Dynamics of high-energy excitations in few-particle Hubbard models

Giuseppe Della Valle and Stefano Longhi

Nonlinear Schrödinger Equation: Theory and Applications
Heraklion, May 20-24, 2013

Motivations (I)

1. The physics of interacting quantum systems is extremely broad, and stems at the heart of many hot topics in research.
In the strong interaction regime, quantum transport becomes dominated by correlated tunneling, with dramatic deviations from single-particle tunneling...
\rightarrow macroscopic effects:

- metal-insulator (Mott) transition,
- superconductivity,
- ferromagnetism and anti-ferromagnetism,
- etc...

The study (and control) of the dynamics of few interacting particles in the presence of coherent driving with external fields and investigation of the role of particle statistics in correlated tunneling phenomena

Motivations (II)

2. Quantum phenomena can be simulated in other physical contexts, by exploiting fundamental analogies between different fields. E.g.:

- cold atoms in optical lattices (quantum simulators) [see e.g. Nature Phys. 8, 267-276 (2012)]
- optical waveguide arrays (classical simulators) [see e.g. Laser \& Photon. Rev., 1-19 (2008)]

> The proposal and realization of photonic structures mimicking low-dimensional Hubbard Models of few strongly-interacting particles to visualize in Fock space many-body quantum phenomena never observed in truly quantum systems

Outline

1. Introduction: What connection with the NLSE?
2. Photonic simulators of correlated particles
3. Fractional Bloch Oscillations
4. Dynamic Localization of "Doublons" and Coherent Destruction of Correlation
5. Correlated-tunneling of Anyons and Correlated Bloch Oscillations of Anyons
6. Conclusions and Developments

Introduction:

(What connection with the NLSE?)

Introduction (I)

The Nonlinear Schrödinger Equation (NLSE) is a universal model equation, encountered in different contexts.

Within many-particle physics, the NLSE can be derived from the the Many-Body Schrödinger Equation (MBSE):

$$
i \hbar \frac{\partial}{\partial t} \hat{\Psi}=[\hat{\Psi}, \hat{H}] \text { with } \hat{H}=\hat{H}_{0}+\hat{H}_{\mathrm{int}}
$$

where

$$
\begin{aligned}
& \hat{H}_{0}=\int d r \hat{\Psi}^{\dagger}(\mathrm{r})\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\mathrm{r})\right] \hat{\Psi}(\mathrm{r}) \\
& \hat{H}_{\text {int }}=\frac{1}{2} \int d r \int d r^{\prime} \hat{\Psi}^{\dagger}(\mathrm{r}) \hat{\Psi}^{\dagger}\left(r^{\prime}\right) V_{\text {int }}\left(r-r^{\prime}\right) \hat{\Psi}\left(r^{\prime}\right) \hat{\Psi}(r)
\end{aligned}
$$

and $\hat{\Psi}=\hat{\Psi}(\mathrm{r}, t)$ is the particle field operator, obeying commutation (anti-commutation) relation for bosens (fermions).

Introduction (II)

For a cold and dilute gas of bosons, under a semiclassical approximation (Bogoliubov prescription)

$$
\begin{aligned}
& \hat{\Psi}(\mathbf{r}, t)=\Phi(\mathbf{r}, t)+\hat{\zeta}(\mathbf{r}, t) \\
& \langle\hat{\zeta}\rangle=\langle\hat{\zeta} \hat{\zeta}\rangle=\left\langle\hat{\zeta}^{\dagger} \hat{\zeta}\right\rangle=\left\langle\hat{\zeta}^{\dagger} \hat{\zeta} \hat{\zeta}\right\rangle=0 \\
& \Phi(\mathbf{r}, t) \equiv\langle\hat{\Psi}(\mathbf{r}, t)\rangle \\
& \text { condensate mean field }
\end{aligned}
$$

the MBSE becomes the Gross-Pitaevskii equation (i.e. NLSE):

$$
i \hbar \frac{\partial}{\partial t} \Phi(\mathbf{r}, t)=\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{r})+g|\Phi(\mathbf{r}, t)|^{2}\right] \Phi(\mathbf{r}, t)
$$

Introduction (III)

In a lattice, a truncation of the MBSE without any semiclassical approximations, gives rise to another universal model: the Hubbar Model (HM).
The essence of the derivation:

1. Expansion of the particle field in Wannier States

$$
\hat{\Psi}(\mathrm{r})=\sum_{j, \sigma, b} \hat{a}_{j, \sigma, b} w_{b}\left(\mathrm{r}-\mathrm{r}_{j}\right)
$$

j : lattice site index
σ : single-particle spin quantum number $\left(m_{z}\right)$
b : single-particle lattice band index
$w_{b}\left(\mathrm{r}-\mathrm{r}_{\mathrm{j}}\right)$: j-th Wannier state in the b-band
$\hat{a}_{j, \sigma, b} / \hat{a}_{j, \sigma, b}^{\dagger} / \hat{n}_{j, \sigma, b}:$ annihilation / creation / number operators for 1 particle of spin σ at site j in band b
2. Particle interaction untill a given lattice neighbor and within a given sub-set of bands...(i.e. "truncation")

Introduction (IV)

The simplest (most popular) version of the HM:
1D single-band nearest-neighbor uniform tight-binding lattice
 Hopping (Tunneling) at nearest neighbors

On-site particle Interaction
(e.g. Coulomb repulsion)

Introduction (V)

The ("usual") Hubbard Hamiltonian

$$
\begin{aligned}
& \hat{H}_{H M}=\hat{H}_{H O P}+\hat{H}_{I N T}+\hat{H}_{E X T} \\
& \hat{H}_{\text {HoP }}=\sum_{j} \sum_{\sigma}-\left(\hat{a}_{j, \sigma}^{\dagger} \hat{a}_{j+1, \sigma}+\hat{a}_{j+1, \sigma}^{\dagger} \hat{a}_{j, \sigma}\right) \text { Hopping } \\
& \hat{H}_{\text {NT }}=\sum_{j} \prod_{\sigma} \hat{n}_{j, \sigma} \quad \text { internal interaction } \\
& \hat{H}_{E X T}=\sum_{j, \sigma} \hat{n}_{j, \sigma} \\
& \text { External Interaction } \\
& =\int_{-\infty}^{+\infty} d x w(x)\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V_{\text {LATTICE }}(x)\right] w(x-a) \\
& =g \int_{-\infty}^{+\infty} d x|w(x)|^{4} \\
& =\int_{-\infty}^{+\infty} d x V_{B X T}(x)|w(x-j a)|^{2} \simeq V_{E X T}(j a) \\
& \text { Integrals } \\
& \text { involving } \\
& \text { single-particle } \\
& \text { Wannier } \\
& \text { States }
\end{aligned}
$$

Introduction (VI)

In a lattice...
$\hat{H}_{N L S E}=\hat{H}_{L A T}+\hat{H}_{N L}+\hat{H}_{E X T}$
Semiclassical approximation for a bosonic condensate of many interacting particles

$$
\begin{aligned}
& \hat{H}_{L A T}=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V_{L A T}(x) \\
& \hat{H}_{N L}=|\Phi(x, t)|^{2} \quad \begin{array}{l}
\text { Nonlinearity } \\
\text { due to interaction }
\end{array} \\
& \hat{H}_{E X T}=V_{E X T}(x)
\end{aligned}
$$

Fully quantum description of few interacting particles (bosons, fermions, anyons)

$$
\begin{aligned}
& \hat{H}_{H O P}=\sum_{j} \sum_{\sigma}-\left(\hat{a}_{j, \sigma}^{\dagger} \hat{a}_{j+1, \sigma}+\hat{a}_{j+1, \sigma}^{\dagger} \hat{a}_{j, \sigma}\right) \\
& \hat{H}_{I N T}=U \sum_{j} \prod_{\sigma} \hat{n}_{j, \sigma} \quad \begin{array}{l}
\text { "Nonlinearity" } \\
\text { due to interaction }
\end{array} \\
& \hat{H}_{E X T}=\sum_{j, \sigma} \hat{n}_{j, \sigma}
\end{aligned}
$$

- possibly over-simplified, but very reach and interesting
- typically very difficult to solve! (very few 1D problems allow analytical solution, and in higher dimensions even numerical approach is challening)

Photonic simulators of Hubbard Models

Photonic simulators of HMs (I)

The Quantum-Optical analogy (well known analogy)

2-D Electric field distribution in a guiding structure propagating in z direction
$E(x, z, t)=\psi(x, z) e^{i k_{0} n_{s} z} e^{-i \omega t}$
...obeys Paraxial Wave Equation:
$i \lambda \frac{\partial \psi}{\partial z}=-\frac{\lambda^{2}}{2 n_{s}} \frac{\partial^{2} \psi}{\partial x^{2}}+V(x) \psi$
being... $\left\{\begin{array}{l}\lambda=\lambda / 2 \pi \\ V(x)=n_{s}-n(x)\end{array}\right.$

Light

$$
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}+V(x) \psi
$$

Schrödinger equation

See e.g. D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424, 817 (2003) and S. Longhi, Laser Photon. Rev. 3, 243 (2009).

Photonic simulators of HMs (II)

The Fock space: the space of states in QFT
Start from the single particle space of states H_{1}.
Suppose that the size of H_{1} is N (i.e. N basis vector states).
Two ingredients:

Single quantum of excitation

e.g.

A basis element of the Fock Space with $=11$ quanta
$\mid 2,0,1,4, \ldots, \ldots, 2,0, \%, \geqslant$
$\left|n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, \ldots n_{k}, \ldots n_{N-3}, n_{N-2}, n_{N-1}, n_{N}\right\rangle=\prod_{k} \frac{1}{\sqrt{n_{k}!}}\left(\hat{a}_{k}^{\dagger}\right)^{n_{N}}|\theta\rangle$
With $\hat{a}_{k}^{\dagger}\left|n_{k}\right\rangle=\sqrt{n_{k}+1}\left|n_{k}+1\right\rangle$ the creation operator, and $|0\rangle$ the vacuum state.

Photonic simulators of HMs (III)

Within Fock Space representation, particle statistics determines the possible values of n_{k} for each k :

Bosons: $n_{k}=0,1, \ldots Q$

$$
\begin{aligned}
& \hat{a}_{k} \hat{a}_{l}-\hat{a}_{l} \hat{a}_{k}=0 \\
& \hat{a}_{k}^{\dagger} \hat{a}_{l}-\hat{a}_{l} \hat{a}_{k}^{\dagger}=\delta_{k, l}
\end{aligned}
$$

(Bose-Hubbard Model)
$\left\{\left|\Phi_{q}\right\rangle\right\}$
Fock space basis set (indexed by q, i.e. a sequence of single-particle quantum numbers)

$$
|\Psi(t)\rangle=\sum_{q} c_{q}(t)\left|\Phi_{q}\right\rangle
$$

Our photonic simulator put each Fock basis in correspondence with an individual optical waveguide of the photonic structure:
$\rightarrow\left|c_{q}(t)\right|^{2} \leftrightarrow P_{q}(t) \quad$ (Optical power along waveguide q)

Photonic simulators of HMs (IV)

The simplest Hubbard model: electrons on 2-site lattice (double well)

Site index $j=1,2$ 1 -particle Spin $\sigma=\downarrow, \uparrow$

Single particle basis states (4 elements)

Fock Space : $\left|n_{1 \downarrow}, n_{2 \downarrow}, n_{1 \uparrow}, n_{2 \uparrow}\right\rangle$ with $n_{j \sigma}=0,1 \rightarrow 16$ element basis

Fock Space Sectors

0 electrons
$\square 1$ electron
$\square 2$ electrons
$\square 3$ electrons
$\square 4$ electrons

$$
\left.\begin{array}{l}
|1,1,0,0\rangle\rangle-2 \text {-electrons triplet basis states } \\
|0,0,1,1\rangle \\
|1,0,1,0\rangle \\
|1,0,0,1\rangle \\
|0,1,1,0\rangle \\
|0,1,0,1\rangle
\end{array}\right] \xrightarrow{2}-2 \text { electrons singlet basis states }
$$

Photonic simulators of HMs (V)

Photonic analog of the 2 interacting electrons in a double well
$\hat{H}_{H M}=-\kappa\left[\hat{a}_{1, \downarrow}^{\dagger} \hat{a}_{2, \downarrow}+\hat{a}_{2, \downarrow}^{\dagger} \hat{a}_{1, \downarrow}+\hat{a}_{1, \uparrow}^{\dagger} \hat{a}_{2, \uparrow}+\hat{a}_{2, \uparrow}^{\dagger} \hat{a}_{1, \uparrow}\right]+U\left(\hat{n}_{1, \uparrow} \hat{n}_{1, \downarrow}+\hat{n}_{2, \uparrow} \hat{n}_{2, \downarrow}\right)$

Photonic simulators of HMs (VI)

Visualization of correlated tunneling (I)

The effect of particle interaction can be visualized in Fock Space by looking at the tunneling dynamics in the photonic symulator.
The Return (survival) Probability:

$$
P(t)=\mid\left.\langle\psi(t)| \psi(0)\right|^{2}=\sum_{n, m=1}^{2}\left|c_{n, m}^{*}(0) c_{n, m}(t)\right|^{2}
$$

The Spin Imbalance between the sites:

$$
N_{12}(t)=\frac{1}{2}\langle\psi(t)|\left(\hat{n}_{1, \hat{1}}-\hat{n}_{1, \downarrow}\right)-\left(\hat{n}_{2, \uparrow}-\hat{n}_{2, \downarrow}\right)|\psi(t)\rangle
$$

y Initial condition (input light excitation): $|\psi(0)\rangle=|0,1,1,0\rangle$ i.e. $\quad c_{21}(0)=1, c_{11}(0)=c_{12}(0)=c_{22}(0)=0$ $P(t)=\left|c_{21}(t)\right|^{2} \quad$ Fractional Power in the input waveguide $N_{12}(t)=\left|c_{21}(t)\right|^{2}-\left|c_{12}(t)\right|^{2}$ Fractional Power imbalance between off-diagonal waveguides

Photonic simulators of HMs (VII)

Visualization of correlated tunneling dynamics (II)

$$
U / K=0.5
$$

$U / \kappa=5$
$\frac{2 \kappa^{2}}{U}=K_{e f f}$

Analog of Two-Photon Rabi Oscillations

Phys. Rev. B. 84, 033102 (2011)

Photonic simulators of HMs (VIII)

Mimicking external fields in the photonic simulator

Paraxial and scalar optical wave equation

$$
\begin{gathered}
i \lambda \frac{\partial \psi}{\partial z}=-\frac{\lambda^{2}}{2 n_{s}} \nabla_{x, y}^{2} \psi+V\left(x-x_{0}(z), y\right) \psi \\
x=x_{0}(z) \text { equation of the optical axis }
\end{gathered}
$$

Kramers-Henneberger transformation (+ EIM)

$$
\begin{aligned}
& x^{\prime}=x-x_{0}(z), \quad z^{\prime}=z \\
& \phi\left(x^{\prime}, z^{\prime}\right)=\psi\left(x^{\prime}, z^{\prime}\right) \exp \left[-i \frac{n_{s}}{\lambda} \dot{x}_{0} x^{\prime}-i \frac{n_{s}}{2 \lambda} \int_{0}^{z^{\prime}} d \xi \dot{x}_{0}^{2}(\xi)\right]
\end{aligned}
$$

Schrödinger equation for a particle of mass n_{s} in an external driving force field

$$
i \lambda \frac{\partial \phi}{\partial z^{\prime}}=-\frac{\lambda^{2}}{2 n_{s}} \frac{\partial^{2} \phi}{\partial x^{\prime 2}}+V_{e}\left(x^{\prime}\right) \phi-F x^{\prime} \phi \equiv \mathcal{H}_{0} \phi-F x^{\prime} \phi
$$

$$
F\left(z^{\prime}\right)=-n_{s} \ddot{x}_{0}\left(z^{\prime}\right)
$$

Photonic simulators of HMs (IX)

Fabrication of photonic simulators: the fs-laser writing

> Fuoresce at 650 nm under 633 nm illumination (living for few days)
$>$ Writing parameters: $\left\{\begin{array}{l}\text { Pulse Energy: } 300 \mathrm{~nJ} \\ \text { Repetition Rate: } 20 \mathrm{kHz} \\ \text { Tuning writing speed: } \sim \sim-50 \mathrm{~mm} / \mathrm{s} \\ \text { Focusing range: } 500 \mu \mathrm{~m}\end{array}\right.$
J. Opt. A: Pure Appl. Opt. 11, 013001 (2009)
provided by experimental group of Dr. Roberto Osellame (IFN-CNR)

Fractional Bloch Oscillations

Fractional Bloch Oscillations (I)

The Hubbard model for a 1D lattice with 2 electrons

$$
\hat{H}_{H M}=-\kappa \sum_{n=1}^{L-1}\left(\hat{a}_{n, \downarrow}^{\dagger} \hat{a}_{n+1, \downarrow}+\hat{a}_{n+1, \downarrow}^{\dagger} \hat{a}_{n, \downarrow}+\hat{a}_{n, \uparrow}^{\dagger} \hat{a}_{n+1, \uparrow}+\hat{a}_{n+1, \uparrow}^{\dagger} \hat{a}_{n, \hat{\uparrow}}\right)+U \sum_{n=1}^{L} \hat{n}_{n, \uparrow} \hat{n}_{n, \downarrow}
$$

(no external driving field)

...same as for 1 electron
on a 2D tight-binding lattice
(band of "single-particle" Bloch states)
\longrightarrow The particles behave as two individual un-correlated particles
4. NEW NAND emergesniges
the vingle-particle" Bleg.
$d\left(E_{j}\right)=\sum_{n, m=1}^{L}|n-m|\left|c_{n, m}^{(j)}\right| \ll 1$
(band of "bound-particles", molecular, states)

Numerical simulations for $L=100$ sites
[W. S. Dias et al., Phys. Rev. B 76, 155124 (2007)]

Fractional Bloch Oscillations (II)

The photonic simulator of correlated Bloch Oscillations (I)
$\hat{H}_{H M}=-\kappa \sum_{n=1}^{L-1}\left(\hat{a}_{n, \downarrow}^{\dagger} \hat{a}_{n+1,6}+\hat{a}_{n+1,6}^{\dagger} \hat{a}_{n, \downarrow}+\hat{a}_{n, t}^{\dagger} \hat{a}_{n+1, \uparrow}+\hat{a}_{n+1,1}^{t} \hat{a}_{n, \hat{t}}\right)+U \sum_{n=1}^{L} \hat{n}_{n, t} \hat{n}_{n, \downarrow}$
$+\sum_{n=1}^{L} F \hat{x}\left(\hat{n}_{n, 1}+\hat{n}_{n, t}\right)<$ Uniform static driving force (e.g. $\left.F=e E_{e l}\right)$
$\xrightarrow[\square]{\square}$

2D square array
of waveguides with a defect line (detuning along the main diagonal)

$$
\begin{aligned}
& n_{S}+\Delta n \\
& n_{S}+\Delta n_{1} \\
& n_{S}
\end{aligned}
$$

$$
\begin{aligned}
& F_{Y}=-n_{s} \frac{d^{2} Y_{0}(t)}{d t^{2}} \\
& \text { Iding of the } \\
& \text { olane of the }
\end{aligned}
$$

$$
\text { main }(n=m) \text { diagonal }
$$

$$
R=\frac{n_{s}}{\sqrt{2 F \lambda}}
$$

Fractional Bloch Oscillations (III)

Engineering of the photonic simulator
Structure parameters:

$$
\left.\begin{array}{rl}
\lambda & =980 \mathrm{~nm} \\
n_{S} & =1.45 \\
\Delta n & =1 \times 10^{-2} \\
\Delta n_{1} & =9.65 \times 10^{-3} \\
a & =8.6 \mu \mathrm{~m}
\end{array}\right] \begin{aligned}
& K \simeq 4 \mathrm{~cm}^{-1} \\
& U=\left(\Delta n-\Delta n_{1}\right) / \lambda \simeq 4 \kappa
\end{aligned} \quad \begin{aligned}
& T_{B}=\frac{2 \pi}{F a}=2.25 \mathrm{~cm} \\
& F \simeq 3.2 \times 10^{3} \mathrm{~cm}^{-2} \\
& R=\frac{n_{S}}{\sqrt{2} F \lambda} \simeq 21 \mathrm{~cm}
\end{aligned}
$$

Excitation conditions (system preparation) :
For coupled-mode equations simulations
$c_{n, m}(t=0)=Z \exp \left[-\left(n-n_{0}\right)^{2} / w^{2}-\left(m-m_{0}\right)^{2} / w^{2}\right]$
For paraxial wave equation photonic simulations

$$
\phi(x, y, 0)=\exp \left[-\left(x-n_{0} a\right)^{2} /(w a)^{2}-\left(y-m_{0} a\right)^{2} /(w a)^{2}\right]
$$

Fractional Bloch Oscillations (IV)

Visualization of correlated Bloch oscillations

Bloch oscillations of a single particle in a 2D square lattice
$\omega_{B}=F a=\varnothing E_{e l} a$

Bloch oscillations of the
\rightarrow ?
$\omega_{B}=F a=2 e E_{e l} a$

Fractional Bloch Oscillations (V)

Experiments in photonic lattices: Design

Single-particle tunneling
\qquad On-site particle interaction

higher-order

processes
NN particle interaction and Conditional single-particle tunneling

Direct tunneling of doublons

a

b

fs-laser written
$15 \times 152 \mathrm{D}$ curved
waveguide array
(Osellame's group
@IFN-CNR Milano)

Fractional Bloch Oscillations (VI)

Experiments in photonic lattices: Results

Two interacting particles
A single particle

Nature Comm. 4, 1555 (2013) First experimental observation of fractional BOs

Dynamic Localization of Doublons and

Coherent Destruction of Correlation

Dynamic Localization of Doublons (I)

The AC-driven HM for a 1D lattice with 2 electrons

$$
\begin{aligned}
& \hat{H}_{H M}=-\kappa \sum_{n=1}^{L-1}\left(\hat{a}_{n, \downarrow}^{\dagger} \hat{a}_{n+1, \downarrow}+\hat{a}_{n+1, \downarrow}^{\dagger} \hat{a}_{n, \downarrow}+\hat{a}_{n, \uparrow}^{\dagger} \hat{a}_{n+1, \uparrow}+\hat{a}_{n+1, \uparrow}^{\dagger} \hat{a}_{n, \uparrow}\right)+U \sum_{n=1}^{L} \hat{n}_{n, \uparrow} \hat{n}_{n, \downarrow} \\
& +\sum_{n=1}^{L} F() \hat{x}\left(\hat{n}_{n, \uparrow}+\hat{n}_{n, \downarrow}\right) \\
& \text { Dynamic driving force [e.g. } F(t)=e E_{e l}(t) \\
& \left.E_{e l}(t)=E_{0} \cos (\omega t)\right] \\
& \forall i \frac{d c_{n, m}}{d t}=-\kappa\left(c_{n+1, m}+c_{n-1, m}+c_{n, m+1}+c_{n, m-1}\right)+U \delta_{n, m} c_{n, m}+\frac{\Gamma}{\lambda}\left[n F_{x}(t)+m F_{y}(t)\right] c_{n, m} \\
& \text { 2D square array } \\
& \text { of waveguides with } \\
& \text { a defect line (detuning } \\
& \text { along the main diagonal) } \\
& n_{S}+\Delta n \\
& n_{S}+\Delta n_{1} \\
& \square n_{S} \\
& F_{Y}(t)=-n_{S} \frac{d^{2} Y_{0}(t)}{d t^{2}} \\
& Y_{0}(t)=Y_{0} \cos (\omega t) \\
& Y_{0}=\frac{\sqrt{2} e E_{0}}{n_{s} \omega^{2}}
\end{aligned}
$$

Dynamic Localization of Doublons (II)

The strong interaction limit of the undriven HM
In the limit of $U \gg \kappa$ the photonic lattice reduces to:

- two semi-infinite 2D TB lattices for the single particle

Undriven lattice (straight optical axis)

$$
\left.\begin{array}{r}
\kappa / U=\varepsilon \\
\omega / U \sim \varepsilon \\
e E_{0} a / U \sim \varepsilon \\
0)=A_{n}(0) \delta_{n, m}
\end{array}\right] \quad \begin{gathered}
\text { Multiple Scale }
\end{gathered} \quad \begin{aligned}
& \text { Asymptotic Analysis } \\
& \text { (Iow frequency } \\
& \text { weak field driving) }
\end{aligned} \quad\left[\begin{array}{l}
c_{n, m}(t)=A_{n}(t) \delta_{n, m} \exp \left(i 2 \kappa_{e} t\right)+O(\varepsilon) \\
i \frac{d A_{n}}{d t}=-\kappa_{e}\left[A_{n-1}+A_{n+1}\right]+2 e E_{0} a / \hat{\hbar} \cos (\omega t) n A_{n}
\end{array}\right.
$$

Dynamic Localization of Doublons (III)

Engineering of the photonic simulator
$i \frac{d A_{n}}{d t}=-\kappa_{e}\left[A_{n-1}+A_{n+1}\right]+2 e E_{0} a / \hbar \cos (\omega t) n A_{n}$
CMEs of a "single particle" of charge $2 e$ in a 1D TB lattice with renormalized tunneling rate, driven by an AC electric field.

Floquet theory: collapse of quasi-energies (i.e. DL) provided that:

$$
\begin{aligned}
& J_{0}\left(\frac{2 e E_{0} a}{\lambda \omega}\right)=0 \text { i.e. } \frac{2 e E_{0} a}{\lambda \omega}=\sqrt{2} n_{5} a / \lambda \omega Y_{0} \simeq 2.405 \\
& \lambda=980 \mathrm{~nm} \\
& n_{S}=1.522 \\
& \Delta n=1 \times 10^{-2} \\
& \Delta n_{1}=9.05 \times 10^{-3} \quad\left[\begin{array}{l}
U=(\Delta n \\
\text { (i.e. } T=2 \pi / \omega=1.5 \mathrm{~cm})
\end{array}\right. \\
& a=8.6 \mu \mathrm{~m} \\
& {\left[\begin{array}{c}
{\left[\begin{array}{l}
\kappa \simeq 3.9 \mathrm{~cm}^{-1} \\
U=\left(\Delta n-\Delta n_{1}\right) / \lambda \simeq 8 \kappa \\
\omega \simeq \kappa \simeq 4.187 \mathrm{~cm}^{-1} \\
(\text { i.e. } T=2 \pi / \omega=1.5 \mathrm{~cm})
\end{array}\right]} \\
Y_{0}=\frac{2.405 \lambda}{\sqrt{2} a n_{s} \omega} \simeq 48.4 \mu \mathrm{~m}
\end{array}\right]}
\end{aligned}
$$

Dynamic Localization of Doublons (IV)

Visualization of correlated dynamic localization

__ Paraxial wave equation
----- Coupled-mode equations
Insets show $\left|c_{n, m}(t)\right|^{2}$
Opt. Lett. 36, 4743 (2011)

Coherent Destruction of Correlation (I)

Let's consider again the AC-driven HM:
$i \frac{d c_{n, m}}{d t}=-\kappa\left(c_{n+1, m}+c_{n-1, m}+c_{n, m+1}+c_{n, m-1}\right)+U \delta_{n, m} c_{n, m}+\frac{a}{\lambda} e \sqrt{2} E_{0} \cos (\omega t)(n+m) c_{n, m}$
We are interested in a different regime of strong interaction:
\rightarrow high-frequency and strong-field AC-driving

$$
\begin{gathered}
\kappa / U=\varepsilon \\
\omega / U \sim 1 / \varepsilon^{2} \\
e E_{0} a / U \sim 1 / \varepsilon^{2}
\end{gathered}{ }^{\text {Multiple Scale }} \text { Asymptoic Analysis }
$$

The defect diagonal is made invisible.

Coherent Destruction of Correlation (II)

1P tunneling	$K \simeq 3.9 \mathrm{~cm}^{-1}$	$\kappa \simeq 3.9 \mathrm{~cm}^{-1}$	$\kappa J_{0}(\bar{z})$
2P Interaction	$U \simeq 25 \kappa$	$U \simeq 25 \kappa$	$U=0$
AC driving	$\begin{aligned} & \omega=0 \\ & Y_{0}=0 \end{aligned}$	$\begin{aligned} & \omega \simeq 10 \kappa \simeq 40 \mathrm{~cm}^{-1} \\ & Y_{0}=\frac{\bar{z} \lambda}{\sqrt{2} a n_{s} \omega} \simeq 7.6 \mu \mathrm{~m} \\ & (\bar{z}=1.841) \end{aligned}$	$\begin{aligned} & \omega=0 \\ & Y_{0}=0 \end{aligned}$
$\begin{gathered} \text { Occupation } \\ \text { probability } \\ \left\|c_{n, m}(t=3 \mathrm{~cm})\right\|^{2} \\ \text { for initial } \\ \text { condition } \\ c_{n, m}(0)=\delta_{n, 0} \delta_{m, 0} \end{gathered}$	$\therefore 0^{\circ}$		
	Discrete diffraction on 1D diagonal sublattice	Discrete Diffraction on the whole 2D lattice	

Correlated-tunneling of

 Anyons and Correlated BOs of Anyons
Correlated-tunneling of Anyons (I)

Anyons: what?

$\psi(B, A)=\psi(A, B) \longrightarrow$ Symmetric under exchange \longrightarrow
$\psi(B, A)=-\psi(A, B) \longrightarrow$ Antisymmetric under exchange \longrightarrow $\psi(B, A)=\exp (i \theta) \psi(A, B) \longrightarrow$ More generally...

Low-dimensional quasi-particles with non-trivial exchange statistic:
Generalized

$$
\begin{aligned}
& \hat{a}_{l} \hat{a}_{k}^{\dagger}=\delta_{l, k}+\exp [-i \theta \epsilon(l-k)] \hat{a}_{k}^{\dagger} \hat{a}_{l} \\
& \hat{a}_{l} \hat{a}_{k}=\exp [i \theta €(l-k)] \hat{a}_{k} \hat{a}_{l} \\
& \theta \\
& \theta: \text { Statistical Exchange Phase } \\
& l, k: \text { lattice site index } \\
& \in(l-k)=\left\{\begin{array}{l}
1, \text { for } l>k \\
0, \text { for } l=k \\
-1, \text { for } l<k
\end{array}\right.
\end{aligned}
$$

BOSONS

$$
\theta=0
$$

$$
\theta=\pi
$$

PSEUDOFERMIONS

The statistic is site-dependent.
Regardless θ, two anyons on the same site behave as bosons.

Correlated-tunneling of Anyons (II)

2-anyons dynamics on a 1D lattice

$$
\begin{aligned}
& \begin{array}{l}
\hat{H}=-J \sum_{l}\left(\hat{a}_{l}^{\dagger} \hat{a}_{l+1}+\hat{a}_{l+1}^{\dagger} \hat{a}_{l}\right)+\frac{U}{2} \sum_{l} \hat{n}_{l}\left(\hat{n}_{l}-1\right) \quad \begin{array}{c}
\text { anyon-Hubbard } \\
\text { Hamiltonian }
\end{array} \\
|\psi(t)\rangle=(1 / \sqrt{2}) \sum_{n, m} c_{n, m}(t) \hat{a}_{n}^{\dagger} \hat{a}_{m}^{\dagger}|0\rangle \text { Fock space representation }
\end{array} \\
& \begin{aligned}
& d c_{n, m} \\
& d t=-J\left[c_{n+1, m}+c_{n-1, m}+c_{n, m-1} \exp \left(-i \varphi_{n, m-1}\right)+c_{n, m+1} \exp \left(i \varphi_{n, m}\right)\right] \\
&+U \delta_{n, m} c_{n, n} \\
& \varphi_{n, m}=-\theta \text { for } n=m, m+1 \text { and } \varphi_{n, m}=0 \\
& \text { (CMEs for Anyons on a 1D Lattice) }
\end{aligned}
\end{aligned}
$$

Note the presence of a
in the due to the statistical exchange phase θ.

Correlated-tunneling of Anyons (III)

Photonic realization of anyonic tunneling on a lattice

Helical optical axis

$$
\left\{\begin{array}{l}
x_{0}(t)=A \cos (\omega t) \\
y_{0}(t)=A \cos (\omega t+\phi)
\end{array}\right.
$$

$$
\searrow i \frac{d c_{n, m}}{d t}=-\kappa\left(c_{n+1, m}+c_{n-1, m}+c_{n, m+1}+c_{n, m-1}\right)+\beta_{n, m} c_{n, m}+\frac{n_{s} a}{\lambda}\left(n \frac{d^{2} x_{0}}{d t^{2}}+m \frac{d^{2} y_{0}}{d t^{2}}\right) c_{n, m}
$$

Correlated-tunneling of Anyons (IV)

Design of the photonic simulator (I)
$i \frac{d c_{n, m}}{d t}=-\kappa\left(c_{n+1, m}+c_{n-1, m}+c_{n, m+1}+c_{n, m-1}\right)+\beta_{n, m} c_{n, m}+\frac{n a}{\lambda}\left(n\left(n \frac{d^{2} x_{0}}{d t^{2}}+m \frac{d^{2} y_{0}}{d t^{2}}\right) c_{n, m}\right.$

$$
1
$$

$\omega, \sigma \gg \kappa$ (High Frequency Modulation Limit)
$U=0 \quad$ (No interaction)
$\sigma=M \omega$
$J_{0}(\Gamma)=J_{M}(\Gamma)$ - Resonance Conditions
$\left.\Gamma=n_{s} a A \omega / \lambda\right]$
$i \frac{d a_{n, m}}{d t}=-J\left\{a_{n+1, m}+a_{n-1, m}+a_{n, m-1} \exp \left(-i \varphi_{n, m-1}\right)+a_{n, m+1} \exp \left(i \varphi_{n, m}\right)\right\}$
Precisely the CMEs of the anyon-Hubbard Hamiltonian, with:

$$
\begin{aligned}
& J=\kappa J_{0}(\Gamma) \text { (Renormalized coupling) } \\
& \varphi_{n, m}=-M \phi\left(\delta_{n, m}+\delta_{n, m+1}\right) \longrightarrow \theta=M \phi
\end{aligned}
$$

The exchange statistic phase θ can be controlled by the driving parameter ϕ, ie. by of the helix!

Correlated-tunneling of Anyons (V)

Design of the photonic simulator (II)

Initial condition (input light excitation): $c_{n, m}(0)=\delta_{n, 0} \delta_{m, 0}$
$P_{r}(t)=\left|c_{0,0}(t)\right|^{2} \quad$ Revival Probability
$P_{2}(t)=\sum_{n}\left|c_{n, n}(t)\right|^{2}$ Joint Probability to find both particles at the same site

Correlated-tunneling of Anyons (VI)

Visualization of correlated-tunneling of non interacting Anyons

Opt. Lett. 37, 2160 (2012)

Correlated-BOs of Anyons (I)

For non-interacting anyons, correlated BOs are generally degraded, but not always...

Only Bosons exhibit BOs (uncorrelated)

Pseudofermions exhibit correlated BOs at half the frequency of uncorrelated BOs

Correlated-BOs of Anyons (II)

For non-interacting Pseudofermions, the ratio F / J decides the existence of BOs!

WS ladder

In the strong interaction regime, BOs turn out to be insensitive to statistics \rightarrow doubling of the BO frequency (as for 2 fermions or 2 bosons) regardless θ

Conclusions and Developments

Conclusions

1. Theoretical investigation of the dynamics of few strongly interacting particles in one dimensional lattices under coherent driving with external (DC and or AC) fields: prediction of new physical features
2. Design and realization of classical simulators of few interacting particles based on optical waveguide arrays fabricated by fs-laser writing:
I a fundamental drawback on scalability...

- 2 particles on a 1D lattice, or many particles in a DW, ok

I but also important advantages...

- classical simulators of individual quantum systems in extremely low density (2 quanta) [challenging for quantum simulators]
- direct access to Fock space allows ease of system preparation
- optical phenomena can easily embed loss and gain, allowing simulation of correlated phenomena of non-Hermitian HMs

Developments

Theoretical study of novel quantum phenomena of correlated particles, in driven one-dimensional systems:

- Correlated super-Bloch oscillations (under DC+AC driving fields) (Phys. Rev. B 86, 075143, 2012)
- Many-particle quantum decay and trapping: The role of statistics and Fano resonances (Phys. Rev. A 86, 012112, 2012, and an experimental paper is in preparation, in collaboration with Osellame's group....)
- Quantum transport in bipartite lattices via Landau-Zener tunneling (Phys. Rev. A 86, 043633, 2012)
- Existence of low-energy doublons in ac-driven anisotropic HMs (Phys. Rev. A 87, 013634, 2013)
- Field-induced ferromagnetism (under next-nearest neighbor tunneling) (Europhys. Lett. 101, 67006, 2013)
- Tamm-Hubbard surface states embedded in the continuum (J. Phys.: Condens. Matter 25, 235601, 2013)
- "Klein tunneling" of correlated particles (beyond on-site interaction) (Eur. Phys. J. B 2013 in press)

Thank You for
 Your Attention

Field-induced ferromagnetism

$\hat{H}=\hat{H}_{\text {hop } 1}+\hat{H}_{h o p 2}+\hat{H}_{i n t}$
Nearest-neighbor and next-nearest-neighbor single particle tunneling: the (static) $\kappa_{1}-\kappa_{2}$ Hubbard Model

Ferromagnetic ordering iff $-k_{2} / k_{1}>r \sim 0.25$
(i.e. fundamental state with saturated Spin)
[see Pieri et al. Phys. Rev. B 54, 9250 (1996)]
$\hat{H}=\hat{H}_{\text {hop } 1}+\hat{H}_{\text {hop } 2}+\hat{H}_{\text {int }}+\hat{H}_{\text {drive }}$
the driven $\mathrm{K}_{1}-\mathrm{K}_{2}$ Hubbard Model

Ferromagnetic ordering for any value of κ_{1} and under (relatively) high frequency driving (i.e. $\omega / \mathrm{k}_{1}>1$) and proper value of the ratio E_{0} / ω
Analytical proof is provided for any particle density (below half filling) in a one-dimensional tight-binding lattice

Tamm-Hubbard states in the continuum

$\hat{H}=\sum_{i=0}^{\infty}\left[-\left(\hat{a}_{k}^{\dagger} \hat{a}_{k+1}+\hat{a}_{k+1}^{\dagger} \hat{a}_{k}\right)+\frac{U}{2} \hat{a}_{k}^{\dagger} \hat{a}_{k}^{2}\right]+V \hat{a}_{0}^{\dagger} \hat{a}_{0}$
Static semi-infinite 1D TB lattice with an impurity at the edge
Fock space representation for the two-interacting bosons (a 2D lattice)

Klein tunneling of correlated particles

$\hat{H}=-J \sum_{l} \hat{a}_{l}^{\dagger}\left(\hat{a}_{l-1}+\hat{a}_{l+1}\right)+\frac{\bar{U}}{2} \sum_{l}^{-\cdots-----\cdots} \hat{n}_{l}\left(\hat{n}_{l}-1\right)+V \sum_{l} \hat{n}_{l} \hat{n}_{l+1}+\sum_{l} \epsilon_{l} \hat{n}_{l}$
On-site and nearestang particle interaction + Potential Step $\epsilon_{l}=\left\{\begin{array}{cc}0 & l<0 \\ \Delta & l \geq 0\end{array}\right.$
Two minibands for doublons

Thank You for
Your Attention

The Hubbard Model

The space of states in many-body quantum physics

Quantum Field Theory (QFT) do not consider "particles" but "quanta":

- Particles can be labeled (and thus exchanged).
- Quanta are entities that can be "aggregated" but not labeled.

Ex. A, B are two labels for particles.
The states of particle $A \rightarrow 1$-particle Hilbert space $\mathrm{H}_{1}(\mathrm{~A})$
The states of particle $B \rightarrow 1$-particle Hilbert space $H_{1}(B)$
The states of particles A and $B \rightarrow H(A, B)=H_{1}(A) \otimes H_{1}(B)$?
In $H_{1}(A) \otimes H_{1}(B)$ are symmetric, anti-symmetric, and non-symmetric states!
for Bosons: $\quad \psi(B, A)=\psi(A, B)$ (symmetric under exchange)
for Fermions : $\psi(B, A)=-\psi(A, B)$ (anti-symmetric under exchange)
Solution 1: In the "particle view" we have to "manually" exclude the unphysical states lacking the proper exchange symmetry.
Solution 2: In the "quanta view" we refuse the physical meaning of particle labelling (so we miss the identity of particles) and build up the Fock Space

Correlated-tunneling in a Double Well

A photonic analog of the toy-model of Mott transition
Particle density $n=Q / L=1 \rightarrow$ so-called half-filled system

A large energy gap is established between collective eigenstates with single site occupacy and collective eigenstates with double site occupacy

Correlated-tunneling of Anyons

Anyons: why?

- Anyons have been theoretically proposed more than 30 year ago. J. Leinaas and J. Myrheim, Nuovo Cimento B 37, 1 (1977).
F. Wilczek, Phys. Rev. Lett. 49, 957 (1982).
- Anyons are invoked in the theoretical modelling of 2D systems.
E.g.: Fractional quantum Hall effect (discovered in 1982)
D. Arovas, J. R. Schrieffer, F. Wilczek, Phys. Rev. Lett. 53, 722 (1984).
- The experimental evidence of anyons is controversial.
- Very recent proposal to create anyons in 1D lattices by atom optics: C. Vitoriano et al., Phys. Rev. Lett. 102, 146404 (2009).
T. Keilman et al., Nat. Commun. 2, 361 (2011).
- Anyon physics is
- Anyons are particularly interesting with respect to \rightarrow correlatedtuhneling even in the

Correlated-tunneling of Anyons

More details on the design of the photonic simulator

$$
\begin{aligned}
& i \frac{d c_{n, m}}{d t}=-\kappa\left(c_{n+1, m}+c_{n-1, m}+c_{n, m+1}+c_{n, m-1}\right)+\beta_{n, m} c_{n, m}+\frac{n_{s} a}{\lambda}\left(n \frac{d^{2} x_{0}}{d t^{2}}+m \frac{d^{2} y_{0}}{d t^{2}}\right) c_{n, m} \\
& \text { Phase transformation: } a_{n, m}=c_{n, m} \exp \left[i \beta_{n, m} t+i \frac{n_{s} a}{\lambda}\left(n \frac{d x_{0}}{d t}+m \frac{d y_{0}}{d t}\right)\right] \\
& i \frac{d a_{n, m}}{d t}=-\kappa\left\{a_{n+1, m} \exp \left[-i \eta_{n, m}(t)\right]+a_{n-1, m} \exp \left[i \eta_{n-1, m}(t)\right]+a_{n, m+1} \exp \left[-i \rho_{n, m}(t)\right]+a_{n, m-1} \exp \left[i \rho_{n, m-1}(t)\right]\right\} \\
& \eta_{n, m}(t)=\frac{n_{s} a}{\lambda} \frac{d x_{0}}{d t}+\left(\beta_{n+1, m}-\beta_{n, m}\right) t=-\frac{n_{s} a A \omega}{\lambda} \sin (\omega t)+\left(\beta_{n+1, m}-\beta_{n, m}\right) t
\end{aligned}
$$

Averaging of the exponential factors in the high frequency modulation limit ($\omega \gg \kappa, U$) under resonance condition $\sigma=M \omega$ (with M an even integer).
e.g.: $\left\langle\exp \left[-i \eta_{n, m}(t)\right]\right\rangle=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \exp \left[-i \eta_{n, m}(t)\right] d t=\left\{\begin{array}{l}J_{0}(\Gamma), \text { for } n \neq m, m-1 \\ J_{M}(\Gamma), \text { otherwise }\end{array}\right.$

Developments

1. Theoretical study of novel quantum phenomena of correlated particles, in driven one-dimensional systems:

- Correlated super-Bloch oscillations (under DC+AC driving fields) (Phys. Rev. B 86, 075143, 2012)
- Many-particle quantum decay and trapping: The role of statistics and Fano resonances (Phys. Rev. A 86, 012112, 2012, and an experimental paper is in preparation....)
- Coherent destruction of tunneling of two interacting bosons in a tightbinding lattice (Phys. Rev. A 86, 042104, 2012)
- Quantum transport in bipartite lattices via Landau-Zener tunneling (Phys. Rev. A 86, 043633, 2012)
- Existence of low-energy doublons in ac-driven anisotropic HMs (Phys. Rev. A 87, 013634, 2013)

2. Design and realization of photonic simulators for extended HMs to visualize at a classical level quantum effects never observed so far in a truly quantum system: e.g. super-Bloch oscillations, Block-Zehner oscillations, PT-symmetric HMS....
