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Powered lower-limb assistive devices, such as prostheses and exoskeletons,

are a promising option for helping mobility-impaired individuals regain

functional gait. Gait phase prediction plays an important role in controlling

these devices and evaluating whether the device generates a gait similar to

that of individuals with intact limbs. This study proposes a gait phase prediction

method based on a deep neural network (DNN). The long short-term memory

(LSTM)-based model predicts a continuous gait phase from the 250 ms history

of the vertical load, thigh angle, knee angle, and ankle angle, commonly

available on powered lower-limb assistive devices. One unified model was

trained using publicly available benchmark datasets containing intact limb gaits

for level-ground walking (LGW) and ascending stairs (SA). A phase prediction

error of 1.28% for all benchmark datasets was obtained. The model was

subsequently applied to a state machine-controlled powered prosthetic leg

dataset collected from four individuals with unilateral transfemoral amputation.

The gait phase prediction results (a phase prediction error of 5.70%) indicate

that the model trained on benchmark data can be used for a system not

included in the training dataset with no post-processing, such as model

adaptation. Furthermore, it provided information regarding evaluation of the

controller: whether the prosthetic leg generated normal gait. In conclusion,

the proposed gait phase predictionmodel will facilitate e�cient gait prediction

and evaluation of controllers for powered lower-limb assistive devices.

KEYWORDS

prosthetics, deep learning, continuous gait recognition, benchmark data, gait phase

1. Introduction

Powered lower-limb assistive devices, such as powered prostheses and exoskeletons,

have significant potentials for helping regain functional gait for people with mobility

impairments from a variety of causes, including resulting from a spinal cord injury,

stroke, or limb amputation.
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Generally, these devices are expected to generate joint

trajectories to support movements that are based on user

intentions. Therefore, a proper understanding of joint

kinematics is important for proper control of these devices.

For example, prostheses control the powered knee and ankle to

restore mobility by analyzing historical information from prior

gait strides (Hargrove et al., 2015). Actuating timing of an ankle

exoskeleton was controlled for the next stride based on the

sensor signal from the previous stride; optimal timing reduced

muscle activities and metabolic costs (Galle et al., 2017).

Walking can be represented as a gait cycle. Each gait cycle

begins at a heel strike (0%) and ends at the next heel strike

of the same leg (100%). The gait cycle can be broken down

into a set of periods (e.g., stance and swing), with gait phase

representing a specific timing in the gait cycle. Because gait cycle

depends on joint kinematics and kinetics, gait phase prediction

plays an important role in observing the human state and

controlling powered assistive devices. Additionally, the device

can be quantitatively evaluated for normal gait generation by

analyzing the gait phase.

A variety of methods have been proposed to predict gait

phase. Mechanical sensors (Kotiadis et al., 2010; Agostini et al.,

2013; Maqbool et al., 2016; Han et al., 2019) (e.g., foot switches

embedded in a shoe and inertial sensors on the shank) have

been used to determine the gait phase directly. Using a finite-

state machine (Lawson et al., 2014) is a popular method for

most passive prostheses (Fluit et al., 2019); a state machine sub-

divides the gait into a set of discrete phases and defines the

transition conditions. A set of surface electromyography sensors

on the lower limbs (Yao et al., 2021) were used to predict the

discretized gait phase using a neural network having two hidden

layers. Since discretization of a gait limits the information

during locomotion, continuous gait phase prediction modes

have alternatively been proposed. For example, a human-

inspired phase variable (Quintero et al., 2017) (e.g., the thigh

angle) that uniquely represents the gait cycle in a continuous

and monotonically increasing manner was used to predict the

gait phase. A discrete wavelet transform-based method (Livolsi

et al., 2021) was proposed to predict the continuous gait phase

for treadmill walking using hip encoders.

Recently, deep neural network-based (DNN-based) gait

phase prediction methods have been proposed. Deep neural

networks are highly capable of determining the non-linear

relationship between the input and output mapping. The

discretized gait phase was predicted using electromyography

signals based on a temporal convolutional network (Chen

et al., 2022). A recurrent neural network with a shank-mounted

inertial measurement unit (IMU) was used to predict the

gait phase for controlling an ankle exoskeleton (Seo et al.,

2019). In addition, a long short-term memory (LSTM)-based

network was proposed to predict the gait phase using a set

of wearable sensors, including IMUs and a force sensor at the

heel (Lee et al., 2021).

The end-to-end learning capability of DNNs enables gait

phase prediction, with multiple ambulation modes showing

different gait trajectories. A convolutional neural network-

based gait phase estimator (Kang et al., 2021) was proposed to

modulate hip exoskeleton assistance for multiple ambulation

modes. Gait phases for three different ambulation modes were

predicted using a single IMU placed at the shank (Weigand et al.,

2020).

Although several studies have successfully demonstrated

gait phase prediction, a remaining issue is the lack of efficient

adaptation of gait phase prediction methods on a specific system

as conventional methods are generally device-specific. In other

words, conventional methods were validated using their own

hardware. Therefore, a gait phase predictionmodel trained using

a specific system cannot be easily adapted to other systems.

Furthermore, training or validating a prediction model for a

specific system is time-consuming and burdensome, particularly

when targeting mobility-limited patients.

To address this issue, in this study, we propose prediction

of continuous gait phase using a DNN. The primary objective

was to eliminate the need for device-specific training of gait

phase prediction models by using publicly available benchmark

datasets (Camargo et al., 2021; Reznick et al., 2021) containing

locomotion data of non-disabled individuals. The vertical load

(i.e., the weight of users on force plates) and lower limb joint

angles [i.e., thigh (induced by hip joint movement), knee, and

ankle] were selected as the input data for the proposed gait phase

prediction model because these data are commonly available in

powered lower-limb assistive devices. Additionally, these data

from non-disabled individuals can be collected using various

sensor systems.

In conclusion, the proposed method (i) is versatile owing

to using sensor data available in generic powered lower-limb

assistive devices; (ii) facilitates developing a single unified gait

phase predictionmodel trained onmultiple datasets with diverse

sensor characteristics; (iii) enables quantitative evaluation of a

controller in terms of whether it can generate resembling gait

phases of able-bodied individuals.

To validate feasibility, level-ground walking (LGW) and

ascending stairs (SA) among various ambulation modes were

considered for gait phase prediction because they have distinct

differences in gait pattern (Kim et al., 2022).

For demonstration, the proposed method was applied

to a prosthetic leg system. The gait phases of a state

machine-controlled powered prosthetic leg for transfemoral

amputees (Simon et al., 2014) were predicted and evaluated to

verify that the proposed method can be used for gait evaluation

and has the potential to be used in a system not included in the

training datasets.

We hypothesized that the proposed gait phase prediction

model could (i) predict the gait phase for a prosthetic leg using a

model trained on benchmark dataset, and (ii) it can evaluate the

generated gait using the device.
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2. Methods

The proposed method uses a DNN to predict the

continuous gait phase based on the history of the vertical

load and joint angles (thigh, knee, and ankle). The gait phase

prediction model was trained using benchmark datasets,

and its prediction performance across benchmark datasets

was evaluated. Then, we collected prosthetic leg data to

demonstrate the trained model; four participants with

transfemoral amputation then performed in-laboratory LGW

and SA using state machine-based impedance controllers

at a self-selected speed. Then, the gait phase was predicted

from this recorded data. The details of this process are

provided below.

2.1. Benchmark datasets for training

The proposed method predicts the gait phase using

the vertical load and lower limb joint angles (thigh,

knee, and ankle). Two benchmark datasets, dataset

A (Camargo et al., 2021) and dataset B (Reznick et al.,

2021), were selected to train and validate the proposed

method; we used the data of LGW on a treadmill

and SA.

Datasets A and B were collected from 22 and 10 non-

disabled participants, respectively. In both datasets, joint angles

from both legs were reconstructed from the motion capture

data. In addition, dataset A contains the goniometer data for

the joint angles of the right leg. In the case of the LGW,

the walking speed ranges from 0.5 to 1.85 m/s for dataset

A and from 0.8 to 1.2 m/s for dataset B. The vertical load

was measured using force plates embedded in the treadmill.

In the case of the SA, we only considered the data from

dataset A as dataset B does not provide continuous force

plate data for SA. Data from dataset A for SA were collected

from four different stair heights of 4, 5, 6, and 7 inches;

the vertical load was measured using force plates located on

the stairs.

Eight sub-divided datasets were obtained from the

benchmark datasets: left/right leg from dataset A, where joint

angles were measured using motion capture data (AmLGW
Left

and AmLGW
Right

for LGW, and AmSA
Left

and AmSA
Right

for SA); right

leg from dataset A, where joint angles were measured using

goniometers (AgLGW
Right

and AgSA
Right

); and left/right leg from

dataset B (BmLGW
Left

and BmLGW
Right

for LGW). In conclusion,

five LGW datasets (AmLGW
Left

, AmLGW
Right

, AgLGW
Right

, BmLGW
Left

, and

BmLGW
Right

) and three SA datasets (AmSA
Left

, AmSA
Right

, and AgSA
Right

)

were extracted. In addition to the sub-divided datasets, all data

were included in a dataset, All data. Thus, there are nine dataset

configurations in all. The number of steps collected from each

dataset is presented in Table 1.

2.2. An open-source bionic leg

The trained gait phase prediction model was validated using

an open-source bionic leg (OSL) that contains a powered knee

and ankle actuated in the sagittal plane. The details of the OSL

system configuration are provided in Azocar et al. (2020). The

vertical load and joint angles (thigh, knee, and ankle) were

determined using mechanical sensors (i.e., encoders and IMU)

embedded in the OSL.

A state machine-based impedance controller (Simon et al.,

2014) was used to control the OSL. Each ambulation was sub-

divided into four states (i.e., early stance, late stance, early

swing, and late swing). Then, the six impedance parameters

(i.e., stiffness, damping coefficient, and equilibrium angle for the

knee and ankle) were tuned to generate the gait trajectory of an

individual state as follows:

τi = −ki(θi − θ
eq
i )− bθ̇i (1)

where i represents the knee or ankle joint; τ represents

the joint torque; k, b, and θeq denote the stiffness, damping

coefficient, and equilibrium angle, respectively; and θ and θ̇

represent the joint angle and velocity, respectively. Impedance

parameters were generated every 25 ms. Further details on

the state machine and the configuration process are provided

in Simon et al. (2014). The impedance parameters were

individually adjusted based on user feedback and visual

inspections of gait were conducted by a certified prosthetist and

licensed therapist.

2.3. Participants

Four individuals with unilateral transfemoral amputation

(Table 2) participated in this study and performed LGW and

SA. All individuals provided written informed consent for the

protocol approved by the Northwestern University Institutional

Review Board. Users walked with 8-feet parallel bars for LGW,

and ascended a 6-step staircase with stair height of 6-inch.

We collected as much data as experimental time allowed per

user. TF1 and TF2 had each participated in two sessions on

separate days; TF3 and TF4 each participated in one session.

In each session, we collected an LGW dataset and then an SA

dataset. Participants were allowed sufficient rest time during a

session under the assistance of a therapist. A total of, 214, 122,

174, and 221 steps were collected for TF1, TF2, TF3, and TF4,

respectively. The detailed number of steps per user is given in

Table 3.

2.4. Gait phase prediction model

The proposed method can be divided into two parts.

First, discretized gait events (i.e., toe-off and heel-strike)
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TABLE 1 Brief description of datasets and the number of steps collected.

Dataset Description The number of steps

AmLGW
Left Dataset A, LGW, left leg, motion capture 20,650

AmLGW
Right Dataset A, LGW, right leg, motion capture 20,685

AgLGWRight Dataset A, LGW, right leg, goniometer 20,685

BmLGW
Left Dataset B, LGW, left leg, motion capture 1,148

BmLGW
Right Dataset B, LGW, right leg, motion capture 1,286

AmSA
Left Dataset A, SA, left leg, motion capture 477

AmSA
Right Dataset A, SA, right leg, motion capture 465

AgSARight Dataset A, SA, right leg, goniometer 465

All data All datasets, all modes, both legs, all sensors 65,861

TABLE 2 Subject demographics.

User Gender Etiology Height (m) Weight (kg)

TF1 M Right sarcoma 1.93 72.57

TF2 M Left sarcoma 1.93 104

TF3 F Left sarcoma 1.7 72.5

TF4 F Right sarcoma 1.65 70.99

TABLE 3 The number of steps per user.

Mode User

TF1 TF2 TF3 TF4 Total

LGW 161 104 154 181 600

SA 53 18 20 40 131

Total 214 122 174 221 731

LGW, level-ground walking; SA, ascending stairs.

and phases (i.e., stance and swing phases) are identified

from the vertical load based on a peak detection algorithm

using z-scores (Brakel, 2014). Although this algorithm is

simple and only dependent on the vertical load, continuous

gait phase cannot be identified in real-time because gait

duration between one heel-strike to the next heel-strike is

needed for it. Therefore, to overcome this limitation, the

relationship between the continuous gait phase and the sensor

data (the joint angles and vertical load) is identified using

a DNN.

This section describes all procedures for the gait phase

prediction. The procedures are shown in Figure 1 using

example data. Section 2.4.1 describes data conversion

for the DNN application (i.e., data normalization).

Section 2.4.2 describes gait segmentation from sensor data

and conversion to 2-D variables representing gait phase

percentage. Section 2.4.3 describes the architecture of the

proposed DNN.

2.4.1. Sensor data conversion

Sensor configurations, including the sampling frequency

and sign convention, depend on the experimental setup and

hardware specifications. Thus, all sensor configurations were

converted to those of the OSL. With respect to the sign

convention, thigh extension, knee flexion, and ankle dorsiflexion

were defined as positive. Vertical load was normalized by the

weight of the user. Since our system recorded data from the OSL

every 5 ms, sensor data were downsampled or upsampled to 200

Hz. In addition, owing to differences in sensor configurations,

the baseline amplitudes of the joint angles differ. Thus, angular

biases were removed to match the baseline with the OSL.

The recommended range of the input data to the DNN is 0

to 1. Therefore, scaling was applied to the sensor data as follows:

vn = (
v

gv
+ 5)/10

gv =

{

1, if v = Fz

36, otherwise
(2)
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FIGURE 1

Flowchart of the proposed method. (A) Gait phase, extracted from the vertical load, is converted to the 2-D variable. (B) The joint angles, vertical

load, and gait phase variable are scaled for application to the deep neural network (DNN). (C) The scaled (i.e., converted) joint angles and vertical

load are used as input for the DNN. (D) The DNN output is scaled and converted to the predicted gait phase.

where v denotes the raw data (i.e., the weight-normalized

vertical load and joint angles), vn denotes the data bounded from

0 to 1, Fz denotes the weight-normalized vertical load, and gv

denotes the gain. Thus, for instance, vn will be 0.5 when Fz is

zero (i.e., no weight on the prosthetic leg) and 0.6 when Fz is 1

(i.e., full weight on the prosthetic leg).

2.4.2. Gait phase conversion

The gait events were mathematically extracted

(Algorithms 1–3) based on a peak detection algorithm

using z-scores (Brakel, 2014). The Supplementary Video S1

shows an example of extraction.

Algorithm 1 is applied to the recorded data; it extracts a

discretized gait phase (i.e., stance or swing phase), for each time

step, t based on Algorithm 2.

In every time step, Algorithm 2 subdivides the gait into

stance and swing phases according to the vertical load. If the

vertical load is higher than Fth, the current phase is set to stance.

When the vertical load is less than Fth, the phase is set to stance

if the vertical load tends to increase; and swing if the vertical

load tends to decrease. The tendency of the vertical load was

determined using the history of filtered, which is an output of

the peak detection algorithm (Brakel, 2014).

Input: Fz ∈ RT: T time series of the vertical load

Param: Fth, influence, lag, phist, filtered ∈ Rlag

/* Parameter initialization */

1: Fth ← 0.2

2: lag ← 8

3: influence ← 0.01

4: phist ← 5

5: Filtered(1 : lag) ← 0

/* Phase Extraction */

6: for t = 1 to T do

7: [Pext(t), filtered] = SEGMENT (Fz(t), filtered)

8: end for

9: Poutput = POST REFINEMENT(Pext)

10: return Poutput

Algorithm 1. Gait phase extraction.

Sensor interference may lead to incorrect extraction;

Algorithm 3 improves robustness and refines the extraction.

When phase change occurs, if the time length of the previous

phase is less than phist , Algorithm 3 discards this phase change.

Here, all tunable parameters, including lag, influence, Fth,

and phist were selected heuristically. The values for the peak
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1: function SEGMENT(fz, filtered)

2: filtered(i) = filtered(i+ 1) for i = 1 : lag − 1

3: fz = 1 if fz > 1 and fz=0 if fz < 0

4: if fz == mean(filtered) then

5: pext = 0 // swing phase

6: filtered(lag) = fz

7: else

8: if ft > Fth then

9: pext = 1 // stance phase

10: else if ft ≥ mean(filtered) then

11: // increasing vertical load

12: pext = 1 // stance phase

13: else

14: pext = 0 // swing phase

15: end if

16: filtered(lag) = influence · fz+ (1− influence) ·filtered(lag−1);

17: end if

18: return pext, filtered

19: end function

Algorithm 2. Gait segmentation.

detection algorithm (lag of 8 and influence of 0.01) were chosen

via visual inspection of the identification results. Fth was set to

0.2 because our state machine-based controller determines the

transition from stance phase to swing phase based on this value.

phist was set to 5, which indicates that phase changes within 25

ms were ignored, because our control frequency of the OSL is 40

Hz.

Using these algorithms, the gait phase percentage was

obtained between 0% and 100% in 0.5% increments. As the

gait phase percentage increases monotonically from 0% to 100%

(i.e., a heel-strike to the next heel-strike), the discontinuities in

the percentage of the gait phase from 100% to 0% degrade the

prediction performance. Therefore, the gait phase percentage in

the Cartesian coordinate system (i.e., 0–100%) was converted

into that in the polar coordinate system (Kang et al., 2019) as

follows:

θ = 2π
pc

100

px = cos θ

py = sin θ (3)

where pc denotes the gait phase percentage in the Cartesian

coordinate system, and px and py denote those in the polar

coordinate system. This gait phase percentage is used as the

output of the DNN. Thus, additionally, scaling was applied to

the gait phase percentage in the polar coordinate system to

normalize the range of the values as follows:

P′i = (pi + 5)/10 (4)

1: function POST REFINEMENT(pext)

2: ppast ← pext(1)

3: pcurrent ← −1

4: count ← 0

5: idxbgn ← 1

6: idxfin ← 0

7: pre(1 :T) ← −1

8: for t = 1 to T do

9: pcurrent = pext(t)

10: if pcurrent 6= ppast then

11: idxfin = t − 1

12: if count > phist then

13: pre(idxbgn : idxfin) = ppast

14: idxbgn = t

15: count = 1

16: else

17: pre(idxbgn : idxfin) = pcurrent

18: count = count + 1

19: end if

20: else

21: count = count + 1

22: end if

23: ppast = pcurrent

24: end for

25: return pre

26: end function

Algorithm 3. Post refinement to improve robustness.

where pi and p′i denote the gait phase percentage in the

polar coordinate system and its scaled value in the DNN output

configuration, respectively. This normalization processing (i.e.,

Equation 4) may not be necessary. The reason for this scaling is

described in Section 4.

2.4.3. A deep neural network

The structure of the proposed DNN is shown in Figure 2.

The input for the network is the 250 ms history of the vertical

load, thigh, knee, and ankle angles. The network outputs are the

gait phase percentages in the polar coordinate system (i.e., p′x
and p′y).

The 1-D convolutional neural network, which leans 32 filters

through a kernel size of 8, strides of 1, and the same padding,

is connected to the input layer, which is used to capture spatial

information from the sensor data. Subsequently, a LSTM layer of

20 units, followed by fully-connected dense layers, is connected

to extract temporal information. The network has a total of 6,258

trainable parameters.

The network was trained for 15 epochs with a batch size

of 256, the ADAM with a learning rate of 0.001, and the mean

squared error as the loss function. At each epoch, the data were
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shuffled and split into training and validation data in a ratio of

7:3. All the trainable layers had a sigmoid activation function.

The model was trained using TensorFlow (v. 2.7.0, Google)

in Python 3.8 on a laptop (Nitro 5 AN517-54-79L1, Acer) with

NVIDIA GeForce RTX 3050Ti Laptop GPU and 32 GB DDR4

RAM. The training time for the model trained on All data (see

Table 1) was approximately 210 min.

2.5. Data analysis

All nine models were trained using the benchmark datasets;

their data configurations are presented in Table 1. The first eight

models were trained using eight distinct sub-divided datasets

(see Section 2.1). The last model was trained using all benchmark

datasets. Each dataset was evaluated using the nine models.

Then, gait data from four patients with transfemoral amputation

were evaluated using the last model. Any additional processes,

such as model tuning, were not performed.

The correlations between datasets were assessed using

the Pearson correlation coefficient between the median gait

trajectories. The prediction performance was evaluated using the

coefficient of determination (R2) in the polar coordinate system

(i.e., p′x and p′y) and phase prediction error for the difference

between the actual and predicted gait phases.

3. Results

3.1. Evaluation of benchmark datasets

Figure 3 shows R2 for each dataset using each model. Since

LGW and SA have different gait trajectories, they showed

low performance when predicting each other (i.e., inter-mode

prediction). However, the model trained on all benchmark

datasets (i.e., the last row) showed consistent performance; the

average R2 of 0.97 was obtained.

The gait phase prediction error showed a similar trend

(Figure 4). Intra-mode predictions had lower errors than inter-

mode predictions. In particular, the models trained on SA

datasets (i.e., AmSA
Left

, AmSA
Right

, and AgSA
Right

) showed errors

of more than 10% on the LGW datasets. On the other

hand, the model trained on all benchmark datasets showed

average prediction errors of 1.27% and 2.07% for LGW and

SA, respectively.

In the case of dataset A, although motion capture and

goniometer data (e.g., AmLGW
Right

and AgLGW
Right

) were recorded

simultaneously, the joint angles differed significantly (Figure 5).

These differences in sensor configurations may have caused

the differences in prediction performance. In particular, the

goniometer data-based model was more robust than the motion

capture data-based model (see second and third rows in

Figure 3).

FIGURE 2

Structure of the proposed network. The gait phase percentage

in the polar coordinate system was predicted from a 250 ms

history of the vertical load (a black line), and thigh (a green line),

knee (a red line), and ankle (a blue line) angles. The numbers in

the brackets of the layers represent the shape of each layer. For

example, LSTM (N) represents the LSTM layer with N units.

3.2. Evaluation of OSL data

Figure 6 shows the gait trajectories of a state machine-

controlled OSL from all four transfemoral amputee users. In the

case of the LGW, the Pearson correlations with the vertical load,

thigh, knee, and ankle angles in the benchmark datasets were

0.94, 0.94, 0.93, and 0.92, respectively. However, in the case of the

SA, the correlations were 0.83, 0.96, 0.96, and 0.24, respectively;

ankle angles showed a significantly low correlation.
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FIGURE 3

Coe�cients of determination (R2) for the di�erence between the actual and predicted gait phases. Intra-mode prediction showed higher R2; on

the other hand, inter-mode prediction (e.g., prediction of SA datasets using a model trained on an LGW dataset) showed poor performance

owing to the di�erent gait characteristics. The model trained on all datasets (i.e., the last row) showed consistent performance with an average

R2 of 0.97 across all sub-divided datasets.

The phase prediction performance (Figures 7, 8) varies from

user to user; the average R2 for all users across all ambulation

modes was 0.72, and differences were generally observed in

the late stance phase. The gait phase error of SA (8.06%) was

higher than that of LGW (4.82%); the average error across all

ambulation modes was 5.70%.

4. Discussion

The proposed method can learn the continuous gait phase

from sensor data (i.e., the vertical load and lower limb joint

angles) commonly available in powered lower-limb assistive

devices. The model was trained using benchmark datasets and

applied to a powered prosthetic leg with a different sensor

configuration without tuning. Sensor data, such as vertical

loads and joint angles, may depend on sensor characteristics.

Therefore, a model trained on a specific sensor dataset may

have poor prediction performance when testing the model on

a different sensor dataset. For example, in the case of dataset A,

the joint angles were simultaneously collected using a motion

capture system and goniometers. However, the joint trajectories

(Figure 5) and the performance of the models (Figures 3, 4)

based on them differed. These results demonstrate that a gait

phase prediction model trained using a specific system may not

be easily adapted to other systems. These limitations suggest

that a device-agnostic approach is needed. The end-to-end

capabilities of a deep neural network enable the integration of

data from different datasets and the development of a unified

device-agnostic model. As demonstrated in this work, applying a

model trained from benchmark datasets to powered lower-limb

assistive devices without additional tuning will help to validate

hardware or software easily.

Eliminating discontinuity is a crucial factor in the DNN-

based gait phase prediction. We tried to use the 1-D variables

in the Cartesian coordinate system rather than the 2-D variables
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FIGURE 4

Gait phase prediction error. The blue and red bars indicate errors for five LGW and three SA datasets, respectively. Inter-mode prediction errors

were higher than intra-mode prediction errors. The model trained using all datasets showed average prediction errors of 1.27% and 2.07% for

LGW and SA, respectively; the average error of 1.28% across all ambulation modes was obtained.

FIGURE 5

Gait trajectory from benchmark datasets. (A) The black, green, red, blue, and cyan lines indicate AmLGW
Left , Am

LGW
Right, Ag

LGW
Right, Bm

LGW
Left , and BmLGW

Right,

respectively. (B) The black, green, and red lines indicate AmSA
Left, Am

SA
Right, and AgSA

Right, respectively. Although motion capture data and goniometer

data (e.g., AmLGW
Right and AgLGW

Right) were measured simultaneously, a significant di�erence in joint angles was observed: The root mean square

di�erences for the thigh, knee, and ankle angles were 6.2◦, 4.3◦, and 3.7◦ for LGW, and 4.3◦, 8.3◦, and 1.9◦ for SA, respectively. All plots show the

75th and 25th percentiles in lighter bands.

in the polar coordinate system as the output of the network.

However, it degraded prediction performance compared to the

2-D variables with most errors made around 0% or 100%. An

example case is described in the Supplementary Document S1.

Prediction performance may depend on the configuration

of the DNN. In this study, 250 ms of sensor data history were

used to formulate predictions. This parameter was chosen based

on our previous work (Kim and Hargrove, 2022), in which 250

ms of vertical load and thigh angle history was best to predict

desired impedance parameters.

We scaled input and output data for the proposed DNN

using Equations (2) and (4). This scaling is not mandatory and
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there may be better scaling methods. The reason for the scaling

is that the OSL, which is the prosthetic leg we use, transmits

and receives data in the scaled values. We wanted to minimize

additional process for data conversion by following the data

scaling of the OSL for our future work, real-time evaluation gait

phase and updating controllers.

In this study, we heuristically determined the network

architecture hyperparameters including the number the layers,

number of units in the layers, and activation functions. We

adapted the number of units in dense layers from our previous

work for controlling prosthetic legs using DNN (Kim and

Hargrove, 2022). In the case of the activation function, sigmoid

was better than other activation functions, such as tanh and

ReLU. We speculate that the sigmoid function is suitable for

our small range near 0.5 of input and output to the DNN.

In addition, additional layers may improve the performance;

however, execution time for prediction will be increased as a

trade-off.

The LGW and SA models showed poor inter-mode

prediction performance due to differences in gait trajectories.

However, the LGW models showed slightly better inter-mode

prediction performance than the SA models. This difference

in performance may be a result of the amount of training

data, as LGW datasets have more data than SA datasets; the

models based on SA datasets had fewer variations and may have

overfitted. This speculation is also supported by the fact that

dataset A showed better performance than dataset B; dataset A

has nearly 20 times more data than dataset B (see Table 1).

In addition, one noticeable prediction result is that the

models trained using AgLGW
Right

showed better performance on

SA datasets than other LGW datasets. We speculated that

the large variation in the joint angles from the goniometers

improved the robustness of the model. Thus, model training

using a variety of datasets and different sensor configurations

may improve the overall performance of gait phase prediction

for untrained modes.

In general, the state machine parameters for the stance

phase should be tuned to generate a more natural gait similar

to non-disabled individuals. Specifically, the ankle parameters

for SA should be improved. In details, the ankle trajectory

(blue line, Figure 6B) is too flat compared to the non-

amputee trajectory (Figure 5B). A controller should provide

more dynamic movement in the mid-to-late stance phase. In

conclusion, the model provided information on how to improve

the controller in addition to the similarity between gait data from

the benchmark datasets.

The proposed method has several limitations. First, it was

limited to level-ground walking and ascending stairs. Additional

ambulation modes should be considered, including turning

and descending stairs and ramps. We believe use of additional

benchmark data can overcome this limitation. For example,

dataset A contains data for turning on the ground. Training

with these data will prove the robustness of the phase prediction

FIGURE 6

Gait trajectory for LGW (A) and SA (B) from four transfemoral

amputee users. The black, green, red, and blue lines indicate the

vertical load and thigh, knee, and ankle angles, respectively. The

ankle trajectories for SA showed a significantly low correlation

with the benchmark datasets (Figure 5). All plots show the 75th

and 25th percentiles in lighter bands.

model. Furthermore, to ensure that the method can be applied

in practice, the model must be able to correctly identify the

ambulation mode from the sensor data (i.e., ambulation mode

classification). Second, although improving the performance of

the controller for a powered prosthetic leg may be possible,

the focus of this study was on evaluating the pre-developed

controller. For instance, control parameters can be updated in

real-time to reduce differences in gait phase and trajectory.

However, updating the controller is beyond the scope of this

study and will be performed in future work.

Real-time gait phase prediction may significantly improve

the gait by incorporating various control methods. For example,

walking at various speeds and slopes was facilitated using virtual

constraints based on a human-inspired phase variable (Quintero

et al., 2018) for controlling a prosthetic leg.

To investigate feasibility, we deployed the proposed model

on a smartphone running Android 12 (Galaxy Z Flip 3,

Samsung). The Android parsed sensor data every 5 ms from

the OSL. Execution time for the deployed network was
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FIGURE 7

Actual (gray lines) and predicted (blue lines) phases for LGW (A) and SA (B) in the polar coordinate system. The average R2 for all users was 0.72.

Although the prediction performance varies from user to user, most errors were observed in the late stance phase. All plots show the 75th and

25th percentiles in lighter bands.

FIGURE 8

Gait phase prediction error. The blue and red bars indicate errors

for LGW and SA, respectively. The average errors for LGW and SA

were 4.82% and 8.06%, respectively. Error bar represents 25th

and 75th percentiles.

approximately 1.2 ms. In conclusion, model predicted the

gait phase using a 250 ms history of sensor data at intervals

of 5 ms, and this prediction took approximately 1.2 ms.

This indicates that the model has the potential to predict in

real-time. The Supplementary Video S2 contains real-time gait

prediction based on the sensor data from the OSL, for which

an intact limb user performed LGW on the OSL using a bypass

adaptor. Performance was reasonable, but a significant error was

observed when the user turned in place to change the body

direction, as turning was not in the training datasets. This result

shows the limitation of the proposed method: poor performance

when an untrained mode was performed. In future work, we

will continue to improve the robustness of untrained ambulation

modes on various terrains. Then, the model will be used in the

real-time update of control parameters to generate a normal gait

similar to that in training datasets.

The proposed DNN model outperformed

general machine learning-based algorithms (see the

Supplementary Document S2). However, obviously, the

performance of machine learning algorithms depends on model

parameters as DNN models do; a state-of-the-art machine

learning method may outperform the proposed DNN model.

Despite this limitation, this work demonstrated the feasibility of

device-agnostic gait phase prediction and evaluation could be

possible by analyzing the history of the sensor data commonly

available on powered lower-limb assistive devices.

5. Conclusion

In this study, we propose a gait phase prediction method

using a DNN. The predictions are based on a set of sensor data

commonly available on powered lower-limb assistive devices.

The model was trained using benchmark datasets containing
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gait data of intact-limb individuals and applied to evaluate the

performance of a powered prosthetic leg. Themodel successfully

predicted the gait phase of individuals with transfemoral

amputation using a powered lower-limb prosthesis and provided

information on the differences between intact limb individuals

from the benchmark datasets.

Hypothesis (i) was partially confirmed because performance

may depend on the characteristics of the sensors and the amount

of data used for training. In addition, the proposed model did

not require tuning to evaluate the gait of transfemoral amputee

patients wearing a powered prosthetic leg. Furthermore, it

provided information on the differences between the actual gait

and testing data, confirming Hypothesis (ii).
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