1.36

Error ? 1 lm Error ? 3 lm Error ? 5 lm

(b)

E 1.03 4.27 9.44

Et 1.92 5.14 11.43

rY 0.21 0.65 1.29

rY
t

0.52 0.72 1.32
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A usual procedure is here applied first in order to 
assess the preceding inverse analysis as for its 
computational ‘‘stability’’, namely as for the transition 
from experimental errors on the consequent errors of 
the parameters estimates.

The pseudoexperimental data provided by direct 
analysis in Sect. 5.1 are supposed to be affected by 
random perturbation with uniform probability densities 
first between ±1 %, and then between ±2 and  ±3 %.  
In Table 3a, the consequences of such ‘‘noises’’ in the



efforts and also may imply ill-posedness of the inverse

analysis problem, if the number of available data does

not increase. In the present study on potentialities and

limits of a novel procedure for anisotropic material

characterization by indentation alone, these issues are

particularly meaningful. In the preceding Sections

isotropy had been assumed in the transversal plane

orthogonal to the indented surface and to the principal

direction (axis x1) supposed ‘‘a priori’’ known. Such

restrictive hypothesis may be hardly acceptable in

several practical situations, e.g. in applications to

laminated products. An improvement to the assump-

tions on the material model to calibrate is here

investigated, namely two Young’s moduli E2 and E3

(instead of Et) and two yield stresses rY
2 and rY

3

(instead of rY
t ) are now the parameters to identify by

the double indentation test considered so far, but no

longer with transversal isotropy assumption in the

plane orthogonal to the principal axis x1.

The results of these computations are as follows: (i)

the convergence of TRA visualized in Fig. 8 (with

parameters normalized by the relevant reference

values) suggests that the inverse problem is still

well-posed, despite the increase (from 4 to 6) of the

parameters number estimated now on the basis of

unaltered pseudo-experimental data and starting from

similar initializations; (ii) the following differences

emerge between the resulting estimates and the

relevant reference values attributed to the sought

parameters for direct analysis generating the pseudo-

experimental data: DE1 = -0.5 %, DE2 = 0.73 %,

DE3 = -4.6 %, DrY
1 = 0.41 %, DrY

2 = -0.65 %

and DrY
3 = -2.71 %. (iii) the growth of computing

time as consequence of the transition from 4 to 6

estimations amounts to about 40 %.

6.2 On consequences of possible erroneous

transversal isotropy assumption

In view of remarkable computing efforts growth due to

increases in the number of parameters to estimate,

desirable are provisions apt to provide possible remedies

in practical applications. Transversal isotropy hypoth-

esis assumed in Sect. 5 might be adopted in practice as

simplification even if it is not corroborated by expertise

and hence might be erroneous. On this issue the

following computations may lead to some orientative

conclusions useful for practical applications.

(a) First transversal anisotropy is generated in

material model by attributing Young’s modulus

E3 and yield stress �rY
3 in the direction of the

indenter axis x3 values increased by 20 % with

respect to the values considered in what pre-

cedes, whereas all other parameters are preserved

unaltered. A direct analysis, as usual, provides

new pseudo-experimental data which obviously

reflect the transversal anisotropy. The inverse

analysis starting from such data is performed

again by the TRA procedure but based on

transversal isotropy hypothesis like in Sect. 5.

This inverse analysis leads to 4 estimates obvi-

ously affected by errors. Such errors consisting

of the differences between the estimates (only 4

due to assumed isotropy) and the ‘‘true’’ param-

eters are gathered in Table 4a.

(b) The above numerical exercise is repeated start-

ing from 20 % increments attributed now to

elastic modulus Et
2 and yield limit �rY

2 along the

axis x2 in the indented surface and orthogonal to

principal direction x1. The results are presented

in Table 4b.

Fig. 8 Convergence of TRA with 6 parameters to identify (no

transversal isotropy) on the basis of the same pseudo-

experimental data as for convergence plots in Figs. 6 and 7:

a Young moduli; b yield stresses

Meccanica (2014) 49:1587–1599 1597



considered for estimation have been two elastic

Young’s moduli and two yield limits. Subsequently,

the restriction of isotropy in the ‘‘transversal plane’’

has been removed and 6 parameters (3 Young’s

moduli and 3 yield limits) have been considered for the

identification procedure.

Elastic moduli can be identified at present by fully

non-destructive test like resonance, clearly unable to

estimate inelastic parameters. Advantages of the

employment of a single experimental equipment, like

the present instrumented indenter, arise in most

industrial environments active in structural diagnoses.

The main features and conclusions of the pre-

liminary study outlined in this paper, can be synthe-

sizes as follows.

(a) Two indentation tests in near locations by an

indenter with elliptical cross-section, turned 90

degrees, can provide experimental data consist-

ing of indentation curves only, but sufficient for

the estimation of the main parameters governing

the anisotropy at least in simple elastic–plastic

models without hardening.

(b) The transition from traditional conical or spher-

ical shape governed by one parameter (angle or

diameter respectively) to new shapes with ellip-

tical cross-sections is governed by another

parameter (here ‘‘ellipticity’’ a). Both parame-

ters, particularly a, can be optimized merely by

test simulations in order to ensure ‘‘sensitivity’’

in the sense of remarkable difference between

the curves generated by the two indentations.

(c) The practical advantages provided by the

employment of an indenter alone for generation

of data sufficient for model calibration (no data

on imprint geometry) are here additional to the

practical advantages of preliminary proper

orthogonal decomposition and of fast in situ

estimation of material parameters.

After this preliminary study, research in progress

concerns extensions of the present approach to esti-

mation of more parameters (hardening, viscosity) or/

and of parameters in anisotropy with principal direc-

tions not ‘‘a priori’’ known.
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Table 4 Comparisons between actual parameters with trans-

versal anisotropy (‘‘target values’’) and their estimates with the

assumption of transversal isotropy

Parameter Target value Estimated value

(a)

�E 70 GPa 72.5 GPa

�E2 50 GPa
51.9 GPa

�E3 60 GPa

�rY 100 MPa 101.8 MPa

�rY
2

70 MPa
70.9 MPa

�rY
3

84 MPa

(b)

�E 70 GPa 66.7 GPa

�E2 60 GPa
56.8 GPa

�E3 50 GPa

�rY 100 MPa 98.0 MPa

�rY
2

84 MPa
82.2 MPa

�rY
3

70 MPa
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The above computations (and others not presented 
here for brevity) lead to the following, merely 
orientative remarks: the simplifying hypothesis of 
transversal isotropy may be acceptable in industrial 
environments dealing with products expected to be 
moderately anisotropic in the plane orthogonal to the 
principal direction of general anisotropy generated by 
a routine production process.

7 Closing remarks

Indentation tests are at present more and more 
frequently employed in a growing number of indus-

trial contexts and at various scales because of 
remarkable advantages (un-destructivity, rapidity, 
economy) with respect to traditional experiments for 
mechanical characterization of materials. In this paper 
the parameter calibration based only on instrumented 
indentations has been studied with reference to a 
popular simple orthotropic elastic plastic constitutive 
model concerning laminated structural metals. First, 
orthotropy has been assumed with known principal 
directions on the specimen and with isotropy in the 
plane orthogonal to the indented surface. Under such 
assumption, the anisotropic Hill model of perfect 
plasticity has been adopted and the parameters
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