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This study presents a new search direction for the horizontal linear

complementarity problem. A vector-valued function is applied to the system

of xy � μe, which defines the central path. Usually, the way to get the equivalent

formof the central path is using the square root function. However, in our study,

we substitute a new search function formed by a different identity map, which

obtains the equivalent shape of the central path using the square root function.

We get the new search directions from Newton’s Method. Given this

framework, we prove polynomial complexity for the Newton directions. We

show that the algorithm’s complexity is O( ��
n

√
log n

ϵ), which is the same as the

best-given algorithms for the horizontal linear complementarity problem.
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Introduction

Karmarkar (1984) found the first method of the interior point algorithm, so linear

programming appeared as a dynamic field of research. Soon after, the interior point

algorithm was able to resolve linear programming problems and other optimal problems

such as semi-definite programming problems, high-order conic programming problems,

and linear and nonlinear complementarity problems.

Then, Nestrov and Nemirovskii (1994) imported a new concept of self-concordant

barrier functions to define the interior point method for solving the convex programming

problem. In addition, Vieira (2007) proposed a different interior point algorithm using

the kernel function.

It showed that linear complementarity problems have more significant adhibition in

the economic field; the most significant model is the equilibrium model of the

Arrow–Debreu market. (Kojima et al. (1992) proved that linear complementarity

problems are equal to some models of equilibrium market, but that is not necessarily

sufficient. Hence, Illés et al. (2010) analyzed the general linear complementarity problems’

solvability.

Some special search directions play an important role in analyzing interior point

algorithms.
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A basic idea of primal-dual inter-point algorithms is to go

through the central path to get the optimal solution. Later,

Peng et al. (2002a) verified that the essence of Karmarkar’s

algorithm was just a special classical barrier function, which is

a polynomial time algorithm. Later, Peng et al. (2002b)

proposed a self-regular function and got the best iteration

bound for a large-update algorithm for linear programming

problems.

Moreover, Peng et al. (2002b) presented a new method for

getting search directions called full-Newton methods; the new

algorithm transformed the center equation xs � μe using a

function ϕ and then got the new search direction from

Newton’s method.

Because linear complementarity problems are closely related

to linear programming problemsKarimi and Tuncel, 2020;

Yamashita et al., 2021; Yang, 2022; Zhang et al., 2022a;

2022b), many interior-point algorithms (Mansouri et al.,

2015) are designed from linear programming to linear

complementarity problems, and all got polynomial time

numerical results.

Furthermore, Wang and Bai (2009) and Wang and Bai

(2012) proposed the second-order cone programming using

a new full Nesterov–Todd step of the primal-dual method.

Scheunemann et al. (2021) presented a barrier term for the

infeasible primal-dual interior algorithm of small strain

single crystal plasticity. Lu et al. (2020) proposed a two-

step method for horizontal linear complementarity

problems, and Asadi et al. (2019) presented a large-step

infeasible algorithm for horizontal, linear

complementarity problems.

The above-mentioned studies almost used the square

root function, which obtained a form of the central path.

The basic idea of the new function is named the difference

of identity. In this study, we use the new square root

function to define the search direction to solve

horizontal linear complementarity problems and give the

complementarity problems and give the complexity of the

algorithm.

The interior algorithm of HLCP

Two square matrices M,N ∈ Rn×n are given, and q ∈ Rn is a

vector. The horizontal linear complementarity problems finds a

pair of x, y ∈ Rn, such that⎧⎪⎨⎪⎩ Ny −Mx � q,
xTy � 0,
x≥ 0, y ≥ 0.

(1)

In this section, we study the horizontal linear

complementarity problems (HLCP) based on the central path

method to get the search directions.

We assume that (1) meets the need of the following two

assumptions (Darvay, 2003).

Interior point condition

There are two vectors such that

Nx0 −My0 � q, y0 > 0, x0 > 0.

The monotonic property

There are two matrices (N, M) such that

Ny −Mx � 0 → xTy ≥ 0 (x, y ∈ Rn).
From the above two assumptions, we can conclude that there

is a solution for HLCP. We find an approximate solution by

solving the following system:

{Ny −Mx � q,
xy � 0, x≥ 0, y ≥ 0.

(2)

Using the path-following interior algorithm replaces the

second equation of Eq. 2 with the parameterized equation

xy � μe (μ> 0); then, we get the following system:

{Ny −Mx � q,
xy � μe.

(3)

With μ> 0, we can get the unique solution (x(μ), y(μ)) from
system (3), and we call (x(μ), y(μ)) the μ-center of horizontal
linear programming problem. With μ running through all

positive numbers and when μ → 0, the central path exists and

we get a solution for the horizontal linear programming

problems (Kheirfam and Haghighi, 2019).

Search directions for HLCP

Considering the continuously differentiable ϕ: R+ → R+ and
the inverse function ϕ−1, then (2.3) can be transformed into the

following form:

Ny −Mx � q

φ(xs
μ
) � φe

.

Applying Newton’s method yields new search directions. Let⎧⎪⎪⎨⎪⎪⎩
NΔy −MΔx � 0

y
μ
φ′(xy

μ
)Δx + x

μ
φ′(xy

μ
)Δs � φ(e) − φ(xy

μ
) (4)

Let dx � vΔx
x , dy � vΔy

v ; then,
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μv(dx + dy) � yΔx + xΔy (5)
dxdy � ΔxΔy

μ
(6)

From (5) and (6), (4) can be written in the form⎧⎨⎩ �Ndy − �Mdx � 0
dx + dy � pv

(7)

At this time, �M � MXV−1, �N � MYV−1, V � diag(v).
We get different values for the pv from the φ function and

obtain the search directions.

Now, for pv � φ(e)−φ(v2)
vφ′(v2) , we choose φ(t) � t − �

t
√

; then, from

the new function, we get a new direction, and

pv � 2(v − v2)
2v − e

v ∈ (1
2
,+∞) (8)

We define qv � dx − dy from(XV−1dy)T(YV−1dx) � dxTdy

and monotonicity

Furthermore, let dx � pv+qv
2 , dy � pv−qv

2 ; then,

dxdxy � p2v − q2v
4

(9)

Primal-dual interior-point algorithm for
HLCP

1) Let ϵ> 0 be the accuracy parameter, 0< θ< 1 the update

parameter, θ � 1
27

�
n

√ . Assume a strictly feasible point

(x0, y0), s.t. δ(x0, y0, μ0)< τ.
2) If �xy ≤ ϵ, then stop; otherwise, go to the next step.

3) According to (4), find (4) and (Δx, Δy). We get

x � x + Δx, y � y + Δy. Then, turn to step 2.

Convergence analyses

Lemma 4.1. Let (dx, dy) be a solution of (7). Then, we

have 0≤ dTx dy ≤ 2δ2.
Proof. Because the pair [N, M] is in the monotone HLCP, we

conclude that

δ2 � ||pv||2 � ||dx + dy||2 � ||dx||2 + ||dy||2 + 2dxTdy ≥ 2dxTdy.

That is, dTx dy ≤ 2δ2.
Lemma 4.2. Let δ � (x, y, μ)< 1 and e − 2v < 0. Then,

(x+, y+)> 0.
Proof. Let

∀α ∈ [0, 1], x+(α) � x + αΔx, y+(α) � y + αΔy.

Therefore,

x+(α) y+(α) � xy + α(yΔx + xΔy) + α2ΔxΔy (10)

From (5) and (6),

1
μ
x+y+ � v2 + αv(dx + dy) + α2dxdy (11)

Due (7) to (9),

1
μ
x+y+ � (1 − α)v2 + α(v2 + vpv) + α2(p2v

4
− q2v

4
).

Furthermore, from (8),

v2 + vpv � v2 + 2(v2 − v3)
2v − e

� (2v2)
2v − e

(12)

From (11), we get
1
μ
x+(α)y+(α) � (1 − α)v2 + α(e + (v − e)2

2v − e
+ α p

2
v

4
− α q

2
v

4
) (13)

From e − 2v < 0, we get (v−e)2
2v−e ≥ − p2v

4 .

From (13), we obtain

1
μ
x+(α)y+(α)≥ (1 − α)v2 + α(e − (1 − α) p

2
v

4
− α q

2
v

4
),

x+(α)y+(α)> 0 →||(1 − α) p
2
v

4
+ α q

2
v

4
||≤ 1.

Using ||pv||≥ ||qv||, δ2 � ||pv||2
4 .

Then,

||(1 − α) pv
4
|| + ||αq

2
v

4
||∞ ≤ (1 − α) ||pv||

2
∞

4
+ α ||q

2
v||∞
4

.

Therefore, we get a conclusion that, for any α ∈ [0, 1], the
inequality x+(α)y+(α)> 0 holds, which signifies that the signs of

x+(α) and y+(α) do not change on the interval [0,1]. Hence,

x+(0)> 0, y+(0)> 0 leads to x+(1)> 0, y+(1)> 0.

Lemma 4.3. Let f : D → (0,+∞) be a decreasing function,

where D � [d,+∞], d> 0.
Furthermore, let v ∈ RN

+ such that min(v)> d. Then,∣∣∣∣∣∣∣∣f(v) · (v − e2)∣∣∣∣∣∣∣∣≤ f(min(v)) · ∣∣∣∣∣∣∣∣e − v2
∣∣∣∣∣∣∣∣≤ f(d)∣∣∣∣∣∣∣∣e − v2

∣∣∣∣∣∣∣∣.
Proof.

||f(v) · (e − v2)|| � ������������������∑n

i�1 (f(vi))2(1 − v2i )2√
≤ f(min(v)) ·

������������∑n

i�1 (1 − v2i )2√
� f(min(v)) · ||(e − v2)||

≤ f(d) · ||(e − v2)||.
Lemma 4.4. Let δ � δ(x, y, μ)< 1

2, 2v − e> 0. Then,

v+ >
1
2
e, δ � δ(x+, y+, μ)≤ 3 − 3δ2 − 3

�����
1 − δ2

√ (1 − 2δ2)
3 − 4δ2

.
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Proof. From Lemma 4.2, we get

x+ > 0, y+ > 0. v+ �
����
x+y+
μ

√
.

Due to (4.4), as α � 1, we get

v2+ � e − e − 2v − v2

2v2
· p

2
v

4
− q2v

4
(14)

From 2v − e> 0 and v2 + 2v − e> 0, that is v2+ ≥ e − q2v
4 , then

min(v+)≥
����������
1 − 1

4

∣∣∣∣∣∣∣∣q2v∣∣∣∣∣∣∣∣∞√
≥

��������
1 −

∣∣∣∣∣∣∣∣qv∣∣∣∣∣∣∣∣2
4

√
�

�����
1 − δ2

√
(15)

By using the function f(t) � t
(2t−1)(1+t)> 0 for any t > 0.5, f’(t)

< 0, f is monotone decreasing.

From Lemma 4.3,

δ(x+, y+, μ)≤ �����
1 − δ2

√
2(1 − δ2) + ��������

1 − δ2 − 1
√ · ����e − v2+

���� (16)

Substituting
�����
1 − δ2

√
and making reductions, we get

f( �����
1 − δ2

√ ) � 1 − δ2 −
�����
1 − δ2

√ (1 − 2δ2)
δ2(3 − 4δ2) (17)

We have 1< t2+2t−1
t2 < 2 for all t> 1

2.

Moreover, e − v2+ � e−2v−v2
2v2 · p2v4 + q2v

4 .

Thus, ∣∣∣∣∣∣∣∣e − v2+
∣∣∣∣∣∣∣∣≤ 2������−p2v4 ������ + ������ − q2v

4

������ � 3δ2 (18)

Using (16), (17), we obtain

δ(x+, y+, μ)≤ (3 − 3δ2 − 3
�����
1 − δ2

√ )(1 − 2δ2)
3 − 4δ2

.

Furthermore,

δ(x+, y+, μ)≤ 3 − (1 − �����
1 − δ2

√ )
3 − 4δ2

+ 3δ2( − 1 + 2
�����
1 − δ2

√ )
3 − 4δ2

.

Let φ1(δ) � 3(1−
���
1−δ2

√
)

3−4δ2 ,φ2(δ) � 3δ2(−1+
���
1−δ2

√
)

3−4δ2 .

For δ< 1
2 and then 4δ2 < 1, 1

3−4δ2 <
1
2, we obtain

1
3
∅2(δ)< 4 − 2

�
3

√
2

δ2 (19)

A simple calculus yields

1
3
∅2 <

4 − 2
�
3

√
2

δ2 (20)

We have (19), (20).

We have 1
3(∅1(δ) +∅2(δ)< 4−2 �

3
√ + �

3
√

2 δ2 � 3− �
3

√
2 δ2.

Lemma 4.5. Let δ � δ(x, y, μ) and suppose that the vectors x+
and y + are obtained using a full-Newton step. Thus,

x+ � x + Δx, y+ � y + Δy. We get (x+)Ty+ ≤ μ(n + 3δ2).
If δ< 1

2, then we obtain (x+)Ty+ ≤ μ(n + 3
4).

Lemma 4.6. Let

δ � δ(x, y, μ)< 1
2
, v > 1

2
, μ+ � (1 − θ)μ, v′ �

����
x+θ+
μ+

√
, γ

� ����
1 − θ

√
, (0< θ< 1),

then v′> 1
2 e and δ(x+, y+, μ+)<

�
3

√ (θ �
n

√ +3δ2)
−2γ3+ �

3
√

γ2+3γ.
If θ � 1

27
�
n

√ , n≥ 4, we have δ(x+, y+,μ+)≤ 1
2.

Proof. v′ � 1
γμ+ from Lemma 4.4 μ+ > 1

2 e, μ′> 1
2 e.

Consider h(t) � t
(2t−γ)(γ+t), (t> γ

2); we get

v′ − v′2

2v′ − e
� 1
γ h(v+)(γ2e − v2+).

For h’(t) < 0, for h’(t) < 0, we get that h is a decreasing function.

Using (4.9), we have∣∣∣∣∣∣∣∣γ2e − v2+
∣∣∣∣∣∣∣∣ � ∣∣∣∣∣∣∣∣(1 − θ)e − v2+

∣∣∣∣|≤ |∣∣∣∣ − θe
∣∣∣∣∣∣∣∣+����e − v2+

∣∣∣∣∣∣∣∣< θ ��
n

√ + 3δ2

δ(x+, y+, μ+)≤ �
3

√ (θ ��
n

√ + 3δ2)
−2γ3 + �

3
√

γ2 + 3γ.

Using g(γ) � 1
−2γ3+ �

3
√

γ2+3γ, γ ∈ (0, 1), we have

g′(γ) � 6γ2 − 2
�
3

√
γ − 3( − 2γ3 + �

3
√

γ2 + 3γ)2 < 0 (0< γ< 1).
This implies that g is decreasing.

We get δ(x+, y+, μ+)≤
�
3

√ ( 1
27 + 3

4)
��
53
54

√
< 1

2.

Lemma 4.7. We assume that the (x0, y0) is strictly feasible

μ0 � (x0)Ty0
n and δ(x0, y0, μ)< 1

2, and assume that the two vectors

xk and yk are obtained by the algorithm; then, after k iterations k

and (xk)Tyk ≤ ϵ.
Proof. From lemma 4.5,

(xk)Tyk < μk(n + 3
4
) � (1 − θ)kμ0(n + 3

4
)≤ ϵ.

Taking logarithms on two sides, then we get

k log(1 − θ) + log(μ0(n + 3
4
))≤ log ϵ.

From θ≤ − log(1 − θ), we obtain

kθ≥(μ0(n + 3
4
)) − log ϵ � log

μ0(n + 3
4)

ϵ .

Because the self-dual embedding allows us to propose

without any loss of generality that x0 � y0 � e, we have μ0 � 1.

Theorem 4.1. Suppose that x0 = y0 = e. If we consider the default

values for θ and τ, we get that the algorithm just requires nomore than

O( ��
n

√
log n

ϵ) interior-point iterations. The conclusion satisfies xTy ≤ ϵ.

Conclusion and future works

This study proposed a primal-dual path-following algorithm

for the horizontal linear complementarity problem based on a

new search direction, which differs from those available. We
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analyzed this algorithm and illustrated that the proposed

algorithm has O( ��
n

√
log n

ϵ) iteration complexity bound. Some

interesting topics remain for future research. Firstly, we can

extend the algorithm to linear complementarity problems over

symmetric cones. Secondly, we can develop the infeasible interior

point algorithm based on the method given in this study.
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