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In the earth sciences, numerical weather prediction (NWP) is the primary

method of predicting future weather conditions, and its accuracy is affected

by the initial conditions. Data assimilation (DA) can provide high-precision initial

conditions for NWP. The hybrid 4DVar-EnKF is currently an advanced DA

method used by many operational NWP centres. However, it has two major

shortcomings: The complex development and maintenance of the tangent

linear and adjoint models and the empirical combination of the results of 4DVar

and EnKF. In this paper, a new hybrid DA method based on machine learning

(HDA-ML) is presented to overcome these drawbacks. In the new method, the

tangent linear and adjoint models in the 4DVar part of the hybrid algorithm can

be easily obtained by using a bilinear neural network to replace the forecast

model, and a CNN model is adopted to fuse the analysis of 4DVar and EnKF to

adaptively obtain the optimal coefficient of combination rather than the

empirical coefficient as in the traditional hybrid DA method. The hybrid DA

methods are compared with the Lorenz-96 model using the true values as

labels. The experimental results show that HDA-ML improves the assimilation

performance and significantly reduces the time cost. Furthermore, using

observations instead of the true values as labels in the training system is

more realistic. The results show comparable assimilation performance to

that in the experiments with the true values used as the labels. The

experimental results show that the new method has great potential for

application to operational NWP systems.
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1 Introduction

Weather forecast is a pre-estimation and prediction of weather changes in the future,

which has significant social value (Gettelman et al., 2022). Numerical weather prediction

(NWP) is a crucial method. Mathematically, weather forecast is an initial value problem.

The initial conditions can affect the accuracy of the prediction results (Bjerknes, 1904;

Haltiner and Williams, 1980; Bauer et al., 2015). Therefore, NWP requires sufficiently

precise initial conditions. Data assimilation (DA) is an approach to providing exact initial

conditions. DA obtains initial conditions that are closest to the true values by integrating
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the outputs of numerical prediction models and incomplete,

error-bearing observations (McCabe and Brown, 2021). DA

methods are mainly divided into two categories.

i) Variational DA. The specific form of variational DA uses a

minimization algorithm to optimize the cost function. The

cost function is defined as the distance between the initial

conditions and the background plus the distance between the

initial conditions and the observations (Bannister, 2017).

ii) Ensemble DA explicitly combines uncertainty statistics

derived from observational and forecast errors with

atmospheric state estimates. This method aims to estimate

probability distribution functions for the analysis and the

forecast by applying a set of random samples taken from the

distribution (Carrassi et al., 2018).

The above two DA approaches have been widely used in

operational NWP centres, but each has limitations (Bannister,

2017). A common variational DA technique is four-dimensional

variational data assimilation (4DVar) (Rabier et al., 2000). This

method requires the tangent linear and adjointmodels of the forecast

model, and the development and maintenance of tangent linear and

adjoint model codes are challenging. This disadvantage dramatically

restricts the application scope of 4DVar. The most representative

ensemble DA method is the ensemble Kalman filter (EnKF)

(Evensen, 1994). Due to the limitation of the computational cost,

EnKF makes the number of ensemble members much smaller than

the dimension of the state variables. The overly small number of

ensemble members can cause sampling errors, meaning that the

statistical data do not fully represent the atmospheric state

(Houtekamer and Zhang, 2016). The above DA methods have

advantages and disadvantages, and researchers need to maximize

their strengths and mitigate their weaknesses. Determining how to

couple DA methods is a current problem. To reduce the

computational cost, operational NWP centres use empirical

coefficients to connect the background error covariance matrix of

4DVar and the forecast error covariance matrix of EnKF (Bowler

et al., 2008; Demirtas et al., 2009). This approach sacrifices the

precision of the hybrid DA. At the same time, this method still

requires the tangent linear and adjoint models of the forecast model,

which increases the difficulty of developing the hybrid DA.

Machine learning (ML) is a data-driven approach. ML is an

inverse problem in a Bayesian framework. In ML, researchers

map inputs (“features”) to outputs (“labels”) through a forward

pattern. ML is a process of constructing a cost function and then

minimizing the cost function to obtain the optimal estimate of

the control variables (model parameters in ML). ML can be

applied to regression problems and learn the relationship

between the input and output (Geer, 2021). In NWP, many

tasks can be regarded as regression tasks, such as the

preprocessing of observations, the simulation of subgrid-scale

physical processes, the postprocessing of the forecast results, and

DA (Dueben et al., 2021). These examples illustrate that ML can

play a role in NWP. ML can be employed to replace the parts of

NWP that are computationally expensive and difficult to

maintain in the codes (McCabe and Brown, 2021).

Many previous studies have shown that ML can positively

impact NWP. Lu et al. established a reanalysis to satellite (R2S)

framework based on GBDT to utilize reanalysis data to simulate

satellite data. The research results showed that R2S can fill in satellite

data, and the results of R2S are very close to the original satellite

observations (Lu et al., 2022). Song et al. employed a neural network

(NN) to simulate the radiative transfer model (RRTMG-K). The

experimental results demonstrated that the NN parameterization

scheme can improve the accuracy of the prediction results and

reduce the computational cost (Song and Roh, 2021). Yuval et al.

applied random forest (RF) to replace the parameterization scheme

in the System for Atmospheric Modeling (SAM), which includes

cloud and precipitation microphysical processes, vertical advection,

radiative heating, surface advection, and vertical turbulent diffusion.

Through a series of experiments, the authors found that the RF

parameterization scheme can run stably in the SAM, and its results

are similar to those of the original parameterization scheme (Yuval

and O’Gorman, 2020). Rasp et al. introduced a fully connected

neural network (FCNN) for statistical postprocessing of ensemble

forecasts. The experimental results indicated that the FCNN is

superior to the traditional statistical postprocessing method. Its

results are more precise than those of the conventional method

(Rasp and Lerch, 2018). Frerix et al. used a convolutional neural

network (CNN) to simulate the observation operator in DA, which

improved the chaotic system forecast quality (Frerix et al., 2021). Fan

et al. combined the FCNNwith the EnKF. This method can enhance

the performance of DA, and the observations can be corrected when

the observation errors are significant (Fan et al., 2021).

The related studies on the application of ML in DA are gradually

enriched. However, these studies have not developed an entirely data-

driven hybrid DA system. Also, these studies treat true values as

training labels and do not attempt to treat observations as training

labels. With the above background, this paper proposes a hybrid DA

based on ML (HDA-ML). In HDA-ML, we use a forecast model

based on a bilinear neural network (FM-BNN) as an alternative to the

original physical forecast model and apply the tangent linear and

adjoint models of the FM-BNN for 4DVar. This simplifies the

development and maintenance of the tangent linear and adjoint

model and expands the range of ML applications. Subsequently, we

couple the analysis of 4DVar and EnKF using a convolutional neural

network (CNN). This decreases the uncertainty caused by the artificial

selection of the hybrid coefficients and enhances the accuracy of the

assimilation results and the quality of the forecasting results. The

experiments demonstrate that HDA-ML can improve the forecast

quality and reduce the system running time.

The main results of this paper are as follows: Section 2

introduces the structure of 4DVar-ML, EnKF-ML and HDA-

ML. Section 3 shows the performance of the assimilation system.

Section 4 discusses the experimental results. Section 5 presents

the main conclusion of this paper.
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2 Materials and methods

2.1 The forecast model

Forecast models are an essential part of the assimilation

system. The performance of the forecast model can have an

impact on the call effect. In general, forecast models are

represented by ordinary differential equations. These ODEs

can be applied to describe time-varying systems, and the basic

form is shown in Eq. 1:

dx t( )
dt

� f t, x t( )( ) (1)

where x(t) is a state variable that varies with time (such as

temperature or humidity). We can integrate Eq. 1 to obtain the

state value at the next moment, as shown in Eq. 2:

xi+1 � F xi( ) � xi + ∫i+1

i
f x( )dt. (2)

The researchers first discretize the differential equations and

then utilize the numerical methods to find numerical solutions,

including techniques such as the Euler and Runge-Kutta methods

(Ixaru, 1984; Atkinson et al., 2011). We can derive the expression

for xi+1 as shown in Eq. 3:

xi+1 � M xi( ) + ϵi (3)

where ϵi is the model error. This paper uses an MLmodel to learn

a differential process and subsequently integrate differential

equations employing the fourth-order Runge-Kutta method.

The ML model constructed according to the above ideas can

improve the recognition and the forecast ability. This approach

can be viewed as a neural ODE approach (Chen et al., 2018).

In theory, NNs can be employed to learn any functional

relationship (Krasnopolsky, 2002; Vapnik, 2019). We can treat Eq.

3 as a function and build a suitable NN model for simulating the

forecast model. Due to the existence of bilinear calculations in the

forecast model, the simulation effect of the traditional CNN models

deteriorate (Fablet et al., 2018; Dong et al., 2022). Therefore, a forecast

model based on a bilinear neural network (FM-BNN) is established in

this paper, and its structure is shown in Figure 1, where i represents

the ith moment, j represents the jth grid point, x represents the state

values, and dx
dt represents the derivative. The FM-BNN consists of

2 parts. The first part is the BNN, which consists of 2 convolutional

layers with kernel sizes of 3 and 1 and 1 bilinear layer, and the role of

the BNN is to simulate Eq. 1; the second part is the fourth-order

Runge-Kutta method, whose role is to integrate the BNN. The

symbols are defined as shown in Eq. 4. We test the simulation

performance and stability of the FM-BNN (see Supporting Material

“1 Performance of the FM-BNN” for experimental details). From the

experimental results, it can be seen that the stability and simulation

ability of FM-BNN are satisfactory.

K1 � f̂ xi( )
K2 � f̂ xi + dt

2
K1( )

K3 � f̂ xi + dt

2
K2( )

K4 � f̂ xi + dtK3( )
f̂ xi( ) � BNN xi( )
xi+1 � xi + dt

6
K1 + 2K2 + 2K3 + K4( )

(4)

FIGURE 1
The structure diagram of the FM-BNN.
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2.2 4DVar-ML

Based on 4DVar, this study establishes a 4DVar-ML

assimilation system, where the cost function of 4DVar is

shown in Eq. 5:

J x0( ) � Jb + Jo

� 1
2
x0 − xb( )TB−1 x0 − xb( )

+1
2
∑n
i�0

H i Mi x0( )( ) − yoi[ ]TR−1
i H i Mi x0( )( ) − yoi[ ] (5)

In Eq. 5, x0 represents the initial state, that is, the control variable,

xb represents the background, i indicates the ith moment, yo

represents the observations,M is the forecast model,H represents

the observation operator, B represents the background error

coefficient variance matrix, and R represents the observation

error covariance matrix. Compared with traditional 4DVar,

4DVar-ML replaces the forecast model (M) based on physical

laws with the FM-BNN (M̂) and applies the tangent linear and

adjoint models of the FM-BNN to 4DVar. The tangent linear and

adjoint models are two parts, one part is the tangent linear model,

and the other part is the adjoint model. A tangent linear model

(TLM) is a forward model consisting of a series of tangent linear

equations to reflect the variation of perturbations with time. The

adjoint model is a backward model composed of adjoint

equations, and its primary purpose is to calculate gradients

(Geer, 2013). Since it is difficult to develop and maintain the

tangent linear and adjoint models of the forecast models

(Houtekamer and Zhang, 2016), we replace the tangent linear

and adjoint models of the physical forecast models in 4DVar with

the tangent linear and adjoint models of the FM-BNN. The

tangent linear and adjoint models of the FM-BNN are

implemented through backpropagation in ML. Previous

studies have proven that the adjoint model in 4DVar are

equivalent to backpropagation in ML (Geer, 2021).

2.3 EnKF-ML

Similar to 4DVar-ML, we build an EnKF-ML assimilation

system. To compare EnKF-ML with traditional EnKF, we

introduce the EnKF technique. EnKF was developed based on

the Kalman filter (KF). KF is a filtering method based on

stochastic process state theory, which includes two steps:

forecast and analysis. The specific form of KF is shown in Eqs

6, 7:

• Forecast

xfi � Mi−1 xai−1[ ]
Pf
i � Mi−1Pa

i−1M
T
i−1 + Qi

(6)

• Analysis

xai � xfi + Ki Hi Mi x0( )( ) − yoi( )
Ki � Pf

i H
T
i HiP

f
i H

T
i + Ri( )−1

Pa
i � I − KiH

T
i( )Pf

i

(7)

Where xf represents the forecast, xa represents the analysis,Q

represents the model error covariance matrix, M is the linear

forecast model,H represents the linear observation operator, Pf is

the forecast error covariance matrix, Pa represents the analysis

error covariance matrix, and K is the Kalman gain matrix.

To lower the computational cost, Evensen et al. combined the

ensemble prediction idea with the KF method to obtain the

ensemble Kalman filter (EnKF) (Evensen, 1994). To improve the

accuracy of analyzing the error covariance, we add a perturbation

whose error follows a Gaussian distribution to the observation

vector at each analysis time and obtain an ensemble of

observations with the same number of members as the

ensemble (Houtekamer and Mitchell, 1998). EnKF makes use

of the ensemble method to estimate Pf, and its specific form is

shown in Eq. 8:

Pf
i � 1

m − 1
∑m
l�1

xfl − xf( ) xfl − xf( )T
xf � 1

m
∑m
l�1

xfl

(8)

where xf represents the mean of the ensemble forecast results

and m represents the number of ensemble members. In EnKF-

ML, we use the FM-BNN as a substitute for the forecast model

based on physical laws.

2.4 HDA-ML

In the hybrid DA, we need to combine 4DVar and EnKF

using empirical coefficients, reducing the accuracy of the

assimilation results. This study utilizes a ML model to couple

the analysis of 4DVar and EnKF to improve the accuracy of the

assimilation results. In this process, 2 vectors are processed into

1 vector in a specific way, which can be regarded as

dimensionality reduction. Many studies have shown that CNN

models can be applied for dimensionality reduction tasks and

achieve excellent results (Cascianelli et al., 2018; Gao et al., 2019;

Zebari et al., 2020). We use a CNNmodel to replace the empirical

coefficients in hybrid DA in the above context. The structure of

the CNN model is shown in Figure 2, where xvar represents the

assimilation result of Var DA, and xens represents the assimilation

result of ensemble DA. The CNN model consists of

5 convolutional layers with kernels of sizes 5 and 3. The

structure of this CNNmodel is the same in different applications.

This paper employs PyTorch to build the FM-BNN and the

CNN and uses the mean squared error (MSE) as the loss function

during the training process. We need to train the FM-BNN. Its

cost function is shown in Eq. 9:
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LM̂ W( ) � ‖xi+1 − M̂ xi( )‖2 (9)
where W represents the parameters of the FM-BNN and ‖ ·‖2
represents the 2-norm. We also need to train the CNNmodel. To

test the feasibility of the CNN model, we utilize the true xt as the

label for training. After the test, we choose the observations yo as

the labels for greater realism. Therefore, we use two labels, the

true xt and the observations yo, and their cost functions are shown

in Eqs 10, 11:

LCNN W( ) � ‖xt − CNN xavar, x
a
ens( )‖2 (10)

LCNN W( ) � H CNN xavar, x
a
ens( )( ) − yo[ ]TR−1 H CNN xavar, x

a
ens( )( ) − yo[ ]

(11)

where xavar represents the analysis of 4DVar-ML, xaens represents

the ensemble analysis mean of EnKF-ML, R stands for the

observation error covariance matrix and H represents the

observation operator.

After obtaining the FM-BNN and the CNN, we build a

hybrid DA based on ML (HDA-ML). The structure of HDA-

ML is shown in Figure 3. HDA-ML consists of two main parts.

The first part is the assimilation module, which is used to

assimilate the background xb and the observations yo to obtain

the analysis xa; the second is the forecast module, which predicts

the state at the next moment.

The specific process of HDA-ML is as follows:

1) At the ith time, we take the forecasts xbvar and x
b
ens of the i − 1st

time as the background and input them into the assimilation

system. xbvar is input into 4DVar-ML, and xavar is obtained; x
b
ens

is input into EnKF-ML, and xaens is output after system

assimilation.

2) We input xavar and x
a
ens into the CNN, and the final analysis x

a

is output.

3) The analysis xa is employed as the initial field input to the FM-

BNN, and the forecast result xf is obtained; xavar and xaens are

also input to the FM-BNN to obtain xfvar and xfens. Then, x
f
var

and xfens are used as the background at the i + 1st time.

Through the analysis cycle of HDA-ML, we can continuously

forecast and obtain the state at a future time.

3 Experiments and results

3.1 Experimental setting

3.1.1 The Lorenz-96 model
The numerical prediction system is a compound. It often

takes much time to verify a new method in the numerical

prediction system, and the workload of modifying the codes

in the system is great (Lewis et al., 2006). Thus, we conduct

relevant experimental analysis on the Lorenz-96 model. The

Lorenz-96 model is a nonlinear system and is often applied to

simulate the evolution of atmospheric states over time, so the

Lorenz-96 model is widely used in studying DA methods

(Whitaker and Hamill, 2002; Nerger, 2015). The definition of

the Lorenz-96 model is shown in Eq. 12:

dxj

dt
� xj+1 − xj−2( )xj−1 − xj + F, j � 1, 2, . . . , J (12)

where xj stands for the state value of the jth grid point, F

represents the external forcing parameter, and J represents the

number of state variables. The Lorenz-96 adopts cyclic boundary

conditions, where x−1 = xJ−1, x0 = xJ, xJ+1 = x1, J ≥ 4. The Lorenz-

96 model includes three terms: the advection term, the

dissipation term, and the external forcing term, which are the

main features of atmospheric motion. This paper uses J = 40, F =

8, and the fourth-order Runge-Kutta method to integrate Eq. 12

(Brajard et al., 2020; McCabe and Brown, 2021).

3.1.2 Parameter settings for the DA experiments
This paper uses the NMC method to calculate the

background error covariance matrix B in Eq. 5, where the

FIGURE 2
The structure diagram of the CNN.
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calculation formula of the NMC method is shown in Eq. 13. In

this paper, the value of α is the maximum value on the diagonal of

the covariance matrix. This paper sets the observation error

covariance matrix Ri = I and sets the observation operatorHi = I.

The length of the assimilation time window is 0.05 MTU. There

are 4 observations in an assimilation time window, and the

interval of each observation is the same, 0.0125 MTU. The

assimilation experiments in this paper are carried out

1,000 times.

B ≈ αE xf 48h( ) − xf 24h( )[ ] xf 48h( ) − xf 24h( )[ ]T{ } (13)

3.1.3 Data preparation
The true xt of each experiment is given randomly, and the

observations yo are obtained by adding a disturbance to the true,

where the disturbance has a Gaussian distribution with variance

1 and mean 0, as shown in Eq. 14.

yo � xt + σ
σ ~ N 0, 1( ) (14)

3.1.4 Evaluation indicators
We aim to contrast different assimilation systems and then

conduct a systematic and comprehensive evaluation of their

assimilation and forecast capabilities, which requires the

selection of evaluation indicators. Considering (Ji et al., 2015),

we choose the RMSE and R2 to assess the assimilation system,

and their formulas are shown in Eq. 16:

RMSE � 1
J
∑J
j�1

xj − yj( )2⎡⎢⎢⎣ ⎤⎥⎥⎦1/2 (15)

R2 � ∑J
j�1 xj − �x( ) yj − �y( )������������∑J

j�1 xj − �x( )2√ ������������∑J
j�1 yk − �y( )2√⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

(16)

Where xj and yj represent the state values on the jth grid point, �x

represents the average value of x, �y is the average value of y and J

represents the total number of grid points. The RMSE reflects the

overall error of the system. The value range is [0,+∞). The
smaller the value is, the smaller the error of the predicted value

and the better the model’s performance. R2 represents the fitting

FIGURE 3
The structure diagram of HDA-ML.
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ability of the model. The value range is [0, 1]. The closer the value

is to 1, the stronger the fitting ability of the model is.

3.2 DA experiments

3.2.1 4DVar-ML assimilation experiment
4DVar-ML is applied to construct HDA-ML. Compared with

traditional 4DVar, the forecast and tangent linear and adjoint

models of 4DVar-ML are derived from the FM-BNN. The

experiments below were carried out to compare the

assimilation performance of 4DVar-ML and 4DVar. We gave

these DA systems the same initial fields, and 1,000 analysis cycles

were performed on the observations; then, we calculated the RMSE

and R2 of xa. The experimental results are shown in Figure 4. The

yellow line indicates 4DVar-ML, and the blue line represents

4DVar. Figure 4A shows the changes in RMSE during

assimilation, and Figure 4B indicates the changes in R2 during

FIGURE 4
Comparison of the RMSE and R2 of 4DVar-ML and 4DVar. (A) shows the change in RMSE over time, and (B) depicts the change in R2 over time.
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assimilation. As seen in Figure 4, the RMSE of 4DVar-ML is

smaller than that of 4DVar, and the R2 of 4DVar-ML is greater

than that of 4DVar. RMSE and R2 are fluctuating. This is because

after the spin-up time of the assimilation system, the performance

of the assimilation system gradually tends to be stable, and various

indicators will change within specific ranges. The experimental

results show that the error between the xa of 4DVar-ML is smaller,

and the fitting degree to xt is higher.

To comprehensively and intuitively compare the

assimilation performance, forecast quality, and

computational efficiency of these DA techniques, we

recorded the average RMSE, R2, and running time values in

Table 1 (bold indicates the best results). Compared with the xa

of 4DVar, the RMSE of 4DVar-ML was reduced by

approximately 33.9%, and the R2 increased by approximately

6.5%. Compared with the xf of 4DVar, the RMSE of 4DVar-ML

decreased by approximately 31.4%, and the R2 increased by

approximately 6%. The runtime of 4DVar-ML was

approximately 71.2% lower than that of 4DVar. The

experimental results show that the assimilation performance,

forecast quality, and computational efficiency of 4DVar-ML are

better than those of 4DVar, which also indicates that the FM-

BNN and the tangent linear and adjoint models of the FM-BNN

play a positive role in the assimilation effect.

3.2.2 EnKF-ML assimilation experiment
The assimilation performance and computational efficiency of the

EnKF are related to the number of ensemble members, so we should

study and analyse the effect of the number of ensemble members on

the assimilation performance and computational efficiency. Figure 5

shows the variation in RMSE and running time with the number of

ensemble members. The solid blue line represents the RMSE, and the

solid yellow line represents the runtime. Figure 5 shows that as the

number of ensemble members increases, the RMSE decreases and the

running time increases.

The RMSE, the running time, and their rates of change are

recorded in Table 2, where dRMSE
dN indicates the amount of change

in the RMSE when adding a collection member and dt
dN is the

amount of change in the running time when adding a collection

member. As shown in Table 2, as the number of ensemble

members increases, the RMSE decreases, and the running

time changes less. When the ensemble membership grew from

10 to 20, the RMSE decreased by approximately 0.02, which was

the most significant decrease in RMSE. Considering the

TABLE 1 The assimilation performance, forecast quality and
computational efficiency of 4DAVar-ML and 4DVar.

DA Method RMSE R2 Time (s)

xa 4DVar-ML 0.264592 0.994948 180.533494

4DVar 0.400122 0.988454 626.086515

xf 4DVar-ML 0.271750 0.994658 180.533494

4DVar 0.396410 0.988723 626.086515

The bold values indicate that the system works best.

FIGURE 5
Variation in the RMSE and running time with the number of ensemble members. (A) shows the variation of RMSE with the number of ensemble
members, (B) depicts the variation of the running time with the number of ensemble members.

Frontiers in Earth Science frontiersin.org08

Dong et al. 10.3389/feart.2022.1012165

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1012165


computational cost and assimilation quality comprehensively, we

set the number of ensemble members to 20.

We conducted comparative experiments on EnKF-ML and

EnKF, and the results are shown in Figure 6. The solid yellow

line in this figure represents EnKF-ML, and the blue line represents

EnKF. Figure 6A shows changes in the RMSE during assimilation,

and Figure 6B shows changes in R2 during assimilation. It can be

seen that the RMSE and R2 of the two are relatively close and that

both remain steadily within an interval.

To further compare the assimilation performance, forecast

quality, and computational efficiency of EnKF-ML and EnKF, the

RMSE, R2, and running time are recorded in Table 3. As seen from

Table 3, compared with the xa of EnKF, the RMSE of EnKF-ML is

approximately 7.9% lower, and the increase in R2 is less than 10−4.

Compared to the forecast of EnKF, the RMSE of EnKF-ML is

approximately 8.7% lower, and the increase in R2 is less than 10−4.

The running time of EnKF-ML is approximately 38.8% of the

running time of EnKF. The above experimental results show that

the assimilation performance, forecast quality, and computational

efficiency of EnKF-ML are better than those of EnKF.

3.2.3 HDA-ML assimilation experiment
We aimed to test the performance of the CNNmodel. TheMLP

model is also a standard algorithm that can be used for

dimensionality reduction (Omkar et al., 2010), so we compared

the properties of the CNN model and the MLP model. We applied

the CNN and MLP models to replace the hybrid module in the

traditional HDA and then contrasted the accuracy of the results of

the two assimilation systems. The results are shown in Table 4.

HDA-MLCNN indicates that the hybrid module is the CNN model,

and HDA-MLMLPmeans that the hybrid module is theMLPmodel.

It can be seen from the table that the error of xa of HDA-MLCNN is

smaller, and the fitting ability to xt is superior. Therefore, we use

HDA-MLCNN as a hybrid module of HDA-ML. HDA-ML is applied

instead of HDA-MLCNN below for brevity.

Table 5 records the performances of 4DVar-ML, EnKF-ML, and

HDA-ML. Table 5 shows that the error between the analysis xa of

HDA-ML and the forecast xf is the smallest, and the fitting degree

with the true xt is the highest. The experimental results show that the

CNNmodel can play a positive role and improve the accuracy of the

assimilation and forecasting results.

HDA-ML is based on the 4DVar-ML, EnKF-ML, and CNN

models. Its forecast model and tangent linear and adjoint models are

obtained from the FM-BNN, and its hybridmodulemakes use of the

CNN model to combine the assimilation results of 4DVar-ML and

EnKF-ML. We give HDA-ML the same initial fields and

TABLE 2 The assimilation performance and time cost with the number of ensemble members.

Ensemble Number (N) RMSE Time (t) dRMSE
dN

dt
dN

10 0.334438 145.759281

20 0.313080 195.6968487 −0.002136 4.993757

30 0.308926 241.262181 −0.000415 4.556533

40 0.308146 287.117613 −0.000078 4.585543

50 0.3074191 348.666040 0.000073 6.154843

TABLE 3 The assimilation performance, forecast quality and
computational efficiency of EnKF-ML and EnKF.

DA Method RMSE R2 Time (s)

xa EnKF-ML 0.288437 0.993847 119.728493

EnKF 0.313080 0.993274 195.696849

xf EnKF-ML 0.316408 0.992562 119.728493

EnKF 0.346513 0.991700 195.696849

The bold values indicate that the system works best.

TABLE 4 The assimilation performance of HDA-MLCNN and HDA-
MLMLP.

DA Method RMSE R2

xa HDA-MLCNN 0.152366 0.998298

HDA-MLMLP 0.198260 0.997314

The bold values indicate that the system works best.

TABLE 5 Comparison of 4DVar-ML, EnKF-ML and HDA-ML

DA Method RMSE R2 Time (s)

xa 4DVar-ML 0.264592 0.994948 180.533494

EnKF-ML 0.288437 0.993847 119.728493

HDA-ML 0.152366 0.998298 625.403394

xf 4DVar-ML 0.271750 0.994658 180.533494

EnKF-ML 0.316408 0.992562 119.728493

HDA-ML 0.166731 0.997954 625.403394

The bold values indicate that the system works best.
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observations asHDA to contrast their assimilation performance.We

plot the RMSE and R2 of the xa of HDA-ML and HDA during

assimilation in Figure 7. The solid yellow line represents HDA-ML,

and the solid blue line represents HDA. Figure 7 shows that the

variations in the RMSE and R2 of the xa of HDA-ML are smaller

than the variations in the RMSE and R2 of the xa of HDA.

Their average RMSE, R2, and running time values are

recorded in Table 6. In the table, the RMSE of the xa and

xf of HDA is the largest, the R2 is the smallest, and the running

time is the longest. Compared with that of the xa of HDA, the

RMSE of the HDA-ML is decreased by approximately 15.9%,

and the increase in R2 is less than 10−4. Compared with that of

the xf of HDA, the RMSE of HDA-ML is approximately 21.0%

lower, and the increase in R2 is less than 10−4. Compared with

the running time of HDA, the running time of HDA-ML is

reduced by 26.6%. The experimental results show that the

assimilation and forecast results of HDA-ML are more

accurate and the computational cost is lower.

FIGURE 6
Comparison of the RMSE and R2 of EnKF-ML and EnKF. (A) shows the change in RMSE over time, and (B) depicts the change in R2 over time.
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3.2.4 HDA-MLo assimilation experiment
Since the true xt is difficult to obtain in the real world, we

should test using observations (The observations are generated

as shown in Eq. 14) as dataset labels to train CNN models. On

this basis, we established HDA-MLo. We plot the RMSE and R2

of HDA-MLo for each assimilation moment in Figure 8. The

solid blue line represents HDA, and the solid yellow line

represents HDA-MLo. The figure shows that the RMSE of

HDA-MLo varies less than that of HDA.

The assimilation performance, prediction quality, and

computational cost of HDA-MLo with respect to HDA are

recorded in Table 7. As seen from Table 7, compared with the xa

and xf ofHDA,HDA-MLo has the smallest RMSE and the largestR2.

Additionally, the computation time of HDA-MLo is the shortest.

FIGURE 7
Comparison of the RMSE and R2 of HDA-ML and HDA. (A) shows the change in RMSE over time, and (B) depicts the change in R2 over time.
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The above experimental results show that the assimilation

performance of HDA-MLo is higher than that of HDA in terms

of prediction quality and computational efficiency. The RMSE, R2

and computational efficiency of HDA-MLo and HDA-ML are

recorded in Table 7. As seen from Table 7, the difference

between the two is minimal. The experimental results show that

it is feasible to use observations as labels for training data.

4 Discussion

In this paper, we replace the predictionmodel in hybridDAwith

FM-BNN and use the tangent linear and adjointmodels of FM-BNN

in hybrid DA 4DVar. On this basis, we establish 4DVar-ML and

EnKF-ML. Then, we combine the analysis of 4DVar-MLwith that of

EnKF-ML using the CNN model, and in the process, we also train

FIGURE 8
Comparison of the RMSE and R2 of HDA-MLo and HDA. (A) shows the change in RMSE over time, and (B) depicts the change in R2 over time.
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the CNN model with the observations as labels. The results of the

discussions of these experiments are as follows:

The FM-BNN can replace the forecast model, while the

tangent linear and adjoint models of the FM-BNN can be

used to build a 4DVar system. We construct 4DVar-ML and

EnKF-ML and compare their performances with those of

traditional methods. It can be seen from the experimental

results that 4DVar-ML performs better than the conventional

4DVar technique, which indicates that FM-BNN and its tangent

linear and adjoint models can play a role in 4DVar. The

performance of EnKF-ML is better than that of the traditional

EnKF, which shows that using FM-BNN as a prediction model

can improve the accuracy of the assimilation results.

The CNN model can also improve the accuracy of the

assimilation results. We utilize the CNN model to combine the

analysis of both. By comparing the accuracy of 4DVar-ML, EnKF-

ML, and HDA-ML, we find that the assimilation performance and

prediction quality of HDA-ML are higher than those of 4DVar-ML

and EnKF-ML. The experimental results show that the CNNmodel

can enhance the quality of assimilation. In the comparison

experiment between HDA-ML and HDA, we can see that the

assimilation performance, prediction quality, and computational

efficiency of HDA-ML are greatly improved.

Observations can be used as labels to train a CNN model.

When training the CNN model, we changed the labels to the

observations to better simulate real-world scenarios. It can be

seen from the experimental results that the performance of

HDA-MLo is very close to that of HDA-ML and is

superior to that of HDA. The experimental

results show that using the observations as training labels is

feasible.

The related experiments in this paper are carried out on the

Lorenz-96 model. Compared to the real atmospheric model, the

Lorenz-96 model is simple. Therefore, if we use the ML model to

simulate the real atmospheric model, we need to build a complex,

suitable network model. These experiments require adequate

hardware support. At the same time, most current models are

written in Fortran, while many ML codes are written in Python.

Coupling Fortran programs with Python programs is a problem

to be solved in the future.

5 Conclusion

To simplify the development and maintenance of tangent

linear and adjoint models in hybrid data assimilation (HDA)

and decrease the errors introduced by artificially chosen

hybrid coefficients, we create a hybrid data assimilation

method based on ML (HDA-ML). We apply a forecast

model based on a bilinear neural network (FM-BNN) to

replace the physical forecast model in HDA. The tangent

linear and adjoint models of the FM-BNN are employed in

4DVar to build 4DVar-ML. Additionally, we combine the FM-

BNN with the EnKF to form EnKF-ML. Then, we use the CNN

model to couple the xa of 4DVar-ML and EnKF-ML. On this

basis, we establish HDA-ML. The experimental results show

that HDA-ML improves the assimilation result accuracy,

enhances the prediction result quality, and reduces the

running time.

With the improvement of ML theory, the increase in data

volume, the development of computer hardware, and the

reduction in the cost of developing ML models, the

application scope of ML has become increasingly extensive,

and ML can achieve excellent results in some challenging

cases. Two primary purposes of using ML in NWP are to

improve the model’s prediction accuracy and reduce the

model’s computational cost. We conducted related

experiments on the Lorenz-96 model. The experiments

show the reliability of the ML model and its tangent linear

and adjoint models and prove that the ML model can be

applied to HDA. In the future, we can design an HDA-ML that

can be used for an actual model to facilitate the development

of NWP.
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TABLE 6 The assimilation performance, forecast quality and
computational efficiency of HDA-ML and HDA.

DA Method RMSE R2 Time (s)

xa HDA-ML 0.152366 0.998298 625.403394

HDA 0.181180 0.998011 852.179207

xf HDA-ML 0.166731 0.997954 625.403394

HDA 0.201735 0.997534 852.179207

The bold values indicate that the system works best.

TABLE 7 The assimilation performance, forecast quality and
computational efficiency of HDA-MLo, HDA-ML and HDA.

DA Method RMSE R2 Time (s)

xa HDA-MLo 0.151995 0.998301 634.637193

HDA-ML 0.152366 0.998298 625.403394

HDA 0.181180 0.998011 852.179207

xf HDA-MLo 0.166378 0.997963 634.637193

HDA-ML 0.166731 0.997954 625.403394

HDA 0.201735 0.997534 852.179207

The bold values indicate that the system works best.
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