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1. Introduction

Quantum Markov semigroups, i.e. semigroups of contractive, completely positive
maps, are mathematical models for open quantum systems. In this paper we study a
class of such semigroups on the C*-algebras of compact quantum groups (also called
Woronowicz C*-algebras).

A compact quantum group G is a unital C*-algebra C(G) equipped with additional
structure, that generalizes the C*-algebra of continuous functions on a compact group
(see Section 2 for the precise definition). In particular, any commutative compact quan-
tum group is isomorphic to the C*-algebra of continuous functions on a compact group.
The quantum group structure thus plays two roles: on one hand, positive functionals on
C(G) replace the states of a classical Markov process and, on the other hand, the actions
of C(G) on itself, allow us to formulate important symmetry properties for quantum
Markov semigroups.

We show that quantum Markov semigroups on the (reduced or universal) C*-algebra
of a compact quantum group that are translation invariant w.r.t. the coproduct are
in one-to-one correspondence with Lévy processes on its *-Hopf algebra A, see Theo-
rems 3.2 and 3.4. This shows that the characterization of Lévy processes in topological
groups as the Markov processes which are invariant under time and space translations
extends to compact quantum groups. In particular, if the compact quantum group is
commutative, the associated stochastic processes reduce to Lévy processes with values
in a compact group, i.e., stochastic processes with stationary and independent incre-
ments.

In general, a KMS-symmetry property of a quantum Markov semigroup on a
C*-algebra with respect to given KMS state on it, allows to study the semigroup
on the scale of associated noncommutative L,-spaces. On compact quantum groups



the natural state to refer to is the unique translation invariant state: it is called the
Haar state because it reduces to the Haar measure of compact group when C(G) is
commutative. In Section 4 we show that the quantum Markov semigroup is KMS-
symmetric (with respect to the Haar state) if and only if the generating functional
of its associated Lévy process is invariant under the unitary antipode, and that the
quantum Markov semigroup satisfies the stronger condition of GNS-symmetry if and
only if the generating functional of its associated Lévy process is invariant under the
antipode.

In Section 5 we characterize the Schiirmann triples of KMS-symmetric Lévy processes.

In the classical literature on Brownian motion or Lévy processes on (simple) Lie
groups, the analysis of their invariance under the adjoint action of the group on itself
has been particularly intense. We formulate this invariance property for compact quan-
tum groups and show that it imposes a very strong restriction. In Section 6 we develop a
method that allows to determine ad-invariant generating functionals on compact quan-
tum groups of Kac type, i.e. when the Haar state is a trace. Using this method we find a
complete classification of the ad-invariant Lévy processes on the free orthogonal quantum
groups in Section 10.

In Section 7 we give a complete description of the Dirichlet form associated to KMS
symmetric Lévy processes and, in the GNS symmetric case, a characterization of the
associated quadratic forms on the Hopf algebra A, arising in this way, in terms of their
translation invariance.

In the framework of Alain Connes’ noncommutative geometry [16], efforts have been
directed towards the construction and investigation of Dirac operators and spectral
triples on the Woronowicz quantum groups SU4(2) and related homogeneous noncom-
mutative spaces (see for example [7,8,17-19]). The relevance of this point of view relies
in the fact that a spectral triple allows to construct topological invariants as cyclic co-
cycles in cyclic cohomology and local couplings with the K-theory of the C*-algebra
(Connes—Chern character).

In Section 8 we construct a Hilbert bimodule derivation, giving rise to differential
calculus on the compact quantum group C*-algebra C(G), which, in the GNS symmetric
case, allows to represent the Dirichlet form as a generalized Dirichlet integral
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Using the derivation, we then construct a Dirac operator D whose spectrum is explicitly
determined by the spectrum of the Dirichlet form on the GNS Hilbert space of the Haar
state. Later we show that the Dirac operator D is part of spectral triple with respect to
which the elements of the Hopf algebra A are Lipschitz.
In the last three Sections 9, 10, 11, we discuss in detail examples of the above con-
structions on compact Lie groups, group C*-algebras of countable discrete groups, the
free orthogonal quantum groups O}'{, and the Woronowicz quantum groups SU4(2).



2. Preliminaries

Sesquilinear forms will be linear in the right entry. For an algebra A, A’ will denote the
algebraic dual of A, i.e. the space of all linear functionals from A to C. For a C*-algebra A,
by A’ we will mean the dual space of all linear continuous functionals on A. The symbol ®
will denote the spatial tensor product of C*-algebras and ® the algebraic tensor product,
see, e.g., [31] for tensor products and other facts about C*-algebras.

2.1. Compact quantum groups

The notion of compact quantum groups has been introduced in [46]. Here we adopt
the definition from [48] (Definition 1.1 of that paper).

Definition 2.1. A C*-bialgebra (a compact quantum semigroup) is a pair (A, A), where

A is a unital C*-algebra, A : A - A ® A is a unital, x-homomorphic map which is
coassociative, i.e.

(A ®ida) o A = (ida ® A) o A.
If the quantum cancellation properties
Lin((1®A)A(A)) =Lin((A® 1)A(A)) =A® A
are satisfied, then the pair (A, A) is called a compact quantum group (CQG).

If the algebra A of a compact quantum group is commutative, then A is isomorphic to
the algebra C'(G) of continuous functions on a compact group G. To emphasis that for
an arbitrary (i.e. not necessarily non-commutative) compact quantum group (A, A) the
algebra A replaces the algebra of continuous functions on an (abstract) quantum analog
of a group, the notation G = (A, A) and A = C(G) is also frequently used.

The map A is called the coproduct of A and it induces the convolution product of
functionals

Axp:=A@u) oA, M\uehA.
The following fact is of fundamental importance, cf. [48, Theorem 2.3].

Proposition 2.2. Let A be a compact quantum group. There exists a unique state h € A’
(called the Haar state of A) such that for all a € A

(h®1ida) o A(a) = h(a)l = (ida ® h) o A(a).



The left (resp. right) part of the equation above is usually referred to as left- (resp.
right-) invariance property of the Haar state. In general, the Haar state of a compact
quantum group need not be faithful or tracial.

2.2. Corepresentations

An element u = (u;x)1<j,k<n € Mn(A) is called an n-dimensional corepresentation of
G=(AA)ifforall j,k=1,...,n we have A(u;x) = ZZ=1 Ujp ® Upy. All corepresenta-
tions considered in this paper are supposed to be finite-dimensional. A corepresentation
u is said to be non-degenerate, if u is invertible, unitary, if v is unitary, and irreducible,
if the only matrices T' € M,,(C) with T'u = uT are multiples of the identity matrix. Two
corepresentations u,v € M, (A) are called equivalent, if there exists an invertible matrix
U € M, (C) such that Uu = vU.

An important feature of compact quantum groups is the existence of the dense
x-subalgebra A (the algebra of the polynomials of A), which is in fact a Hopf %-algebra —
so for example A : A - A ® A. With the notation G = (A, A), the x-algebra A is often
denoted in the literature as Pol(G).

Fix a complete family (u(*)),ez of mutually inequivalent irreducible unitary corep-
resentations of A, then {u,(:e); s €Z, 1<kt < ns} (where ng denotes the dimension
of u(®)) is a linear basis of A, cf. [48, Proposition 5.1]. We shall reserve the index s = 0
for the trivial corepresentation u(?) = 1. The Hopf algebra structure on A is defined by

() =0 () = () fors€ T jk=1m,

where € : A — C is the counit and S : A — A is the antipode. They satisfy

(id@e)oA=id = (e ®id) o A, (2.1)
mao(id®S)oA=¢c(a)l=myo(S®id) oA, (2.2)
(S(a*)*) =a (2.3)

for all @ € A. Let us also remind that the Haar state is always faithful on A.

Set V, = span{ug-}?; 1 < j,k < ng} for s € Z. By [48, Proposition 5.2], there exists
an irreducible unitary corepresentation u(*?), called the contragredient representation
of u(®), such that V;* = Vie. Clearly (5°)° = s.

We shall frequently use Sweedler notation for the coproduct of an element a € A, i.e.
omit the summation and the index in the formula A(a) = ), a(1),; ® a(2),; and write
simply A(a) = a1y ® ag).

2.3. The dual discrete quantum group

To every compact quantum group G = (A, A) there exists a dual discrete quantum
group G, cf. [32]. For our purposes it will be most convenient to introduce G in the



setting of Van Daele’s algebraic quantum groups, cf. [41-43]. However, the reader should
be aware that we adopt a slightly different convention for the Fourier transform.

A pair (4, A), consisting of a *x-algebra A (with or without identity) and a coasso-
ciative comultiplication A : A — M(A ® A), is called an algebraic quantum group if
the product is non-degenerate (i.e. ab = 0 for all a implies b = 0), if the two operators
T1:A0A3ab— Ala)(b®l) e A0 Aand T : AOA>a®b— Aa)(1®b) e ADA
are well-defined bijections and if there exists a nonzero left-invariant positive functional
on A. Here, M (B) denotes the set of multipliers on B. We refer the reader to [41] for
proofs and further details and will just recall a few facts here that we shall need later.

If (A, A) is a compact quantum group then (A, A|4) is an algebraic quantum group
(“of compact type”) and the Haar state is a faithful left- and right-invariant functional.

For a € A we can define h, € A’ by the formula

ha(b) = h(ab) for b e A,

where h is the Haar state, and we denote by A the space of linear functionals on A of
the form h, for a € A.

The set A becomes an associative x-algebra with the convolution of functionals as the
multiplication: Axp = (A®p) oA, and the involution A\*(z) = A(S(z)*) (A, n € A). Note
that A is closed under the convolution by [41, Proposition 4.2]. The Hopf structure is
given as follows: the coproduct A is the dual of the product on A, the antipode S is the
dual to S and the counit & is the evaluation in 1. In particular, we have S(\)(z) = A\(Sz)
for e A, z € Aand if A(\) € A® A then

AN (z®y) = A1) (2) @ A2y (y) = May), =,y € A

The pair G= (fl, A) is an algebraic quantum group, called the dual of G.

The linear map which associates to a € A the functional h, € A is called the Fourier
transform. Let us note that, due to the faithfulness of the Haar state h, A separates the
points of A.

2.4. Woronowicz characters and modular automorphism group

A nice introduction to this part can be found in [46,48,25] or [39)].
For a € A, A € A’ we define

Axa=(id® N)A(a),
ax A= (A®id)A(a).

Ifae Aand A € A, then Axa,ax X € A.

For a compact quantum group A with dense x-Hopf algebra A, there exists a unique
family (f.).cc of linear multiplicative functionals on A, called Woronowicz characters
(cf. [48, Theorem 1.4]), such that



(1)=1for z € C,
e mapping C 3 z — f.(a) € C is an entire holomorphic function for all a € A,
=cand f,, * fz, = f2,42, for any 21,29 € C,

)
)
)
4) f2(S(a)) = f--(a) and fz(a”) = f--(a) for any z € C, a € A,
)
)

> &

h(ab) = h(b(fi xa* f1)), a,b€ A

The formulas
pz,z’(a) = fz * @ * fz’7 Oz = Piziz and T, = Piz,—iz (24)

define automorphisms of A, in terms of which oy = piris and . = pit_it, t € R,
define one parameter groups of automorphisms of A. The former is known as modular
automorphism group. Moreover, h is the (o, —1)-KMS state, which means that it satisfies

h(ab) = h(bo_;(a)), a,b€ A, (2.5)
cf. [6, Definition 5.3.1] or [31, Section 8.12]. For z,2" € C, h(p,, . (a)) = h(a), so

h(c.(a)) = h(r:(a)) = h(a), a€ A (2.6)

The matrix elements of the irreducible unitary corepresentations satisfy the famous
generalized Peter-Weyl orthogonality relations

$)y * Ost0i0f— ul® s * ds 5ikf1(u(s'))
() i) = ) o)) = R o)

where f1 : A — C is the Woronowicz character and
Dy =3 fiugy)
=1

is the quantum dimension of u(®), cf. [46, Theorem 5.7.4]. Note that unitarity implies
that the matrix

(5)y*
(fl((ujk) ))1<j,k<ns € M, (C)
is invertible, with inverse (f1 (uﬁ)))jk € M, (C), cf. [46, Eq. (5.24)].

Remark 2.3. The Haar state on a compact quantum group is a trace if and only if the
antipode is involutive, i.e. we have S?(a) = a for all a € A. In this case we say that



(A,A) is of Kac type. This is also equivalent to the following equivalent conditions,
cf. [48, Theorem 1.5],

(1) f.=eforall z€C,
(2) oy =1id for all t € R.

The antipode S and the automorphism i are closable operators on A, and the closure

S admits the polar decomposition
S=RoT, (2.8)

where T is the closure of i and R : A — A s a linear antimultiplicative norm preserving
involution that commutes with hermitian conjugation and with the semigroup (7¢):cr,
iie. 7o R = Rom for all t € R, see [48, Theorem 1.6]. The operator R is called the
unitary antipode and is related to Woronowicz characters through the formula

R(a) = S(fyxaxf_1) forac A (2.9)
2.5. Lévy processes on involutive bialgebras

We recall the definition of Lévy processes on #-bialgebras, cf. [36]. An introduction
to this topic can also be found in [20]. Lindsay and Skalski have developed an analytic
theory of Lévy processes on C*-bialgebras, see [29] and the references therein.

Definition 2.4. A family of unital *-homomorphisms (js;)o<s<: defined on a x-bialgebra
A with values in a unital *-algebra B with some fixed state @ : B — C is called a Lévy
process on A (w.r.t. @), if the following conditions are satisfied:

(i) the images corresponding to disjoint time intervals commute, i.e. [js:(A), jsv (A)] =
{0} for 0 < s <t < ¢ < ¢, and expectations corresponding to disjoint time intervals
factorize, i.e.

gp(jsltl (al) o 'jsntn (an)) = gp(jsltl (al)) o gp(jsntn (an))a

forallneN, ay,...,a, € Aand 0 < 51 <1 < -+ <ty

(ii) mpo (Jst ® ju) 0 A = gy for all 0 < s < t < u, where mpg denotes the multiplication
of B and A is the comultiplication on A;

(iii) the functionals s = @ o jg : A — C depend only on t — s;

(iv) limps jst(a) = jss(a) = e(a)lp for all a € A, where 15 denotes the unit of B.

We do not distinguish two Lévy processes on the same x-bialgebra A which are equiv-
alent. By this we mean that two processes (jst)ogs<t and (ks¢)ogs<t with values in unital
x-algebras (B, ®) and (B, P'), respectively, agree on all their finite joint moments, i.e.



D (Gsyty (b1)  Gsntn (b)) = D (Ksyey (b1) -+ kst (bn)),

foralln €N, s1 <t1,...,8, <tpand by,...,b, € A.
If (jst)ogs<t is a Lévy process, then the functionals ¢ := @o ¢ = ps4s (¢ = 0) form
a convolution semigroup of states, i.e.

o V0 =E, Ps*Pr = Psit, limy_gi(a) = e(a) for all a € A,
o (1) =1, pi(a*a) >0 foralla e Aand t > 0.

For such a semigroup there exists a linear functional ¢ which is hermitian (i.e. ¢(a*) =
¢(a) for a € A), conditionally positive (¢(a*a) > 0 when a € kere), vanishes on 1, and
is such that
t2 " n
cpt:exp*t¢:5+t¢+§¢*¢+~~+ﬁ¢ +oee (2.10)

Conversely, by the Schoenberg correspondence (cf. [20]), for every hermitian conditionally
positive linear functional ¢ : A — C with ¢(1) = 0 there exists a unique convolution
semigroup of states (¢)¢>0 which satisfies (2.10) and a unique (up to equivalence) Lévy
process (jst)ogs<t- The functional ¢ will be called the generating functional of the Lévy
process (Jst)o<s<t-

Given the convolution semigroup of states (¢¢)¢>0, we can also define the semigroup
of operators on A (called the Markov semigroup on A associated to (jst)ogs<t)

Tt:(id®g0t)OA, t>0

The infinitesimal generator of this semigroup is an operator L : A — A, which is
related to ¢ by the relations

L(a)=(id®¢)o Ala) =d+xa and ¢(a) =eo L(a).

In this case we write L = Ly. As usual the formula to recover the semigroup from the
generator is Ty = exp(tL) for t > 0. The fundamental theorem of coalgebra ensures that
all this makes sense in the bialgebra A.

Let £(A) denote the algebra of linear operators from A to A. Operators L € L(A) of
the form L = Ly = (id ® ¢) o A for some linear functional ¢ € A" will play an important
role in the paper and we will refer to them as convolution operators.

An operator L € L(.A) is a convolution operator if and only if it is translation invariant
on A, i.e.

AoL=(1d®L)oA,
and, if this is the case, the linear functional ¢ can be recovered from L using the formula

¢=colL.



The map A" 5 ¢ — Ly € L(A) is also called the dual right representation. It is a
unital algebra homomorphism for the convolution product, i.e. we have

L. =id,
Ly oLy = Loy,

for ¢,1¢ € A’. Moreover, L, is hermitian, i.e.

Ly(a*) = (Lypa)* forae A

iff ¢ is hermitian, i.e. ¢p(a*) = ¢(a), a € A.
3. Translation invariant Markov semigroups

Our goal is to construct Markov semigroups on compact quantum groups that reflect
the structure of the quantum group. In this section we show that it is exactly the trans-
lation invariant Markovian semigroups that can be obtained from Lévy processes on the
algebra of smooth functions A = Pol(G) of the quantum group G = (A, A).

For this purpose we first prove that the Markov semigroup (7});>0 of a Lévy process
on A has a unique extension to a strongly continuous Markov semigroup on both its
reduced and its universal C*-algebra. We then show that the characterization of Lévy
processes in topological groups as the Markov processes which are invariant under time
and space translations extends to compact quantum groups.

Definition 3.1. A strongly continuous semigroup of operators (1;);>0 on a C*-algebra A
is called a quantum Markov semigroup on A if every T} is a unital, completely positive
contraction.

If (jst)ogs<t is a Lévy process on a *-bialgebra A with the convolution semigroup of
states (¢¢)i>0 on A and the Markov semigroup (7;)¢>0 on A, then, by a result of Bédos,
Murphy and Tuset [3, Theorem 3.3], each ¢; extends to a continuous functional on A,
the universal C*-algebra generated by A. Then the formula T3 = (id ® ¢¢) o A makes
sense on A, (where A : A, — A, ® A, denotes the unique unital *-homomorphism that
extends A : A — A® A) and one easily shows (in the same way as in proposition below)
that (T;): becomes a Markov semigroup on A, (in the sense of Definition 3.1).

For us, however, it will be more natural to consider the reduced C*-algebra gener-
ated by A. This is the C*-algebra A, obtained by taking the norm closure of the GNS
representation of A with respect to the Haar state h. The Haar state h is by construc-
tion faithful on A,. The coproduct on A extends to a unique unital x-homomorphism
A: A, — A, ®A, which makes the pair (A,,A) a compact quantum group. The fol-
lowing result shows that, even though ¢; : A — C can be unbounded with respect to
the reduced C*-norm and therefore may not extend to A,, (T3)i>0 always extends to a
Markov semigroup on A,..



Michael Brannan showed that states on any C*-algebraic version C(G) of G define a
continuous convolution operator on the reduced version C,(G), cf. [5, Lemma 3.4]. We
will need a similar result for convolution semigroups of states on Pol(G).

Theorem 3.2. Each Lévy process (jst)ogs<t on the Hopf x-algebra A gives rise to a unique
strongly continuous Markov semigroup (T})i>0 on A, the reduced C*-algebra generated

by A.

Proof. Let (A, H,£) be the GNS representation of A for the Haar state h, thus h(a) =
(€, M(a)§) for a € A. We denote by |||, the norm in A,, that is |jal|, = |[A(a)|, where
||l.]| denotes the operator norm.

Similarly, let (p¢, Hy, &) be the GNS representation of A for the state ¢, = @ o jo, so

that ¢t(a) = (&, pr(a)é) for a € A.
We define the operators

n ZHBU%’U@& €H®Ht,
Tt HOH: Dv@w — (&, w)py,v € H,
BH®H;)>X - moXoi, € B(H).
Since for each t, i, is an isometry and m; is contractive, E; is contractive too: | Ey(X)| =

[0 X o] < [IX]I.
Next we define

U: )\(A)f & pt(A)ft > )\(a)é (%9 pt(b)ft — )\(a(l))f ® pt(a(g)b)ft EH® Ht

and we check that it is an isometry with adjoint given by

U* (Ma)¢ @ pi(D)&:) = Maw))E @ pe(S(ag))b)&:.

Indeed, using the invariance of the Haar measure, we show that U is isometric

)
pi(c2yd)ér)

(UM@)é @ pi(b)&:), U (M) @ pr(d)é)
¢ (C(
er") (afyeq) @ ayee) = (hx e (a'c)

= (Maq))€ ® pela@)b)ée, Acqy)é
a?l)c(l))‘Pt(bamC@ ) (
a*c) @i (1) = h(a*c)r (b*d) = (Ma)¢ @ py(B)&, M()E @ pr(d)r),

£E®
®

where ©2%(x) := ¢4 (b*z:d). Moreover, by the antipode property (2.2) we have

UU* (Ma)€ @ pe(b)&) = U (Mawy)é @ pe(S(a@)b)&) = Mag))é @ pe(agSlags))b)é
= Mamye(aw))€ @ pi(b)& = Ma)é @ p(b)Es,



which implies that U is an isometry with dense image and therefore extends to a unique
unitary operator denoted again by U.
Now the fact that the Markov semigroup (73); is bounded on A,, i.e.

[ Te(a)]], = [[A(Ti(a )HB(H) H)‘(G)HB('H) = lall-,
follows immediately from the relation
MTi(a)) = E(U(Ma) ®idy, )U*), (3.1)

since

IMTZu@)[| = [|E: (U (Ma) @ ida, )U?) | < [[U(Ma) @ idy, )U” |
— [Ma) @ ids, || = |A(@)]-

To see that (3.1) holds, let us fix v € H and b € A such that v = A(b)€. Then

Ey(U(Ma) ®idy, ) U)o = (m 0 U o (Ma) ®@idy,) o U* o) (A(D)E)
= (moUo (AMa) ®idy,) o U*) (A(b)E @ &)
=moU o (Aa) ®idy,) (Ab)E ® pe(S(be2)))ér)
=m0 U(Mab))€ @ pi(S(be2)))&e)

7 (Aa@)b))€ @ pi(agyb)S(be)))é)

T (Ma@b)€ @ pi(a))é:)

= (&, pe(a)&)Maq)b)é

= Mapi(a@))Ab)E = A(Ty(a))v.

This way we showed that each T; extends to a contraction on A,.. The extensions again
form a semigroup and since both A and ¢; are completely positive and unital, T} is too.
Let us now check that (73); forms a strongly continuous semigroup on A,.

For a given a € A, we choose, by density, an element b € A such that |la — b||, < e.
By definition for b € A, Ty (b) = ¢y xb = (id ® @) o A(b), where (¢¢); is the convolution
semigroup of states on A (cf. Section 2.5). Thus

[T.@) - all, < ITute) = Ti®)], + |T:0) =], + b —all
<2lla = blly + [[(2e xb) = bl|, < 2¢ + D[y eu(bzy) = baye(b),
=2+ |pi(b) — (b)) |l
Since limy—04 @1(b) = £(b) for any b € A and the sum is finite, we conclude that

lim ||Tt — a|| =0 foreacha€A,. O
t—0+ r



The next results give a characterization of Markov semigroups which are related to
Lévy processes on compact quantum groups.

Lemma 3.3. Let (A, A) be a compact quantum group and let T : A — A be a completely
bounded linear map.
If T is translation invariant, i.e. satisfies

AoT=(id®T)o A
then T'(Vy) C Vs for all s € T and therefore T also leaves the x-Hopf algebra A invariant.

Proof. Let 5,8’ € Z, s # ', and 1 < j,k < ns, 1 < p,q < ny. Since the Haar state is
idempotent, we have

P((ufy)) T (i) = (o ) ((ufy)) T (uf3)))

1 j s')\ * s
- 655’Th((uéq)) T(ugk)))’

ie. h((uz(,‘z/))*T(uﬁ))) =0 for all 5,8’ € Z, with s # ¢, and all 1 < j,k < n,, 1 <
p,q < ng. Therefore T(uﬁ)) eV, D

Theorem 3.4. Let (A, A) be a compact quantum group and (T})i>o0 a quantum Markov
semigroup on A.

Then (T})t>o is the quantum Markov semigroup of a (uniquely determined) Lévy pro-
cess on A if and only if Ty is translation invariant for all t > 0.

Proof. If (T}); comes from a Lévy process on A, then, on A, T; = (id ® ¢;) o A and so
AoTy=(1d®id®¢) o (A®id)o A= (Id® ((d®¢;) 0 A)) o A= (id®T}) o A.

Hence T; is translation invariant on A, and therefore also on A by continuity.
Conversely, if every T; is translation invariant, then Lemma 3.3 implies that, for all
a € Vi, Tia € Vs and so, since V; is finite dimensional, ¢(Tia) — €(a) as ¢ — 0. It
now follows easily that ¢; := ¢ o T}| 4 defines a convolution semigroups of states whose
generating functional defines a Lévy process whose Markov semigroup is (73);. O



The corresponding result, for counital multiplier C*-bialgebras satisfying a residual
vanishing at infinity condition, was proved by Lindsay and Skalski [28, Proposition 3.2].
Their result covers coamenable compact quantum groups (where the counit extends
continuously to the C*-algebra). The above proof, for all compact quantum groups, is
simpler.

4. GNS-symmetry and KMS-symmetry of convolution operators

In this section we study symmetry properties of convolution operators Ly(a) = ¢ x a
on A and we show that they can be translated into invariance properties of the corre-
sponding generating functional ¢.

We will use two antilinear involutions # and * on A’, defined by

for a € A. A functional ¢ € A’ is hermitian if and only if ¢#* = ¢. Furthermore,
we have ¢ = * = ¢ and h” = h* = h. Note that # is multiplicative whereas * is
anti-multiplicative with respect to the convolution of functionals:

(px)# =% x0®,  (pxt))" =" %"

for ¢, € A'.

Let us denote by L?(A, h) the GNS Hilbert space of (A, h), by &, = 1a € L?(A,h) the
cyclic vector representing the Haar state: h(a) = (&, a&p,) and let us assume that we are
given an embedding, i.e. an injective linear map i : A — L2(A, h) with a dense range.
We say that a linear operator L : A — A admits an i-adjoint if there exists LT : A — A
such that

(i(a).(Lb)) = (i(L1a) i)

for any a,b € A. Since h is faithful on A and since ¢ has a dense range, the adjoint is
unique if it exists. Then, an operator L € L(A) is called i-symmetric if L equals to its
i-adjoint.

In this paper we shall consider two embeddings. The first one is the natural inclusion
coming from the GNS construction

in:A>a— a&, € L*(Ah).
Definition 4.1. A map L* € £(A) such that

h(a*L(b)) = h(L*(a)"b) (4.1)



for all a,b, € A will be called a GNS-adjoint, or simply adjoint of L w.r.t. h. A map L
will be called GNS-symmetric if L = L*.

Let us observe that a convolution operator always admits a GNS-adjoint.

Proposition 4.2. Let ¢ € A’. Then there exists a unique convolution operator L7 that is
adjoint to Ly w.r.t. the Haar state, i.e. that satisfies

h(a*Ld)(b)) = h(L;;(a)*b)
for all a,b € A. The adjoint of Ly is given by
Therefore Ly is GNS-symmetric if and only if ¢* = ¢.

Proof. This is simply the fact that the dual right representation is a *-representation
w.r.t. to the involution x and the inner product defined by the Haar state as A x A >
(a,b) — (a,b) = h(a*b) € C. The proof is the same as in the finite-dimensional case,
see [40, Proposition 2.3]. See also [21, Proposition 3.4]. O

The second embedding we can consider is the symmetric embedding
is: A3 arig(a) = ofé(a)fh € L*(A,h)
and the related notion of symmetry is the following.
Definition 4.3. We shall call a map L° € £L(A) the KMS-adjoint of L € L(A), if we have

h(o_4 (@)’ L) = h(L'(a) 7_y (1) (42)

i
for all a,b, € A. An operator L € L(A) is called KMS-symmetric if L’ = L.

Let us note here that a definition of KMS-symmetric operator on a von Neumann
algebra was introduced by Goldstein and Lindsay [22] in the framework of (noncommu-
tative) Haagerup LP-spaces and by Cipriani in his PhD thesis (cf. [10]) in the context of
the standard form of von Neumann algebras. Later, in [12, Definition 2.31], a definition
of a KMS-symmetric operator on a C*-algebra was provided.

In the sequel, we shall also need the definition of KMS-symmetric operators on the
whole C*-algebra. It is stated as follows.

Definition 4.4. A linear map L : A — A is called KMS-symmetric w.r.t. h with modular
automorphism group (o¢):er, if



h(aL(b)) = h(o:

z
2

(b)L(J_%‘ (a))) (4.3)
for all a,b in a dense o-invariant *-subalgebra B of the C*-algebra A.

Note that a continuous map L : A — A is KMS-symmetric in the sense of Definition 4.4
if it is A-invariant (i.e. L(A) C A), hermitian and (o, —1)-KMS-symmetric in the sense of
[12, Definition 2.31]. The temperature 8 = —1 is chosen according to the KMS-property
of the Haar state h(ab) = h(bo_;(a)), see Eq. (2.5).

The analogue of Proposition 4.2 for KMS-symmetric operators on 4 is now the fol-
lowing.

Theorem 4.5. Let ¢ € A’. Then there exists a unique convolution operator LZs that is the
KMS-adjoint to Ly w.r.t. the Haar state, i.e. that satisfies

h(o_(a) Lo (b)) = h(Lg(a) o4 (b))

or all a,b € A. The KMS-adjoint of Ly is given by L’ = Lysop, where R denotes the
¢ ¢ @
unitary antipode.

Proof. Let us observe first that a linear map L € L£(A) admits a KMS-adjoint if and
only if it admits a GNS-adjoint, and that the two adjoints are related by

L"=c¢io0L*o0_,. (4.4)
2

2

Indeed, if the GNS-adjoint exists then, by (4.1) and the o-invariance of h, we have

h(o_si(a)*L(b)) = h(L* (a_%(a))*b) = h((a% oL*o a_%)(a)*a_i(b)).

2 2

Comparing with Eq. (4.2) and using the faithfulness of the Haar state, we deduce that
L’ exists and satisfies (4.4). Conversely, if the KMS-adjoint exists then, using similar
arguments, we show that the GNS-adjoint exists and L* = o_so0 L’o o

Now, it follows from Proposition 4.2 that L'; exists and for all a € A we have

Lyy(a) = fo1 * (Lgros(fy xax f1)) * f_1
=f_1% (¢ 0S) % frxa
= aq)(f-y * (67 0 §) * f1)(a)
= aqyf_1(a@) (8" 0 5)(as) f1(a)
= aq) (6" 0 8)(f3 *xa@) * f-3))
= aq) (6" o R)(aez)) = Lg#or(a),

since R(a) = S(fy *ax f_1), see Eq. (2.9). O



Corollary 4.6. Suppose that ¢ € A'. Then

(1) Ly is GNS-symmetric if and only if ¢ satisfies ¢ o S = ¢.
(2) Ly is KMS-symmetric if and only if ¢ satisfies ¢* o R = ¢.

The generating functionals ¢ of Lévy processes are necessarily hermitian (¢7 = ¢).
We call a hermitian functional ¢ on A ¢ GNS-symmetric if it is invariant under the
antipode: ¢ 0 .S = ¢, and KMS-symmetric if it is invariant under the unitary antipode:
$oR=0.

Remark 4.7. A hermitian ¢ is GNS-symmetric if and only if each matrix ¢(*) = [QS(U;Z))]Jk
is hermitian:

o(ul})) = (00.9)(u)) = 6((uf)") = o (uf?):

We shall show now that invariance under the phase in the polar decomposition of the
antipode has also an influence on the properties of L.

Proposition 4.8. Let ¢ € A’. Then the following conditions are equivalent:

(1) Ly commutes with the modular automorphism group o,
(2) ¢ commutes with the Woronowicz characters: ¢ x f. = f, x ¢ for z € C,

() poTi =0
Proof. By Eq. (2.4), we have Ly o 0y = 0y 0 Ly if and only if
O firkax fir = fuxdpxax fu

for all @ € A. Convolving by f_;; from the right and applying the counit, we see that L
commutes with the modular automorphism group, if and only if

O fir = fiex @

for all t € R, which is equivalent to

dxfo=fixd (4.5)
for all z € C by uniqueness of analytic continuation. We have shown this way that
(1) & (2).

From Eq. (4.5) we deduce immediately that

(1507—2(“) = ¢(fzz *xax f_iz) = (f-i: *¢*fiZ)(a) = ¢(a),

so (2) implies (3).



Finally, let us see that (3) implies (2). For that we adopt the matrix notation from [46]:

s) (s)\1°8 s) _ (s)\18
F( ) = [f_l(uj;f )]j,k:—s and ¢( )= [d)(u]i )]j,k:—s'
From therein we know that F(%) is invertible and positive and that f, (u(*)) = (F))~=.
If po Ti = ¢, then by the definition of 7, we have ¢ x f_% = f_% *¢ and also ¢px f_1 =
f—1 % ¢. This means that

SV FE) = Fe) ps)

and by the functional calculus ¢(*) must commute with all (F(®))* for z € C. This
translates into ¢ x f, = f, x¢ forall z € C. O

It is known that on von Neumann algebras GNS-symmetry is a stronger condition
than the KMS-one (cf. [12, Remarks after Definition 2.31]). The previous observation
allows to provide a simple proof of this fact in our setting.

Corollary 4.9. If ¢ is GNS-symmetric, then ¢ commutes with all Woronowicz characters
and is KMS-symmetric.

Proof. For GNS-symmetric ¢ we have ¢ = ¢0.5% = ¢o7;, which translates into ¢+ f_1 =
f—1 * ¢. From the proof of Proposition 4.8 we see that this implies that ¢ is invariant
under all 7, (z € C) or, equivalently, commutes with all Woronowicz characters. In
particular ¢ = ¢ o Ti and
¢=¢or

=(¢poS)oTi =¢oR. O

2 2

Remark 4.10. If the algebra A is of Kac type (5% = id), then R = S and the notions
of GNS-symmetry and KMS-symmetry coincide. However, Example 11.5 shows that in
general KMS-symmetry is a weaker condition than GNS-symmetry.

We end this section with an observation linking the symmetries of the generators and
the related Markov semigroups.

Theorem 4.11. Let (T});>0 be the Markov semigroup of a Lévy process on A with gener-
ating functional ¢.

(a) The following three conditions are equivalent:

(al) ¢ is KMS-symmetric.

(a2) Ly is KMS-symmetric.

(a3) For each t >0, Ty is KMS-symmetric on A (see Definition 4.4).
(b) The following four conditions are equivalent:

(bl) ¢ is GNS-symmetric.



(b2) L, is GNS-symmetric.
(b2") Ly satisfies the quantum detailed balance condition, i.e. we have

h(aLy(b)) = h(Ly(a)b) fora,be A (4.6)

(b3) (Ti)i>0 satisfies the quantum detailed balance condition, i.e. (4.6) holds for
all Tt, t 2 0.

Proof. The equivalences (x1) < (x2) follow from Corollary 4.6.

The KMS-symmetry as well as the GNS-symmetry of ¢ is preserved under the convolu-
tion powers (for example, if ¢(Sa) = ¢(a), then (pxp)(Sa) = (p®¢)(S(ap))@S(an))) =
P(ay)dla@) = (¢ * ¢)(a).) Since Li(a) = ¢*" x a, we see that both kinds of symme-
try are also preserved for the powers of Lg. This implies that for (T});>0, being of the
form T, = exptLy, the KMS-symmetry or condition (4.6) of (T})¢>0 is equivalent to
KMS-symmetry or (4.6) of L.

Finally we need to check that (b2") < (bl). Assume that Ly satisfies (4.6). Then, by
Proposition 4.2, Ly satisfies

Lo(@) = I* ()" = (6" %) = ayo($(aiz))") = Lyos1(a),

which implies ¢ o S = ¢.
Conversely, if ¢ 0 S = ¢, then by the same calculation we see that

h(Lg(a)b) = h(Lgos-1(a)b) = h(Ly(a*)"b) = h(aLy(d)). O
5. Schiirmann triples corresponding to KMS-symmetric generators

In this section we give a method to produce KMS-symmetric generating functionals.
To this aim, we recall the notion of a Schiirmann triple and describe its behavior under
the composition of an arbitrary generator with the unitary antipode.

Our steps are motivated by the following easy observation.

Proposition 5.1. Let ¢ be a generating functional of a Lévy process. Then ¢ +¢po R is a
KMS-symmetric generating functional of a Lévy process.

Proof. Since R(a*) = R(a)* and £(R(a)) = e(a), we easily check that the Schoenberg
criteria for a generating functional are satisfied for ¢ + ¢ o R. Moreover, R? = id implies
that ¢ + ¢ o R is invariant under the unitary antipode. O

Note that the same procedure cannot be applied to the GNS-symmetric case, since .S
does not preserve the positivity and is not involutive.

For a pre-Hilbert space D we denote by £#(D) the set of all operators from D to D
which admit an adjoint.



Definition 5.2. A Schiirmann triple on a x-bialgebra A with counit ¢ is a triple
((m, D),n, ¢) consisting of:

(1) a unital *-representation 7 : A — L#(D) of A on some pre-Hilbert space D,
(2) a linear map n: A — D, called cocyle, such that

n(ab) = w(a)n(d) + n(a)e(b) for all a,b € A,

(3) a hermitian linear functional ¢ : A — C satisfying

¢(ab) = (n(a*),n(b)) for a,b € kere.

Schiirmann proved (cf. [36]) that for any generating functional ¢ of a Lévy process
there exists a Schiirmann triple ((7, D), n, ¢) (such that the generating functional is the
last ingredient of the triple). Moreover, the Schiirmann triple is uniquely determined
(modulo unitary equivalence) provided that 7 is surjective.

Definition 5.3. Given a pre-Hilbert space D, the opposite space D°P is defined as D°P =
{0: v € D} (the set of the same elements as D) with the same addition v + @ = v + w,
but with the scalar multiplication given by A - = Av and with the scalar product
(0, W)op = (w,v).

Given a unital *-representation 7 : A — L# (D) we define 7°P : A — L#(D°P) by the

formula
7P(a)v = (7o R)(a*)v, v € D°P.

We check directly that #«°P is unital, multiplicative, and x-preserving, so it is a
x-representation of A on D°P. We shall call it the opposite representation.

Theorem 5.4. If ¢ is a generating functional of a Lévy process with the Schiirmann triple
((m,D),n,$) on A, then ¢ o R is a generating functional of a Lévy process with the
Schiirmann triple ((7°P, D°P), n°P, ¢ o R) on A where °P is the opposite representation
with the representation space D°P and n°P : A — D°P is defined by n°P(a) = n(R(a*)).

Proof. Let ¢ be a generating functional of a Lévy process. Then it follows from the
properties of R, mentioned after formula (2.8), that ¢ o R is hermitian, conditionally
positive and vanishes at 1. By the Schoenberg correspondence, ¢ o R is a generating
functional of a Lévy process.

Now we want to check that ((7°P, D°P), n°P ¢ o R) is a Schiirmann triple. For that,
note that n°P is linear and by the cocycle property of 1 we have



Moreover, ¢ o R is linear and hermitian, and for a,b € ker ¢ we have

(1P (a*), 1P (), = (n(R(a)),n(R(*))),, = (n(R(")),n(R(a)))
= ¢(R(b)R(a)) = (po R)(ab). O

Corollary 5.5. If ¢ is invariant under R and ((m, D), n, ¢) is the related surjective Schiir-
mann triple, then w is equivalent to its opposite representation mw°P.

Corollary 5.6. If ¢ is a generating functional of a Lévy process with surjective Schiirmann
triple ((w,D),n,$) on A, then ((r & w°P, D @ D°P),n ®n°P, ¢ + ¢ o R) is a Schiirmann
triple of a KMS symmetric generator ¢ + ¢ o R.

Note that the Schiirmann triple ((w@m°P, D® D°P), n®n°P, p+¢oR) in Corollary 5.6 is
not necessarily surjective, even if the triple ((w, D),n, ¢) is surjective. This is for example
the case if ¢ is already KMS symmetric — then the range of n @ n°P is the diagonal of
D @ D°P,

Remark 5.7. Let ¢ be a generating functional of a Lévy process on A with the associated
Schiirmann triple ((w, D),n, @), i.e. ((w,D),n,¢) is the unique Schiirmann triple for ¢
with a surjective cocycle. If A is an algebraic quantum group “of compact type”, i.e.
it is the x-subalgebra of polynomials of a compact quantum group G = (A, A), then 4
is linearly spanned by the coefficients of unitary corepresentations and thus for every
a € A, m(a) is a bounded operator in D. In this case the space D can be completed to
a Hilbert space H, n: A — D turns into a cocycle n : A — H with dense image, and 7
maps A to B(H).

6. Generating functionals invariant under adjoint action

On classical Lie groups, central measures play an important role in harmonic analysis
and the study of Lévy processes. A measure p on a topological group G is called central,
if it commutes with all other measures (w.r.t. to the convolution). This is the case if

/ Fgeg) du(x) = / f(x) du(z)
G G



forall g € G and f € C(G), or, equivalently, if 65 * uxd,-1 = pu for all g € G. On compact
quantum groups we don’t have Dirac measures, but we can translate this condition to

Yy * px S(a) = ¥(1)u

for all functionals  : A — C, for which (id ® S) o A(y)) = Yy ® §(¢(2)) can be defined,
i.e. for functionals which belong to the algebra of smooth functions A on the dual discrete
quantum group. This condition is equivalent to invariance of the functional y under the
adjoint action, see below.

In this section we will study ad-invariance for functionals on compact quantum groups.
On cocommutative compact quantum groups (i.e. such that 7oA = A, where 7 is the flip
operator 7(x ® y) = y ® x) all functionals are ad-invariant, but on non-cocommutative
compact quantum groups, ad-invariance characterizes an interesting class of functionals
that share many similar properties with central measures. After reviewing several char-
acterizations and showing that the ad-invariant functionals are exactly those that belong
to the center of A’, we show that it is possible to construct from a given functional an
ad-invariant one. But this construction does not preserve positivity.

Recall that the adjoint action of a Hopf algebra is defined by ad : A - A® A,

ad(a) = a(l)S(a(g)) ® a(2)

for a € A, see, e.g., [30], [25, Section 1.3.4].
The adjoint action is a left coaction, i.e. we have

(id®ad)oad = (A ®id)oad,
(e ®id) oad =id.

But note that ad is not an algebra homomorphism.
Definition 6.1. We call a linear functional ¢ € A" ad-invariant, if it satisfies
(id® ¢)oad = ¢l 4.
Similarly, a linear map L € L(A) is called ad-invariant, if it satisfies
(id®@L)cad =ado L.

If the quantum group is cocommutative, then the adjoint action is the trivial coaction
ad(a) = 1 ® a. Therefore in this case all functionals are ad-invariant.

It is straightforward to verify that the counit € and the Haar state h are ad-invariant.

The following characterizations show that the ad-invariant functionals are a natural
generalization of central measures.



Proposition 6.2. Let ¢ € A’. The following conditions are equivalent.

(a) ¢ is ad-invariant.
(b) We have

Yy * d* S(a) = ¥(1)¢
for ally € A.
(¢) ¢ commutes with all elements of A: dxp=1p*¢ for all P € A.
(d) ¢ belongs to the center of A': p*xp =1 x¢ for allp € A'.

Proof. (a) < (b): If ¢ : A — C is ad-invariant, then we have

amyS(ay)dla)) = ¢(a)l.
Applying the functional 1) = hy, € A with b € A to this, we get
Y(1)o(a) = ¥ (ayS(am)))d(ae)) = va)(aa))be) (Slas)) dlae)
= Py (an)d(a@)SWe)(a@) = (Ya) * ¢ S(¥e))(a)

for all @ € A and all ¢» € A. The converse follows, because by the faithfulness of the
Haar state on A we have

Vbe A, ¢(a) =h(ba)=0 = a=0.
(¢) = (b): This follows directly from the antipode axiom,

Yy * dx S(Wh2) = Yy * S()) * ¢ = W) x ¢ = ¥(1),
where 1 = ¢ is the unit of A’.

(a) = (c): Suppose that ¢ is ad-invariant and apply ¥ o m o (id ® ¢ ® id) o (ad ® id)
to A(a), then this gives

U(aq)S(ag))aw)dlae)

which is equal to ¥ (a))@(a(z)) = (¥ * ¢)(a) by the antipode axiom. On the other hand,
using the ad-invariance of ¢, the same expression becomes

Y(lag))dlaq)) = (9 x¥)(a).

(¢) < (d): This follows, because A’ embeds into the multiplier algebra M(A) of A,

since



"/}*ha:hca ha*’(/}:hd
with ¢ = 9(S(aq)))a), d = Y(S™ aw))aw). O

Corollary 6.3. The ad-invariant functionals form a unital subalgebra of A" with respect
to the convolution.

The following formula shows that the coproduct A : A - A® A is ad-invariant, if we
define the adjoint action of A ® A by ad® = (m ® id ® id) o (id ® 7 ® id) o (ad ® ad).

Lemma 6.4. The adjoint action satisfies the relation
(meideid)o (id®7®id)o (ad ® ad) o A = (id ® A) o ad.
Proof. Using Sweedler notation, we get

(m®id®id)o (Id® 7 ®id) o (ad ® ad) o A(a)
= aq)S(a@))awS(ae) ® ap) ® ag)
= a)e(a(3))1aS(as)) ® ap) @ ag)

for a € A, where we used the antipode property (2.2). After further simplification, using
the counit property (2.1), we get

= a(l)S(a(4)) @ a) @ a@) = (id ® A) o ad(a). O
Lemma 6.5. Let ¢ € A’. Then ¢ is ad-invariant if and only if Ly is ad-invariant.
Proof. Let us observe that

(id ® Ly) o ad(a)

(id ®id ® ¢) (ag1)S(aw) ® ae) @ ag)
(id ® id ® ¢) (a(l)S’( DawS(ae)) ® aig) ® a(5)) (cf. Lemma 6.4)
= a(l)S(a(g))a(4)5(a(6))¢(a(5)) @ a(z)-

If we assume that ¢ is ad-invariant, then

(id ® Lg) o ad(a) = a(1)S(a3))p(aw)) @ a@) = ¢(az)) ad(aqy) = adoLy(a).

On the other hand, if we suppose that Ly is ad-invariant, then the application of
(id ® €) to both sides of the equation

dagy)aqySags)) ® apy = amyS(as))aw)Sae))dlas)) @ agw)

gives the ad-invariance of ¢. O



We can use the Haar state to produce ad-invariant functionals.
Proposition 6.6. Denote by ady, € L(A) the linear map given by
adp, = (h®id)oad.
Then ¢aq := ¢ o ady, is ad-invariant for all p € A’.

Proof. Observe that by definition we have ¢.q = ¢ o ad;, = (h ® ¢) o ad. Using the
invariance of the Haar measure (Proposition 2.2) we check that

Pad(a)l = h(ap)S(am))dlae)l = aq)Slae)h(ae)S(aw))dlas)
= a(l)S(a(;;))gbad(a(g)) = (id ® ¢aq) o ad(a). O

Let us collect the basic properties of ady,.
Proposition 6.7.

(a) adpoady, = ady.
(b) (¢poady)* = ¢*oady forallp e A'.
(¢) A linear functional ¢ € A" is ad-invariant if and only if ¢ = ¢ o ady,.

Proof. Ad (a). Explicit calculations give

adh o adh (a) = h(h [a(l)S(a(g,))] a(g)S(a(4)))a(3).

Apply the invariance of the Haar measure (Proposition 2.2) to the element under the
Haar state, and after the appropriate renumbering, we get

adh oadh(a) = h(h(a(l)S(a(g,)))l)a(z) = adh(a).

Ad (b). Recall that ¢* = ¢* o S, where S is the antipode and ¢*(a) = ¢(a*). Then
the assertion will follow if we show that

[ady, OS(a)*]* = Soady(a).

Using the properties that S o*o0.Sox =id and A(S(a)) =70 (S ®S) o A(a) we check
that ad(S(a)*) = S(aes))*af;) @ S(az))”. Then since h is hermitian, we have

[ads 0S(a)*]” = [(h@id) o (ad0S)(a)*]" = h(S(ae))*afy,) S(ac)
= h(a(l)S(a(g,)))S’(a(z)) = S(adh(a)).



Ad (c). First we check that for an ad-invariant functional ¢ we have ¢ = ¢ o ady:

poady(a) =¢o (h®id)oad(a) =ho (id® ¢) oad(a) = h(¢(a)l) = ¢(a).
The converse follows immediately from Proposition 6.6. O

Applying Lemma 6.5 and Corollary 6.3, we get an analogue of Theorem 4.11 for
ad-invariance.

Corollary 6.8. Let (T})i>0 be the Markov semigroup of a Lévy process on A with gener-
ating functional ¢. The following three conditions are equivalent:

(al) ¢ is ad-invariant.
(a2) Ly is ad-invariant.
(a3) For each t >0, T} is ad-invariant.

In the next proposition we show that ad-invariance of functionals can be characterized
by the form of their characteristic matrices.

Proposition 6.9. A functional ¢ is ad-invariant if and only if its characteristic matrices
(¢(U§-§€)))1gj,k<ns are multiples of the identity matriz for all s € T, i.e. if there exist

complex numbers cs, s € I, such that ¢(uﬁ)) =50, foralls € T and all 1 < j, k < ns.

Proof. We use the orthogonality relation for the Haar measure (2.7) to show that for
the ad-invariant functional ¢ we have

¢(§ ) = ¢aa(u Z h(u j; ukr )¢( (ST)) ;S Z f1(ugz))¢(u(s)) Ok,

p,r=1 p,r=1
and we observe that the constant - Zp 1 1 (u,«p))¢(u,(,f«)) does not depend on j or k.
Reciprocally, if ¢ is of this form, then we check that ¢ = ¢,q4 and, by (c) in Proposi-
tion 6.7, ¢ is ad-invariant. 0O

In general, the mapping ad}, : ¢ — ¢,q in Proposition 6.6 preserves neither hermiticity
nor positivity, see Example 11.7. But [45, Lemma 4.1] and [4, Theorem 4.5] suggest that
some properties of ad, can be improved if we replace the antipode by the twisted antipode
defined by S(a) = f1 * S(a) for a € A.

Theorem 6.10. Let G be a compact quantum group with dense x-Hopf algebra A = Pol(G).
Denote by S the twisted antipode deﬁned by S(a) = f1 +S(a) = f1 (a(1y)S(acz)) and
denote by ad the twisted adjoint action ad( )= a(l)g(a(g)) ®agg), a € A.



(a) The map ady, : A — A defined by

;&h(a) =(h®id)o ;&(a) = h(a(l)S(a(g)))a(g)
satisfies
ady(a*a) = (h @ id)((ad(a)) "ad(a))

for a € A and therefore preserves positivity.
(b) If G is of Kac-type, then we have

;&h O;&h = ;&h.

Proof. (b) was already shown in Proposition 6.7, since in the Kac case we have
ady, = ady,.

Let us now prove (a). Since the twisted antipode is an algebra anti-homomorphism,
we have

ad(a*a) = az‘l))ja(l)7k5(a(3)7k)5(a2‘3)7j) ® CLZ‘Q)J-LL(Q)Jm

where we put back summation indices to distinguish the sums coming from the first and
the second factor.
Therefore

(h®id)(;&(a*a)) h(a(l) a(l)ykg(a(g)k)g(a’(kg)j))a@) a2k
=h(o (5(‘1?3),3'))@(1 agkS(a (3).4)) () ;0(2) k-

Now for any b € A,
0i(S(07)) = o S(0) * for = S(07) x for = STHB) % f
= (STH0)x f1)" = (i Sb)" = S(b)*,

and so we get

(h®id)(ad(a*a)) = h((afy ;S(ag),)) "ag) xS(ag) k) als ja@) .k
= (h®id)((ad(a)) ad(a)). O

Recall that the linear span of the characters of the irreducible unitary corepresenta-
tions of a compact quantum group is an algebra

.Aozspan{xs:Zu;;): sGI}, (6.1)
=1

called the algebra of central functions on G.



Note that gah(A) C Ap. Indeed, éﬁh acts on coefficients of irreducible unitary corep-
resentations as

adh( (s )) =

w5 (ugi))ufy)
(£)Y,,(s)

uzk ))f (uqé )upq

u

n

>
p,q=1
= Z h(u
p,q,f=1

Z h JP ké )ffl(ugz))uéz)
p,q,f=1

Z S fr( “ép 1 (u é))uz(fq)

p q,4=1
Sik N (s
=3 uls). (6.2)
S p:1

s —
We see that we can use ady, : ¢ — ¢ o ady, to produce ad-invariant functionals.

Corollary 6.11. The linear map z;\(/i; : (Ag) — A, ;a;;(gzb) = ¢ oady,, maps functionals
on Ay to ad-invariant functionals on A. It maps states on Aq to states on A.

If G is of Kac type, then 2;?12 defines bijections between states on Ay and ad-invariant
states on A, and between generating functionals on Ag and ad-invariant generating func-
tionals on A.

Proof. It follows 1mmed1ately from Eq. (6.2) and Proposition 6.9 that for any ¢ € A’
the functional adh(gb) ¢ o ady, is ad-invariant, since

S 6 S
¢oadh( ()) Dé¢<z gg)>

{=1

By Theorem 6.10, ;dJZ maps positive functionals to positive functionals. Since we have
also ad(1) = 1 and

¢oady(1) = 6(1),

it follows that ;&Z maps states on A onto ad-invariant states on A.

In the Kac case we have furthermore € o ;&h = ¢eoady = ¢, so in this case ;&h maps
the kernel of the counit onto itself and therefore &/ﬁ; maps generating functionals on A
onto ad-invariant generating functionals on A.

Conversely, any state or generatmg functional ¥ on Ay can be extended to a state
or generating functional w o adh on A. By Proposition 6.9 it is clear that ¢ is the
unique ad-invariant extension of 1. O



In Section 10, we will show that this corollary allows to completely characterize the
ad-invariant generating functionals on the free orthogonal quantum group O; .

7. Dirichlet forms

In this section we determine explicitly the structure of the Dirichlet forms associated
to KMS-symmetric generating functionals on compact quantum groups. In case of GNS
symmetry, we also characterize the invariance under translation of generators on the
algebra A, in terms of an associated quadratic form on A.

Recall that L?(A, h) denotes the GNS Hilbert space of (A, h) and that the cyclic vector
&, = 1a € L?(A, h) represents the Haar state as h(a) = (€5, a&p). From now on and until
the end of Section 8, we assume that the Haar state is faithful on the C*-algebra A
so that we can identify A with an involutive subalgebra of the von Neumann algebra
L (A, h) of bounded operators on L?(A, h), generated by A by the GNS representation.
As a consequence, the vector ¢ is cyclic for the von Neumann algebra L (A, h) too.

Notice that, as the Haar state h is a (o, —1)-KMS state for the modular auto-
morphism group o (see Section 2.4), it follows, by the KMS theory (in particular [6,
Corollary 5.3.9]), that the vector £ is also separating for the von Neumann algebra
L (A, h). This fact allows to apply the Tomita—Takesaki modular theory to the Haar
state h on the C*-algebra A of the compact quantum group.

Recall also that the symmetric embedding is defined by

is: A= L3(AR),  is(a) = Alagy,

where A denotes (exceptionally) the Tomita—Takesaki modular operator. This definition
agrees with the one from Section 4 (page 2803), since for a € A we have

is(a) = AfaATig, = 0L (a)é.
For a given KMS-symmetric generating functional ¢ of a Lévy process on A, and the

related convolution operator Ly(a) = ¢+ a, we define the sesquilinear and the quadratic
forms

on the domain
= {is(a) € L*(A,h): a € D(Ly) and & is(a)] < oo}

The explicit values of the sesquilinear form &g on the basis of the coefficients of the
unitary corepresentations are the following



£l 051). 12 0420) = G 050) 1 - Eoo20)) = 200 00). )08
:Zh(a i( (S)) U_Zi( ()))cb(ugt%)

= D h(ui)) ) 1y () 13 () S (i)

Tp,p’

s
:D—:%jfl 3 (ugy) Zf o (ufin)

5st
_ D—Sf_%( DY (fy x0) (ui).

Since o, leaves the subspaces V; invariant, hence

and the operator defined by
Hyis(a) :=is(—Lga), a € D(Hy) :==is(A) C L*(A,h)

leaves invariant the subspaces

E, =V, = Span{uﬁ)fh: g k=1,.. .,ns} C L*(Ah), scT.
Therefore, since L?(A, h) = @, .7 Es, the operator Hy decomposes as

Hy =D H;

a direct sum of its restrictions H, » on each finite dimensional subspace Fj.
Theorem 7.1. Let ¢ be a KMS-symmetric generating functional of a Lévy process on A.
Then the operator Hy is essentially self-adjoint, the quadratic form &y is closable and

its closure is a Dirichlet form.

Proof. The operator Hy is a direct sum of bounded operators and is symmetric as Ly is
KMS symmetric. It follows that Hy is essentially self-adjoint and its closure is given by

D(Hy) = { =P e L (A h): Y [[Hy&|* < +oo}

se€T seT
Iﬂ(@és) =P Hst., Pé e DH,).
sel seT seT



As, by definition, £4[€] = (£, Hy&) for £ € D(Hy), we have that &, is closable and its
closure is given by

D(E) = {5 — e LP(AR): Y (6 Hotl) < +oo},

seT seT

‘% I:@gs] = Z<§5’H¢’€S>’ @fq S D(g_¢)

sel sel sel

Now, the quantum Markov semigroup 73 on the C*-algebra A, generated by Lg, is
KMS symmetric, i.e. it is (o, —1)-KMS symmetric in the sense of Definition 2.1 in [11]
(see also Definition 2.31 in [12]). By Theorem 2.3 and Theorem 2.4 in [11] (see also
Theorem 2.39 and Theorem 2.44 in [12]) the semigroup e~ *#¢ on L2(A, h) is Markovian
so that the quadratic form &4 is a Dirichlet form by Theorem 4.11 in [10] (see also
Theorem 2.52 in [12]). O

Remark 7.2. Using the embedding ij, : A — L%(A, h), we can identify the Dirichlet form
on L?(A, h), associated to a KMS-symmetric generating functional ¢, with the following
quadratic form on the C*-algebra A

Q¢[a] = 5¢ [zh(a)] = —h(a*(ai o L¢ o Ui)(b))

i
1

defined on dom(Qy) := {a € A: in(a) € dom(Ep)}. If furthermore, ¢ is GNS-symmetric,
then L, commutes with the modular group (o.), (Proposition 4.8 and Corollary 4.9)
and one has

Qyla] = —h(a*L¢(a)).

The next theorem shows that the Dirichlet forms associated to GNS-symmetric Lévy
processes admit an additional invariance.

Theorem 7.3. Let L be a GNS symmetric operator on A C L*(A, h). Then the following
conditions are equivalent:

(1) There exists a functional ¢ € A’ such that L = Ly, where Ly = (id ® @) o A;

(2) L is translation invariant on A;

(3) The semigroup (T¢)i>0 on A (or A, or A,) associated to L by the formula T;|4 =
exp, tL is translation invariant;

(4) The sesquilinear form Q defined by Q(a,b) = —h(a*L(b)) on A satisfies

Q(a,b)1 = (m, ® Q)(A(a), A(b)), a,be A, (7.1)

where m, denotes the sesquilinear map obtained from the multiplication, namely,
m.(a,b) = a*b.



Proof. We already observed in Section 2.5 the equivalence (1) < (2) whereas the equiv-
alence (2) < (3) follows from Theorem 3.4, so that we need to prove only (1) < (4). Let
us assume that L satisfies

(id®@ L)yoA=AoL.
Then, using Sweedler notation and the invariance of the Haar state,
(m. ® Q) (A(a), A(b)) = afyybw) a2, bez)
= —a?l)b(l)h(az‘z)L(b@))) = 7(1d ® h) ((Gf(kl) ® (Jf&)) (ld & L)A(b))

= —(id® 1) ((afy) ® afz)) (L(b) 1y ® L(D)(2)))
= —(id @ W)A(a*L(b)) = —h(a*L(b))1 = Q(a, b)1.

On the other hand, if we assume that Eq. (7.1) holds, then
(h®@h)(a* ®1)A(b")((i[d® L)A

(©)
(h & h) (a b(l)C(l) (9 b(z)L 2) ) 7h(a b 1)0(1))Q(b(2), C(g))
— h(a*(m. © Q)(AB), AW©))) = —h(a*) Qb0

and
(h @ h)(a” ®1)A(b") (Ao L)(c)
= (h @ h)(a*bfyy (Le) 1y © by (Le)(a)) = h(a*(id @ h)A(b"L(c)))
= h(a*)h(b*L(c)) = —h(a*)Q(b, ).

Since A® A is the linear span of (A®1)A(A) and h® h is faithful on A® A, we conclude
that L is translation invariant. O

Corollary 7.4. Let ¢ € A’ be the generating functional of a GNS-symmetric Lévy process
and &4 the associated Dirichlet form. Then the sesquilinear form Q on A defined by

9(a,b) := 5¢(ih(a),ih(b)), a,be A,

satisfies Eq. (7.1). Conversely, let L be a GNS-symmetric operator on A such that
L(1) = 0, L is hermitian and positive on ker e, and the sesquilinear form on A defined

by
9(a,b) = —h(a*Lb), a,be A,

satisfies Eq. (7.1). Then L = Ly for a generating functional ¢ of a GNS-symmetric Lévy
process.



8. Derivations, cocycles and spectral triples

In this section we associate to any Lévy process on a CQG G = (A, A), a natu-
ral derivation on its Hopf x-subalgebra A, with values in a Hilbert bimodule over the
C*-algebra A = C(G). This gives rise, on the same bimodule, to a self-adjoint opera-
tor D, with respect to which we prove that the elements of A are “Lipschitz” in a natural,
suitable sense. The construction makes essential use of the Schiirmann triple associated
to the generator of the process.

In case the GNS symmetry holds true, we will show that the derivation is, essentially,
a differential square root of the generator Hg. Moreover, if the spectrum of Hy on
L?(A, h) is discrete, then the Hilbert bimodule and the operator D form a spectral triple
in the sense of the noncommutative geometry of A. Connes [16]. This fact suggests to
refer to D as the Dirac operator associated to the process.

We remark that the role of GNS symmetry of the process is to provide a suitable
closability property of the derivation, needed to prove that the Dirac operator D is
self-adjoint and that the spectrum of the Dirac Laplacian D? coincides with that of the
generator Hy, away from zero.

We will show in Section 9 that in case the CQG is a compact Lie group and the Lévy
process is the Brownian motion associated to a given Riemannian metric, the differential
calculus illustrated above reduces to the familiar one: the derivation coincides with the
gradient operator and the Lipschitz property has the usual meaning.

Consider on the Hopf #-subalgebra A of a compact quantum group G = (A, A), the
generating functional ¢ € A’ of a Lévy process and its associated Schiirmann triple
((m, Hz),m, ®) on a Hilbert space H, (see Remark 5.7).

Denote by Az, Ar : A — B(L?(A,h)) the left and right actions of A on the Hilbert
space L2(A, h)

Ar(a)(bén) == abp,

Ar(a)(b&) :=ba&y,, a,beA,
where &, € L?(A, h) denotes the cyclic vector representing the Haar state. Recall now
that A : A — A ® A is a morphism of C*-algebras and A, 7 are representations of the
C*-algebra A, so that A, ®7 is a representation of the C*-algebra A®A. Correspondingly,

consider the left and right actions pr,pr : A — B(L?*(A,h) ® H,) of A on the Hilbert
space L?(A,h) ® H, defined by

pL = ()\L ®7T) OA,
PR = Ar ®idg,,
or, more explicitly, by

pr(a)(bén @ v) = (AL @ 7) 0 A(a)) (b @ v) = Z aybén @ m(a(z))v,
pr(a)(b€p @ v) = Ar(a)(bép) ® v = ba&y ® v,



for a,b € A and v € H,. The actions A, pr are continuous and form representations of
the C*-algebra A. Likewise, also the actions Ag, pg are continuous and form antirepresen-
tations of the C*-algebra A or representations of the opposite C*-algebra A°P. Moreover,
as AL, Ar (resp. pr,pr) commute, they provide a A-bimodule structure on the Hilbert
space L%(A,h) (resp. L2(A,h) ® H,).

In the following we shall adopt the simplified notations: for a € A and £ €
L?(A, h) ® H, we write

a- 5 = pL(a)é-?
§-a:=pr(a).
Recall that we denote by iy, : A — L?(A, h) the GNS embedding (cf. page 2802)
in(a) == akp, ac€A.

Proposition 8.1. Consider on the Hopf *-subalgebra A of a compact quantum group G =
(A, A), the generating functional ¢ € A’ of a Lévy process, its associated Schiirmann
triple (7, Hz),m,¢) and the induced A-bimodule structure on L*(A,h) @ H,. Then the
linear map defined by

0: A= L*(Ah)@H, 0:=(ir®n)0A

or, more explicitly, by

da = (in@n)(Aa) =Y amén @nlaw), €A

is a derivation in the sense that it satisfies the Leibniz rule
0(ab) = (0a) -b+a- (0b), a,bec A

Proof. The map is well defined because A(A) C A® A (where, forcing notation a little
bit, we denoted by A ® A the image in A ® A of the subspace A©® .4 C A® A under the
canonical quotient map from A® A to A® A).

As the map n: A — H, is a 1-cocycle and the counit ¢ : A — C satisfies the identity
(id®e) o A =id, ie. ) bu)ye(bz)) = b, we have

d(ab) = (in @ n)(A(ab)) = (in @ n)(A(a)A(D))

=" a@ybayrén @ nlag) bk
7.k

= a@yiba)kén @ [(ag) )n(ba)x) +nlag) )b k)]
7,k



— (Z A(ag),;) ® w(a(g)ﬂ-)) (Z b1),k€n ® U(b(2),’f)>

J k

+ (ZAR(ba),k)@E(b(z Jidg, )(Za@ Sn@n(a 2>J)>

k

=pr(a)(0(b)) + | Ar baykelby k) | ®idm, | (9(a)
@ (@0) + (n( Sttt ) @idn. ) (@6o)
= pr(a)(0(b)) + (Ar(b) ®idn, ) (8(a))

= pr(a)(9(b)) + pr(b)(0(a))a - O(b) + O(a) - b. O

Proposition 8.2. Let ¢ € A’ be a GNS-symmetric generating functional and consider the
hermitian convolution generator Ly : A — A, its Hilbert-space extension (Hy, D(Hg))
as well as the Dirichlet form (€4, D(Ey)) (see Section 7).

Then the operator d : D(d) — L?*(A,h) ® H, defined as

D(d) :=ip(A) = A&, C L*(A, h), d(in(a)) := da, a € A,
1s closable and

d(in(a )HL2 Ah@H, 2<ih(a)’H¢ih(a)>L2(A,h) =24in(a)], a€A

Proof. We have

ld(in(@)]|* =

a@); ©n(a@),) Y ak ’7(@<2>,k)>
J k

h(a(y) ja0).r) [0(ala) jae) k) —e(ay ;) dla@)w) — d(afy ;)elae)p)]

I
2 5

h(“Tl) k) (aly sa@k) — D h(ah) 00y x)e(aly ;) ¢lae).r)
7,k

h(afyy jaa)k)¢(as ;)e(a@) k)

m”

The first term vanishes because, by the GNS symmetry of Ly, we have

> h(afyy ja0yx)6(aly ja@ k) = h(1- Lo(a*a)) = h(Le(1)a"a) = 0.
7,k

The second term becomes

Z h(“?n,j“(l),k)f‘?(GE)JM(a(z),k)

, <<Za(1 ).0€00(2).5 >*<Xk:a(1)’k¢(a(2)’k)>> — h(a"Ly(a)).



The third term is the complex conjugate of the second term and, since it is real, they
are the same. Hence the identity ||d€||> = 2(&, Hg&) r2(a,n) = 2E4[€] holds for € € D(d).
Since ¢ is also KMS symmetric, Theorem 7.1 implies that the quadratic form is closable.
It follows that the operator d is closable, too. O

From now on we will denote by the same symbol (d, D(d)) the closure of the closable
operator considered in the previous result.

One of the conclusion of the above result reads H, = %d* od, i.e. the L?-generator has
the aspect of a “generalized Laplacian” composed of a “generalized divergence” operator

7

d* and a “generalized gradient” operator d. In other words, the operator d (essentially

the derivation 9) is a differential square root of the L2-generator.

The next result shows that in the noncommutative space C(G), the elements of the
dense subalgebra A have a mnoncommutative Lipschitz property. Below we denote by
A® H, the projective tensor product of the C*-algebra A and the Hilbert space H
which is the completion of the algebraic tensor product of A and H, with respect to the

norm

lallag s, = nf{ 3" laillalgillm,, wherea =Y a;@ &},
see [23] or [34].
Proposition 8.3. Let ¢ € A’ be a GNS-symmetric generating functional with associated

Schiirmann triple (7, Hz),n,¢). Let us consider the Hilbert space Hy := (L*(A,h) @
H.)@® L?(A,h) as a A-bimodule under the commuting left and right actions

T = pr, ® AL, TR = PR D AR.

Consider also on Hy the self-adjoint operator
0 d
D := .
(a 0)
Then the commutator [D,wr(a)] is bounded for all a € A with norm bounded by
I[P (@[] < 9allag -
Proof. It follows from

[D,7r(a)] =Donp(a) —w(a) o D

- (C?* f)l) (pLéa) /\L(za)> - (pLéa) AL()(G)) (‘7?* g)



_ ( 0 do/\L(a)pL(a)od>
d*opr(a) — Ap(a)od* 0

_ ( 0 do/\L(a)—pL(a)od>
—(doAp(a*) — pr(a*)od)* 0

that [D, 71 (a)] is bounded for all @ € A if and only if d o Ap(a) — pr(a) o d is bounded
for all a € A. To check that the latter is actually the case, let us observe that, for b € A,
we have
(doAr(a) = pr(a) o d)in(b) = d(in(ab)) — pr(a)(Ob)
— 9(ab) — p1(a)(3) = pr(b)(a).

For any presentation da = ZZ:1 ar ® & € A® H; we then have

||pR(b)(aa)||L2(A,h)®Hﬂ - HO‘R ® idHﬂ-)(aa)HL?(Aﬁ)@Hw

> arbén @ &

k=1

L2(Ah)@Hx
n

< llawbénllzam 1€k 1,
k=1

< Hih(b)HH(A,h) Z larlla - 1kl a,. -
k=1

Optimizing among all presentations da = >, _, ar ® & € A® H, we get
HpR(b)(aa)||Lz(A7;L)<X,1r.17r < Hih(b)||L2(A7h) : ||(9(L||A® H WbE A,
so that
ldoAL(a) = pr(a) o d]| < Ball 45 ., a€ A

Finally notice that, setting T, := d o Ar(a) — pr(a) o d, we have || T[] < [|[9all, 5 5,

[D,7r(a)] = (21* %)

a

and



so that
I[D.7r@)]]| =T, acA O

Theorem 8.4. Consider, on the Hopf *-subalgebra A of a compact quantum group
G = (A, A), the GNS-symmetric generating functional ¢ € A’ with Schiirmann triple
(s )1, 0)-

Consider also the GNS-symmetric, hermitian convolution generator Ly : A — A and
its closed extension (Hg, D(Hy)) on the space L?(A, h), characterized by

H¢ (zh(a)) = —ih(L¢a)

on its core ip(A) = A&, C D(Hy).
If the spectrum of (Hy, D(Hy)) is discrete and considering the representation of A =
C(G) constructed above

TL=pr®AL:A—= B(Hy)  He:= (L*(A,h)® Hr) & L*(A, h),

we have that (A, D, (rr,, He)) is a (possibly kernel-degenerate) spectral triple in the sense
that

o [D,7(a)] is a bounded operator for all a € A,
e D has discrete spectrum on the orthogonal complement of its kernel.

Proof. By construction

D2 (dd* 0 )
0 dd)’
so that the spectrum of D? is the union of the spectra of dd* and d*d. Since these two
operators are unitarily equivalent on the orthogonal complement of their kernels and
zero belongs to the spectrum of d*d, the spectrum of D? coincides with the spectrum
of 2Hy, by Proposition 8.2. Since, by assumption, the spectrum of Hy is discrete we
have that the spectrum of D?, hence the one of D, are discrete too on the orthogonal

complement of their kernels. This result, together with Theorem 8.3 allows us to conclude
the proof. O

The fact that the kernel of the Dirac operator D may be infinite dimensional is a
variation with respect to the original definition of spectral triple given in [16], due to
the definition of D as an anti-diagonal matrix. To construct the associated K-homology
invariants this fact has to be taken into account, for example using the methods developed
in Section 3 of [13]. This degeneracy raises the problem if, in the hypothesis of the above
theorem, the spectral triple may be used to construct a trace on the C*-algebra as in
the Connes Trace Theorem (proved in [14]) for the usual spectral triple.



9. Two classical examples: commutative and cocommutative CQGs
9.1. Algebras of functions on compact groups

Let G be a compact Lie group and let C(G) denote the commutative C*-algebra
of all continuous functions on G. Then C(G) is a compact quantum group with the
comultiplication

A:C(G)—C(G)RC(G)=C(G xqG),
defined by
A(f)(s,t) = f(st), [feC(G), s,ted.

The counit and the antipode are defined on the dense x-subalgebra C.(G) generated by
the coefficients of arbitrary continuous finite-dimensional representation 7, i.e. functions
m; : G — C, and they are given by

e(f)=fle),  S(Hx)=f(z7"), feC(G).

This is a general example of a commutative compact quantum group, in the sense
that if A is the algebra of continuous functions on a compact quantum group which is
commutative as a C*-algebra, then there exists a unique compact group G such that
A is isomorphic to C(G) with coproduct corresponding to the classical one given above
(cf. [46, Theorem 1.5]).

The quantum group C(G) is cocommutative if and only if the group G is commutative.
It is always of Kac type, i.e. §2 = id. This implies that the modular automorphism group
is trivial and that the Haar state is tracial (see Remark 2.3), and so the notions of GNS-
and KMS-symmetry coincide (see Remark 4.10).

The generating functionals of Lévy processes in G are classified by Hunt’s formula as
follows (cf. [27]). Let { X1, Xo,..., X4} be a fixed basis of the Lie algebra g associated to
the Lie group G and let x1,x2,...,24 € C°(G) be the local coordinates associated to
this basis, i.e. X; = a%,- at the neutral element e. Then an arbitrary generating functional
¢ is of the form

d d
B =Y eXif (@) + 5 D apX; X (e)
=1

Jk=1
d
+ / (f(g) — fle) - Zwi(g)Xif(e)> v(dg)
END! =

for twice differentiable f. Here c;,a;;, are real constants, (ajk)? x—1 is a positive definite
symmetric matrix and the measure v on G satisfies



d
v({e}) =0, /me dv < oo, v(G\U) < o0,
oi=1

for any neighborhood U of e in G. The first term in the decomposition above is called
the drift, whereas the second one is called the diffusion. The measure v is called Lévy
measure.

The GNS-symmetric processes correspond to functionals with no drift part and sym-
metric Lévy measures, i.e. v(E) = v(E~!) for measurable E (see [27, Proposition 4.3],
where such processes are called invariant under the inverse map).

The characterization of ad-invariant processes (called conjugate invariant in [27])
depends on the particular group structure. The two extreme cases are abelian Lie groups
and simple Lie groups. In the first case, as observed in Section 6, the adjoint action is
trivial and all functionals are ad-invariant. If the Lie group is simple and connected, then
the adjoint action ad(f)(x,y) = f(xyz 1) has trivial kernel. Then the Lévy measure of an
ad-invariant process must be conjugate-invariant (or central, cf. [1]), that is v(gEg~1) =
v(E) for all measurable E. Moreover, the drift part vanishes and the diffusion part is
(up to a constant) the Beltrami-Laplace operator on G (see [27, Propositions 4.4, 4.5]).
In the case the Dirichlet form reduces to the Dirichlet integral on G

Ela) = / Va(g)|* dg
G

defined on the Sobolev space H'?(G) of functions having square integrable gradient and
the derivation is just the gradient operator. We refer to [27] for details on this topic.

9.2. C*-algebra of a countable discrete group

Let I' be a countable discrete group and let £2(I") denote the Hilbert space of all
square-summable functions on I'. The space ¢?(I") is spanned by the orthonormal basis
{64: g € I'}, where as usual §,(h) = 1 if ¢ = h and d4(h) = 0 otherwise. Then each
element g € I" defines the linear operator A, : £2(I") — ¢*(I") by the formula

)\g(éh) :5gh, hel.

Each A, is a unitary operator and the mapping g — A, is called the left regular unitary
representation of the Hilbert space I" on ¢2(I').

The closure of the *-algebra generated by {\,: g € I'} in B(¢*(I')) is denoted by
C*(I') and called the reduced C*-algebra or the group algebra of I'. One can also define
the universal C*-algebra of the group, denoted by C*(I"), by taking the direct sum of
all cyclic representations of I" (universal representation) instead of the left regular one.
The two algebras are isomorphic if and only if I" is amenable, cf. [31].

The mapping A defined by A();) = Ay ® Ay extends (in a unique way) to a
s-homomorphism from C}(I') to C;(I') ® C}(I') which preserves the unit. The pair



(Cx(I'),A) is a compact quantum group. The linear span A of {\,: g € I'} in B(¢*(I'))
is a *Hopf algebra on which counit and antipode are defined by e(A\;) = 1 and
S(Ag) = Ag—1 respectively, for g € I'.

The quantum group C*(I') is always cocommutative (i.e. the comultiplication is in-
variant under the flip). Moreover, each algebra of continuous functions on a compact
quantum group which is cocommutative is essentially of this form (there exists a unique
discrete group I" and x-homomorphisms C*(I') — A — C*(I")), see [46, Theorem 1.7].
Cocommutativity implies that the adjoint action is trivial: ad(a) = 1 ® a, adp(a) = a
and all functionals are ad-invariant ¢ o ad, = ¢.

The algebra C(I") is of Kac type so that the modular automorphism group is trivial.
The Haar state is a trace and, on generators, it is explicitly given by h(d,) =0 for g # e
and h(8.) = 1. The GNS Hilbert space L?(C}(I"),h) can then be identified with 12(I").

In this case the notions of GNS and KMS symmetry coincide, and ¢ is symmetric
iff p(Ag) = ¢(Ag-1) for any g € I'. Moreover, symmetric generating functionals of Lévy
processes are in one-to-one correspondence with (obviously continuous) positive, condi-
tionally negative-type functions

d:I'— [Oa 00), d(g) = _QS(AQ)? ger

(cf. [15, Example 10.2]). The associated Dirichlet form is given by

2

Ela] = d(g)|alg)|”, aecl®(D),

gel’

and the generator of the Markovian semigroup on [?(I") is just the multiplication operator

(Hpa)(g) = d(g)a(g),

defined for those a € [?(I") such that the right hand side in square integrable.

The derivation associated to the KMS symmetric generating functional ¢ (recall Sec-
tion 8) is given by d(A\g) = Ay @ n(Ay) for g € I', where 7 is the 1-cocycle corresponding
to ¢ in the Schiirmann triple ((w, D),n, ¢). Composing the 1-cocycle  on the C*-algebra
C*(I') with the left regular representation, one obtains the 1-cocycle

c: "= D, c(g) = n(Ag)
on the group I'. In terms of this, the negative type function is given by
2
d(g) = [|c(9)]|}5-

Identifying 1?(I") ® D with [2(I, D), one obtains that the derivation above reduces to
the multiplication operator



(9a)(g) = c(g)alg), g€,

defined for all ¢ in the domain of the Dirichlet form.

The spectrum of the generator Hg is discrete if and only if the negative-type function
d is proper on I' (a condition which is met, for example, for some length functions of
finitely generated groups, see for example [9]). In these situations the construction of a
spectral triple shown in Theorem 8.4 applies.

10. Example: free orthogonal quantum groups Oj\',

Let N > 2. The compact quantum group (C,(O%;),A) is the universal unital
C*-algebra generated by N? self-adjoint elements vjk, 1 < j,k < N, subject to the
condition that the matrix V = (vjr) € My ® C,,(OF;) is a unitary corepresentation, i.e.
that

N N
E VejVek = 05k = E VjgUke
— =1

and
N
Avje) =Y vje @ v
=1

forall 1 < j,k < N, see [44,2]. The equivalence classes of the irreducible unitary corepre-
sentations of this compact quantum group can be indexed by N, with ©(®) = 1 the trivial
corepresentation and u®) = (’Ujk)lgj’kg ~ the corepresentation whose coefficients are ex-
actly the N2 generators of Cu(OX,) (this is also called the fundamental corepresentation
of O]J\r,) The dense x-Hopf algebra POI(O;\;) associated to O]J\r,, also called the x-algebra
of polynomial on OJJ(,, is the x-algebra generated by v;i, 1 < 7,k < N. The compact
quantum group OX, is called the free orthogonal compact quantum group. For N > 2 it is
not co-amenable, i.e. the Haar state of O} is not faithful on C,,(OF), therefore we will
study the Markov semigroups of Lévy processes on Pol(O]f,) on the reduced C*-algebraic
version C,.(OF) of OF.

The compact quantum group O;([ is of Kac type, and therefore a generating functional
¢ is KMS-symmetric if and only if it is GNS-symmetric, which is the case if the char-
acteristic matrices are symmetric, i.e. if (b(uﬁ)) = qb(uésj)) for all s € N and j, k running
from 1 up to the dimension of the sth corepresentation.

Corollary 6.11 reduced the problem of classifying ad-invariant generating function-
als on a compact quantum group to the classification of generating functionals on the
subalgebra of central functions. For the free orthogonal quantum group O}'{, the algebra
of central functions is isomorphic to the C*-algebra of continuous functions on the in-
terval [—=N, N, cf. [5, Corollary 4.3]. Furthermore, the restriction of the counit to this
subalgebra is the evaluation of a function in a boundary point.



Let us begin by describing linear functionals which are positive on a given interval
and vanish in a given point.

Proposition 10.1. Denote by 7, : C([0,1]) — C the evaluation of a function in x € [0, 1].

(a) Suppose 0 < x < 1. A linear functional ¢ : Clz] — C with ¢(1) = 0 is positive on
the cone

K. ([0,1]) = Clz] n C([0,1]), Nker(r)

if and only if there exist real numbers a,b with a > 0 and a finite measure v on [0, 1]
with v({x}) = 0 such that

o) =0 @)+ of" @) + [ (F0) = Fla) = f (0)
0

for all polynomials f € C(]0,1]).
The triple (a, b, v) is uniquely determined by . We will call (a, b, v) the characteristic
triple of the linear functional .

(b) Suppose x € {0,1}. Then a linear functional ¢ : C[z] — C with (1) = 0 is positive
on the cone

K. ([0,1]) = Clz] nC([0,1]), Nker(rz)

if and only if there exist a real number d with d > 0 if x =0, and d < 0 if x = 1,
and a finite measure p on [0,1] with u({0}) = 0 such that

o) =dr' @)+ [ (1) - 1)L
0

for all polynomials f € C(]0,1]).
The pair (d, u) is uniquely determined by p. We will call (b, v) the characteristic pair
of the linear functional .

Proof. (a) This is actually the classical Lévy—Khinchin formula for Lévy processes on R,
see, e.g., [35, Theorem 8.1], which can be viewed as a special case of Hunt’s formula [24].
Skeide [38] has given a C*-algebraic proof which doesn’t use the group structure, but
works for the C*-algebra of continuous functions on a compact set, with a character
given by evaluation in a fixed point which has neighborhood with Euclidean coordinates
(i.e. smooth functions admit a Taylor expansion around the fixed point).

(b) This is actually the classical Lévy—Khinchin formula for subordinators, cf. [35
Theorem 21.5]. We prove the formula for 2 = 0, the case = 1 follows easily by a change
of variable t — 1 — ¢.



By (a), since ¢ has to be positive also on the smaller cone given by polynomials that
vanish in £ = 0 and which are positive on [—¢,1] for any € > 0, there exists a unique
triple (a,b,v) with a,b € R with a > 0 and v a finite measure on [0, 1], such that

1
o) =8O+ ar" )+ [ (1) - 10 - 0) L.
0

For n € N we set g, (y) = ﬁ_ly Yol —y)*. We have g, € Ko([0,1]), g,,(0) = 1, and
g (0) = —n, therefore

1
d
0 < ¢(gn) —b—na+/ Qy)
0

for all n € N. The sequence (g, )nen is decreasing and therefore we must have a = 0. By
monotone convergence we get

1 1
/yg n—oo /V
n
Y
0 0

which proves that the measure 51/ is finite. Putting u = iu and d =b—

1 v(dy)

)Y > g,

we get the desired formula

ﬂﬁ#@+/@@ﬂwﬂ%?
0

Conversely, since a polynomial f which vanishes in = 0 and is positive on [0, 1] has a
positive derivative at « = 0, it is clear that any such functional is positive on Ky ([0, 1]).
Uniqueness follows from (a). O

This result allows us to describe all ad-invariant generating functionals on Pol(O%).
This result can be considered as Hunt’s formula for ad-invariant Lévy processes on the
free orthogonal quantum group Oj\',.

Let us denote by PolO(O?\',) the algebra of central polynomial functions on O;{,,
see Eq. (6.1). We will use the same isomorphism between POIO(Oﬁ) and polynomials
Pol([—N, N]) as Brannan [5]. Recall that Banica [2] showed that the equivalence classes
of irreducible unitary corepresentations of O} can be labelled by non-negative integers
and that they satisfy the “fusion rules”

W) @ u® &y Us=t) gy o Us=t+2) oy . g, (5+0)



for s,t € N. Since the trivial corepresentation u(®) = 1 has dimension 1 and the fun-
damental corepresentation u®) = (vjk)1<j k< has dimension N, one can show by
induction that the dimensions of the irreducible unitary corepresentations are given by
Chebyshev polynomials of the second kind, Dy = Us(NN). The conditional expectation
ady, : Pol(O}) — Polg(OF) onto the algebra of central functions is therefore given by

1

g&h (Uﬁ)) = mfsjk)(s’

where x5 = Zf:ﬁ U;j) denotes the trace of u*).

The fusion rules imply that the characters satisfy the three-term recurrence relation

X1Xs = Xs+1 + Xs—1

for s > 1, then we get the desired isomorphism Pol(O%)o = Pol([—N, N]) by setting
Xxs — Us for s € N; where Uy denotes the sth Chebyshev polynomial of the second kind,
defined by Uyp(z) = 1, Ui(x) = x, and Uy (x) = 2Us(x) — Us—1(x).

Theorem 10.2. The ad-invariant generating functional on Pol(Oﬁ) are of the form

ZA;ZLO;\&}L

with L defined on Pol(O})o = Pol([-N, N]) by

N
Lf=—bf'(N)+ / ! (x])v__fx(N ) du(z)
N

where b > 0 is a real number and v is a finite measure on [—N, N| with v({N}) = 0.
Proof. This follows from Theorem 6.10 and Proposition 10.1. 0O

Using the discussion above, we can give a formula for the values of ad-invariant gen-
erating functionals on the coefficients of the irreducible unitary corepresentations of OJJ{,.

Corollary 10.3. The ad-invariant generating functional on Pol(OY;) given in Theo-
rem 10.2 with characteristic pair (b,v) acts on the coefficients of unitary irreducible
corepresentations of Oj\', as

N
L) = (—bU;<N>+ / —Us(ﬂ)\,‘[fmu(dx))
N

for s € N, where Uy denotes the sth Chebyshev polynomial of the second kind.



Remark 10.4. Since the characteristic matrices of L are diagonal, we can read off the
eigenvalues of T, from Corollary 10.3. Assume for simplicity b = 1, v = 0. Then the
eigenvalues of Ty, are given by

!
(N
)\S:—U"( ), seN,

with multiplicities given by the square of the dimension m, = D? = (U,(N))? of u(®).
Recall that the “spectral dimension” dp of the associated spectral triple is, by def-
inition (see [17,18]), the abscissa of convergence of the zeta function z — Zp(z) =
Tr(|D|~#), initially defined for z € C with Rez > 0. It coincides with the infimum of
all d > 0 such that the sum Y ms(—\s)~%?2 is finite. In the present situation of Corol-
lary 10.3 and assuming N =2, b =1, v =0, we have Us(2) = s+ 1, U.(2) = s(s+1)(s+2)

6
(s+2)

A, = 2
6

and finally dp = 3. This value of the spectral dimension agrees nicely with the known
fact that OF is isomorphic to SU_;(2), see [2], and that C(SU_1(2)) can be realized
by matrix-valued functions on the three-dimensional Lie group SU(2), cf. [49]. On the
other hand, for N > 2, we have

g(N)** — q(N)~="!

G = e T
oy C(N) s(g(N)*F2 = g(N)=*7?%) = (s +2)(g(N)® — q(N)~°)
V) =) (V) —a(V) D)2
_d(N) (SQ(N)SH —gV)= T a(N)T —g(N) )
q(N) q(N) —g(N)~1 (g(N) —q(N)=1)2 )’
with ¢(N) = 3(N + VN2 —4) > 1, ¢'(N) = 3(1 + Zz5—;) > 0, and
_ AW q(N)* —gq(N)~*
As = q(N) ( 2(61(1\7)5+1 —q(N)=*"1)(g(N) — Q(N)‘l))

Since q(NV) is bigger then 1 (and fixed), the term

q(N)* —gq(N)~*
(q(N)s*+1 —q(N) =5 1) (g(N) — q(N)~)
This implies that the growth of the eigenvalues As; (as a function of s) is asymptoti-
’ 2s
cally linear \; = _{51((1]\\7,))87 while the multiplicities ms = U,(N)? = % grow
exponentially, therefore the sum

Sy 0D

S

—0 ass— oo.

can never converge, which means that dp = +oo.



11. Example: Woronowicz quantum group SU 4(2)

Let us fix ¢ € (0, 1). The compact quantum group C(SU,(2)) (see [47]) is the universal
unital C*-algebra generated by « and  subject to the following relations

Fat+yty=1,  adt+@y =1,
Yy =7, ay = qya, ay" =gy«

with the comultiplication extended uniquely to a unit-preserving *-homomorphism from
the formulas

Ald)=a@a—¢y" @y, A()=70a+a’"®@7.

For C(SU,(2)) the equivalence classes of irreducible unitary corepresentations are
indexed by non-negative half-integers s € %N and are of dimension n; = 2s+ 1. For each
ul®) = (uﬁ))Jk the indices j, k run over the set {—s,—s+1,...,5 — 1,5} (see e.g. [33]
for the detailed description of u(s)). Moreover, every corepresentation is equivalent to its

contragredient one and we have
S(ury) = (uf))" = (=¥ 7u) . (11.1)

The quantum group is neither commutative nor cocommutative. The Woronowicz
characters, the modular automorphism group, the unitary antipode and the quantum
dimension are the following (cf. [46, Appendix Al]):

F(u3i)) = a*%6. (11.2)

Oz (“52)) = fiz * USZ) * fiz = qziz(ﬂk)u;‘z), (11.3)

R(ul)) = S(fy wuly) « f1) = ¢" 7 (ug))", (11.4)

Dy= Y fAilu) =Y ¢ =q 25+ 1. (11.5)
k=-—s k=—s

The following example describes the irreducible representations of C'(SU,4(2)) and the
related opposite representations (cf. Section 5).

Example 11.1. On A = C(SU,(2)) we have two families of irreducible *-representation
indexed by 6 € [0, 27):

(1) the 1-dimensional representations dy : A — C:

Jo(ar) = €', do(y) = 0;



(2) the infinitely-dimensional representations on a Hilbert space pg : A — B({?):

po(@)en =Wen,  po(v)en = €q"en,

where (e,,)nen is the standard orthonormal basis of 2 and W is the weighted shift
defined by Weg = 0 and We,, = \/1 — ¢®>"e,,_1 for n > 1.

We check directly that
6" =06_9 and pp® = prig.

Indeed, we note first that R(a)) = o* and R(vy) = —~. So for dy we have

5gP(a)1 = dg(R(a*))1 = Sp(a)l = €1 = e 1 = §_g(a)1

and

S (NI = 0o (R(7))1 = =0s(37)1 = 0 = 6_o(7)1.

Similarly, for pg we compute

P (Ven = —po(1*)en = —e~Pqre, = TG 8, = prig(v)en,

pr(a)en = ppla)en, = Wen = /1 —¢*"en = prio(a)én.

11.1. GNS-symmetric generators

We first describe a generic GNS-symmetric functional on SU4(2) and provide an
example of an unbounded generating functional.

Proposition 11.2. A hermitian functional ¢ on SU(2) defined by
o (uls)) = .o (11.6)
with real constants (cs ;). 1n, —s<j<s 15 GNS-symmetric.
Reciprocally, any GNS-symmetric generator ¢ on SUy(2) must be of the form (11.6)

and it is hermitian if and only if the constants satisfy the supplementary symmetry
condition: cs ; = cs,—; for all s and j.

Proof. We calculate explicitly that ¢ of the form (11.6) is invariant under the antipode:

o0 5(uy)) = (1)) = 0(w}) = E5ogn = eabip = o(uy).



Conversely, suppose that ¢ o S = ¢, then also ¢ 0 S? = ¢. On SU,(2) we have
Sz(ugf?) = ¢?U- k)u() thus ¢(u (S)) = ¢o 52(u§f;€)) = q2(j*k)¢(u§‘z)) and ¢ can have
non-zero values only on the diagonal. By Remark 4.7, all ¢, ; must be real.

Finally, ¢, ; = &, = ¢(u'?) and ¢, —; = o(u) _) = ¢((u?))*) from which the last

JJ —2=J

part follows. O
11.2. Unbounded GNS-symmetric generator

Let 7 be the *representation of SU,(2) on £*(N x Z) given by

m()ern = V1—q¢*ep_1, (k>=1), m(a)eg,n = 0,
ﬂ(a*)ek’n =V1-q¢**t2ep 1, (k=0),

W(V)ek,n = qkek,nfla W(W*)ek,n = qkek,nJrlz

—_

where {ey,; k>0, n € Z} is the standard orthonormal basis of £*(N x Z). For a fixed
0 < A < 1 let us consider a Poisson type generator

oa(a) = <v)\, (m—¢) v)\> with vy = Z)\ €k,0-
k=0

The related cocycle ny(a) = (7 — €)(a)vy is uniquely determined by the value on o*
(see [37]), where it equals

= Z)\k(w—e) eko —Zx\k 1 —q2k+26k+10—ek 0)
=Y N1 - Prerp — Z Neero
k=1 k=0
= —epo + Z(Ak_lx/ 1— g2k — )\k)ek,0~
k=1
Note that nx(a*) € H since

|72 (e —1+Z|>\k LT = g2k = k) <1+4Z/\“ D < +oc.
k=1

Define also a cocyle 7o, by its value on a*:
o0

Moo () :*eooJrZ 1— g2k )ek,o:*Z(lf\/l*q%)@k,@

k=0



We shall show that 1. (a*) € H and that ny(a*) = ne () in H when A — 17. For the
first part, we check directly that

) oo 5 e q4k: 1
* — 1— 1 — g2k — < < 400.
I (@) = 2 (0= VA=) = 3 (g < T <

Next, we show the convergence:

2

STV = =N = V1 - ¢ 4 1)ero

k=1

(1= VT =g) (1= A1) a1 (1= )|

I (@) = e (") I =

M8 1M 3

(1 m) ( k- 1 Z)\zk 1)

E
Il

1

io: )( )\k 1)Ak 1

k=1

Note that 1 —A*=1 = (1 = \)(A¥=2 4. +1) < (k — 1)(1 — A). This implies

q4k (1 _ )\)2
(1+ 2F2 1=

M8

[ma (@) = nao (@) < A= N2> (k= 1)2

™~
Il

1

o0 Qk
q
+2(1—-))2 § —
I 1+/1— g%

1-A —
(k= 1% + 1 +20 =) Y™ (k-
k=1

kE—1)Ak1

WK

<(1-n)?

x~
Il
—

and we see that each term tends to 0 when A — 17,
Let us now define by ¢, the functional related to the cocycle 1. by the formula

Poo(ab) = <77<>o (a*),noo(b)>, a,b € kere,

with the additional conditions that ¢ (1) = 0 and that the ‘drift’ part is zero (which
remains to say that ¢o. () = doo(a*) € R). This way ¢ is uniquely determined on
the whole of A = Lin{1,a — a*, K5}, where K5 is the linear span of products of two
elements from kere (cf. [37]). By the Schoenberg correspondence, if well-defined, ¢, is
a generating functional of a Lévy process.

To see that ¢ is well-defined, we can check that on K5 the functional is just a limit
of functionals related to ny. Indeed, if a,b € ker e then



Poo(ab) = (s (@), Mo (b)) = < Jim 7, (a*)yulin} 7m(b)>
and since both limits exist we have

Poo(ab) = lim (nx(a®), (b)) = Jim_ ¢a(ab) = lim_ (v, (1 — €)(ab)vy).

li
A—1
We conclude that

Poola) = )\linll_ (v, (r —€)(a)va) for a € K. (11.7)

Our aim now is to show that ¢, is GNS-symmetric and unbounded.
Proposition 11.3. The functional ¢ is GNS-symmetric.

Proof. By Proposition 11.2, it is enough to show that ¢, vanishes on the non-diagonal
coefficients of the corepresentations u(®), s € %N. These coefficients are of the form
b = amp(y*y)y" for m,n € Z (with the notation ™" = (a*)” for n > 0 and p
denoting a polynomial, see [33]) and they are off diagonal iff n # 0. So it is enough to
check that ¢, vanishes on a™(y*y)ky™ (n # 0).

We first observe that v,7* € Ks. Indeed, the relation ay = ¢ya together with
v, — 1 € kere imply that

¢ "Y(Ol*].)*L(Oé*l)’YGKQ.

i =

Therefore an element o™ (y*y)*y™ belongs to Ky provided k # 0 or n # 0. So the
formula (11.7) can be applied

Poo (am(’y*’Y)kVH) = Aliﬂll_ Z )\p+r<ep,o,W(a)mw('y*v)kw(fy)"eno)
p,r=0

Since 7(y) and w(v*) move (down and up, respectively) the second index of the basis
vectors ey, , and since none of m(a), m(a*) and 7(y*y) move the second index, we imme-
diately see that if n # 0 then m(a)™7(v*y)*m(v)"€r0 € C - €4t n, which is orthogonal
to ep o for any m, k and p, q. So the sum under the limit equals to 0 and thus ¢, is of
the form (11.6). O

Proposition 11.4. The functional ¢ is unbounded.
Proof. We shall show that |po(a*™a™)| — +00 when m — +00. Since
o™ a™ [, < lallA™ < 1,

this will imply that ¢ is unbounded.



Observe first that

oMo — O[k(m—l) (OﬁO{)Oémil _ a*(m—l) (1 _ 7*7)am71

_ Oé*(m—l)amfl (1 —2(m—1)

—q )

and by induction
a*Mam — (1 — ’7) (1 _ (]_27*’7) . (1 — q—2(m—1),y*,y)’ m > 1.

Applying the standard formula from the g-calculus (cf. [26, Eq. (0.3.5)]):

n

k(k=1) (_4\k
qu qq) o (=a)

=0

we arrive at
Oé*mOém—].: (1_,)/*,}/).“(1_q 2(m— 1)7*7) -1

_ i(_l)k( (q2;q2)m qk(k_l)(’y*'y)k.

pet 7 4*)k (4% 4% )m—k

We see that each term under the sum contains y*y and thus belongs to Ka.

Now that we have proved that a*™a™ — 1 € K3, we can apply the formula (11.7) to

calculate the value of ¢, on a*a™. Namely,

= poo ("™ — 1)

= lim Z /\J+k<e 0, (T —&)(a*™a™ — 1)eg)

A—1-
3,k=0

— lim Z Nt ejo. [(In =7 (v*7)) - (Tn = a2 D (v*7)) = Tn]ero)

A—1-
7,k=0

N R !

m—1 0o

1— Z 1 _ 1 _ q (1 _ q2k72m+2))'

=0 k=

We finally note that the infinite sum is non-negative, and so

|¢oo( *mm|7 71+Z 17 17 (17q2k72m+2))>m71' 0



11.3. KMS-symmetry

In case of C(SU,4(2)) it is easy to check that a hermitian ¢ is KMS-symmetric iff for
each s € %N the matrix qﬁgs) = [¢ gb(ujk)] is hermitian. Moreover, if a functional ¢ is
hermitian and KMS-symmetric, then the values of ¢ on the corepresentation matrix u(*)
are determined by the values (b(uﬁ)) for |k| < j and the conditions

o(u®) ) = (0 Fo(u)) and o(ul)) = ¢ o ().

Below we provide an example of a KMS-symmetric generator which is not GNS-
symmetric.

Example 11.5 (KMS-symmetric generator which is not GNS-symmetric). Let us consider
the Poisson type generating functional on SU(2)

¢(a) = (ex, (po —€)(a)ex),

where pg is the infinite-dimensional representation of C(SU,(2)) on £2, described in
Example 11.1, 6 € [0,27), and ek is the kth standard orthonormal basis vector of £2.

If (and only if) § = 7 or § = =, then ¢ is KMS-symmetric. Indeed, by Theorem 5.4
and Example 11.1 the condition for the generating functional to be KMS-symmetric,
¢(a) = ¢ o R(a), reduces to

(ex, (po(a) — porr(a®))er) =e(a) —e(a*) (11.8)
for any a € A. For a = v the left hand side of (11.8) is

<6k, (pe(’Y) _ P0+7r(’}/*))ek> _ <€k7 (62‘0 _ 67i(0+w))qk6k> _ (eie + efie)qk,

= 0 only when 0 = 5 or 6 = 37” For such 6 we check by a direct

which equals |e(7)/?
calculation that Eq. (11.8) holds true for each element of the form a = (a*)!y™(y*)"
(such elements form a linear basis of A).

The Poisson generator related to pg with 6 € {2, -} is not GNS-symmetric since
S(v) = —qv and ¢ # 1 imply ¢(v) # ¢ 0 S(7).

For k = 0 and 0 = 5 we can calculate explicitly the values of the generating
functional (11.8). Namely, using the explicit formula for the coefficient of the corep-
resentations (cf. [33, (B.19)]), the Vandermonde summation formula (cf. (0.5.9) in [26])

and the standard g-transformation (cf. (0.2.14) therein), we get

-1, J=k,
(o) i25gs=NH+) 5, .0 520, k=—7,
¢(Ujk) = im2gl=NHD=2] 0 k=
0, otherwise.

In particular, it has non-zero entries only on the diagonal and the anti-diagonal.



The eigenvalues of the matrix ¢(*) = [qﬁ(u;?)], p(a) = (eo, (pz —€)(a)eo) are:
M= (1 g DEHHDH) NS (1= gl )
with j = %,%,...,g Whens:§ (ke2N+1)or

Ao = =14 (=1)%g3C+D), )\;r =—(1+ q(s—j)(s+j+1)+j)7

A7 = — (1= glD(s+iTD+)

for j=1,3,...,k when s =k (k € N).
11.4. ad-invariance

We already noted that ad-invariance is a strong constraint on the functional. Namely,
it is necessarily a multiple of the identity on each of the corepresentation matrices, in
particular of diagonal form. A comparison of this notion with that of GNS-symmetry
(suggested by Proposition 11.2), shows that ad-invariant generating functionals of a Lévy
process on C(SU4(2)) are necessarily GNS-symmetric.

Corollary 11.6. Let ¢ be a functional on SU4(2). If ¢ is ad-invariant and hermitian, then
¢ is GNS-symmetric.

Proof. By Proposition 6.9, ¢ is of the form ¢(uﬁ)) = ¢40;%. By hermiticity, c; = ¢(u§j)) =

(b((u(_sj)_j)*) = ¢(uf;7_j) = ¢; and we conclude by Proposition 11.2 that ¢ is GNS-

symmetric. O

The following example shows that the map ¢ — ¢.q preserves neither hermiticity nor
positivity.

Example 11.7. Let ¢ be the functional on SU,(2) defined by ¢(a) = €', p(a*) = e~
and zero otherwise, where ¢ ¢ 27Z. Then ¢,q is ad-invariant and ¢aq(a) = Paa(a™) =
(1 —g*)~L(e® + ¢g%e~™), so it is not hermitian.
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