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Novel biomarkers predict
prognosis and drug-induced
neuroendocrine differentiation
in patients with prostate cancer

Jingwei Lin †, Yingxin Cai †, Zuomin Wang, Yuxiang Ma,
Jinyou Pan, Yangzhou Liu and Zhigang Zhao*

Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key
Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou,
Guangdong, China
Background: A huge focus is being placed on the development of novel

signatures in the form of new combinatorial regimens to distinguish the

neuroendocrine (NE) characteristics from castration resistant prostate cancer

(CRPC) timely and accurately, as well as predict the disease-free survival (DFS)

and progression-free survival (PFS) of prostate cancer (PCa) patients.

Methods: Single cell data of 4 normal samples, 3 CRPC samples and 3 CRPC-

NE samples were obtained from GEO database, and CellChatDB was used for

potential intercellular communication, Secondly, using the “limma” package

(v3.52.0), we obtained the differential expressed genes between CRPC and

CRPC-NE both in single-cell RNA seq and bulk RNA seq samples, and

discovered 12 differential genes characterized by CRPC-NE. Then, on the

one hand, the diagnosis model of CRPC-NE is developed by random forest

algorithm and artificial neural network (ANN) through Cbioportal database; On

the other hand, using the data in Cbioportal and GEO database, the DFS and

PFS prognostic model of PCa was established and verified through univariate

Cox analysis, least absolute shrinkage and selection operator (Lasso) regression

and multivariate Cox regression in R software. Finally, somatic mutation and

immune infiltration were also discussed.

Results: Our research shows that there exists specific intercellular

communication in classified clusters. Secondly, a CRPC-NE diagnostic model

of six genes (HMGN2, MLLT11, SOX4, PCSK1N, RGS16 and PTMA) has been

established and verified, the area under the ROC curve (AUC) is as high as 0.952

(95% CI: 0.882−0.994). The mutation landscape shows that these six genes are

rarely mutated in the CRPC and NEPC samples. In addition, NE-DFS signature

(STMN1 and PCSK1N) and NE-PFS signature (STMN1, UBE2S and HMGN2) are

good predictors of DFS and PFS in PCa patients and better than other clinical

features. Lastly, the infiltration levels of plasma cells, T cells CD4 naive,

Eosinophils and Monocytes were significantly different between the CRPC

and NEPC groups.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2022.1005916/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.1005916/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.1005916/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.1005916/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2022.1005916&domain=pdf&date_stamp=2023-01-05
mailto:zgzhaodr@126.com
https://doi.org/10.3389/fendo.2022.1005916
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2022.1005916
https://www.frontiersin.org/journals/endocrinology


Lin et al. 10.3389/fendo.2022.1005916

Frontiers in Endocrinology
Conclusions: This study revealed the heterogeneity between CRPC and CRPC-

NE from different perspectives, and developed a reliable diagnostic model of

CRPC-NE and robust prognostic models for PCa.
KEYWORDS

single-cell RNA-seq, castration-resistant prostate cancer, neuroendocrine, cellular
communication, prognosis
Introduction

Prostate cancer has become the second most common

cancer in men worldwide, and androgen deprivation therapy

(ADT) plays an indispensable impact on the treatment of PCa.

On the one hand, enzalutamide, as an androgen receptor

inhibitor, competes and replaces the natural ligand of

androgen receptor by closely binding with the ligand binding

domain of androgen receptor. At the same time, it also inhibits

the translocation receptor of androgen from entering the nucleus

and impairs the transcriptional activation of androgen response

target genes (1). On the other hand, abiraterone weakens

androgen receptor signaling by consuming adrenal and intra-

tumoral androgens (2). Nevertheless, due to complex

mechanisms such as lineage plasticity and phenotype

switching, cytokine dysregulation (3). Prostate cancer cells can

adapt to androgen deprivation and restore androgen receptor

signaling, eventually progressing to CRPC, even CRPC-NE,

which is a lethal subtype of PCa with extremely poor survival

rate (4–6). In addition, the use of AR inhibitors is accompanied

by an increase in the incidence rate of highly invasive AR

negative prostate cancer. The percentage of AR negative

tumors in mCRPC patients increased from 11% (1998-2011)

to 36% (2012-2016) after the introduction of effective androgen

receptor signaling inhibitors (such as enzalutamide and

abiraterone) (7). Almost all men will eventually develop

castration resistant prostate cancer (CRPC) after ADT (8),

Furthermore, the most common situation is that during drug

treatment, nearly 25% CRPC gradually trans-differentiate into

NEPC (9), called t-NEPC, but neuroendocrine prostate cancer

can also presented de novo.

Presently, NEPC is divided into different subtypes according

to different morphological characteristics: 1. Adenocarcinoma

with neuroendocrine (NE) differentiation; 2. Paneth cell NE

differentiation; 3. Carcinoid; 4. Small-cell carcinoma; 5. Large-

cell NE carcinoma; and 6. Mixed NE carcinoma-acinar

adenocarcinoma (10). Zou et al. have shown that focal

neuroendocrine differentiation (NED) and ultimately well

differentiated neuroendocrine prostate cancer are directly

produced by trans-differentiation of luminal adenocarcinoma

cells (11), which indicates that in the process of CRPC patients
02
treated with androgen deprivation, luminal cells inside could

experience trans-differentiation, resulting in luminal/NE

intermediate cells. Previous studies have shown that prostate

basal cells express basal keratins KRT5, KRT14 and key

transcription factors TP63 (12); Luminal or secretory cells

express keratins KRT8, KRT18, androgen receptors, and

secretory proteins consisting of prostate specific antigen (PSA)

and prostatic acid phosphatase (13). An increasing number of

neuroendocrine prostate cancer markers (such as CHGB, ENO2,

LMO3, EZH2, SOX2 and SIAH2) are being identified (14, 15). It

has been reported that in mouse and adult prostate, cells with co-

expression markers of basal cells and luminal cells (such as the

co-expression of KRT5/KRT14 and KRT8/KRT18/KRT19) are

called intermediate cells, representing either pluripotent prostate

stem cells or intermediate cells between basal stem cells and

luminal progenitor cells (16), supplying a solid support to

classify and annotate cells.

Great importance should be attached to develop diagnostic

signatures for CRPC with NE characteristics. Zhang et al. has

successfully identified four novel biomarkers for the diagnosis of

NEPC, including NPTX1, PCSK1, ASXL3, and TRIM9 (17) via

Bulk-RNA sequencing data, in our study, by combining single-

cell RNA seq with Bulk-RNA seq, the CRPC-NE diagnostic

model via machine learning algorithm was successfully built,

and the prostate cancer prognosis model was also constructed

and validated triumphantly.
Materials and methods

Data collection and procession of Sc-
RNA seq and Bulk-RNA seq

Attaching great attention on neuroendocrine prostate

cancer, the sample inclusion criteria are as follows: (1) the

patients must have developed resistance to castration therapy;

(2) Gene expression data must be available for both CRPC and

NEPC tumors; (3) The diagnostic information must be clear.

The single-cell RNA sequencing information of GSE176031 (18)

as well as GSE137829 (19) were obtained via GEO database

(https://www.ncbi.nlm.nih.gov/geo/), The former provides
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with 4 normal samples (8038 cells) taken from radical

prostatectomies, The single-cell transcriptome information of

NEPC and CRPC were obtained from the other one, including 3

CRPC samples (7119 cells) and 3 NEPC samples (16384 cells).

Harmony algorithm was not used to remove batch effects so as

not to eliminate the inherent differences between samples. Then

CRPC and CRPC-NE clusters were separated according to well-

acknowledged cell markers, We used CellChat (v1.4.0) R

package to analyze the intercellular communication among

annotated clusters (20), and calculated 102 differentially

expressed genes (DEGs) (logFC > 0.5 & pvalue < 0.05)

between CRPC and CRPC-NE by “FindMarkers” function in

Seurat (v4.1.1) R package (21–24). These genes were then used

for GO and KEGG analysis.

The Bulk transcriptome RNA-seq data and corresponding

clinical data, consisting of SU2C/PCF Dream Team(n=208) (25),

Multi-Institute Cohort (n=49) (26) were download from

Cbioportal Database (https://www.cbioportal.org/) and used to

identify genes upregulated in CRPC-NE samples compared with

CRPC samples after quality control, 41 samples were excluded
Frontiers in Endocrinology 03
due to inadequate information in SU2C/PCF Dream Team

cohort. Only 12 genes highly expressed in both single-cell

transcriptome data and Bulk-RNA data were selected for the

establishment of CRPC-NE diagnosis model. The workflow of

the diagnostic model is presented in Figure 1. Additionally,

TCGA PanCancer data (27) from Cbioportal Database and 138

PCa samples in GSE21035 (28) were explored in order to

construct prognosis model for DFS as well as PFS. The

workflow of the prognosis model is demonstrated in Figure 2.

Genes mapped to multiple probes were calculated by their

average values. The batch effects of Bulk RNA-seq data were

modified through “ComBat” function in sva (v3.44.0) package

(29). The clinicopathological information of enrolled samples is

listed in Table 1.
Single−cell RNA−seq analysis

The Seurat package (v 4.1.1) was utilized to generate the

object and filtered out cells with poor quality. Then, we
FIGURE 1

The main workflow of the study. SC-RNA, single-cell RNA; NS, normal sample; CRPC, castration-resistant prostate cancer; NEPC,
Neuroendocrine prostate cancer;DEGs, differentially expressed genes; GSVA, Gene Set Variation Analysis; GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; ROC, receiver operating characteristic; DFS, disease free survival; PFS, progression free survival.
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conducted standard data preprocessing, where we calculated the

percentage of the gene numbers, cell counts and mitochondria

sequencing count. Genes with less than only 3 cells detected and

disregarded cells with less than 50 detected gene numbers were

excluded. We filtered out cells with fewer than 500 or more than

4,000 detected genes and those with a high mitochondrial

content (>5%). After discarding poor-quality cells, a total of

12,165 cells were retained for downstream analysis. To

normalize the library size effect in each cell, we scaled UMI

counts using scale.factor = 10,000. Following log transformation

of the data, other factors, including “percent .mt” ,

“nCount_RNA” and “nFeature_RNA”, were corrected for

variation regression using the “ScaleData” function in Seurat

(v 4.1.1). The corrected-normalized data metrics were applied to

the standard analysis as described in the Seurat R package. The

top 1,500 variable genes were extracted for principal component

analysis (PCA). The top 30 principal components were kept

for Uniform Manifold Approximation and Projection for

Dimension Reduction (UMAP) visualization and clustering.
Frontiers in Endocrinology 04
We performed cell clustering using the “FindClusters”

function (resolution = 0.3) implemented in the Seurat R

package. Afterwards, the clusters were verified by SingleR

package (v1.10.0) and canonical markers (30). Moreover, we

utilized”FindAllMarkers” function to identify marker genes

between cluster “CRPC_Luminal” and “NEPC_Luminal/NE”

with the filter value of absolute log2 fold change (FC) ≥ 0.5

and the minimum cell population fraction in either of the two

populations was 0.25 (31).
Pseudotime trajectory analysis

Importantly, after passing quality control, Pseudotime and

trajectory analysis of single cells were performed via “monocle”

R package (v2.24.0) (32–34), genes were placed into the Reversed

Graph Embedding algorithm of Monocle to shape the trajectory.

Then, Monocle applied a dimensionality reduction to the data

and ordered the cells in pseudotime.
FIGURE 2

The scheme of the prognosis model.
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Ligand–receptor expression and
cell interactions

Cell-to-cell communication “CellChat” (v1.4.0) R package

was ascertained by evaluating expression of pairs of ligands and

receptors within cell populations, thus to reveal the potential

interaction between various cells types. Gene expression of 0.2

was set as the valid cutoff point. The specific signaling pathways

were selected for further visualization so as to reveal the strength

of specific pathways among 16 clusters. In addition, the potential
Frontiers in Endocrinology 05
ligand-receptor interaction between luminal/NE cells and other

cells was also explored.
Functional analyses and
mechanism exploration

Firstly, Gene Set Variation Analysis (GSVA) was performed

with the GSVA package (v1.44.0) of R software with default

parameters (35). The list of KEGG terms was obtained from the
TABLE 1 Characteristics of sample cohorts used for the analysis of DFS as well as PFS.

Characteristics DFS cohort PFS cohort

TCGA (n=276) GSE21035 (n=138) TCGA-train (n=292) TCGA-validation (n=124)

Age (year)

≤65 121 115 207 85

>65 155 23 85 39

PSA (ng/ml)

≤10 NA 112 NA NA

>10 NA 24 NA NA

Not available NA 2 NA NA

Gleason score

≤6 NA 77 NA NA

7 NA 48 NA NA

≥8 NA 13 NA NA

Disease-free event 248 103 NA NA

Progression event NA NA 63 21

T-stage

T1/T2 121 86 104 38

T3/T4 155 52 188 86

N-stage

N0 246 103 239 99

N1 30 12 53 25

Nx NA 23 NA NA

Surgery-type

RP NA 98 NA NA

Others NA 40 NA NA

Radiation therapy

Yes 32 18 12 18

No 242 NA 231 92

Not available 2 120 35 14
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Gene Set Enrichment Analysis database (https://www.gsea-

msigdb.org/gsea/msigdb/genesets.jsp?collection=CP : KEGG).

Furthermore, the DEGs between CRPC-luminal & NEPC-

luminal clusters were identified with R package limma (v3.52.0)

(36). Then the pathway enrichment analyses, including Gene

Ontology (GO) analysis and KEGG analyses were completed to

explore distinct pathways (37–39).
Random forest algorithm and
artificial neural network model
for diagnosis model

A random forest algorithm was applied on 49 samples

(Multi-Institute Cohort) from Cbioportal to find the most

important genes associated with the phenotype. Briefly, We

utilized randomForest R package (v4.7-1.1) to find the most

important genes associated with diagnosis status in CRPC and

CRPC-NE samples (40). The genes whose “MeanDecreaseGini”

> 1 were choose to build the artificial neural network (ANN)

model. Based on multilayer perceptron network (MLP), the

ANN model consists of input nodes, hidden layers, and an

output node (41), In our study, six genes (HMGN2, MLLT11,

SOX4, PCSK1N, RGS16 and PTMA) were selected as the input

nodes, and one indicator (with or without neuroendocrine

differentiation) was used as the output node (42).

Consequently, the diagnosis model was validated in samples

from Multi-Institute and SU2C/PCF Dream Team (n=216)

downloaded from Cbioportal. The sensitivity and specificity of

the diagnostic models were evaluated by the receiver operating

characteristic (ROC) curves (43).
Construction and validation of
prognostic model for DFS and PFS

By comparing CRPC with CRPC-NE via “limma” (v 3.52.0)

R pacakge, 12 genes highly expressed in both single-cell

transcriptome data and Bulk-RNA data were discovered. To

begin with, SU2C/PCF Dream Team (n=276) in the Cbioportal

dataset were regarded as training cohort. NEPC characteristic

genes were analyzed by univariate Cox to obtain candidate

prognostic genes (P<0.05), Subsequently, the least absolute

shrinkage and selection operator (LASSO) method by

“glmnet” (v4.1-4) R package was used to minimize overfitting

risk (44), and select the optimal gene combination with the

lowest Akaike information criteria (AIC) in a Stepwise

Algorithm, Finally, a 2-gene prognostic signature (NE-DFS

signature) for DFS was built based on the regression coefficient

derived from the multivariate Cox regression model and the

optimized genes. The formula are as follows:
Frontiers in Endocrinology 06
NE − DFS signature score =o
n

i=1
bi* exp ið Þ

where n was the number of enrolled genes, bi represented
the coefficient of the gene and Exp i was the candidate gene’s

expression level. Then, patients were classified into high- and

low- risk groups according to the median, the Kaplan–Meier plot

and log-rank test were applied to evaluate differences between

the high-risk and low-risk subgroups by the R package “survival”

(v3.3-1) (45). The receiver operating characteristic (ROC) curve

performed by “timeROC” (v 0.4) R package was used to judge

the efficiency of the NE-DFS signature,

Afterwards, we validated the model in the GSE21035

(n=138) cohorts. Data from different platform were modified

through “ComBat” function in sva (v3.44.0) package to eliminate

batch effects. Similarly, A 3-gene prognosis model for PFS was

constructed and validated in TCGA PanCancer cohort (n=416).

416 PCa patients in the dataset were randomly assigned to

training (n = 292) and internal validation cohort (n = 124) at

a 7:3 ratio, the remaining has been described in detail above.
Immune infiltration and tumor
mutational burden exploration

Normalized expression levels (Affymetrix intensity) of gene

signatures that distinguish 22 immune cell types from each other

and other cell types was downloaded from the Supplementary

Table 1 of this article (46), namely LM22 signature. Then we

identify the proportions of the 22 immune cells from each sample

by “CIBERSORT”. The algorithm was run using the LM22

signature and 1000 permutations. For each sample, the final

CIBERSORT output estimates were normalized to sum up to

one. The Wilcoxon rank-sum test was used to compare the

expression differences of 22 types of immune cells between

CRPC and CRPC-NE patients. Only cases with a CIBERSORT

output of p < 0.05 were considered to be eligible for subsequent

analysis and visualization. Additionally, waterfall plots were

generated to explore the mutation characteristics of the 12

CRPC-NE featured markers by “maftools” (v2.12.0) package (47).
Nomogram construction

Nomogram analysis was constructed in the training group to

predict the outcome of the individual. The upper part is the

scoring system and the lower part is the prediction system. The

1-, 2-, 3- and 5-year survival rate of PCa patients could exactly be

predicted by total points of every factor. Verification of the

prediction accuracy of DFS and PFS was performed in patients

of the validation group.
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Statistical analyses

Besides the Venn diagrams were drawn online (https://

bioinformatics.psb.ugent.be/webtools/Venn/). The other

statistical analyses and visualization were conducted using the

R software (v4.2.0) and Bioconductor (v3.15). Statistical

differences between the two groups were assessed using the

Wilcoxon test. P < 0.05 was considered statistically significant.
Results

Single−cell RNA−seq profiling, clustering
and markers

Two Sc-RNA seq datasets (GSE176031 and GSE137829) in

the GEO database were used to obtain normal samples (8038

cells), CRPC samples (7119 cells) and NEPC samples (16384

cells). After initial quality control assessment, 12,165 high-

quality cell samples isolated from three distinguished types of

tissues were screened and illustrated for further analyses

(Figure 3A). 1,500 high variable genes and the names of the

top 10 genes are marked in Figure 3B. Principal component

analysis (PCA) and UMAP was used for preliminary dimension

reduction of Sc-RNA seq data (Figure 3C). We subsequently

apply t-distributed stochastic neighbor embedding (t-SNE)

algorithm on the top 30 principal components to visualize the

high dimensional scRNA-seq data, and successfully classified

cells into 10 clusters (T cell, Fibroblast, Luminal, NK cell,

Monocyte, Endothelial, Basal/Interm, Luminal/NE, B cell,

Plasma) by previous canonical cell marker combined with

“SingleR” package (v1.10.0), which were later annotated to

acknowledged 16 cell types (Figure 3D) according to the

sample (Table 2). It can be seen that not all luminal cells in 3

NEPC samples have the characteristics of neuroendocrine

differentiation. The cluster “NEPC_Luminal/NE” has

neuroendocrine features, while cluster “NEPC_Luminal” does

not. Figure 3E illustrates the heatmap of marker gene expression

in 16 clusters.

Next, Pseudotime and trajectory analysis were conducted via

“monocle” package (v 2.24.0) to explore the potential cellular

evolution. The predicted pseudotime trajectory began from the

upper left and stretched as cells approach the up and bottom

right branches (Figure 4A). Intriguingly, cells including

fibroblast, luminal, basal/interm as well as Endothelial were

mainly localized in the early stages of pseudotime trajectory

while immune cells (NK-T cell, B cell, Plasma) with Luminal/NE

cells moved towards the termini, implying that T and B cells, as

momentous components of tumor microenvironment, may play

an indispensable role in the occurrence and development of

CRPC and NEPC (Figures 4B, C).
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Identification of CRPC-NE
featured markers

As set forth in the article, 16 clusters were identified,

Figure 5A exhibits the specific markers of basal, Luminal and

NE of PCa. A total of 102 genes were identified as DEGs

(LogFC>0.5 & pvalue<0.05), which were higher regulated in

NEPC_Luminal/NE cluster, namely NEPC cells, than that in

CRPC_Luminal and NS_Luminal cluster. Analogously, A Bulk-

RNA data consisting of 167 samples (161 CRPC, 6 CRPC-NE)

produces 1,529 DEGs (LogFC>0.25 & pvalue<0.05) via R

package limma (v3.52.0). We selected genes shared between

the 102 and 1529 genes (Figure 5B). GO analysis revealed that

the 102 DEGs were mainly enriched in the biological processes

of the biological oxidation process in mitochondria (Figure 5C).

KEGG analysis indicated that the DEGs were mainly enriched in

a variety of neurological diseases including Huntington disease,

Amyotrophic lateral sclerosis, Pathways of neurodegeneration

−multiple diseases and Oxidative phosphorylation (Figure 5D).

To further investigate the potential pathway differences

between NEPC and CRPC, and thus explain the causes of

phenotypic differences between them. GSVA on the scRNA-

seq data was conducted (Figure 5E). In contrast with CRPC-

luminal, five pathways (KEGG_NEUROACTIVE_LIGAND

_RECEPTOR_ INTERACTION , KEGG_PRIMARY

_BILE_ACID_BIOSYNTHESIS , KEGG_TAURINE

_AND_HYPOTAURINE_METABOLISM, KEGG_LINOLEIC

AC ID METABOL I SM , KEGG_ d r u g _m e t a b l i sm

_cytochrome_p450) were obviously down-regulated in NEPC-

luminal cells. Nevertheless, distinctively differential KEGG

pathways except the above fives were observed in the bulk-

RNA data Multi-Institute cohort, which contains 34 CRPC and

15 CRPC-NE samples (Figure 5F).
The exact ligand–receptors among
different cell types

It is worthy of exploring the ligand–receptors interactions

among 16 clusters, especially the interactions between CRPC

and NEPC, we applied CellChat to infer and analyze

intercellular communication networks. CellChat revealed a

number of crucial ligand–receptor pairs and signaling

pathways, including ANGTP, IL16, CSF, LIFR and OSM

pathways (Figure 6A), displaying the Luminal/NE cluster

regulate CRPC_Endoth and NS_ Endoth clusters through

ANGTP signaling pathway, while NS_Fibro cluster displayed

vast communication with other cells such as NS_Monocyte,

NS_Basal/Interm, CRPC_Endoth, NS_Luminal and

NEPC_Luminal clusters (mainly those featured with

epithelial and endothelial markers). Intriguingly, NEPC_B
frontiersin.org
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cluster and NEPC_NK cluster regulate Monocyte cluster

through pathways CSF and IL16, respectively, hinting the

role of immune intercellular crosstalk is vital. Similarly,

cluster NEPC_NK is extensively associated with endothelial

and epithelial cells via pathways LIFR and OSM. The
Frontiers in Endocrinology 08
contribution of each ligand-receptor was showed in

(Figure 6B), Notably, the most significant L-R pairs of CSF

pathway was CSF1 − CSF1R, previous study has revealed that

the CSF1/CSF1R signaling axis has been implicated in prostate

cancer oncogenesis and CSF1R blockade lowered (tumor
B

C D

E

A

FIGURE 3

Analysis of single-cell RNA seq of 3 CRPC tissues, 3 NEPC tissues and 4 NS tissues. CRPC, castration resistant prostate cancer; NEPC,
neuroendocrine prostate cancer; NS, negative samples; Fibro, Fibroblast; Basal/interm, Basal/intermediate; Endoth, endothelial; (A): the number
of RNA features (nFeature_RNA) and absolute UMI counts (nCount_RNA) after quality control filtering of each cell. (B): We explored 1,500 high
variable genes that exhibit high cell-to-cell variation, and the names of the top 10 genes are marked. (C): Using UMAP dimensionality reduction
algorithm, 12165 cells from 10 samples were displayed. (D): Cells were classified into 16 clusters via t-SNE dimensionality reduction algorithm
based on the source of the cluster, each cluster was marked with the source of the cluster plus the annotated cell types. There may exist 2
same cell types in 16 clusters. (E): Heatmap depicting expressions of top 10 marker genes among 16 clusters.
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TABLE 2 Cell cluster distribution and cell marker.

Cell Cluster Cell marker Cell Type

0, 13 CD3D, IL7R, TRBC2, CCL5, CCL4, CD8A, CXCR4, ETS1, CD69 T cell

1, 14 DCN, LUM, PTN, APOD, IGFBP5, CCDC80, CFD, LTBP4, COL1A2, FBLN1, MEG3 Fibroblast

2, 3, 7 KRT19, KRT8, KRT18, AR Luminal

4 NKG7, GNLY, KLRD1, KLRB1, FGFBP2, PRF1, CD8A, CD8B, GZMH, GZMA NK cell

5, 11 S100A9, EREG, NEAT1, TKT, THBS1, TSPO, CSTA Monocyte

6, 12 TM4SF1, RNASE1, EGFL7, RAMP3, PLVAP, ECSCR, FKBP1A, EMP1, VWF, EMCN Endothelial

8 KRT5, KRT19, KRT8, KRT18 Basal/Interm

9 CHGB, ENO2, LMO3, EZH2, SOX2, SIAH2 Luminal/NE

10 CD22, CD79B, LY9, CCR7, IRF8, CD83, BTG1, BANK1 B cell

15 SEC11C, XBP1, PRDX4, SPCS2, SSR3, SDF2L1, MANF, TMEM258, DNAJB9 Plasma
F
rontiers in Endocrinology
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FIGURE 4

Pseudotime and trajectory analysis revealed the tendency curve among various cell types. (A) The pseudo time is shown as the depth of the
color, the darker the blue, the smaller the pseudo time, which means that the cells appear earlier. The dots above represent cells. (B, C)
Pseudotime-Density diagram demonstrated cells including immune cells (such as NK-T cell, B cell, Plasma) as well as Luminal/NE cells gather
around the destination. X-axis means the value of principal component 1 (the first principal direction of maximum sample change) and Y-axis
means the value of principal component 2.
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associated macrophage) TAM-induced tumorigenic factors

and delayed the emergence of CRPC (48). Besides, tumor-

associated macrophage accelerates the survival of CRPC cells

upon docetaxel chemotherapy via the CSF1/CSF1R-CXCL12/

CXCR4 axis (49). We further investigated the specific ligand–
Frontiers in Endocrinology 10
receptor interactions among different cell clusters, Particular

attention was paid to the interactions of CRPC_Luminal and

NEPC_Luminal/NE clusters with other cluster cells

(Figure 6C). Distinct cell interactions among luminal/NE,

luminal cells as well as other clusters were detected,
B

C

D
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F

A

FIGURE 5

Identification and functional analysis of CRPC-NE featured markers. (A) Marker gene expression for epithelial cells (KRT5, KRT19, KRT8,
KRT18, AR) and neuroendocrine characteristic cells (CHGB, ENO2, LMO3, EZH2, SOX2, SIAH2), in which dot size and color represent
percentage of marker gene expression and the averaged scaled expression value, respectively. (B) 102 genes with higher expression in NEPC
than that in CRPC, and the latter is higher than that in NS were screened out. Then we selected genes shared between the SC-RNA data
(102 genes) and Bulk-RNA data (1529 genes). (C, D) GO enrichment and KEGG pathway enrichment analysis of differentially expressed 102
genes. (E, F) Heatmap illustrating the differential KEGG pathways (upper panel) between CRPC_Luminal cluster and NEPC_Luminal/NE
cluster at the single cell RNA-seq level, and discrepant KEGG pathway (lower panel) from the aspect of Bulk-RNA seq. The color indicates
the level of pathway expression.
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FIGURE 6

Intercellular ligand–receptor prediction among differernt clusters. (A) The chord diagram shows the expression of ANGTP, IL16, CSF, LIFR and
OSM pathways among different cell clusters. In the peripheral ring, different colors represent different cells, Cells that send the arrow express
the ligand, and cells that the arrow points to express the receptor, the more ligand-receptor pairs, the thicker the line. (B) Relative contribution
of each ligand-receptor pair to the signal pathway, which may affect the overall communication network of the signaling pathway. CSF, IL16,
LIFR and OSM pathways are shown in turn. (C) The extensive ligand-receptor mediated cellular interaction between different cell clusters of
CRPC and NEPC has been further explored and demonstrated. The color gradient indicates the probability of cellular communication.
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consisting of MIF − (CD74+CXCR4), MDK − NCL and MDK

− LRP1, which might participate in the formation of CRPC or

NEPC through relevant channels.
Six−gene diagnostic NEPC signature
construction and verification

Firstly, in the training cohort (n=49), we applied the

randomForest algorithm to analyze 12 NEPC-featured genes,

the number of trees was set as 500 based on the relationship plot

between the model error and the number of decision trees, and

obtained the most 6 significant genes associated with the

phenotype according to the value of “MeanDecreaseGini”

(Figure 7A), which reflects the importance of genes. Then k-

means unsupervised clustering was utilized to cluster the

training cohort with these 6 critical factors (HMGN2,

MLLT11, SOX4, PCSK1N, RGS16 and PTMA) (Figure 7B).

In this study, The Multi-Institute cohort was used to build an

artificial neural network model using the neural net package. The

maximum and lowest data values were normalized before the

computation began, and the number of hidden layers was set to 5,

the above six genes were selected as the input nodes, and one

indicator (with or without neuroendocrine differentiation) was

used as the output node Figure 7C. The validation set was utilized

to test the model score’s classification performance using the

expression of genes and gene weight. So far, the diagnosis model

was validated in samples from Multi-Institute and SU2C/PCF

Dream Team datasets. The sensitivity and specificity of the

diagnostic models were evaluated by the receiver operating

characteristic (ROC) curves, nearly 0.952 (95% CI: 0.882−0.994)

in the train group, indicating that it was robust. The area under

the ROC curve (AUC) remains 0.830 (95% CI: 0.692−0.964) in the

dataset of SU2C/PCF Dream Team from Cbioportal (Figure 7D).
Immune infiltration and tumor
mutational burden analysis

CIBERSORT algorithm was adopted to estimate the

abundances of member cell types in a mixed cell population,

using gene expression data including 34 CRPC samples and 15

NEPC samples from Multi-Institute cohort (n=49). We used

Wilcoxon rank-sum test to explore whether there was a

difference in the expression of immune cells between the two

groups, The results demonstrated that the infiltration levels of

plasma cells, T cells CD4 naive, Eosinophils and Monocytes were

significantly different in the two groups (Figure 8A). Particularly,

the infiltration levels of plasma cells, T cells CD4 naive, and

Eosinophils were significantly higher in cluster CRPC-NE. On

the contrary, cluster CRPC appeared higher infiltration levels of

Monocytes cells. Combined with the Pseudotime and trajectory

of immune cells (Figure 8B), we could conclude that CRPC-NE
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is closely related to T and plasma cells in the tumor

microenvironment, providing a new direction for CRPC-NE

immunotherapy. Furthermore, waterfall plot revealed except

for genes CAMTA1, few mutations were observed of the other

11 CRPC-NE featured genes in CRPC and CRPC-NE

samples (Figure 8C).
The prognostic model for DFS and PFS

Univariate analysis was performed to assess associations

between 12 DEGs featured CRPC-NE and DFS in the TCGA

PanCancer dataset (n=276). According to the selection criteria, 3

DFS associated genes with P<0.05 were screened out for LASSO

Cox regression algorithm to ensure the robustness of the

prognostic model, afterwards, the lambda.min was determined

as the optimal lambda value by tenfold cross-validations, the

above 3 prognostic genes with non-zero coefficients were all

enrolled (Figure 9A). subsequently, multivariate analysis and

Stepwise Algorithm were used to ensure that Akaike

information criterion (AIC) is the minimum, thus generating

the appropriate gene combination of 2 genes (STMN1 and

PCSK1N) with P<0.05, namely NE-DFS signature. On the basis

of the coefficients, the risk score was confirmed: NE-DFS signature

score = expression level of 0.696 * STMN1 + expression level of

0.432* PCSK1N. According to the median cutoff value of the score,

patients were separated into high- and low-risk groups. Kaplan-

Meier plots elucidated that the patients with lower scores had

better DFS (Figure 9B), p < 0.05). Then the potential accuracy of

the model was further assessed by the “timeROC” package in the

training cohort, with 1-, 2- and 3-year AUCs of 0.784 (95% CI:

0.631−0.938), 0.752 (95% CI: 0.588−0.916) and 0.828 (95% CI:

0.722−0.935) respectively, better than those of Gleason scores and

pathological tumor stages (Figure 9C).

External dataset GSE21035 (n=138) were enrolled as

validation cohort to evaluate the robustness of the training

group. Similarly, the samples were classified into high risk and

low risk groups based on median risk score. Kaplan-Meier

survival plots revealed that there is a significant difference

between the high risk and low risk (p<0.05) (Figure 9B). The

AUCs of 1-, 2- and 3- year were 0.899 (95% CI: 0.806−0.992),

0.843 (95% CI: 0.746−0.941) and 0.810 (95% CI: 0.712−0.907)

respectively (Figure 9D), demonstrating fabulous predictive

potential especially for the DFS within 3 years.

Furthermore, analogous methods were utilized to construct

a 3-gene prognostic model for PFS by using TCGA PanCancer

(n=416). The Total Cohort were randomly assigned to training

(n = 292) and internal validation cohort (n = 124) at a 7:3 ratio.

The method to filter the genes is the same as before, firstly,

Univariate Cox regression analysis was performed to assess

genes significantly associated with PFS (p < 0.05).

Subsequently, the LASSO method by glmnet (version 4.0.2) R

package for variable selection (Figure 10A). Ultimately, 3 genes,
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including STMN1, UBE2S and HMGN2 were recognized as NE-

PFS signature via multivariate Cox and Stepwise Algorithm.

NE-PFS signature score = expression level of 0.302 * STMN1 +

expression level of 0.391 *UBE2S + 0.653 *HMGN2. The process of

building the model has been described in detail above. Compared

with the low risk, Kaplan-Meier plots elucidated that the high risk
Frontiers in Endocrinology 13
had worse PFS (Figure 10B), p < 0.05). The AUC curve presented

with decent result in predicting the PFS in training cohort (AUC for

1-, 2-, and 3 years PFS: 0.700 (95% CI: 0.587−0.814), 0.659 (95% CI:

0.566−0.752), and 0.707 (95% CI: 0.622−0.792)) (Figure 10C), then

the predictive model was then validated in the internal TCGA

PanCancer validation cohort (Figure 10D).
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FIGURE 7

Identification of the markers to establish CRPC-NE diagnostic model. (A) The figure shows the weight of 12 genes to elucidate the importance
of genes to disease classification (CRPC-NE or CRPC). The larger the”MeanDecreaseGini”index, the more likely this gene is to be classified as a
characteristic gene. (B) Heatmap visualizing the expression levels of the six CRPC-NE diagnostic genes in the Cbioportal training cohort. (C)
Results of neural network visualization: six CRPC-NE diagnostic genes were selected as the input nodes. Positive weights are connected by
black lines, negative weights are connected by gray lines, and the thickness of the lines reflects the weight value. (D) The receiver operating
characteristic (ROC) curves of 6-gene CRPC-NE diagnostic model in training cohort and validation cohort.
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Construction of nomograms

It can be concluded from the above analysis that the NE-

DFS signature and NE-PFS signature could independent

prognostic indicators for PCa patients. In addition, age, race,

tumor stage, gleason scores were also incorporated in the
Frontiers in Endocrinology 14
nomogram tool to predict the outcome of individual patients

(1, 3 and 5-year DFS and PFS probabilities of PCa in the TCGA

PanCancer cohort (Figure 11A). Then, on basis of the total point

(the sum score of each variable), the rate of DFS and PFS at 1-, 3-

and 5-year can be inferred. In addition, the line-segment in the

calibration plots was close to the 45°C line, the model’s predictions
B

C

A

FIGURE 8

The distribution landscape of immune cell, and TMB pattern between CRPC and CRPC-NE (A) The difference of 22 immune infiltration between
CRPC and CRPC-NE groups, red color indicates the abundance of immune cells in the latter, blue color indicates the abundance in the former.
(B) Pseudotime trajectory analysis elucidated luminal/NE cluster and immune cells like NK, T, B and Plasma cells moved towards the termini of
the trajectory. (C) Waterfall plots summarize the mutation landscape of 12 CRPC-NE featured genes in CRPC and CRPC-NE samples, showing
that the mutation rate of these genes is low except CAMTA1.
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of 1-, 3- and 5-year DFS and PFS probabilities were favorably

consistent with the ideal predictions (gray line) in both training

cohort and validation cohort (Figure 11B), indicating that the

nomogram model could be used as reliable indicator to predict
Frontiers in Endocrinology 15
DFS and PFS in CRC patients. In addition, we also mapped the

calibration curves of the prognosis model. Figure 11C and D

showed the calibration curves of recurrence-free survival model

and progression-free survival model, respectively.
B
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FIGURE 9

A 2-gene prognosis model for DFS (NE-DFS signature) in the TCGA PanCancer training cohort and GSE21035 validation cohort in PCa. (A)
Three genes significantly correlated with DFS were identified through LASSO regression analysis and ten-fold cross-validations for screening of
the optimal parameter lambda (B) Kaplan–Meier curves displayed that high-risk group exhibited worse DFS than low risk group in TCGA
PanCancer training group (n=276) and GSE21035 group (n=138). (C, D) Receiver operating characteristic (ROC) curves of the NE-DFS signature
had better Predictive effectiveness than age, tumor stage and lymph node status to evaluate the predictability of DFS at 1-, 2- and 3- year in the
TCGA PanCancer training cohort, similar phenomena were observed in the GSE21035 validation group.
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Discussion

Secondary CRPC and even NEPC emerge as one of the most

important killers threatening men’s health (50). In present study,

Single-cell RNA seq and bulk RNA seq samples were used to
Frontiers in Endocrinology 16
discovered 12 differential genes characterized by CRPC-NE, the

subsequent result demonstrated that a six−gene diagnostic

signature (HMGN2, MLLT11, SOX4, PCSK1N, RGS16 and

PTMA) could serve as a reliable predictor to distinguish

CRPC-NE from CRPC. Furthermore, we observed that there
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FIGURE 10

Construction and validation of the prognosis model for PFS in the TCGA PanCancer cohort. (A) Four genes correlated with PFS were selected
for multivariate analysis by LASSO regression analysis. (B) Kaplan-Meier plots evaluate the predictive ability of the constructed prognostic model
in the TCGA PanCancer training cohort and internal validation cohort, respectively. (C, D) NE-PFS signature exhibited better predictive ability
than other clinical features as displayed, the 1-, 2- and 3- year AUC for PFS was 0.700 (95% CI: 0.587−0.814), 0.659 (95% CI: 0.566−0.752), and
0.707 (95% CI: 0.622−0.792) in the TCGA PanCancer training cohort.
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exists specific ligand–receptors among 16 cell types recognized,

including ANGTP, CXCL, IGF, IL16, CSF, LIFR, OSM, and

PROS pathways.

As is well-known, macrophage migration inhibitory factor

(MIF) is involved in many carcinogenic processes, including cell
Frontiers in Endocrinology 17
proliferation, angiogenesis and inhibition of host tumor cell

immune surveillance (51, 52). Experiments in LNCaP sublines

indicated that during neuroendocrine differentiation, although

MIF synthesis decreased, MIF release significantly increased,

which may promote cancer progression or recurrence especially
B

C D

A

FIGURE 11

Nomogram construction and calibration plot validations for DFS and PFS prediction in PCa. (A, B) The composite nomogram consists of the
DFS- or PFS- signature and clinical features of the individual patient, by adding the points from variables listed together, the 1-,3- and 5-year
survival (DFS or PFS) probability can be inferred by the clinician. (C, D) Calibration curves for validation the consistence between 1-, 3- and 5-
year (blue, red and orange color, respectively) inferred DFS and actual data in TCGA cohort and GSE21035 cohort. The dashed line represents
the best match between the nomogram-predicted probability and the actual data evaluated by Kaplan–Meier analysis.
frontiersin.org

https://doi.org/10.3389/fendo.2022.1005916
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Lin et al. 10.3389/fendo.2022.1005916
after androgen deprivation (53). It can be seen from Figure 6C

that there exists strong intercellular communication between

NEPC_luminal/NE cells and T cells, B cells, plasma cells and

monocytes via MIF (Macrophage migration inhibitory factor)

pathway, where the ligand receptor pairs involved are MIF-(CD74

+CD44)and MIF-(CD74+CXCR4). It is worth mentioning that

CXCR4 may form a functional MIF receptor complex with CD74,

mediating MIF-stimulated, CD74-dependent AKT activation (54),

In addition, in vivo and in vitro experiments showed that the

inhibition of CXCR4 reduced the aggressiveness and

chemosensitized PCa cells (55, 56), showing that MIF-(CD74

+CXCR4)axis can be used as the target of comprehensive treatment.

Most importantly, immune cell infiltration and GSVA

analysis showed that there were also significant differences

between CRPC and NEPC in KEGG pathways and immune

cell abundance. Drug metablism cytochrome p450 pathway

attracts our attention greatly, Cytochrome P450 protein is a

monooxygenase involved in the synthesis of cholesterol, steroids

and other lipids (57). Drug resistance to ADT such as

abiraterone may be caused by overexpression or mutation of

CYP17A1, increased upstream substrate synthesis, or increased

drug metabolism or efflux (58). Studies in LNCaP cells and

xenografts have shown that the enzymes required for de novo

steroidogenesis (including CYP17A1) are increased in castration

resistance sublines and can produce detectable androgen levels

(59–61). Consistently, our study shows that cytochrome P450

pathway is highly expressed in CRPC. In addition, Maayan

and Antonio ’ results showed that the production of

dihydrotestosterone by neural-like cells was increased in mice

in a CYP17A1 independent manner under castration conditions

(62, 63), accounting for the low expression of cytochrome P450

pathway in CRPC-NE to some extent (Figure 5E). Indeed, there

is increasing evidence that prostate cancer cells transdifferentiate

into neuroendocrine phenotypes and appear to be strongly

induced in an androgen depleted environment (26, 64–66).

In our study, HMGN2, MLLT11, SOX4, PCSK1N, RGS16 and

PTMA were newly explored to predict the characteristics of

CRPC-NE. Zhang et al. focused only on the bulk-RNA level,

which may ignore the differences within the samples. Secondly,

the samples with insufficient information are not filtered, resulting

in bias consequently, our research overcomes these shortcomings.

Previously, as an important developmental transcription factor,

sex-determining region Y-box 4 (SOX4) proved to be combined

with promoters to regulate genes closely related to

neuroendocrine prostate cancer, including canonical EZH2 (67,

68). Our research and previous studies have shown that the

expression level of SOX4 increased with the progress of PCa,

significantly higher in NEPC compared with CRPC (Figures 5B,

7B) (26, 69, 70). Current experiments also verified that SOX4

knockdown could reduce the proliferation of LNCaP-NEPC cells

and inhibit the expression of NEPC markers (71). Prothymosin

alpha (PTMA/ProTa) is widely expressed in many tissues and
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highly conserved in mammalian RNA sequences (Figure 8C) (72).

Suzuki et al. demonstrated that the expression level of PTMA

increased with the progression of normal epithelium, prostatic

intraepithelial neoplasia (PIN) to prostate cancer, and was

positively correlated with Gleason grade and clinical stage (73),

but the relationship with NEPC was unknown.

When it comes to HMGN2, MLLT11, PCSK1N and RGS16,

the diagnostic performance of them for NEPC has not been

shown, deacetylation of high mobility group nucleosomal

binding domain 2 (HMGN2) enhances STAT5A transcriptional

activity, thereby regulating prolactin induced gene transcription

and breast cancer growth (74, 75). Additionally, AZD1480 inhibits

the growth of recurrent castration resistant CWR22Pc xenograft

tumors by targeting JAK2-STAT5A/B signal transduction was

observed in another study (76). Consequently, it is worth

exploring the relationship between HMGN2 and JAK2-

STAT5A/B pathway. Involvement of MLLT11 promoted the

progression of ovarian cancer, bladder cancer and endometrial

cancer in previous study (77, 78). Moreover, the granule protein

family member PCSK1N, also known as ProSAAS, is a protein

produced almost entirely by a wide variety of endocrine, neuronal

and neuroendocrine cells (79, 80). Recently, the proteolytic

neuropeptide PEN derived from the precursor ProSAAS has

been identified as a selective, high affinity endogenous ligand for

the orphan receptor GPR83. Both of them show regional specific

expression in neuroendocrine tissues and may be used as a target

for the treatment of neurological and immune diseases (81).

Moreover, it is well acknowledged that the abnormal activity of

phosphatidylinositol 3-kinase (PI3K) pathway supports the

growth of many tumors, including breast, lung and prostate

tumors. Studies have shown that G protein signaling 16

(RGS16) can act as a tumor suppressor by inhibiting the growth

of PI3K dependent breast epithelial cells (82), while inhibiting

PI3K/AKT downregulates REST expression and induces NE

markers in LNCaP, PC3 and LNCaP95 cells (83). It is known

that NEPC has great heterogeneity, integrating these different

datasets to deduce 6 markers to predict the characteristics of

CRPC-NE may be debatable. Actually, in order to reduce errors,

we have eliminated atypical neuroendocrine prostate cancer

including Paneth cell neuroendocrine differentiation, large cell

neuroendocrine carcinoma, carcinoid, mixed samples and so on to

reduce the heterogeneity within NEPC samples in order to

produce more reliable biomarkers. What’s more, because of the

limited sample size in the public database, we are also collecting

corresponding data in clinical work. We plan to carry out Bulk-

RNA sequencing and SC-RNA sequencing on the same batch of

CRPC and NEPC samples, and deduce biomarkers from the

SC-RNA and Bulk-RNA sequencing data of the same batch of

samples and verify them, so as to better reveal the similarities and

differences between CRPC and NEPC.

Regarding the NE-DFS signature and NE-PFS signature, the

former can accurately predict DFS in PCa patients, and shows
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significant survival differences between low-risk group and high-

risk group. It also shows excellent AUC values in GSE20135

(n=138) validation set, with AUC values of 0.899 (95% CI: 0.806

−0.992), 0.843 (95% CI: 0.746−0.941) and 0.810 (95% CI: 0.712

−0.907) for 1-, 2-, and 3-year DFS, respectively, which is

significantly higher than the predictive ability of Gleason score

and tumor stage. Previous researchers have used multivariable

Cox regression analysis to obtain 22 autophagy related genes and

build DFS prognosis model, although the AUC value of the

prognosis model reached 0.85, there were too many biomarkers,

which greatly reduced the clinical practicability (84). On the

contrary, although our model only contained two genes (STMN1

and PCSK1N), it still had high accuracy for clinical application.

In Wang study, we can observe that the 1- and 3-year prognostic

accuracy of AUC is 0.765 and 0.698 in the training cohort, 0.715

and 0.713 in the validation set, respectively (85). As for the NE-

PFS signature composed of three markers (STMN1, UBE2S and

HMGN2), the results showed that there was a significant

difference in the survival rate between the low- and high-risk

groups in the training cohort (p = 0.005077) and internal

validation cohort (p = 0.01918), and the AUC curve of the

prediction model at 1-, 2-, 3-year was greater than 0.65.

However, due to the limited number of our samples,

additional samples are needed to verify the robustness of the

above model. We also actively recruit qualified patients and plan

to make further verification. Secondly, the molecular mechanism

of how the NE-DFS signature and NE-PFS signature affect the

prognosis of PCa needs to be clarified through further

clinical research.
Conclusion

In the present study, A robust signature composed of six

genes for screening CRPC-NE were developed. In addition, we

constructed and verified the DFS and PFS prognostic model for

prostate cancer patients and the KEGG pathway difference as

well as tight intercellular communication between CRPC and

CRPC-NE were also further discussed, which is helpful to better

guide clinical work.
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