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Abstract. Many scientific articles became available in the digital form which allows for querying articles data,
and specifically the automated metadata gathering, which includes the affiliation data. This in turn can be used
in the quantitative characterization of the scientific field, such as organizations identification, and analysis of the
co-authorship graph of those organizations to extract the underlying structure of science. In our work, we focus
on the miRNA science field, building the organization co-authorship network to provide the higher-level analysis
of scientific community evolution rather than analyzing author-level characteristics. To tackle the problem of the
institution name writing variability, we proposed the k-mer/n-gram boolean feature vector sorting algorithm,
KOFER in short. This approach utilizes the fact that the contents of the affiliation are rather consistent for the
same organization, and to account for writing errors and other organization name variations within the affiliation
metadata field, it converts the organization mention within the affiliation to the K-Mer (n-gram) Boolean presence
vector. Those vectors for all affiliations in the dataset are further lexicographically sorted, forming groups of
organization mentions. With that approach, we clustered the miRNA field affiliation dataset and extracted unique
organization names, which allowed us to build the co-authorship graph on the organization level. Using this graph,
we show that the growth of the miRNA field is governed by the small-world architecture of the scientific institution
network and experiences power-law growth with exponent 2.64+0.23 for organization number, in accordance
with network diameter, proposing the growth model for emerging scientific fields. The first miRNA publication rate
of an organization interacting with already publishing organization is estimated as 0.184+0.002 year-1.
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AHHoTauuA. MHorve HayuHble CTaTby CTanu JOCTYMHbI B LMPPOBOM B, UTO MO3BOJIAET 3anpallnBaTh AaHHbIE
cTaTell U, B YaCTHOCTM, aBTOMaTUYeCKn cobrpaTb MeTaflaHHble, BKNoYaa AaHHble 06 adpdunmauum. 1o, B CBOIO
ouepe/ib, MOXHO UCMOJb30BaTb 1A KOIMYECTBEHHbIX OLleHOK Hay4YHOI obnacTu, Hanpumep Ana naeHTuduKkauum
opraHu3auuii 1 aHanmnsa rpada coaBTOPCTBaA 3TVIX OpraHn3aLnil Ana nssneyeHna 6a3oBoi CTPYKTYpbl HayKku. B Ha-
cToALlel paboTe paccmMoTpeHa obnacTb nccnefoaHua MUKpoPHK, a umeHHo rpad coaBTopcTBa OopraHusaumi u
aHanus ero 3sosnoUMn. YTobbl pelnTb Npobnemy BapraTMBHOCTY HAaMMCaHWA Ha3BaHKA OpraHM3auuii, 6bin npea-
NOXEH anropuT™M COPTUPOBKM JIOTMYECKMX BEKTOPOB Npu3HakoB k-mer/n-gram. B Hem mcrnonb3yetca ToT dakT,
yTo cofepkaHue apdunraLm JOBONbHO KOHCUCTEHTHO ANA OAHON 1 TOW e opraHusaumu. [1na yyeTa own6oK
HanucaHva 1 apyrux apTedpakToB Ha3BaHUA OpraHM3aLMK B None MeTalaHHbIX adpdunuauum Halw noaxon npeob-
pasyeT ynoMuHaHvie opraHusauuu BHyTpu apdunnaumm B K-Mer (n-gram) 6yneBbiii BeKTOp npurcyTcTeuA. [lanee
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CBoWICTBa MaJIOro MMPa Hay4HbIX OpraHv3aLui onpeaenaoT
OVUHAMUKY My6ArKaLMOHHON akTUBHOCTU B 06nacT MPHK

BEKTOPbI Bcex addunmaumin n3 Habopa AaHHbIX NekcmKorpaduueckn copTmpytoTcs, obpasysa rpynmbl ynoMmuHa-
HWI opraHm3aunin. TakuM NoaxoAom 6bii KnacTepusoBaH Habop AaHHbIX adpdunuauuii B 061acTvi MCCiefoBaHnsA
MUKPOPHK 1 onpegeneHbl Ha3BaHWs YHUKaNIbHbIX OPraHM3aLuii, YUTO MO3BONMIIO MNOCTPOUTb rpad CoaBTOPCTBA Ha
YPOBHE HayuHbIX opraHu3aumin. C nomMoLbio 3Toro rpada nokasaHo, YTo pocT obnactu uccnefosaHna MUKpPoPHK
KOHTPONMPYETCA apXMUTEKTYPOI Manoro M1pa CeTV HayuHbIX OpraHu3aumii 1 NCMbITbIBaeT CTENEHHON PoCT ¢ Mno-
KasaTtenem cteneHn 2.64+0.23 Ana uncna opraHu3aunii B COOTBETCTBUM C AUAMETPOM CeTU, Npeanaraa Moaesnb
pocTa HOBbIX HayuHbIX HanpaeneHuin. CKopocTb NybnvKkauum nepBon ctatbn no MMKpPoPHK y opraHusauum npum
ee B3aMMOAEWCTBMM C APYroi opraHM3auuen, yxxe nybnMkoBaBLlUenca B 3TOM 06acTyh, annpoOKCUMUPYETCA Kak

0.184+0.002 rog-".

Kniouesble cnosa: k-mer; n-gram; MuPHK; anekTpoHHas 61mbnrnoTeka; CoaBTOPCTBO OpraHu3aLnii; Masblii MUp.

Introduction

Scientific structures stimulate the productivity of scientific
work by providing researchers with material and technical
conditions and a scientific environment. One of the factors
for the effectiveness of scientific work is the interaction of
researchers in the form of an exchange of ideas or joint work
and is manifested in the form of scientific publications co-
authorship. Analysis of the co-authorship of research institu-
tions, rather than characteristics at the authors level, makes
it possible to provide a higher-level analysis of the evolution
of the scientific community, in particular the organization of
“invisible colleges” or the development of international co-
operation on a global scale (Leydesdorff et al., 2013). Such
studies are aimed at finding the reasons for competition and
cooperation in specific areas of research (Wagner, Leydes-
dorff, 2005), as well as identifying patterns of international
publication activity (Ribeiro et al., 2017). In general, in order
to understand the structure of the scientific community and
the process of knowledge spreading in the field of science,
analysis should be carried out both at the author level and at
the organization level.

A graph is a small world if Loclog(N), where L is the aver-
age shortest distance of the graph, N is the number of graph
vertices. In other words, any two vertices are reachable from
the other through a small number of hops through other ver-
tices, but the probability that they are adjacent is small.

This type of networks are found in many real-world phe-
nomena, such as the spread of the infection (Liu et al., 2015),
neural connections (Muldoon et al., 2016), etc. The analysis of
the effect of the small world in the knowledge spreading (Shi,
Guan, 2016) is of particular interest, and therefore our study
aims to check whether the interaction graph of organizations
in the miRNA research field is a small world.

Since in a small world the vertices are reachable between
each other via a small number of hops, processes such as the
spread of the infection or knowledge must occur differently
than in a regular graph.

To determine that a graph is a small world, various criteria
have been proposed in several works (Watts, Strogatz, 1998;
Newman et al., 2000). In our work, we chose a categorical
criterion to identify the small world effect in a network of
microRNA organizations co-authorship, following (Humph-
ries, Gurney, 2008), where the authors introduced a measure
of the “small-world-ness”:

5 CCs | Lg
Ccrand Liana

In the equation above, CC is the clustering coefficient of
graph G, L is the average length of the shortest paths of
graph G, CCy,,q and L4 are the parameters of a random
graph with random uniform edge placement with the same
number of nodes and edges as graph G.

The knowledge spreading process can be interpreted as a
process of “information contagion” where, through an inter-
mediate host (scientific publications), organizations can be
inspired by a particular area of research and start publishing
articles themselves. Such a process can be modeled using the
Susceptible, Infectious, Recovered (SIR) model (Goffman,
Newill, 1964). Within the framework of this model, a system
of differential equations is compiled that simulates the dyna-
mics of infection and recovery of subjects. In the simplest case
of a homogeneous environment, the solution to these equa-
tions at short times is the exponential growth in the number
of infected subjects.

In (Vazquez, 2006), the author models the incidence rate
using the SIR model for problems where transmission graphs
are known and have the small world property (Muldoon et
al., 2016). The author adapts the SIR propagation model to
a spanning tree (AST) representation of the original graph
and obtains the exact normalized incidence rate for the AST,
p(f), which approximates this rate for the original graph. Thus,
given that the graph has the small world property, there is an
exact solution to the normalized infection rate for the AST,
which is the approximation for the original graph:

P fo
()= p oy u)t[Ho(?)],
where A and p are, respectively, the rates of infection and
recovery within the framework of the SIR model, D is the
average shortest distance of the graph, ¢, is the transition
time between modes. The graph, in addition to having the
characteristics of a small world, must satisfy one of the con-
ditions for y (the exponent of the power law distribution of
degrees of vertices) and v (the Pearson correlation coefficient
of the degree between pairs of connected nodes) (Vazquez,
2006):

vy>3, v>0,
2<y<3, v>-1, 3—y+v>0.

Methods and materials

The PubMed digital library was used to collect the miRNA
reseacrh area affiliation dataset. From these affiliations, men-
tions of the organizations were extracted. To do this, a key-
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word-based approach was used to identify which part of the
affiliation contains what information about the mention of the
organization (organization name, country, city, etc.).

An example of splitting an affiliation into mentions
of organizations with a country identification

for an article with PubMed ID 19996210

(1) Authors’ Affiliations: Cancer Genetics,
Kolling Institute of Medical Research;
Department of Endocrinology; Department
of Anatomical Pathology, Royal North
Shore Hospital, St. Leonards, New South
Wales, Australia; Department of Surgery,
Bankstown Hospital, Bankstown, New
South Wales, Australia; South Western
Sydney Clinical School, University of
New South Wales; Endocrine Surgical
Unit, University of Sydney; Department of
Surgery, Liverpool Hospital, Sydney, New
South Wales, Australia; Endocrine Surgical
Unit, University of California Los Angeles;
and Division of Hematology and Oncology,
Department of Medicine, University of
California Los Angeles School of Medicine,
Los Angeles, California.

1. kolling institute of
medical research,
Australia

2. royal north shore hospital,
Australia

3. bankstown hospital,
Australia

4. university of new south
wales, Australia

5. university of sydney,
Australia

6. liverpool hospital,
Australia

7. university of california
los angeles, UNKNOWN

8. university of california
los angeles, school of
medicine, UNKNOWN

Then, for all these mentions, a dictionary of unique K-Mers
(n-grams) was built, where K = 2, and for each mention,
a Boolean vector of the presence of a certain K-Mer in this
mention was formed. Next, these mention vectors were sorted

Small world of the miRNA science
drives its publication dynamics

lexicographically to obtain a list of vectors, in which similar
mentions are grouped by design. After that, for each adjacent
pair of mentions, the distance according to the Dice metric
was calculated, and if it exceeded the specified threshold, this
was the evidence that the mentions belong to different clusters,
which gives us a grouping of mentions (see the Table).

These grouped mentions contain references to the same
organization; so, in the next step, we can build an organiza-
tion co-authorship graph by identifying which organizations
published the same article together.

Results

The analysis of the structural characteristics of the graph of
scientific organizations in the miRNA research field shows
that this graph satisfies the criteria of a small world (Mul-
doon et al., 2016) with the exponent of the degree of power
distribution y = 2.01 and the assortativity coefficient of the
degrees of graph vertices v = —0.03. Therefore, for the num-
ber of scientific organizations with publications in the field,
one can expect a power-law growth according to the model
(Vazquez, 2006). The model (Vazquez, 2006) states that the
initial growth in the number of vertices has a power-law depen-
dence with the exponent D — 1, where D is the average length
of the shortest paths in the graph. For the graph of scientific
organizations of the microRNA research field D = 3.46, and
the approximated power parameter D — 1 = 2.64+0.23 (see
the Figure), which gives a deviation of about 7 % from what
is predicted by the model.

An example of organizations identification

# Mention 2-Mer Boolean vector Dice metric
1 ............... msmu te ....................................... 1111111100 0 00000 ......................................... 0 2 ................................................
2 ............... ,ns,tute ......................................... ”111001 00 0 01000 ......................................... O 429 ...........................................
. 3 ............... msmu e ......................................... 11 1 1 011000 0 10000 ......................................... 0 834 ...........................................
4 ............... C enter ........................................... O 00010001"00100 ......................................... 0 4 ...............................................
5 ............... C entre ........................................... o 0000000”1000" ..............................................................................................

Note. The threshold value is 0.8, K = 2. The distance between elements 3, 4 exceeds the threshold value, which leads to the division
of elements into clusters. 2-Mer examples - in, ns, st, ti, it, tu, ...
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Annual number of organizations that published an article in the field of the microRNA research as a function of time in double

logarithmic coordinates.
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Approximation of the “information contagion” rate gives
the rate A = 0.184+0.002 year!, which characterizes the rate
of the first microRNA publication by an organization in co-
authorship with another organization that already published
in this field.

Analysis of the subgraph of Russian scientific institutions
in the miRNA research field shows that the activity of Russian
organizations is inferior to the average activity of organiza-
tions in the field (the average number of publications per
organization is 0.92 in Russia against 21.5 on average in the
field). At the same time, the Russian community turns out to
be denser: the clustering coefficient of the subgraph of Rus-
sian organizations exceeds the average for the field with the
value of 0.708 for Russian organizations compared to the
0.361 for the microRNA field average. The US is Russia’s
most active partner in international cooperation with 50 joint
publications. However, US-Russian cooperation is unstable
and decentralized, and the leaders in active cooperation with
Russian organizations are the German Center for Cancer Re-
search, Harbin Medical University, and Karolinska Institute
(6 joint publications each).

Discussion

Understanding the productivity factors of research organi-
zations and the dynamics of their publication activity is im-
portant for science management. In addition to algorithms
for automatic identification of organizations, projects such as
ror.org are actively developing, and are aimed at identifying
scientific institutions by assigning unique identifiers to them
(similar to orcid.org for authors). These projects simplify the
identification of organizations but require the acceptance of
the use of such projects by the authors of publications, since
in order to be able to fully identify each organization, it is
necessary to indicate the ror.org identifier for each affiliation
from the publication, which cannot currently be guaranteed.
Therefore, in the near future, automatic identification algo-
rithms for organizations will stay relevant.

In our work, the data presented was gathered as of 2019,
and at the current moment the structure of the graph could
change. In addition, the data in the PubMed library can be
updated retrospectively. Nevertheless, data from publications
as of January 23, 2022 show that the picture of the evolution
of the miRNA field has not fundamentally changed (data not
shown). The new geopolitical reality will inevitably affect the
structure of interaction and co-authorship in scientific fields.
However, due to the time delay in the visible results of co-
operation, a change in scientific cooperation will not appear
in the databases until 2024.
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Conclusion

One of the models of the development of new knowledge areas
is the “information contagion” model, in which new ideas are
randomly distributed among researchers, infecting more and
more of them (Goffman, Newill, 1964). The distribution law
can be determined by the structure of the environment. In this
work, it was shown that the organization co-authorship graph
in the microRNA research field is a small world and, as a result,
the publication activity of the area demonstrates a power-law
growth according to the model (Vazquez, 2006). The slower
than exponential growth occurs due to the “self-avoidance”
of propagation paths in compact networks of the small world:
when the next node of the small world is “infected” with
information, there is a high probability that this node has al-
ready been “infected” by an alternative path. The co-author-
ship graph for our analysis was built using the organization
mention clustering algorithm based on sorting K-Mer boolean
feature vectors (KOFER).

References

Goffman W., Newill V.A. Generalization of epidemic theory. An ap-
plication to the transmission of ideas. Nature. 1964;204(4955):225-
228. DOI 10.1038/204225a0.

Humphries M.D., Gurney K. Network ‘small-world-ness’: a quantita-
tive method for determining canonical network equivalence. PLoS
One. 2008;3(4):¢0002051. DOI 10.1371/journal.pone.0002051.

Leydesdorff L., Wagner C., Park H., Adams J. International collabora-
tion in science: the global map and the network. Prof. Inf. 2013;
22(1):1-18. DOI 10.3145/epi.2013.ene.12.

Liu M., Li D., Qin P, Liu C., Wang H., Wang F. Epidemics in inter-
connected small-world networks. PLoS One. 2015;10(3):¢0120701.
DOI 10.1371/journal.pone.0120701.

Muldoon S., Bridgeford E., Bassett D. Small-world propensity and
weighted brain networks. Sci. Rep. 2016;6:22057. DOI 10.1038/
srep22057.

Newman M.E.J., Moore C., Watts D.J. Mean-field solution of the small-
world network model. Phys. Rev. Lett. 2000;84(14):3201-3204. DOI
10.1103/PhysRevLett.84.3201.

Ribeiro L., Rapini M., Silva L., Albuquerque E.M. Growth patterns of
the network of international collaboration in science. Scientometrics.
2018;114:159-179. DOI 10.1007/s11192-017-2573-x.

Shi Y., Guan J. Small-world network effects on innovation: evidences
from nanotechnology patenting. J. Nanopart. Res. 2016;18:329.
DOI 10.1007/s11051-016-3637-1.

Vazquez A. Spreading dynamics on small-world networks with connec-
tivity fluctuations and correlations. Phys. Rev. E. Stat. Nonlin. Soft
Matter Phys. 2006;74:056101. DOI 10.1103/PhysRevE.74.056101.

Wagner C., Leydesdorff L. Network structure, self-organization and the
growth of international collaboration in science. Res. Policy. 2005;
34(10):1608-1618. DOI 10.1016/j.respol.2005.08.002.

Watts D.J., Strogatz S.H. Collective dynamics of ‘small-world” net-
works. Nature. 1998;393(6684):440-442. DOI 10.1038/30918.

Acknowledgements. The work of IT was supported by the Russian State Budgetary Project FWNR-2022-0020.

Conflict of interest. The authors declare no conflict of interest.

Received September 7, 2022. Revised November 10, 2022. Accepted November 10, 2022.

KOMMNbIOTEPHAA TEHOMUKA / COMPUTATIONAL GENOMICS 829



