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1.

Motivations (I)

The physics of interacting quantum systems is extremely
broad, and stems at the heart of many hot topics in research.

In the strong interaction regime, quantum transport
becomes dominated by correlated tunneling, with
dramatic deviations from single-particle tunneling...

- macroscopic effects:

- metal-insulator (Mott) transition,

- superconductivity,

- ferromagnetism and anti-ferromagnetism,
- etc...

The study (and control) of the dynamics of few interacting
» particles in the presence of coherent driving with external |\ |

fields and investigation of the role of particle statistics in __|N§°
correlated tunneling phenomena




2.

Motivations (ll)

Quantum phenomena can be simulated in other physical
contexts, by exploiting fundamental analogies between different

fields. E.g.:

- cold atoms in optical lattices (quantum simulators)
[see e.g. Nature Phys. 8, 267-276 (2012)]

- optical waveguide arrays (classical simulators)
[see e.g. Laser & Photon. Rev., 1-19 (2008)]

The proposal and realization of photonic structures
mimicking low-dimensional Hubbard Models of few
» strongly-interacting particles to visualize in Fock space
many-body quantum phenomena never observed in
truly gquantum systems
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Introduction:
(What connection with the NLSE?)




Introduction ()

The Nonlinear Schrodinger Equation (NLSE) is a
universal model equation, encountered in different contexts.

Within many-particle physics, the NLSE can be derived from
the the Many-Body Schrodinger Equation (MBSE):
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and ¥ = U(r, 1) is the particle field operator, obeying
commutation (anti-commutation) relation for baos
(fermions).



Introduction (ll)

For a cold and dilute gas of bosons, under a semiclassical
approximation (Bogoliubov prescription)
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the MBSE becomes the Gross-Pitaevskii equation (i.e. NLSE):
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Introduction (l1I)

In a lattice, a truncation of the MBSE without any
semiclassical approximations, gives rise to another
universal model: the Hubbar Model (HM).

The essence of the derivation:
1. Expansion of the particle field in Wannier States

V()= ¥ a,,w,-1)

Yk j : lattice site index
O : single-particle spin quantum number (m_)
b : single-particle lattice band index
w,(r-1;) @ J-th Wannier state in the b-band
a,,! a,,,/ n,, ,: annihilation / creation / number operators

for 1 particle of spin o at site j inband b

2. Particle interaction untill a given lattice neighbor and W|th|n‘
a given sub-set of bands...(i.e. "truncation”) -




Introduction (1V)

The simplest (most popular) version of the HM:
1D single-band nearest-neighbor uniform tight-binding lattice
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Introduction (V)

The ("usual") Hubbard Hamiltonian
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Introduction (VI)

In a lattice...
HNLSE 3 HLAT pt HNL t HEXT
Semiclassical approximation

for a bosonic condensate
of many interacting particles

A htod*
isaiidaieitiai il il
l dmdxr
- 2 | Nonlinearity
HNL > |(D(x’ )| due to interaction
HEXT AT (x)

HHM - HHOP + HINT + HEXT
Fully quantum description

of few interacting particles
(bosons, fermions, anyons)

A

ﬁEXT =2
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],0
- possibly over-simplified, but very reach and interesting

- typically very difficult to solve! (very few 1D problems allow analytical s

el ]

j,o " j+l,0

" Nonlinearity" |
due to interactioq'

and in higher dimensions even numerical approach is challening)



Photonic simulators
of Hubbard Models




Photonic simulators of HMs (I)

The Quantum-Optical analogy (well known analogy)

2-D Electric field distribution in a guiding structure propagating in z direction

E(x,z,t) =1 (x,z)eikonsze'iwt

...0beys Paraxial Wave Equation:

il o S
A=AI2m
being...
1V )on caf
LT
By changing... J , — 1 ‘ '
7S 2

Schrédinger equation

See e.g. D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424,817 (2003)'
and S. Longhi, Laser Photon. Rev. 3, 243 (2009).



Photonic simulators of HMs (1)

The Fock space: the space of states in QFT
Start from the single particle space of states H,.
Suppose that the size of H, is N (i.e. N basis vector states).

Two ingredients:

The k-th basis — Single quantum
state of H, of excitation

e.g.
] !

1 =% fu A basis element
]

of the Fock Space
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With g} |nk ‘/nk |nk +1) the creation operator, and |()> the vacuum state ‘
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Photonic simulators of HMs (lll)

Within Fock Space representation, particle statistics determines the
possible values of n, for each k :

Bosons: 5, =0,1,..0 Fermions: n,_=0,1
aa, -aa, =0 a,a +aa, =0
NEA A A AFA A A
ad —ad; = 6k,l aa +aa; = 5k,l
(Bose-Hubbard Model) (Fermi-Hubbard Model)

{‘(I)q>} Fock space basis set (indexed by ¢, i.e. a sequence of
single-particle quantum numbers)

W)=Y c,0)|®,) |

q

Our photonic simulator put each Fock basis in correspondence wi
individual optical waveguide of the photonic structure:

Ik ‘cq(t)‘z <> P (t) (Optical power along waveguide q) ;



Photonic simulators of HMs (1V)

The simplest Hubbard model: electrons on 2-site lattice (double well)

Site index j=1,2 Single particle
1-particle Spin o =, ! :> basis states
1, ) \|/ (4 elements)

E.g.

A

' \I/

n, ,n n2T> with n,, =0,1 -> 16 element basis

Fock Space : ‘”w SELTS

Fock Space Sectors 1,1,0,0 . | |
[] 0 electrons 0.01.1 — 2-electrons triplet basis states I

:‘ [l 1 electron " |
D 19071’()

0,1,1,0
B 4 electrons > 1y 1, mimicked by-2x2
square photonic Iattlce

)
)
)
[ 3 electrons el ; | 2-electrons singlet basis sta
)




Photonic simulators of HMs (V)

Photonic analog of the 2 interacting electrons in a double well

3 S L it A At NENERNy (%
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dt| ¢, -k 0 0 -x Cy -
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Photonic simulators of HMs (V1)

Visualization of correlated tunneling (1)

The effect of particle interaction can be visualized in Fock Space by looking
at the tunneling dynamics in the photonic symulator.

The Return (survival) Probability:
2
R % 2
P() =@ O) = Y |c,,. 0, ,0)
n,m=1
The Spin Imbalance between the sites:

N, (t)= %w 0

(A, =1, )=, , =1, (D)) 1

Initial condition (input light excitation): /

9(0))=[0,1,1,0) ie. ¢, (0)=1, ¢,(0)=c,(0)=cy,(0)=0

2
P(t) = ‘C21(t)‘ Fractional Power in the input waveguide

N,,(t) = ‘c21(t )‘2 * ‘Clz (t )‘2 Fractional Power imbalance between off-diagonalv waveglides

==



Photonic simulators of HMs (V)

Visualization of correlated tunneling dynamics (Il)
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Phys. Rev. B. 84, 033102 (2011)




Photonic simulators of HMs (Vi)

Mimicking external fields in the photonic simulator

Paraxial and scalar optical wave equation

S0 X o
A9z = "an, Vau¥ T V(@ 20(2), )9,

X = x,(z) equation of the optical axis

Kramers-Henneberger transformation (+ EIM)

g’ =z —x0(2), 2=z,

¢z, 2") = p(a’, 2') exp [—z—mom e / d @:5( S)I

Schrodinger equation for a particle of mass 7 in an external driving force field

2
OV LA G O e gt

82~ 2n,0z?

F(2") = —ng@o(2)

Phys. Rev. E 67, 036601 (2003)




Photonic simulators of HMs (1X)

Fabrication of photonic simulators: the fs-laser writing

Variable
Attenuator

Foldin
Yb:glass V Mirror
cavity-dumped oscillator \
(1040 nm, 400 fs pulses) l
uscope _— 74 ! &/_\ '
objective fused silica g
20X (0.45 N - glass

3D Translation
Stage

» Fuoresce at 650 nm under 633 nm illumination (living for few days)

( Pulse Energy: 300 nJ
Repetition Rate: 20 kHz

Tuning writing speed: ~ 1-50 mm/s <:|
_ Focusing range: 500 ym

> Writing parameters: < Control of Refracti

Index change

|

J. Opt. A: Pure Appl. Opt. 11, 013001 (2009) | Provided by experimental group of

Dr. Roberto-Osellame (IFN-CNR)



Fractional Bloch
Oscillations




Fractional Bloch Oscillations (l)

The Hubbard model for a 1D lattice with 2 electrons

L-1
- s A-}- A AT N AT N N
H,, = KE(an,¢an+u +a, a, +a,a. .., +a o )+UE
n=1

(no external driving field)

...same as for 1 electron
— on a 2D tight-binding lattice
(band of "single-particle" Bloch states)

The particles behave as two
individual un-correlated particles

E)-

' 1<<1

n,m=1

(band of "bound-particles", molecular, states)

Numerical simulations for L = 100 sites
[W. S. Dias et al., Phys. Rev. B.76; 155124 (2007)]




Fractional Bloch Oscillations (lI)

The photonic simulator of correlated Bloch Oscillations (1)

L-1 L
2 =35 AT A AT A AT A A'*‘ A N A
H,, = KE(an,iamu ta, 4, +a,.a,_ ., an+1’Tan’T)+ Uznn Ny
] n=1 n=1
ITHL - L FRRTLEL L
| Al A A |
| +E Fx(nn,T + nm) :<j Uniform static driving force (e.g. F'=eE,))
e PO RS T Y |
odcnm :- __________________________________________ l:
t{} LS =.—K(cn+1m+cn_1m+cnm+1+ G 1)+U(3nmq“m+'F (n+mc,,,
7 AT BRI SN i R !
/L
e dY, (1)
2D square array “

of waveguides with
Circular bending of the

array in the plane of the .

a defect line (detuning

along the main diagonal)

“““,-m)_([‘i.@_)_(mm) : = ;
® 1, +An R main (n = m) diagona
() ;. -1)
ne + An, ® "\®e _

W



Fractional Bloch Oscillations (lll)

Engineering of the photonic simulator

Structure parameters:

5l TB=2—”=225cm

nS =1.45 ~4 ! Fa

AI’l=1X1()—2 .- K= cm F:3.2X103 Cm_2

An, =9.65x107 U=(An-An)/k=dx >
a=_8.6 um 3 \/_Fx~21 —~

Excitation conditions (system preparation) :
For coupled-mode equations simulations

Cum (t = 0) = Z exp[-(n—ng)*/w* - (m - my)*/w’]

For paraxial wave equation photonic simulations

d(x,y,0) = exp|-(x —nOa) /(wa) - (y = mya )?/(wa)?]

Opt. Lett 36, 3248 (2011)
Phys. Rev. B 86, 075143 (2012)




Fractional Bloch Oscillations (V)

Visualization of correlated Bloch oscillations

beam centroid
beam centroid

0.5 1 1.5 2
normalized propagation distance 5 / Tg

0.5 1 15 2
normalized propagation distance § /T B

Bloch oscillations of a particle Bloch oscillations of the
in a 2D square lattice - of the

w,=Fa=ek,a wy,=Fa= 2eE,a



Fractional Bloch Oscillations (V)

Experiments in photonic lattices: Design

Single-particle tunneling

On-site particle interaction

NN particle interaction and
Conditional single-particle tunneling

Direct tunneling of doublons

higher-order
processes

Ky = K+

fs-laser written
15x 15 2D
curved

waveguide ar

(Osellame' |
@lFN-CNR Milano)




Fractional Bloch Oscillations (VI)

Experiments in photonic lattices: Results
Two interacting particles A single particle

Experiment ) ‘ Experiment

Nature Comm. 4, 1555 (2013) | First experimental observatierrof fractional BOs




Dynamic Localization
of Doublons and
Coherent Destruction
of Correlation |




Dynamic Localization of Doublons (1)
The AC-driven HM for a 1D lattice with 2 electrons

L-1 L
3 > A Sidsk Py s o g
H,, = _Kz(an,¢an+1,¢ ta, a, +a,.4 . ,+d . .4, ) + UE n, n
5 n=1 n=1
TR | A IRREAEE L Lt :
: +E F( ))Ac(ﬁn’T + fzm) i<j driving force [e.g. F(f) = eE (1)
SRR TR TR Y E, (t)= E,cos(w?)]
T O L A A ™ W e R e C e g (10
> i a;m - _K(Cn+lm +UD, ,.C, +-—[nF (t) + mF, (t)]

2D square array
of waveguides with

a defect line (detuning
along the main diagonal)

® n,+An
ne + An,

e

n1_rrl)_gn,r_]]2__(n+1_,m) Y, (t) =Y, cos(wr)
O (W}U‘ﬂ O YO 2 \/EeEO

2
nyw




Dynamic Localization of Doublons (ll)

The strong interaction limit of the undriven HM

In the limit of [/ > k the photonic lattice reduces to:
- two semi-infinite 2D TB lattices for the single particle

Undriven lattice (straight optical axis) A Energy
U +4k,
Band 2
U
”r"-,.".‘).ﬂ.":l.vm.)..(ml@) 4k
® de 0 - Band 1 8K
—4K |

K/U=¢
w/U~¢€ Multiple Scale

¢, (1)=A/(1)0, , exp(i2k 1)+ O(e)

eE,a /U ~ € | Asymptotic Analysis>- A
¢ (0)=A (0)0 (low frequency _l I

weak field driving)

;- —Ke[An_1 + An+1]+ 2e E alkcos .'




Dynamic Localization of Doublons (i)

Engineering of the photonic simulator
dA

i d” = —Ke[An_1 + An+1]+ 2e E alkcos(wt)nA,
t

CMEs of a "single particle" of charge 2¢ in a 1D TB lattice with renormalized

tunneling rate, driven by an AC electric field.

Floguet theory: collapse of quasi-energies (i.e. DL) provided that:

2¢eE ) 2¢eE a BT
Jo ( . Oa) =0 ie. —=+2na/kwY, =2.405 ket
7&(1) 7{«(0 ____.__:_:;;_r_:;_}"_é "
A=980nm ] [x=39cm™ -
ng =1522 U=(An-An)/% =8k
An=1x10" | w=k=4.187 cm™
An, =9.05x10~ | (e.T=27/w=15cm)
T TR 2 405% K
Y, = =484 um Al N
\/Eansa) -




Dynamic Localization of Doublons (1V)

Visualization of correlated dynamic localization

-t

No driving

Discrete diffraction
of doublons

P(t)=|J,(x 1)

2

Revival probability P(¢)
o0 O0OO0OO0OO0O0OO0OO
- N Ws 0O N O

Driving...

Dynamic Localization
of doublons

<
N’
S
>
=
3
(1]
0
(]
S
o
B
E
>
[}
(o'

C (O) = 611.06111 ,0

n,m
Paraxial wave equation 2
Coupled-mode equations Insets show |c, . (7)

Opt. Lett. 36, 4743 (2011)




Coherent Destruction of Correlation (l)

Let's consider again the AC-driven HM:
dc,

l dt =—K(C

We are interested in a different regime of strong interaction:
- high-frequency and strong-field AC-driving

+c, . +C .+ Cn,m—l) +Ud c + %ex/on cos(wr) (n+ mjc, ,

n+l,m n-1,m n,m+l1 n,m-n,m

K/U-=¢€ - ca\e :
w/U~1/¢ AP S\'\o pnal¥S®

eEOa/U~1/82_

—cn,m (t)= A, (t)exp[-i(n + m)(eE,a/ w)sin(wt) - iUO, 1]

-_i dizr;m = - kJ, (eEOa/M)) [An+1,m A A AT An,m_l] |:>

The defect diagonal is made invisible.



Coherent Destruction of Correlation (l1)

1P tunneling | x =39 cm™ K=39cm™ KJ, (Z)
2P Interaction | [J = 25k U =25k U=0
w =0 w=10k=40cm™ | =0
AC driving .
Y, =0 Y0=\/_Z =76um | % =0
20150 7 1 g41)
Occupation
probability o - ;
Com(t=3 cm)‘2 s :
for initial % :
condition

Cn,m (O) 5 5n,06m,0

Discrete diffraction on
1D diagonal sublattice

Discrete Diffraction on
the whole 2D lattice

/'."

Opt. Letf. 36, 4743 (2011)




Correlated-tunneling of
Anyons and
Correlated BOs of Anyon§

|




Correlated-tunneling of Anyons (l)
Anyons: what?

Y(B,A)=v(A,B) > Symmetric under exchange —»
Y (B,A) = -y (A,B) —— Antisymmetric under exchange —

Y (B,A) =exp(ify(A,B) —> More generally... >

Low-dimensional quasi-particles with non-trivial exchange statistic:

o ‘ W BOSONS
. = oy + expl[-i0e(l - k)la,a 9=0

(,i-l(’ink = exp[19€(l - ’t)]&]\dl
@ : Statistical Exchange Phase <

[,k : lattice site index
1, forl >k
e(l-k)=4 0, forl=k 0=

-1, forl<k PSEUDOFERMION

The statistic is site-dependent.
Regardless 6, two anyons on the same site behave as bosens.



Correlated-tunneling of Anyons (l1)

2-anyons dynamics on a 1D lattice

anyon-Hubbard
= —JZ(% Qg1 + @y @) + o an(nl 1) Hamiltonian

I

lw (@) = (1/ V2 2)> nmCnm () am|0) Fock space representation

.dc : ;
(Z ;tm = —J [Cn+1,m T Cp-1m T Cnm-1 eXp(_upn,m—l)‘l' Cnm+1 e)(p(zgon,m)]

+ Udp i Crm
Pnm=-0forn=mm+1and ¢,,,, =0
(CMEs for Anyons on a 1D Lattice)

Note the presence of a in the
due to the statistical exchange phase 6.




Correlated-tunneling of Anyons (lll)

Photonic realization of anyonic tunneling on a lattice

O nZ+An+a+U
O n +An+20

A}

= na

@)

B, form=n+1 Helical optical axis
0°
B,+o+U,form=n X, (1) = Acos(wt)

P, +20,form=n+1 Yo (t) = Acos(wt + ¢)

nal d’x, d'y, >

S

) kn dt* dt* J

(Cn+1 m T Cn—l,m t Cn,m+1 t Cn,m—l ) t [J’n,mcn,m t




Correlated-tunneling of Anyons (1V)

Design of the photonic simulator (1)

2 2
idcn’m & _K(Cn+1m NG Gt Coe 1)+/3nm Com - a/nd < +mm\l Com
i T S e <
w,0 >>K (High Frequency Modulation Limit)
U=0 (No interaction)
o=Mw y
J,)=J,T) + Resonance Conditions
['=nadw /R |
da,

Precisely the CMEs of the anyon-Hubbard Hamiltonian, with:

:
2
l
!

J=kJ,(I') (Renormalized coupling)

o =-M§(3,,+0,,, ) w—p 0=Mgp

The exchange statistic phase 8 can be controlled by the drlvmg parame
i.e. by of the helix!




Correlated-tunneling of Anyons (V)

Design of the photonic simulator (Il)

A =633 nm |
ng =145
An =0.001

a=12 um |

$=0/2

Initial condition (input light excitation): ¢ (0)=6, 6, ,

=)

k=15cm"

w=730J=15cm’| (T =042 cm)

O/ M=05cm" o @ o= Mw=20=30cm’
W An = An+0/%=000105

(T =1.84)

(Bosons)

p=m/4

O=m/2

0=n>=
(Pseudofermions)

P.(t) = ey, )

Pz(t)= E

2
€ (1)

Revival Probability

Joint Probability to find both particles at the same site




Correlated-tunneling of Anyons (V1)

Visualization of correlated-tunneling of non interacting Anyons

|Com|?att] =5

revival probability P,

/

e

joint probability P,
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Opt. Lett. 37, 2160 (2012)
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Correlated-BOs of Anyons (l)

For non-interacting anyons, correlated BOs are generally degraded, but not always...

Strong driving 2| WEELEe (el /] = 0.3

Lattice site n

E
B
>
=
=
o
E-
o
2
o
w
]
>
@
o

Lattice site n

B
>
=
-]
o=
E-1
°
2
o
=
=
>
]
[+4

-20
) 80 100 120 1400 20 40 60 B8O 100 120 140

at half the frequency of uncorrelated BOs



Correlated-BOs of Anyons (ll)

For non-interacting Pseudofermions, the ratio F/J decides the existence of BOs!

g
.
2
=

©
=
o
)
o
©
i
>
D
[+

Energy Spectrum (F)

In the strong interaction regime, BOs turn out to be insensitive to statistics
— doubling of the BO frequency (as for 2 fermions or 2 bosons) regardless 6 =

Phys.Rev. B 85, 165144 (2012)




Conclusions and
Developments




1.

Conclusions

Theoretical investigation of the dynamics of few strongly
interacting particles in one dimensional lattices under
coherent driving with external (DC and or AC) fields:

prediction of new physical features

Design and realization of classical simulators of few
iInteracting particles based on optical waveguide arrays
fabricated by fs-laser writing:

I a fundamental drawback on scalability...
- 2 particles on a 1D lattice, or many particles in a DW, ok

9l but also important advantages...

- classical simulators of individual quantum systems in extremely
low density (2 quanta) [challenging for quantum simulators] .

- direct access to Fock space allows ease of system preparati ,‘ |

- optical phenomena can easily embed loss and gain, allowi
simulation of correlated phenomena of non-Hermitian"HMs

|




Developments

Theoretical study of novel quantum phenomena of
correlated particles, in driven one-dimensional systems:

- Correlated super-Bloch oscillations (under DC+AC driving fields)
(Phys. Rev. B 86, 075143, 2012)

- Many-particle quantum decay and trapping: The role of statistics and
Fano resonances (Phys. Rev. A 86, 012112, 2012, and an experimental
paper is in preparation, in collaboration with Osellame's group....)

- Quantum transport in bipartite lattices via Landau-Zener tunneling
(Phys. Rev. A 86, 043633, 2012)

- Existence of low-energy doublons in ac-driven anisotropic HMs
(Phys. Rev. A 87, 013634, 2013)

- Field-induced ferromagnetism (under next-nearest neighbor tunneling)
(Europhys. Lett. 101, 67006, 2013)

- Tamm-Hubbard surface states embedded in the continuum
(J. Phys.: Condens. Matter 25, 235601, 2013)

- "Klein tunneling” of correlated particles (beyond on-site interaction).=
(Eur. Phys. J. B 2013 in press) *
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Field-induced ferromagnetism

Nearest-neighbor and single particle tunneling:
the (static) k,-x, Hubbard Model

Ferromagnetic ordering iif /Ky>r~0.25
(i.e. fundamental state with saturated Spin)
[see Pieri et al. Phys. Rev. B 54, 9250 (1996)]

H = Hhopl + HhopQ 3 H’int 2% Hdrive
the driven k,-x, Hubbard Model

Ferromagnetic ordering for any value of k, and
under (relatively) high frequency driving (i.e. o /k; > 1) J
and proper value of the ratio E; / o

Analytical proof is provided for any particle density (below half filling)
in a one-dimensional tight-binding lattice z

Europhys. Lett. 101, 67006 (2013)




Tamm-Hubbard states in the continuum

o0
A A UA A Al A
H = E |: ( Tak+1 +ak+1ak) + 5 azza/%} + Vagao

Statlc semi-infinite 1D TB lattice with
Fock space representation for the two-interacting bosons (a 2D lattice)

II 1 BOC MODE
-©
-®

III 2 BOC MODES

|
\

IV 1BIC + 1 BOC MODES |

®
-©® II 1 BOC MODE

£=0.4384 (BIC) £ =-1.9669 (BIC)
Hybrld BIC Thresholdless

doublonic BIC

J. Phys.: Condens. Matter 25, 235601 (2013)




Klein tunneling of correlated particles

, 1% :
H = —JZCL;{ (al_l p al_|_1) —|—i§ Zn;(nl — 1)i—|— VannH_l e Zeml
I i l

0l<0
Al>0

On-site and particle interaction + € = {

-

Two minibands for doublons

(U+V)/2

Eur. Phys. J. B 2013 (in press)
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The Hubbard Model

The space of states in many-body guantum physics

Quantum Field Theory (QFT) do not consider "particles" but
"quanta”:

- Particles can be labeled (and thus exchanged).
- Quanta are entities that can be "aggregated" but not labeled.

Ex. A, B are two labels for particles.

The states of particle A - 1-particle Hilbert space H,(A)
The states of particle B - 1-particle Hilbert space H,(B)
The states of particles Aand B > H(A,B) = H,(A) @ H{(B) ?

In H,(A) ® H,(B) are symmetric, anti-symmetric, and non-symmetric states!
for Bosons : y(B,A)=vy(A,B) (symmetric under exchange)
for Fermions : (B A)= -y (A,B) (anti-symmetric under exchange)

Solution 1: In the "particle view" we have to "manually" exclude the
unphysical states lacking the proper exchange symmetry. |

Solution 2: In the "quanta view" we refuse the physical meaning of par
labelling (so we miss the identity of particles) and build up the Foeck Space




Correlated-tunneling in a Double Well

A photonic analog of the toy-model of Mott transition

Particle density n=Q /L =1 - so-called half-filled system

A Energy

Q

.
P . |~U Gap 2
© i (Mott-Hubbard) A
(] ! =
= < 5 o
i | =
08 S 3

?

! | : —

A large energy gap is established between collective eigenstates with sm\
site occupacy and collective eigenstates with double site occupacy .=

> >




Correlated-tunneling of Anyons
Anyons: why?

- Anyons have been theoretically proposed more than 30 year ago.
J. Leinaas and J. Myrheim, Nuovo Cimento B 37, 1 (1977).
F. Wilczek, Phys. Rev. Lett. 49, 957 (1982).

- Anyons are invoked in the theoretical modelling of 2D systems.

E.g.: Fractional quantum Hall effect (discovered in 1982)
D. Arovas, J. R. Schrieffer, F. Wilczek, Phys. Rev. Lett. 53, 722 (1984).

- The experimental evidence of anyons is controversial.

- Very recent proposal to create anyons in 1D lattices by atom optics:
C. Vitoriano et al., Phys. Rev. Lett. 102, 146404 (2009).
T. Keilman et al., Nat. Commun. 2, 361 (2011).

- Anyon physics is

- Anyons are particularly interesting with respect to
= even in the




Correlated-tunneling of Anyons

More details on the design of the photonic simulator

Com

nsa/ deO szo\
l =-K S C +C = C + n +m C
T n+1 m 1,m n,m+1 n,m—l) ﬁn,m n,m 7“ k dtz dtz n,m
n, a( dxy A
Phase transformation: a, 1 EXP ip, T i n +m
A\ dt dt
dt n+1 m eXp [ lnn m(t)] + an—l,m eXp _lnn—l,m (t)] n,m+l eXp [ ipn,m (t)] + an,m—l eXp I:lpn,m—l(t):l}
n.a dx, nalw. .
t = =t = sin(wt) + = t
nn,m( ) K d (/D)n+1,m ﬁn,m x ( ) (ﬁn+1,m ﬁn,m)
nad nalw
pn,m(t) X K ;0 0 (/))n,m+1 | ﬁn,m 'y > K Sln(a)t + ¢) g (ﬁn,m+1 4 ﬁn,m)lL

Averaging of the exponential factors in the high frequency modulation limit (w > ;( U
under resonance condition o = Mo (with M an even integer).

Jo (L), forn=m, m-1

]
o9 (ool ) - I o[-0 -

J,,(I'), otherwise



Developments

Theoretical study of novel guantum phenomena of correlated
particles, in driven one-dimensional systems:
- Correlated super-Bloch oscillations (under DC+AC driving fields)

(Phys. Rev. B 86, 075143, 2012)

- Many-particle quantum decay and trapping: The role of statistics and
Fano resonances (Phys. Rev. A 86, 012112, 2012, and an experimental
paper is in preparation....)

- Coherent destruction of tunneling of two interacting bosons in a tight-
binding lattice (Phys. Rev. A 86, 042104, 2012)

- Quantum transport in bipartite lattices via Landau-Zener tunneling
(Phys. Rev. A 86, 043633, 2012)

- Existence of low-energy doublons in ac-driven anisotropic HMs
(Phys. Rev. A 87, 013634, 2013)

Design and realization of photonic simulators for extended
HMs to visualize at a classical level quantum effects
observed so far in a truly quantum system: e.g. super-B
oscillations, Block-Zehner oscillations, PT-symmetric




