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Objective: To investigate the effect of exposure to multiple ambient air pollutants during
pregnancy on the risk of children being born small for gestational age (SGA).

Methods: An Air Pollution Score (APS) was constructed to assess the effects of being
exposed to six air pollutants simultaneously, PM2.5, PM10, SO2, NO2, CO, and O3 (referred
to as joint exposure). A logistic regression model was applied to estimate the associations
of APS and SGA.

Results: The adjusted odds ratios (ORs) of SGA per 10 ug/m3 increased in APS during the
first and second trimesters and the entire pregnancy were 1.003 [95% confidence intervals
(CIs): 1.000, 1.007], 1.018 (1.012, 1.025), and 1.020 (1.009, 1.031), respectively. The ORs
of SGA for each 10 μg/m3 elevated in APS during the whole pregnancy were 1.025 (1.005,
1.046) for mothers aged over 35 years old vs. 1.018 (1.005, 1.031) for mothers aged under
35 years old. Women who were pregnant for the first time were more vulnerable to joint
ambient air pollution.

Conclusion: In summary, the results of the present study suggested that joint exposure to
ambient air pollutants was associated with the increment in the risks of SGA.

Keywords: cross-sectional study, Wuhan, air pollution score, small for gestational age infant, joint association

INTRODUCTION

Small for gestational age (SGA) is an indicator of fetal development. It applies when infants are
born with a birth weight below the 10th percentile for the average weight of newborns of the
same gestational age [1]. The prevalence of SGA in developed regions of Europe and America
was approximately 10% in 2017 [2]. A previous study estimated that in 2010 more than
32 million SGA infants in low- and middle-income countries and the number of SGA births in
China was 1,072,100 (uncertainty intervals: 648,300-1,817,600), meaning China ranked fifth
among the top ten countries with the highest numbers of SGA infants [3]. Lower birth weight is
one of the major risk factors for neonatal death [4, 5]. In addition, SGA is associated with
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cognitive impairment in childhood and the development of
obesity, type 2 diabetes mellitus, and cardiovascular diseases in
adulthood [6, 7].

Air pollution has been an alarming public health problem
worldwide in recent years [8]. Emerging studies have shown that
short- and long-term exposure to air pollution is associated with
elevated mortality and morbidity of various diseases [9, 10]. The
relationship between air pollution and SGA had been extensively
assessed in recent years [11, 12]. A study conducted in Huangshi,
China found that fine particulate matter (PM2.5) and inhalable
particles (PM10) were positively linked with increased risks of
SGA during the entire pregnancy [13]. In the Eunice Kennedy
Shriver National Institute of Child Health andHumanDevelopment
(NICHD) Consecutive Pregnancy Study, the significant effects of
PM2.5, PM10, nitrogen dioxide (NO2), sulfur dioxide (SO2), and
carbon monoxide (CO) on SGA were found in the third trimester
[14]. However, the overwhelming majority of research to date has
applied single-pollutant models, which often ignore the fact that
multiple people are exposed to ambient air pollution simultaneously.
The combined health effect of particulate matter and gaseous
pollutants might be widely divergent from that of individual air
pollutants [15, 16]. Therefore, we propose a novel indicator [17], the
Air Pollution Score (APS), to aid in comprehensively considering the
effects of PM2.5, PM10, NO2, SO2, CO, and ozone (O3), in evaluating
the associations of mixed exposure to air pollution and SGA.

This study applied logistic regression models to estimate the
associations between joint exposure to multiple ambient air
pollutants and SGA in Wuhan, China. We also performed
subgroup analyses to explore potentially susceptible
populations and the times of year when people are most
vulnerable.

METHODS

Study Design and Population
Wuhan Children’s Hospital is a large-scale specialized hospital
located in the Jiang’an district of Wuhan, China. This area is one
of the central urban areas of Wuhan city, serving pregnant
women and the delivery needs of the whole city

(Supplementary Figure S1). Data on mothers and live
newborns were collected from Wuhan Children’s Hospital
from 1 January 2017, to 30 June 2021. After screening by
inclusion and exclusion criteria, a total of 31,283 gravidas and
their offspring were involved in the study (Figure 1). Their
geographical distributions are shown in Figure 2. We obtained
variables of interest from the hospital’s delivery register, including
each gravida’s residential address and duration, work status,
educational attainment, maternal age, the number of
pregnancies and parity, high-risk factors during pregnancy (for
example, placental abruption, placenta previa, gestational
hypertension, preeclampsia, eclampsia, oligohydramnios, and
gestational diabetes, etc.), gestational age, date of delivery,
birth weight and sex of newborns. Furthermore, we also
deduced gravidas’ conception seasons [warm (April to
September) and cold (October to March of the next year)]
based on the date of delivery and gestational age.

Assessment of SGA
The weight of the newborns was measured within 1 hour after
birth. SGA was defined as infants with a birth weight lower than
the 10th percentile of the average weight at the same gestational
age [18]. Compared with the traditional indicator (low birth
weight, LBW), SGA can more accurately reflect the development
of the infant by considering development time in the womb.
According to growth standard curves of the birth weights of
Chinese newborns of different gestation [19], the incidence rate of
SGA was approximately 6.0% in this study.

FIGURE 1 | Flow chart of the study population selection (Wuhan, China,
2022).

FIGURE 2 | The distribution of pregnant womenwhose home addresses
are less than 10 km from the nearest monitoring station (Wuhan, China, 2022).
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Definition of the Air Pollution Score
The daily mean concentrations of PM2.5, PM10, SO2, NO2, CO,
and O3 were collected from 10 national environmental
monitoring stations based in the Wuhan Municipal Bureau of
Ecological Environment (http://hbj.wuhan.gov.cn/hjsj/). The
concentration of air pollution published by the environmental
monitoring station closest to the home address of gravida was
used as the individual exposure level (Figure 1).

APS is a novel indicator for assessing the joint effects of being
exposed to multiple ambient air pollutants simultaneously and
the health outcomes that result from it [17]. In the current study,
the air pollution score was calculated by considering
concentrations of six air pollutants, weighted by multivariable-
adjusted risk estimates (β coefficients) on SGA. The formula was
as follows:

APS � 6 × (βPM2.5
× PM2.5 + βPM10

× PM10 + βSO2
× SO2 + βNO2

× NO2 + βCO × CO + βO3
× O3)

βPM2.5
+ βPM10

+ βSO2
+ βNO2

+ βCO + βO3

Where βPM2.5
, βPM10

, βSO2
, βNO2

, βCO and βO3
were the regression

coefficients calculated from each single-pollutant model
PM2.5,PM10, SO2,NO2, CO and O3 were the concentration of
each air pollutant. The higher APS of the pregnant woman
indicated that they had been exposed to higher joint ambient
air pollutants.

Statistical Analysis
According to previous epidemiological studies [20], a pregnancy
period is divided into the first trimester (1–12 weeks), second
trimester (13–26 weeks), and third trimester (27 weeks to birth).
A two-stage analysis strategy was developed to investigate the
associations between joint ambient air pollution and SGA. In the
first stage, the links between six air pollutants and SGA were
assessed by performing multiple logistic regression in separate
models, and then APS was calculated. At the second stage, the
effects of APS on SGA were evaluated to reflect the hazards of
mixed air pollution exposure. Several potential confounders were
selected and adjusted in these models, including age [year old
(<35, 35+)], pregnancy (=1, >1), parity (=1, >1), educational
attainment [year (≤9, 10–12, ≥13)], work status (yes, no), high-
risk factor during pregnancy (yes, no) and neonatal sex (boy,
girl). Moreover, we separated APS into five quintiles (Q1, Q2,
Q3, Q4, and Q5) and estimate the ORs compared with the first
quintiles (Q1) to evaluate the potential linear trend between APS
and SGA. Subgroup analyses were stratified by age, pregnancy,
parity, and conception season to detect vulnerable populations
and periods. To assess the robustness of the association between
APS and SGA, we conducted several sensitivity analyses: 1) re-
calculating APS removing one air pollutant at a time; 2)
assessment of SGA using internal standard; 3) co-adjusting
for two trimesters in the same model; 4) co-controlling for
two air pollutants in the same model.

Consistent with previous studies, the effects of air pollution
and APS on SGA were reported odds ratio (ORs) with 95%
confidence intervals (CIs). All statistical analyses were performed
using R software (version 4.0.3), All P-values for the tests were
two-sided and P-values < 0.05 were considered statistically
significant.

RESULTS

Table 1 shows the characteristics of mothers and newborns in
Wuhan, China. In both the case group and control group, lying-in
women who were aged under 35 years old, had primiparity,
higher educational level, were working, and had high-risk
factors, and those who gave birth to boys accounted for more
than half of the total participants. However, a higher proportion
of first-time pregnant mothers were observed in the SGA group
compared with the normal group (57.3% vs. 45.9%). Table 2
shows the adjusted odds ratios (ORs) and 95% CIs for SGA
associated with a 10 ug/m3 increase in air pollutants during
different exposure periods. Exposure to SO2 appeared the
strongest effects on SGA in the second trimester [OR = 1.320,
95% CIs (1.110, 1.570)].

Table 3 exhibits adjusted odds ratios (ORs) and 95%
confidence intervals for the associations of SGA and APS. A
10 ug/m3 increase in APS was positively associated with elevated
risk of SGA, with corresponding ORs of 1.018 (95% CIs: 1.012,
1.025) and 1.020 (95% CIs: 1.009, 1.031) in the second trimester
and the entire pregnancy, respectively. Compared with the first
quintile of APS in different pregnancy periods. There was a
significant relationship between APS and SGA detected in the
second trimester [Q5 vs. Q1, OR = 1.427 (95% CIs: 1.231, 1.653)]
and entire pregnancy [Q5 vs. Q1, OR = 1.346 (95% CIs: 1.162,
1.558)]. In general, the higher the concentrations of APS, the
larger their effect estimates on SGA (p for trend <0.05).

Table 4 compares the adjusted ORs per 10 ug/m3 increment of
APS in different subgroups during the four exposure windows.
Pregnant women with advanced maternal age seemed to be more
susceptible to exposure to mixed air pollutants than younger
women. The ORs of SGA per 10 ug/m3 elevated in APS during
the second trimester and entire pregnancy were 1.022 (95% CIs:

TABLE 1 | The characteristics of mothers and newborns (Wuhan, China, 2022).

Control (n = 29,415) SGA (n = 1868)

Age (years), n (%)
<35 18,522 (63.0%) 1,321 (70.7%)
35+ 10,893 (37.0%) 547 (29.3%)

Pregnancy, n (%)
=1 13,515 (45.9%) 1,071 (57.3%)
>1 15,900 (54.1%) 797 (42.7%)

Parity, n (%)
=1 18,914 (64.3%) 1,465 (78.4%)
>1 10,501 (35.7%) 403 (21.6%)

Educational attainment (years), n (%)
≤9 5,363 (18.2%) 324 (17.3%)
10–12 2,164 (7.4%) 133 (7.1%)
≥13 21,888 (74.4%) 1,411 (75.5%)

Work status, n (%)
Yes 17,307 (58.8%) 1,098 (58.8%)
No 12,108 (41.2%) 770 (41.2%)

High-risk factor, n (%)
Yes 21,652 (73.6%) 1,334 (71.4%)
No 7,763 (26.4%) 534 (28.6%)

Neonatal sex, n (%)
Boy 15,595 (53.0%) 1,062 (56.9%)
Girl 13,820 (47.0%) 806 (43.1%)
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1.010, 1.033) for mothers aged over 35 years old and 1.016 (95% CIs:
1.008, 1.024) for mothers aged under 35 years old, and 1.025 (95%
CIs: 1.005, 1.046) vs. 1.018 (95% CIs: 1.005, 1.031), respectively.
Results showed that women experiencing their first pregnancy were
more vulnerable to joint ambient air pollution than women who
have had multiple pregnancies. For the conception season, the
increment of APS related to an increase in the risk of SGA
corresponded with the warm season only.

After re-calculating APS by removing one air pollutant at a time,
the links between APS and SGA were still statistically significant in
the second trimester and the entire pregnancy (Supplementary
Table S1). We re-estimated the associations between SGA
(internal standard, as seen in Supplementary Table S2) and air
pollutants. Compared with previous results, the associations still
exist, although the impact was slightly smaller (Supplementary
Table S3). In two-trimester and two-pollutant models, the
relationship between air pollution and SGA did not change

significantly (Supplementary Tables S4, S5). The several
sensitivity analyses showed our results were robust.

DISCUSSION

In this study, we used APS to estimate the effect of joint exposure
to ambient air pollutants on SGA by unconditional logistic
regression models. We found significant positive associations
between APS-SGA in the first, second, and third trimesters, as
well as for the entire pregnancy. Compared with the first quintile
of APS, the effect estimates were strongest in the fifth quintile.
Gravidas, being aged over 35 years old, multiparas, women
experiencing their first pregnancy, and conception taking place
in the warm season were shown to make pregnancies more
vulnerable to mixed air pollution during the second trimester
and whole pregnancy. These findings contribute to the existing

TABLE 2 | The odds ratios and 95% confidence intervals for small for gestational age infants associated with a 10 μg per cubicmeter increase in air pollutants (Wuhan, China,
2022).

Trimester 1 Trimester 2 Trimester 3 Entire pregnancy

PM2.5 1.009 (0.982, 1.036) 1.077 (1.049, 1.106) 0.988 (0.962, 1.014) 1.116 (1.053, 1.181)
PM10 1.009 (0.986, 1.033) 1.062 (1.037, 1.087) 1.010 (0.987, 1.033) 1.069 (1.030, 1.109)
SO2 1.045 (0.882, 1.237) 1.320 (1.110, 1.570) 0.977 (0.815, 1.172) 1.261 (0.969, 1.640)
NO2 1.034 (0.989, 1.080) 1.087 (1.040, 1.136) 0.970 (0.929, 1.013) 1.085 (1.008, 1.169)
CO 1.003 (1.000, 1.006) 1.005 (1.002, 1.008) 1.000 (0.997, 1.002) 1.001 (1.000, 1.002)
O3 0.977 (0.953, 1.001) 0.943 (0.921, 0.967) 1.035 (1.010, 1.060) 0.918 (0.866, 0.973)

TABLE 3 | The adjusted odd ratios and 95% confidence intervals for air pollution scores with the risk of small for gestational age infants in Wuhan (Wuhan, China, 2022).

Air pollution score (quintiles) ORs for per 10 ug/m3 increase p for trend

Q1 Q2 Q3 Q4 Q5

Trimester 1 1 1.042 (0.893, 1.216) 1.247 (1.075, 1.447) 1.206 (1.038, 1.401) 1.105 (0.949, 1.288) 1.003 (1.000, 1.007) 0.046
Trimester 2 1 1.054 (0.902, 1.232) 1.118 (0.959, 1.304) 1.133 (0.972, 1.320) 1.427 (1.231, 1.653) 1.018 (1.012, 1.025) <0.001
Trimester 3 1 1.157 (1.001, 1.336) 1.016 (0.876, 1.179) 1.006 (0.868, 1.168) 0.862 (0.738, 1.005) 0.998 (0.996, 0.999) 0.013
Entire pregnancy 1 1.129 (0.972, 1.311) 0.987 (0.845, 1.152) 0.993 (0.850, 1.160) 1.346 (1.162, 1.558) 1.020 (1.009, 1.031) 0.003

Note: Q, quintile.

TABLE 4 | The adjusted odd ratios and 95% confidence intervals for a 10 μg per cubic meter increase in air pollution scores with the risk of small for gestational age infants in
Wuhan (Wuhan, China, 2022).

Trimester 1 Trimester 2 Trimester 3 Entire pregnancy

Age (years)
<35 1.004 (1.000, 1.009) 1.016 (1.008, 1.024) 0.998 (0.996, 1.000) 1.018 (1.005, 1.031)
35+ 1.002 (0.995, 1.009) 1.022 (1.010, 1.033) 0.998 (0.995, 1.001) 1.025 (1.005, 1.046)

Pregnancy
=1 1.005 (1.000, 1.010) 1.020 (1.011, 1.028) 0.997 (0.995, 0.999) 1.025 (1.010, 1.040)
>1 1.001 (0.995, 1.007) 1.016 (1.006, 1.027) 0.999 (0.996, 1.001) 1.014 (0.998, 1.031)

Parity
=1 1.005 (1.000, 1.009) 1.018 (1.010, 1.025) 0.997 (0.995, 0.999) 1.019 (1.006, 1.031)
>1 0.999 (0.991, 1.007) 1.019 (1.005, 1.034) 1.001 (0.998, 1.005) 1.026 (1.003, 1.050)

Season
Warm 1.018 (1.011, 1.025) 1.026 (1.017, 1.036) 0.993 (0.991, 0.996) 1.029 (1.013, 1.046)
Cold 1.006 (0.998, 1.013) 1.004 (0.992, 1.016) 0.998 (0.995, 1.002) 1.007 (0.991, 1.023)
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body of knowledge on the relationship between mixed air
pollution and SGA and provide valuable epidemiological
evidence for policymakers and will help better maternal and
child health.

A number of studies have revealed that exposure to air
pollution during pregnancy increases the risk of SGA [21, 22].
For example, a 1 ug/m3 increase in PM2.5 during the second
trimester corresponded with a 1.9% (95% CIs: 0.9%, 2.8%)
increased incidence of SGA [13]. The third quartile of PM10 in
the whole pregnancy compared with the first quartile was linked
with SGA [OR = 1.38 (95% CIs: 1.00, 1.90)] [23]. The adjusted
ORs for SGA associated with per interquartile range (IQR)
increased in SO2, NO2, and O3 during the entire pregnancy
were 1.02 (95% CIs: 1.01, 1.03), 1.08 (95% CIs: 1.04, 1.12),
and 1.14 (95% CIs: 1.11, 1.17), respectively [12]. A 1 part per
million (ppm) increase in the concentration of CO in the first
month of pregnancy was significantly related to SGA [OR = 1.06
(95% CIs: 1.01, 1.10)] [24]. However, in the current paper, we
found negative correlations of O3. Possible explanations is the
different ethnicities of patients and the fact that the combination
of air pollution in specific regions differed. Animal experiments
using an ozone exposure chamber are warranted to investigate the
associations between O3 and SGA.

In recent years, more research attention has been paid to the
health effects ofmixed pollutant exposure due to the high correlation
between them and the fact that they might be emitted
simultaneously from the same sources [25, 26]. However, few
studies have estimated the joint association between ambient air
pollutants and SGA. We comprehensively constructed a novel
indicator, APS, reflecting the combined effects of PM2.5, PM10,
SO2, NO2, CO, and O3, to evaluate the association between joint
exposure to air pollutants and SGA. Although NO2, CO, and O3

appeared non-positive effects on SGA in the single-pollutantmodels,
we found that APS was significantly associated with an elevated risk
of SGA in each exposure window. Therefore, APS might have the
capacity to provide more comprehensive measures of health
assessment than individual air pollutants. Prior studies had
utilized similar methods by accounting for a combination of
common coexisting pollutants to assess the combined effects of
multi-pollutant exposures on health outcomes [27, 28]. Hong et al.
proposed an index calculated by summing each air pollutant
concentration divided by its mean and observed that the new
index was more strongly associated with all-cause mortality than
individual air pollutants [28]. An analogous algorithm,
environmental risk score (ERS) was also used to estimate the
relationships between joint exposure to environmental pollutants
and serum lipid levels in people in the US [29]. A statistical approach
to comprehensively summarizing air pollutant concentrations could
efficiently evaluate the combined effects of pollutants as they are
highly correlated [17].

Previous studies have indicated that prenatal exposure to air
pollution is associated with a smaller head circumference, shorter
body length, and lower weight in newborns [30–32]. The potential
biological mechanism of air pollution on SGA remains unclear.
However, there were several theories worth mentioning, including:
1) that air pollution might trigger oxidative stress and inflammatory
reaction, reducing nutrition and the exchange of gases in the

placenta and inducing endocrine disorders in the maternal body
[33]; 2) prenatal exposure to air pollution could increase maternal
susceptibility to infections, impairing fetal growth [34]; and 3)
exposure to air pollution is capable of reducing the content of
mitochondrial DNA (mtDNA), which has been related to lower
infant birth weight and more muscular oxidative stress [35, 36]. The
potential mechanism of joint exposure to air pollutants and
increased risks of SGA is still unknown. We speculated that there
might be additive effects in various air pollutants on SGA because of
their similar biological function pathways, such as oxidative stress
and inflammatory reaction.

We observed that when thematernal age is over 35 years old the
pregnancy seems to be more vulnerable to APS in the second
trimester and whole pregnancy, which can be explained due to the
problem of hypoxia in older pregnant women being more
prominent due to the increase in air pollution levels and
umbilical artery vasoconstriction [37, 38]. Younger women
might generally be more capable of relieving the oxidative stress
induced by air pollution [39]. Slightly stronger associations
between APS and SGA were found in women who were having
their first pregnancy than those who have had multiple
pregnancies, during the entire pregnancy, with corresponding
ORs of 1.025 (95% CIs: 1.010, 1.040) vs. 1.014 (95% CIs: 0.998,
1.031). Prior studies have also revealed that women with a history
of pregnancy and childbirth were associated with an increase in the
birth weights of newborns [40, 41]. Prefumo et al. found that
permanent changes in maternal blood vessels might persist after a
successful pregnancy and that these changes in the physiological
structure also changed the hemodynamics of women during the
second pregnancy, which was more conducive to the material
exchange between mother and fetus [42]. Previous studies have
evidenced that the placental efficiency of primipara is relatively
low, which affects the development of the surface density of the
microcotyledon; whereas with an increase in the number of
parities, the surface density elevates accordingly [43–45], which
might mitigate the hazards of air pollution to a certain degree. The
specific mechanism of how both parity and APS influence neonatal
birth weight needs to be further explored. In this paper, we found
that when women conceived in the warm season they were more
susceptible to APS than in the cold season. Similar results were
found in a study conducted in Guangzhou, China [12]. Wang et al.
observed that an IQR increase in PM2.5, PM10, NO2, SO2, and O3

significantly elevated SGA incidence among women whose
conception season was summer or fall [12]. However, a study
conducted in Canada found there was no seasonal pattern between
air pollution and SGA [32], meaning weather conditions might
only partly explain the difference. Wuhan and Guangzhou belong
to subtropical oceanic monsoon climates, and women conceived in
the warm season experience relatively cold weather during
pregnancy. A previous study pointed out that people living in
Wuhan and Guangzhou were more vulnerable to cold weather
than those in the cities of northern China [46]. Therefore,
simultaneous exposure to lower temperatures and humidity
might strengthen the adverse effect of air pollution on SGA.
Besides, the lower duration of sunshine in the cold season has
been associated with lower maternal vitamin D levels, and vitamin
D deficiency was a risk factor for low birth weight in infants [47].
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According to the information we currently have, this is the first
study to explore the associations between joint exposure to ambient
air pollutants and SGA in China. These findings deepen our
understanding of the impact of mixed air pollution and indicate
that new prevention strategies to curb various air pollutants together
are needed. There are several limitations of this study that must be
acknowledged: 1) data on air pollution reported by the
environmental monitoring station closest to the home address of
gravida was used to measure individual exposure, which could lead
to misclassifications to some extent; 2) we regarded air pollutants as
continuous variables when constructing APS, however, the link
between air pollution and SGA might not be linear; 3) we did
not adjust for some potential confounders such as work hazards,
smoking, drinking, diet etc., due to data on these not being available;
4) this study was conducted in Wuhan, so caution should be taken
when conclusions were extended to other regions; 5) although
choosing which hospital to give birth is the decision of the
patient, there might be selection bias because the results only
relate to one hospital; 6) the effects of O3 might be confounded
by other air pollutants, so animal experiments using an ozone
exposure chamber are warranted to investigate the true
associations between O3 and SGA.

Conclusion
In summary, our study suggested that joint exposure to ambient
air pollutants including PM2.5, PM10, SO2, NO2, CO, and O3,
evaluated as APS, were associated with an increase in risks of
SGA. Women who were of advanced maternal age, primipara,
first pregnancy, and conceived in the warm season were more
susceptible to APS. Consequently, our results might provide
valuable epidemiological evidence for policymakers and public
health departments to comprehensively curb air pollution and
protect neonatal health.
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