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 Motivations (I)!
! 1. ! The physics of interacting quantum systems is extremely 

!broad, and stems at the heart of many hot topics in research. !
! !In the strong interaction regime, quantum transport 

!becomes dominated by correlated tunneling, with 
!dramatic deviations from single-particle tunneling...!

 !

! !à macroscopic effects: !
! !- metal-insulator (Mott) transition, !
! !- superconductivity, !
! !- ferromagnetism and anti-ferromagnetism, !
! !- etc...!

!
!      The study (and control) of the dynamics of few interacting    !

             particles in the presence of coherent driving with external     !
   !      fields and investigation of the role of particle statistics in!

!      correlated tunneling phenomena!



 Motivations (II)!
!
2. ! Quantum phenomena can be simulated in other physical 

contexts, by exploiting fundamental analogies between different 
fields. E.g.:!

!
!- cold atoms in optical lattices (quantum simulators)!
!  [see e.g. Nature Phys. 8, 267–276 (2012)]!

!
!- optical waveguide arrays (classical simulators)!
!  [see e.g. Laser & Photon. Rev., 1–19 (2008)]!

!
!

! The proposal and realization of photonic structures !
! mimicking low-dimensional Hubbard Models of few  !
! strongly-interacting particles to visualize in Fock space!
! many-body quantum phenomena never observed in!
! truly quantum systems!

!
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 Introduction:!
(What connection with the NLSE?)!



 Introduction (I)!
!The Nonlinear Schrödinger Equation (NLSE) is a !
!universal model equation, encountered in different contexts.!

 !!

!Within many-particle physics, the NLSE can be derived from 
the the Many-Body Schrödinger Equation (MBSE):!

!

! ! ! ! !       with!
!where!

!
!

!

!

!

!!
!and             ! is the particle field operator, obeying !
! commutation (anti-commutation) relation for bosons 
(fermions). !

0!+! int!

int!

0!



 Introduction (II)!

!condensate mean field
!!

! For a cold and dilute gas of bosons, under a semiclassical 
approximation (Bogoliubov prescription)!

!

!

!

!!
!

!the MBSE becomes the Gross-Pitaevskii equation (i.e. NLSE):!

!

!

! f o r  c o n t a c t  i n t e r a c t i o n  a p p r o x i m a t i o n :
! ! ! !  .!

!!

number of !
particles!



 Introduction (III)!
! In a lattice, a truncation of the MBSE without any 
semiclassical approximations, gives rise to another 
universal model: the Hubbar Model (HM).!
!The essence of the derivation:!
!1. Expansion of the particle field in Wannier States!

!
!
!
!
!
!

!

!

!2. Particle interaction untill a given lattice neighbor and within !
!    a given sub-set of bands...(i.e. "truncation")!
!!

j   :  lattice site index

!̂(r) =
j ," ,b
# â j ," ,b  wb (r - rj )

b  :  single-particle lattice band index
wb (r - rj ) : j-th Wannier state in the b-band

â j ,! ,  b  /  â†
j ,! ,  b /  n̂ j ,! ,  b :  annihilation / creation / number operators

for 1 particle of spin !  at site j  in band b

!   :  single-particle spin quantum number (mz )



 Introduction (IV)!

Energy	



Energy	



x = ja	



x = ja	



a	



Single-particle!
Hopping (Tunneling)!
at nearest neighbors!

On-site !
particle Interaction!

(e.g. Coulomb 
repulsion)!

The simplest (most popular) version of the HM: !
1D single-band nearest-neighbor uniform tight-binding lattice!



 Introduction (V)!
The ("usual") Hubbard Hamiltonian!

ĤHOP = !" â†
j ,# â j+1,# + â

†
j+1,# â j ,#( )

  #
$

j
$

Ĥ INT =  U n̂j ,!
!
"

j
#

ĤHM = ĤHOP + Ĥ INT + ĤEXT

Hopping!

Internal Interaction!

External Interaction!

!
Integrals !
involving!
single-particle!
Wannier !
States!

U =  g dx w(x) 4

!"

+"

#
 
! =  dx w(x) "

!2

2m
d 2

dx2 +VLATTICE (x)
#

$
%

&

'
(w(x " a)

")

+)

*

 
! j =  dx VEXT (x) w(x " ja) 2

"#

+#

$ ! VEXT ( ja)

ĤEXT = ! j  n̂ j ,"
j ,"
#



 Introduction (VI)!

ĤHM = ĤHOP + Ĥ INT + ĤEXT

 
Ĥ LAT = !

!2

2m
d 2

dx2
+VLAT (x)

ĤNL = g !(x,t)
2

ĤHOP = !" â†
j ,# â j+1,# + â

†
j+1,# â j ,#( )

  #
$

j
$

Ĥ INT =  U n̂j ,!
!
"

j
#

ĤEXT = ! j  n̂ j ,"
j ,"
#

ĤEXT = VEXT (x)

ĤNLSE = Ĥ LAT + ĤNL + ĤEXT

Nonlinearity !
due to interaction!

"Nonlinearity" !
due to interaction!

Semiclassical approximation!
for a bosonic condensate!
of many interacting particles!

Fully quantum description!
of few interacting particles!
(bosons, fermions, anyons)!

!In a lattice...!

!- possibly over-simplified, but very reach and interesting!
!- typically very difficult to solve! (very few 1D problems allow analytical solution,!
!  and in higher dimensions even numerical approach is challening)!

!



 Photonic simulators!
of Hubbard Models!



Schrödinger equation!

( )
2 2

22
i V x

t m x
! !

!
" "

= # +
" "

!
!

Photonic simulators of HMs (I)!
!

2-D Electric field distribution in a guiding structure propagating in z direction 

The Quantum-Optical analogy (well known analogy)!

…obeys Paraxial Wave Equation: 

being… 

By changing… 

See e.g. D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424, 817 (2003)!
and S. Longhi, Laser Photon. Rev. 3, 243 (2009).!

  
E x, z,t( ) =! x, z( )eik0 ns ze" i# t

   
i!
!"
!z

= #
!2

2ns

!2"

!x2 +V x( )"

 

! = ! / 2"
V x( ) = ns # n x( )

  

!! "
ns ! m
z ! t



 Photonic simulators of HMs (II)!
The Fock space: the space of states in QFT!

1! 2! 3! 4! 5! N!N-1!N-2!N-3!

. . .!

. . .!

Start from the single particle space of states H1.!
Suppose that the size of H1 is N (i.e. N basis vector states).!

. . .!

. . .!k!

k!

The k-th basis !
state of H1!

Single quantum !
of excitation!

e.g. !
A basis element !
of the Fock Space!
with Q = 11 quanta !

n1 n2 n3 n4 n5 nk nN !3 nN !2 nNnN !1| >, , , , ,  ... ,   ... , , , =
1
nk !

â†k( )nk
k
! 0

2 0 1 4 0 0 2 1 01| >, , , , ,  ... ,   ... , , ,

Two ingredients:!

â†
k nk = nk +1 nk +1With                                       the creation operator, and       the vacuum state.!0



(Bose-Hubbard Model)! (Fermi-Hubbard Model)!

Fermions:!Bosons:!

Within Fock Space representation, particle statistics determines the 
possible values of nk for each k :	



âkâl ! âl âk = 0

â†
kâl ! âl â

†
k = "k ,  l

nk = 0,1,... Q
âkâl + âl âk = 0

â†
kâl + âl â

†
k = !k ,  l

nk = 0,1

!(t) = cq (t)
q
" #q

Our photonic simulator put each Fock basis in correspondence with an 
individual optical waveguide of the photonic structure:!
à                                (Optical power along waveguide q) !

General state of the many-body quantum system!

Fock space basis set (indexed by q, i.e. a sequence of!
 ! !          single-particle quantum numbers) !

!q{ }

cq (t)
2
! Pq (t)

 Photonic simulators of HMs (III)!



! !

 Photonic simulators of HMs (IV)!
The simplest Hubbard model: electrons on 2-site lattice (double well)!

j = 1,2
! =",#

Single particle !
basis states !
(4 elements)!

j,!

1,! 1,!2,! 2,!

Fock Space :                                                        à 16 element basis!
!

n1!,n2!,n1",n2" with  nj! = 0,1

0 electrons!
1 electron!

Fock Space Sectors!

2 electrons!

4 electrons!
3 electrons!

1,0,1,0

0,1,0,1

1,1,0,0
0,0,1,1

0,1,1,0
1,0,0,1

2-electrons singlet basis states!

2-electrons triplet basis states!

mimicked by 2x2 !
square photonic lattice!

Site index!

1-particle Spin!

E.g.!



 Photonic simulators of HMs (V)!

ĤHM = !" â†1,#â2,# + â
†
2,#â1,# + â

†
1,$â2,$ + â

†
2,$â1,$%& '( +U n̂1,$n̂1,# + n̂2,$n̂2,#( )

Photonic analog of the 2 interacting electrons in a double well!

!1,1 = 1,0,1,0

!2,2 = 0,1,0,1
!2,1 = 0,1,1,0
!1,2 = 1,0,0,1!(t) = cn,m (t) "n,m

n,m=1

2

# ,  with:
 
i!
d !(t)
dt

= ĤHM !(t)

!n,m

i d
dt

c11

c12

c21

c22

=

U !" !" 0
!" 0 0 !"
!" 0 0 !"
0 !" !" U

 

c11

c12

c21

c22

x = n a	



y = m a	

 t	



1	

 2	



1	



2	



(projection)!

!21 = !12

!22 = !11 = !12 +U



 Photonic simulators of HMs (VI)!
Visualization of correlated tunneling (I)!

P(t) = ! (t) ! (0)
2
= cn,m

* (0)cn,m (t)
2

n,m=1

2

"

! (0) = 0,1,1,0 i.e.   c21(0) = 1,   c11(0) = c12 (0) = c22 (0) = 0

The Spin Imbalance between the sites:!

N12 (t) =
1
2
! (t) (n̂1," # n̂1,$ ) # (n̂2," # n̂2,$ ) ! (t)

The effect of particle interaction can be visualized in Fock Space by looking 
at the tunneling dynamics in the photonic symulator. !

The Return (survival) Probability:!

Initial condition (input light excitation):!

P(t) = c21(t)
2

N12 (t) = c21(t)
2
! c12 (t)

2

Fractional Power in the input waveguide!

Fractional Power imbalance between off-diagonal waveguides!

1	

 2	



1	



2	



t	



n	



m	


n = m	





 Photonic simulators of HMs (VII)!
Visualization of correlated tunneling dynamics (II)!

U /! = 5

U /! = 0.5

Analog of Two-Photon 
Rabi Oscillations!

2! 2

U
=! eff

Phys. Rev. B. 84, 033102 (2011)!



Paraxial and scalar optical wave equation!

!Kramers-Henneberger transformation (+ EIM)!

!Schrödinger equation for a particle of mass ns in an external driving force field!

Mimicking external fields in the photonic simulator!

x 

z 
y 

x 

z 
x0(z) 

Phys. Rev. E  67, 036601 (2003)!

x = x0 (z) equation of the optical axis!

 Photonic simulators of HMs (VIII)!



Yb:glass  
cavity-dumped oscillator 
(1040 nm, 400 fs pulses) 

fused silica 
glass 

µscope 
objective  

20X (0.45 NA)  

Folding  
Mirror 

3D Translation 
Stage 

Variable 
Attenuator 

Motion!
Controller!

Ø  Fuoresce at 650 nm under 633 nm illumination (living for few days)!
!
!

Ø  Writing parameters:!
Pulse Energy: 300 nJ!
Repetition Rate: 20 kHz!
Tuning writing speed: ~ 1-50 mm/s!
Focusing range: 500 µm!

J. Opt. A: Pure Appl. Opt. 11, 013001 (2009)!

Control of Refractive !
Index change!

 Photonic simulators of HMs (IX)!
Fabrication of photonic simulators: the fs-laser writing!

provided by experimental group of !
Dr. Roberto Osellame (IFN-CNR)!



 Fractional Bloch 
Oscillations!



 Fractional Bloch Oscillations (I)!
The Hubbard model for a 1D lattice with 2 electrons!

E /!

...same as for 1 electron !
on a 2D tight-binding lattice!
(band of "single-particle" Bloch states)!

Numerical simulations for L = 100 sites!
[W. S. Dias et al., Phys. Rev. B 76, 155124 (2007)]!

U /! = 0

U /! = 2

U /! = 4

U /! = 6

...a NEW BAND emerges from !
the "single-particle" Bloch band !

!
!
(band of "bound-particles", molecular, states)!

The particles behave as two !
individual un-correlated particles!

The particles behave as a!
composite particle: the DOUBLON!

(no external driving field)!

d(Ej ) = n ! m cn.m
( j )

n,m=1

L

" << 1

ĤHM = !" â†n,#ân+1,# + â
†
n+1,#ân,# + â

†
n,$ân+1,$ + â

†
n+1,$ân,$( )

n=1

L!1

% +U n̂n,$n̂n,#
n=1

L

%



 
i
dcn,m

dt
= !" cn+1,m + cn!1,m + cn,m+1 + cn,m!1( ) +U#n,mcn,m +  F a

!
(n + m)cn,m

 Fractional Bloch Oscillations (II)!
The photonic simulator of correlated Bloch Oscillations (I)!

ĤHM = !" â†n,#ân+1,# + â
†
n+1,#ân,# + â

†
n,$ân+1,$ + â

†
n+1,$ân,$( )

n=1

L!1

% +U n̂n,$n̂n,#
n=1

L

%

+ Fx̂ n̂n,! + n̂n,"( )
n=1

L

# Uniform static driving force (e.g.  F = eEel )!

Circular bending of the!
array in the plane of the!
main (n = m) diagonal!

 
R = nS

2F!

2D square array!
of waveguides with!

a defect line (detuning!
along the main diagonal)!

nS

nS + !n
nS + !n1

FY = !ns
d 2Y0 (t)
dt 2



 Fractional Bloch Oscillations (III)!
Engineering of the photonic simulator!

nS = 1.45

 
R = nS

2F!
" 21 cm

! = 980 nm

!n = 1"10#2

!n1 = 9.65 "10
#3

a = 8.6 µm

 ! ! 4 cm"1

 U = (!n " !n1) / ! " 4#

TB =
2!
Fa

= 2.25 cm

 F ! 3.2 !103  cm-2

Structure parameters:!

Excitation conditions (system preparation) :!
For coupled-mode equations simulations!

For paraxial wave equation photonic simulations!

Opt. Lett 36, 3248 (2011) !
Phys. Rev. B 86, 075143 (2012)!
!

n	



m	





 Fractional Bloch Oscillations (IV)!
Visualization of correlated Bloch oscillations!

s / TB	

 s / TB	



m0 = 0

s = 1 cm! s = 2 cm!s = 0 cm!

m0 = 0

s = 1 cm! s = 2 cm!s = 0 cm!
n0 = 0n0 = 10

s = 4 cm! s = 5 cm!s = 3 cm! s = 4 cm! s = 5 cm!s = 3 cm!

Bloch oscillations of a single particle!
in a 2D square lattice!

Bloch oscillations of the particle pairs!
à Doubling of the Bloch frequency!!

!B = Fa =  e Eela !B = Fa =  2e Eela



 Fractional Bloch Oscillations (V)!
Experiments in photonic lattices: Design!

Single-particle tunneling!

On-site particle interaction!

Direct tunneling of doublons!

NN particle interaction and!
Conditional single-particle tunneling!

hi
gh

er
-o

rd
er
!

 p
ro

ce
ss

es
!

fs-laser written!
15 x 15   2D!

curved!
waveguide array!
(Osellame's group!

@IFN-CNR Milano)!100 µm!



 Fractional Bloch Oscillations (VI)!
Experiments in photonic lattices: Results!

Nature Comm. 4, 1555 (2013)!

Two interacting particles! A single particle !

First experimental observation of fractional BOs!



 Dynamic Localization!
of Doublons and!

Coherent Destruction!
of Correlation!



 
i
dcn,m

dt
= !" cn+1,m + cn!1,m + cn,m+1 + cn,m!1( ) +U#n,mcn,m  +  

a
!
nFx (t) + mFy (t)$% &'  cn,m

ĤHM = !" â†n,#ân+1,# + â
†
n+1,#ân,# + â

†
n,$ân+1,$ + â

†
n+1,$ân,$( )

n=1

L!1

% +U n̂n,$n̂n,#
n=1

L

%

+ F(t)x̂ n̂n,! + n̂n,"( )
n=1

L

# Dynamic driving force [e.g.  F(t) = eEel (t)!

2D square array!
of waveguides with!

a defect line (detuning!
along the main diagonal)!

The AC-driven HM for a 1D lattice with 2 electrons!
Dynamic Localization of Doublons (I)!

Eel (t) = E0 cos(ωt)]!

Y0 =
2eE0
nS!

2

FY (t) = !nS
d 2Y0 (t)
dt 2

Y0 (t) = Y0 cos(!t)

nS

nS + !n
nS + !n1



0	



Energy!

4!

!4"

U
U + 4! e

Dynamic Localization of Doublons (II)!
The strong interaction limit of the undriven HM!

Band 1!

Band 2!

8!

4!e

In the limit of             the photonic lattice reduces to:!
- two semi-infinite 2D TB lattices for the single particle !
- a 1D TB lattice for the doublons with tunneling rate !!e = 2!

2 /U

 U !!

! /U = "
 ! /U ! "

 eE0a /U ! !
Multiple Scale!

Asymptotic Analysis!
(low frequency!

weak field driving)!

cn,m (t) = An (t)!n,m exp(i2" et) +O(#)

 
i dAn
dt

= !" e An!1 + An+1[ ] +  2e E0a/! cos(#t)nAn

Undriven lattice (straight optical axis)!

cn,m (0) = An (0)!n,m



Dynamic Localization of Doublons (III)!
Engineering of the photonic simulator!

 
i dAn
dt

= !" e An!1 + An+1[ ] +  2e E0a/! cos(#t)nAn
CMEs of a "single particle" of charge 2e in a 1D TB lattice with renormalized !
tunneling rate, driven by an AC electric field.!

Floquet theory: collapse of quasi-energies (i.e. DL) provided that: !

 
J0

2eE0a
!!

"
#$

%
&'
= 0   i.e.  2eE0a

!!
= 2nSa/!!Y0 " 2.405

n	



m	



nS = 1.522
! = 980 nm

!n = 1"10#2

!n1 = 9.05 "10
#3

a = 8.6 µm

 ! ! 3.9 cm"1

 U = (!n " !n1) / ! " 8#

 
Y0 =

2.405!
2anS!

" 48.4 µm

 ! !" ! 4.187 cm#1  
(i.e. T = 2! /" = 1.5 cm)



 Dynamic Localization of Doublons (IV)!
Visualization of correlated dynamic localization!

Discrete diffraction !
of doublons!

 P(t) ! J0 (! et)
2

Dynamic Localization !
of doublons!

Opt. Lett. 36, 4743 (2011)!

No driving!

Driving...!

Paraxial wave equation!
Coupled-mode equations!

(cm)!
1!0! 2! 3! 4! 5! 6!

1!0! 2! 3! 4! 5! 6!

R
ev

iv
al

 p
ro

ba
bi

lit
y 

P(
t)	



R
ev

iv
al

 p
ro

ba
bi

lit
y 

P(
t)	



t = 0.5 cm 

cm cm cm 

cn,m (t)
2

Insets show!

t = 1.5 cm t = 2.5 cm 

t = 0.5 cm t = 1.5 cm t = 2.5 cm 

cn,m (0) = !n,0!m,0



 Coherent Destruction of Correlation (I)!

 
i
dcn,m

dt
= !" cn+1,m + cn!1,m + cn,m+1 + cn,m!1( ) +U#n,mcn,m +  a

!
e 2E0 cos($t) (n + m)cn,m

! /U = "

 ! /U ! 1 / "
2

 eE0a /U ! 1 / !
2

Multiple Scale!

Asymptotic Analysis!

cn,m (t) = An,m (t)exp[!i(n + m)(eE0a /" )sin("t) ! iU#n,mt]

 
i
dAn,m

dt
= ! " J0 eE0a / !#( )  An+1,m + An!1,m + An,m+1 + An,m!1$% &'

We are interested in a different regime of strong interaction:!
à high-frequency and strong-field AC-driving!

 ! eff =! J0 (z )

CMEs of !
Homogeneous !
Straight Array!

The defect diagonal is made invisible. !
à Particle interaction (correlation) is dinamically cancelled!!

Let's consider again the AC-driven HM: !



Occupation!
probability!

!
for initial !
condition!

Discrete diffraction on !
1D diagonal sublattice!
Correlated tunneling!

!

Discrete Diffraction on!
the whole 2D lattice!

Single-particle (uncorrelated) tunneling!
!

 ! ! 3.9 cm"1

 U ! 25!

 
Y0 =

z  !
2anS!

" 7.6 µm
 ! ! 10 " ! 40 cm#1  

(z = 1.841)

 ! ! 3.9 cm"1

 U ! 25!

Y0 = 0
! = 0

! J0 z( )
U = 0

Y0 = 0
! = 0

2P Interaction!
1P tunneling!

AC driving!

cn,m (t = 3 cm)
2

cn,m (0) = !n,0!m,0

 Coherent Destruction of Correlation (II)!

Opt. Lett. 36, 4743 (2011)!



 Correlated-tunneling of 
Anyons and!

Correlated BOs of Anyons!



 Correlated-tunneling of Anyons (I)!
Anyons: what?!

Low-dimensional quasi-particles with non-trivial exchange statistic:!

Generalized 
Commutation !

Relations!
on a 1D lattice!

(for Abelian Anyons)!

! = 0

PSEUDOFERMIONS

l,k  : lattice site index

0,   for l = k
1,   for l > k

!1,   for l < k
!(l " k) =

: Statistical Exchange Phase!

! = "

BOSONS

! (B,A) =! (A,B)
! (B,A) = "! (A,B)
! (B,A) = exp(i")! (A,B)

Symmetric under exchange               Bosons 

Antisymmetric under exchange         Fermions 

More generally...                                Anyons (Abelian) 

The statistic is site-dependent.!
Regardless θ, two anyons on the same site behave as bosons.!



 Correlated-tunneling of Anyons (II)!
2-anyons dynamics on a 1D lattice!

anyon-Hubbard!
Hamiltonian!

Fock space representation!

(CMEs for Anyons on a 1D Lattice)!

Note the presence of a site-dependent phase factor in the coupling rate 
due to the statistical exchange phase θ.	


 !



 Correlated-tunneling of Anyons (III)!
Photonic realization of anyonic tunneling on a lattice!

 
i
dcn,m
dt

= !" cn+1,m + cn!1,m + cn,m+1 + cn,m!1( ) + #n,mcn,m +
nsa
!

n
d 2x0
dt 2

+ m
d 2y0
dt 2

$

%&
'

()
cn,m

x0 (t) = Acos(!t)
y0 (t) = Acos(!t +")

 !n,m !
!0 , for m " n +1
!0 +" +U, for m = n
!0 + 2" , for m # n +1

Helical optical axis!



 Correlated-tunneling of Anyons (IV)!

i
dan,m
dt

= !J an+1,m + an!1,m + an,m!1 exp !i"n,m!1( ) + an,m+1 exp i"n,m( ){ }

J0 (!) = JM (!)

! ," >>#   (High Frequency Modulation Limit)
U = 0        (No interaction)
! = M"

J =! J0 (")  (Renormalized coupling)
!n,m = "M# $n,m + $n,m+1( ) ! = M"

Resonance Conditions

Precisely the CMEs of the anyon-Hubbard Hamiltonian, with:!
!
!

The exchange statistic phase θ   can be controlled by the driving parameter φ,	


i.e. by ellipticity of the helix! !
!

Design of the photonic simulator (I)!

 
i
dcn,m
dt

= !" cn+1,m + cn!1,m + cn,m+1 + cn,m!1( ) + #n,mcn,m +
nsa
!

n
d 2x0
dt 2

+ m
d 2y0
dt 2

$

%&
'

()
cn,m

 ! = nsaA" / !



 Correlated-tunneling of Anyons (V)!

! = " / 2

nS = 1.45
! = 633 nm

!n = 0.001
a = 12 µm

! = 1.5 cm-1

 J =! J0 (") ! 0.5 cm-1

 (! ! 1.84)

Design of the photonic simulator (II)!

 ! = 30J ! 15 cm-1

 ! = M" = 2" ! 30 cm-1
 (T ! 0.42 cm)

 !n1 = !n +" / ! " 0.00105

! = 0
! = " / 2 ! = "

! = 0 ! = " / 4 ! = " / 2

(Bosons)! (Pseudofermions)!

Pr (t) = c0,0 (t)
2

P2 (t) = cn,n (t)
2

n
!

Initial condition (input light excitation):!

Revival Probability!

Joint Probability to find both particles at the same site!

cn,m (0) = !n,0!m,0



 Correlated-tunneling of Anyons (VI)!
Visualization of correlated-tunneling of non interacting Anyons!

(θ = 0)!

(θ = π/2)!

(θ = π)!
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Opt. Lett. 37, 2160 (2012)!



 Correlated-BOs of Anyons (I)!
For non-interacting anyons, correlated BOs are generally degraded, but not always...!

Only Bosons exhibit BOs (uncorrelated)! Pseudofermions exhibit correlated BOs !
at half the frequency of uncorrelated BOs!

! = 0

! = " / 12

! = " / 6

! = " / 2

! = "

! = 0

! = " / 2

! = "

! = 0

! = " / 12

! = " / 6

! = " / 2

! = "

! = 0

! = " / 2

! = "

F /J = 1 F /J = 0.3Strong driving! Weak driving!



For non-interacting Pseudofermions, the ratio F/ J decides the existence of  BOs!	


!
!

In the strong interaction regime, BOs turn out to be insensitive to statistics !
à doubling of the BO frequency (as for 2 fermions or 2 bosons) regardless θ	


!

Bosons!

WS ladder!
NO!

WS ladder!

F / J = 1F / J = 0.3

Pseudofermions!

WS ladder! WS ladder!F /J = 0.60

F /J = 0.55

F /J = 0.50

F /J = 0.30

 Correlated-BOs of Anyons (II)!

Phys.Rev. B 85, 165144 (2012)!

(F
)!



 Conclusions and 
Developments!



 Conclusions!
1.  Theoretical investigation of the dynamics of few strongly 

interacting particles in one dimensional lattices under 
coherent driving with external (DC and or AC) fields: 
prediction of new physical features !

2.  Design and realization of classical simulators of few 
interacting particles based on optical waveguide arrays 
fabricated by fs-laser writing: !
¶ a fundamental drawback on scalability... !
!      - 2 particles on a 1D lattice, or many particles in a DW, ok!
!       - More than 2 particles on a lattice? NO!

      ¶ but also important advantages...!
!     - classical simulators of individual quantum systems in extremely!
!        low density (2 quanta) [challenging for quantum simulators]!

             - direct access to Fock space allows ease of system preparation !
!      - optical phenomena can easily embed loss and gain, allowing!
!        simulation of correlated phenomena of non-Hermitian HMs!



 Developments!
 !Theoretical study of novel quantum phenomena of !
!correlated particles, in driven one-dimensional systems:!

!

!- Correlated super-Bloch oscillations (under DC+AC driving fields)!
   (Phys. Rev. B 86, 075143, 2012)!
!

- Many-particle quantum decay and trapping: The role of statistics and !
   Fano resonances (Phys. Rev. A 86, 012112, 2012, and an experimental!
   paper is in preparation, in collaboration with Osellame's group....)!
!

- Quantum transport in bipartite lattices via Landau-Zener tunneling!
   (Phys. Rev. A 86, 043633, 2012)!
!

- Existence of low-energy doublons in ac-driven anisotropic HMs!
   (Phys. Rev. A 87, 013634, 2013)!
!

- Field-induced ferromagnetism (under next-nearest neighbor tunneling) !
   (Europhys. Lett. 101, 67006, 2013) !
!

- Tamm-Hubbard surface states embedded in the continuum!
   (J. Phys.: Condens. Matter 25, 235601, 2013) !
!

- "Klein tunneling" of correlated particles (beyond on-site interaction)!
   (Eur. Phys. J. B 2013 in press) !
!
!
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for!

Your Attention!



 Field-induced ferromagnetism!

Europhys. Lett. 101, 67006 (2013)!

Nearest-neighbor and next-nearest-neighbor single particle tunneling:!
the (static) κ1-κ2 Hubbard Model!

Ferromagnetic ordering iif - κ2 / κ1 > r ~ 0.25 !
(i.e. fundamental state with saturated Spin)!
[see Pieri et al. Phys. Rev. B 54, 9250 (1996)]!

the driven κ1-κ2 Hubbard Model!
Ferromagnetic ordering for any value of κ1 and κ2!
under (relatively) high frequency driving (i.e. ω / κ1 > 1) !
and proper value of the ratio E0 / ω !

Analytical proof is provided for any particle density (below half filling)!
in a one-dimensional tight-binding lattice!



Tamm-Hubbard states in the continuum!

J. Phys.: Condens. Matter 25, 235601 (2013)!

Static semi-infinite 1D TB lattice with an impurity at the edge!
Fock space representation for the two-interacting bosons (a 2D lattice)!

n	



Thresholdless!
doublonic BIC!

Hybrid BIC!



 Klein tunneling of correlated particles!

Two minibands for doublons!

On-site and nearest-neighbor particle interaction + Potential Step!

Eur. Phys. J. B 2013 (in press)!
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Quantum Field Theory (QFT) do not consider "particles" but 
"quanta":!
- Particles can be labeled (and thus exchanged).!
- Quanta are entities that can be "aggregated" but not labeled.!

Ex. A, B are two labels for particles.!
The states of particle A à 1-particle Hilbert space H1(A)  !
The states of particle B à 1-particle Hilbert space H1(B)!
The states of particles A and B à H(A,B) = H1(A)    H1(B) ? NO!!
In H1(A)    H1(B) are symmetric, anti-symmetric, and non-symmetric states!!
for Bosons :                                 (symmetric under exchange) 
for Fermions :                               (anti-symmetric under exchange) 
Solution 1: In the "particle view" we have to "manually" exclude the 
unphysical states lacking the proper exchange symmetry.!
Solution 2: In the "quanta view" we refuse the physical meaning of particle 
labelling (so we miss the identity of particles) and build up the Fock Space !
!

! (B,A) =! (A,B)
! (B,A) = "! (A,B)

 The Hubbard Model!
The space of states in many-body quantum physics!

!

!



0!

 Correlated-tunneling in a Double Well!
A photonic analog of the toy-model of Mott transition!
Particle density n = Q / L = 1  à  so-called half-filled system!
	

 Energy!

0! 5! 10!

~U  Gap	


  (Mott-Hubbard)	
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A large energy gap is established between collective eigenstates with single 
site occupacy and collective eigenstates with double site occupacy !
à  NO charge transport by nearest-neighbor hopping à INSULATOR!



 Correlated-tunneling of Anyons!
Anyons: why?!
- Anyons have been theoretically proposed more than 30 year ago.!
  J. Leinaas and J. Myrheim, Nuovo Cimento B 37, 1 (1977). !
  F. Wilczek, Phys. Rev. Lett. 49, 957 (1982).!
 !
- Anyons are invoked in the theoretical modelling of 2D systems.!
  E.g.: Fractional quantum Hall effect (discovered in 1982)!
   D. Arovas, J. R. Schrieffer, F. Wilczek, Phys. Rev. Lett. 53, 722 (1984).!
!
- The experimental evidence of anyons is controversial.!
!
- Very recent proposal to create anyons in 1D lattices by atom optics:!
   C. Vitoriano et al., Phys. Rev. Lett. 102, 146404 (2009).!
   T. Keilman et al., Nat. Commun. 2, 361 (2011).!
!
- Anyon physics is mostly unexplored even on the theoretical side.!
!
- Anyons are particularly interesting with respect to correlation: !
  à correlated-tunneling  even  in  the absence of interaction! !



 Correlated-tunneling of Anyons!

 
i
dcn,m
dt

= !" cn+1,m + cn!1,m + cn,m+1 + cn,m!1( ) + #n,mcn,m +
nsa
!

n
d 2x0
dt 2

+ m
d 2y0
dt 2

$

%&
'

()
cn,m

Phase transformation:!
 
an,m = cn,m exp i!n,mt + i

nsa
!

n
dx0
dt

+ m
dy0
dt

"
#$

%
&'

(

)
*

+

,
-

i
dan,m
dt

= !" an+1,m exp !i#n,m (t)$% &' + an!1,m exp i#n!1,m (t)$% &' + an,m+1 exp !i(n,m (t)$% &' + an,m!1 exp i(n,m!1(t)$% &'{ }

 
!n,m (t) =

nsa
!
dx0
dt

+ "n+1,m # "n,m( )t = # nsaA$
!

sin($t) + "n+1,m # "n,m( )t

 
!n,m (t) =

nsa
!
dy0
dt

+ "n,m+1 # "n,m( )t = # nsaA$
!

sin($t + %) + "n,m+1 # "n,m( )t
Averaging of the exponential factors in the high frequency modulation limit              
under resonance condition σ = Mω  (with M an even integer).!
!
e.g.:! exp !i"n,m (t)#$ %& = lim

T'(

1
T

exp !i"n,m (t)#$ %&dt
0

T

) =
J0 (*), for n + m,  m -1
JM (*), otherwise          

,
-
.

/.

More details on the design of the photonic simulator !

 (! !" ,U )

= !



 Developments!
1.  Theoretical study of novel quantum phenomena of correlated 

particles, in driven one-dimensional systems:!
- Correlated super-Bloch oscillations (under DC+AC driving fields)!
   (Phys. Rev. B 86, 075143, 2012)!
- Many-particle quantum decay and trapping: The role of statistics and !
   Fano resonances (Phys. Rev. A 86, 012112, 2012, and an experimental!
   paper is in preparation....)!
- Coherent destruction of tunneling of two interacting bosons in a tight-!
    binding lattice (Phys. Rev. A 86, 042104, 2012)!
- Quantum transport in bipartite lattices via Landau-Zener tunneling!
   (Phys. Rev. A 86, 043633, 2012)!
- Existence of low-energy doublons in ac-driven anisotropic HMs!
   (Phys. Rev. A 87, 013634, 2013) !
!

2.  Design and realization of photonic simulators for extended 
HMs to visualize at a classical level quantum effects never 
observed so far in a truly quantum system: e.g. super-Bloch 
oscillations, Block-Zehner oscillations, PT-symmetric HMs....!


