
Geophysical Journal International
Geophys. J. Int. (2014) doi: 10.1093/gji/ggt510

G
JI

G
eo

dy
na

m
ic

s
an

d
te

ct
on

ic
s

Statistical assessment of predictive modelling uncertainty:
a geophysical case study

Riccardo Barzaghi,1 Anna Maria Marotta,2 Raffaele Splendore,2 Carlo De Gaetani1

and Alessandra Borghi1
1DICA, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
2Section of Geophysics, Department of Earth Sciences ‘A. Desio’, Università degli Studi di Milano, L. Cicognara 7, I-20129 Milan, Italy.
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S U M M A R Y
When the results of geophysical models are compared with data, the uncertainties of the
model are typically disregarded. This paper proposes a method for defining the uncertainty
of a geophysical model based on a numerical procedure that estimates the empirical auto-
and cross-covariances of model-estimated quantities. These empirical values are then fitted
by proper covariance functions and used to compute the covariance matrix associated with
the model predictions. The method is tested using a geophysical, spherical, thin-sheet finite
element model of the Mediterranean region. Using a χ2 analysis, the model’s estimated
horizontal velocities are compared with the velocities estimated from permanent GPS stations
while taking into account the model uncertainty through its covariance structure and the
covariance of the GPS estimates. The results indicate that including the estimated model
covariance in the testing procedure leads to lower observed χ2 values and might help a sharper
identification of the best-fitting geophysical models.
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I N T RO D U C T I O N

Over the last several decades, analytical and numerical predictive
models and the integrated interpretation of different types of nat-
ural data (geophysical, geodetic and geological) have played in-
creasingly important roles in the interpretation of major crustal and
mantle processes, such as subduction, continental collisions and
intracontinental deformation. However, although comparisons be-
tween model predictions and data may be powerful in reducing the
ambiguities between different geodynamic hypotheses, the absence
of model uncertainty analysis limits this type of investigation. Con-
sequently, the results of comparative analyses may be misleading,
due to incomplete statistical analysis. To overcome this limitation,
we devised a method accounting for model uncertainty through a
model covariance structure. A methodology in which a model co-
variance matrix, Cmodel, associated to the model predicted velocities,
is built that can be used with the covariance matrix from the ob-
served data, Cdata, associated to GPS-derived velocities, in a testing
procedure. This methodology has been applied using a thin-sheet
finite element geophysical model over the central Mediterranean
area.

The advantage of this methodology is demonstrated by perform-
ing an analysis of model predictions and the corresponding observed

data using a χ 2 statistic in which the model and data covariance ma-
trices are both taken into account.

M O D E L C OVA R I A N C E M AT R I X
E S T I M AT I O N

The method to account for model uncertainties has been devised for
a particular geophysical model allowing the estimate of horizontal
crustal velocities to be compared with GPS-derived velocities. How-
ever, this method can be used for any model (depending in a linear
way from a set of parameters) when comparing model predictions
and corresponding observed values.

The key point of the proposed method is the definition of the
model covariance matrix. In our example, we use the spherical
finite element model of Marotta & Sabadini (2004), as modified
by Splendore et al. (2010), as a case study. This model predicts
the horizontal surface velocities within a continental plate given
defined velocity and thermal boundary conditions (see Appendix
for details of the model). In particular, we assume the boundary
conditions of their best-fitting model, which accounts for 50 per
cent of the Africa–Eurasia convergence transmitted through the
Calabrian subduction zone.

C© The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society. 1

 Geophysical Journal International Advance Access published January 22, 2014

 by guest on January 23, 2014
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

mailto:anna.maria.marotta@unimi.it
http://gji.oxfordjournals.org/
http://gji.oxfordjournals.org/


2 R. Barzaghi et al.

Table 1. List of the parameters responsible for the main variability of the model results.

Parameter Value References

Upper crust Density ρ (kg m–3) 2650 ÷ 2950 Vilà et al. (2010)
Radiogenic heat

production H (W m–3)
0.18 × 10−6 ÷ 3.23 × 10−6

Conductivity K
(Wm−1 K−1)

2.2 ÷ 3.9 Roy et al. (1981), Drury (1986), Rybach (1988), Barker (1996), Artemieva
& Mooney (2001), Beardsmore & Cull (2001), Jiménez-Munt et al.
(2003), Ray et al. (2003), Afonso & Ranalli (2004), Vilà et al. (2010)

Activation energy E
(J mol–1)

123 × 103 ÷ 243 × 103 Hansen & Carter (1982), Ranalli & Murphy (1987), Schaocheng et al.
(2003), Afonso & Ranalli (2004)

n 2.4 ÷ 3.9
Pre-exponential factor A

(Pa−n s−1)
2.285 × 10−30 ÷ 20.095 × 10−22

Lower crust Density ρ (kg m–3) 2750 ÷ 2900 Vilà et al. (2010)
Radiogenic heat

production H (W m–3)
0.35 × 10−6 ÷ 1.61 × 10−6

Conductivity K
(Wm−1 K−1)

1.9 ÷ 2.5 Roy et al. (1981), Drury (1986), Rybach (1988), Barker (1996), Artemieva
& Mooney (2001), Beardsmore & Cull (2001), Jiménez-Munt et al.
(2003), Ray et al. (2003), Afonso & Ranalli (2004), Vilà et al. (2010)

Activation energy E
(J mol–1)

219 × 103 ÷ 445 × 103 Hansen & Carter (1982), Ranalli & Murphy (1987), Schaocheng et al.
(2003), Afonso & Ranalli (2004)

n 2.4 ÷ 4.2
Pre-exponential factor A

(Pa−n s−1)
8.833 × 10−22 ÷ 5.024 × 10−18

Mantle Density ρ (kg m–3) 3200 ÷ 3300 Vilà et al. (2010)
Radiogenic heat

production H (W m–3)
0.002 × 10−6 ÷ 0.03 × 10−6

Conductivity K
(Wm−1 K−1)

3.0 ÷ 4.15 Roy et al. (1981), Drury (1986), Rybach (1988), Barker (1996), Artemieva
& Mooney (2001), Beardsmore & Cull (2001), Jiménez-Munt et al.
(2003), Ray et al. (2003), Afonso & Ranalli (2004), Vilà et al. (2010)

Activation energy E
(J mol–1)

260 × 103 ÷ 532 × 103 Chopra & Peterson (1981), Ranalli & Murphy (1987), Afonso & Ranalli
(2004)

n 3.0 ÷ 3.5
Pre-exponential factor A

(Pa−n s−1)
2.5 × 10−17 ÷ 4 × 10−12

Reference strain rate ε̇0

(s−1)
10−17 ÷ 10−15 This work

Lithosphere Reference thickness hL

(km)
80 ÷ 140 This work

Velocity boundary
conditions
uncertainty

Modulus �U (cm yr–1) ±0.153 This work: based on ITRF05 solutions (Altamimi et al. 2007)

Azimuth �φ (◦) ±0.784

Table 1 lists the 22 parameters that have been identified as being
responsible for the variability of the model results. The model con-
siders a variety of layer compositions. Specifically, the upper crust
is composed of granite, felsic granulite or quartzite; the lower crust
is composed of diorite, mafic granulite or felsic granulite and the
lithospheric mantle is composed of olivine, dunite or peridotite. We
also assume that the thickness of the lithosphere varies between 80
and 140 km and that the reference strain rate varies between 10−17

and 10−15 s−1. Finally, changes in the velocity boundary conditions
along the southern boundary of the model are calculated by apply-
ing the classical error propagation procedure to the Eulerian pole
procedure described in Splendore et al. (2010) and by calculating
the Africa–Eurasia convergence.

Feasible minimum and maximum values for each model pa-
rameter are defined based on the literature. These values are as-
sumed to compute the mean and the standard deviation of a normal

distribution for each parameter.1 A random value for each param-
eter is then extracted from the corresponding normal distribution
using the ‘super-wizz-o’ algorithm described by Marsaglia & Za-
man (1991) and implemented by Chandler & Northrop (2003), and
1000 random combinations of parameters are constructed. The com-
binations of parameters are normally distributed throughout the pa-
rameter ranges (Fig. 1). Being the geophysical model, a linear(ized)
function of the parameters, the obtained predicted velocities are
normally distributed too (Cramer 1957).

1
The arithmetic mean between the maximum and the minimum values is

assumed to be the mean of the normal distribution. The standard deviation
is computed as the value leaving out of the minimum–maximum range a
1 per cent probability.
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Assessment of modelling uncertainties 3

Figure 1. Distributions of the 1000 randomly extracted combinations of parameters

The 1000 combinations of parameters represent 1000 models that
are used to predict the same number of velocity scenarios for the
Mediterranean domain (Fig. 2). For each node i of the numerical
grid in the model (Fig. 3) and for each component of the horizontal

velocity V i
k,s , we compute

V̄ i
k = 1

NS

NS∑
s=1

V i
k,s (1)
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4 R. Barzaghi et al.

Figure 2. Example of predicted horizontal velocity scenario. Arrows rep-
resent the modelled velocity vectors at the nodes of the grid, with the corre-
sponding intensity (colour map).

Figure 3. Scheme of the stable horizontal velocity scenarios used to evaluate
the empirical covariance function. For each node i of the grid, 30 circular
rings (yellow colour) with a width δr = 100 km and an increasing radius r
are considered. The empirical covariance function is evaluated on the stack
of the 79 stable velocity scenarios.

the ‘mean velocity’ of the k component (k = N, E, where N and E
stand for north and east) over the simulated velocity scenarios NS

at node i and

δV i
k,s = V i

k,s − V
i

k (2)

the ‘residuals for the k component with respect to the mean velocity’
for node i and scenario s.

The empirical autocovariance for each component k of the model
velocity is calculated as

Ckk

(
ri j

) = 1

Ns

Ns∑
s=1

⎛
⎝ 1

N

N∑
i=1

δV i
k,s

1

N j

N j∑
j=1

δV j
k,s

⎞
⎠

= 1

N

N∑
i=1

⎛
⎝ 1

N

Ns∑
s=1

δV i
k,s

1

N j

N j∑
j=1

δV j
k,s

⎞
⎠, (3)

where k = N, E, where N and E stand for north and east; node i and
node j are distances such that rl < ri j < rl + δr , l = 0, 1, . . . , Nl,
r0 = 0; and Nj is the number of nodes j at a distance ri j from node i.

Similarly, the empirical cross-covariance between the two com-
ponents k and k′ is computed as

Ckk′
(
ri j

) = 1

Ns

Ns∑
s=1

⎛
⎝ 1

N

N∑
i=1

δV i
k,s

1

N j

N j∑
j=1

δV j
k′,s

⎞
⎠

= 1

N

N∑
i=1

⎛
⎝ 1

N

Ns∑
s=1

δV i
k,s

1

N j

N j∑
j=1

δV j
k′,s

⎞
⎠. (4)

A total of Nl = 30 circular rings with a width δr = 100 km
is assumed for each node i, and the empirical auto- and cross-
covariances of the model velocity components are estimated over
the model area. These functions are shown in Fig. 4.

Although eq. (4) can be used to estimate the covariance function
of a weak stationary and ergodic stochastic process, the estimated
functions reproduce the signal structure of the modelled velocity
field. The noise variance is negligible. In addition, the correlation
lengths of the functions are related to the mean spacing between the
grid nodes and the size of the model area (Barzaghi & Sansò 1983).

The calculations described in eqs (1)–(4) are performed after
projecting the model grid onto a plane according to the Mercator
projection of a spherical Earth (Grafarend & Krumm 2006)

x = R · cos φ0 · (ϑ − ϑ0) , (5)

y = R · cos φ0 · ln

[
tg

(
π

4
+ φ

2

)]
, (6)

where (ϑ, ϕ) are the longitude and latitude and (ϑ0, ϕ0) are the cho-
sen reference longitude and latitude. To minimize the deformation
of the domain surface, we assumed (ϑ0, ϕ0) ≡ (13◦, 42◦), which are
the mean longitude and latitude, respectively, of the investigated
area.

The value at zero distance corresponds to the variance associated
with the model-estimated velocities as implied by the uncertainties
in the model parameters. The empirical auto- and cross-covariance
trends also indicate that the model uncertainties are highly corre-
lated at short to medium distances, that is, at a distance around
600 km. The empirical auto- and cross-covariances were then in-
terpolated using a proper model covariance function allowing the
positive definiteness of the associated covariance matrix. Of the
many functions that can be used to interpolate the empirical co-
variances (Barzaghi & Sansò 1983), the function that best fits the
empirical values shown in Fig. 4 is

C (r ) = C0

1 + (
r
d

)2
, (7)

where C0 and d are selected to minimize the misfit between the
empirical auto- and cross-covariances and the function (7).
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Assessment of modelling uncertainties 5

Figure 4. Comparison between the empirical (empty circles) and the model (continuum lines) covariance, as function of the distance, for the east component
(red), the north component (blue) of the velocities and their cross-covariance (green). Empirical covariance is calculated by using eqs (3) and (4), assuming for
each node i Nl = 30 circular rings with a width δr = 100 km. The assumed model covariance function is described by the positive definite function of eq. (8),
with the parameters selected in order to maximize the fit with the empirical covariance.

Comparisons between the empirical (empty circles) and model
(solid lines) covariances for the east component CE E (r ) (red) and
the north component CN N (r ) (blue) of the velocities and for their
cross-covariance CE N (r ) (green) are shown in Fig. 4. The model
autocovariances are, by definition, positive definite. Furthermore,
the spectra of the model auto- and cross-covariances satisfy the
condition

|SE N (s)|2 ≤ SE E (s) · SN N (s) . (8)

This is a necessary and sufficient condition to be satisfied by the
auto- and cross-covariance spectra of a bidimensional stochastic
process.

Once this covariance structure has been estimated, uncertain-
ties are assigned to the geophysical model’s estimated velocities,
which are then compared with the GPS-derived velocities using a χ2

analysis.

C O M PA R AT I V E S TAT I S T I C A L
A NA LY S I S

In this section, we show the results of a comparative analysis be-
tween the velocities predicted by the geophysical model (Fig. 5) and
the GPS-derived velocities using a χ 2 statistic.

If we consider an n-dimensional normal random variable x, with
mean μ and covariance matrix C,

x = N (μ, C), (9)

it holds that being C a symmetric positive definite matrix, it exists
a symmetric positive definite matrix K such that (Strang 1993)

C = K 2. (10)

It then follows that

z = K −1(x − μ) (11)

is a normal standard random variable. Hence, by definition

χ 2
n = zt z = (x − μ)t C−1(x − μ) (12)

is an n degrees of freedom chi-square random variable (Cramer
1957).

Assuming that GPS-derived velocities are normally distributed
with covariance C and mean given by the model predicted velocities,
we have then that

χ 2 = RT C−1 R, (13)

where R is defined as the difference between the data-derived ve-
locities and the geophysical model predictions.

In the standard χ 2 computation, the covariance matrix C coin-
cides with the diagonal, positive-definite covariance matrix of the
GPS data only; thus, Cdata disregards the model uncertainty.

χ 2
standard = RT (Cdata)

−1 R. (14)

To account for the uncertainty in the predictive geophysical
model, the proper matrix should be

C = Cdata + Cmodel, (15)

where Cmodel represents the covariance matrix associated with the
geophysical model and is calculated as specified in the previous
section.

Thus, when the geophysical model covariance matrix is consid-
ered, the χ 2 statistic can be expressed in the form

χ 2

new
= RT (Cdata + Cmodel)

−1 R, (16)

where we now assume that the GPS and the model velocities have
the same mean and are normal independent random variables with
covariance matrices Cdata and Cmodel, respectively.

These hypotheses are fulfilled when model covariance is esti-
mated according to the method described in the previous section.
Thus eq. (14) can be evaluated versus eq. (16) in the framework of
a standard χ 2 test procedure (Cramer 1957).

 by guest on January 23, 2014
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/
http://gji.oxfordjournals.org/


6 R. Barzaghi et al.

Figure 5. Example of modelled horizontal velocities with their uncertainties in terms of 3σ confidence ellipse.

Velocity estimates from the observed GPS data

GPS-derived velocities, which are estimated at permanent stations
distributed over the Earth’s surface, are used in this type of predic-
tive model. High-precision estimates of the station velocities can be
obtained by modelling the daily time-series of the permanent GPS
station coordinates. To perform the χ 2 analysis, the set of permanent
GPS stations and the corresponding residual vector R and geophys-
ical model covariance matrix Cmodel must be specified. We use a
GPS database composed of 54 stations that are distributed through-
out the Italian Peninsula. The absolute velocities in the ITRF2005
(Altamimi et al. 2007) reference frame and the relative standard
deviations are known for each station. To make the GPS-derived
velocities compatible with the modelled velocities, we subtract the
rigid motion of the Eurasia Plate, as calculated by Splendore et al.
(2010), from the absolute GPS velocities before performing the χ2

analysis. Fig. 6 shows the obtained net GPS velocities, also listed
in Table 2.

The residual vector R represents the differences between the GPS-
derived and model predictions. We interpolated the modelled nodal
velocities at points coincident with the chosen permanent GPS
stations using the same shape functions that were used to obtain
the numerical solution. The geophysical model covariance matrix,
Cmodel, is a symmetric square matrix; each cell contains the value
of the model auto- and cross-covariance functions represented in
Fig. 4 evaluated for the distances between the specific station pairs
(Fig. 7).

Predictive model

We used the same model used to build the model covariance ma-
trix, assuming for the parameters values the means of the normal
distributions shown in Table 1.

The predicted velocity scenario shows common large-scale fea-
tures that agree with previous analyses (Marotta et al. 2004;
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Assessment of modelling uncertainties 7

Figure 6. Net geodetic horizontal velocities (black arrows), obtained by subtracting the rigid motion of the Eurasia Plate, as calculated by Splendore et al.
(2010), from the absolute GPS velocities, with their uncertainties in terms of the 3σ confidence ellipses at the permanent GPS stations considered for the
comparative analysis. Absolute velocity solutions have been obtained by analysing the daily position solutions in the ITRF2005 reference frame.

Marotta & Sabadini 2008; Splendore et al. 2010), including domi-
nantly northeastward-oriented velocities that rotate to the northwest
across the model from south to north. Furthermore, the velocities
tend to decrease with increasing distance from the Africa–Eurasia
plate boundary (see Fig. 2).

The model predicted and GPS-derived velocities are then com-
pared at the 54 GPS station locations using the standard formula
(14) and the new devised formula (16). The two obtained values
are, when divided for the degree of freedom (dof)

χ 2∗
standard = χ 2

standard

dof
= 705.53, (17)

χ 2∗
new = χ 2

new

dof
= 37.72. (18)

A sharp decrease in the sampled χ 2
new values is obtained with respect

to χ 2
standard and this is expected due to the correct covariance matrix

used in computing it.

D I S C U S S I O N A N D C O N C LU S I O N S

A methodology has been developed to construct a model covariance
matrix that allows for a more appropriate comparison between ve-
locities predicted by geophysical models and those estimated from
observed GPS data. The procedure leads to a definition of the model
uncertainty, which is evaluated by randomly varying the parame-
ters that influence the model estimates within admissible limiting
values coming from literature. The covariance matrix associated
with the model-derived velocities was estimated using numerical
simulations, thus describing the model uncertainty in space. This
information can be considered when performing the χ2 analysis to
compare the geophysical model predictions with the GPS-derived
estimated velocities.

Our case study demonstrates that beyond being more statistically
appropriate, accounting for the model covariance matrix leads to a
χ 2∗ value that has better statistical significance. In the application
that has been described, the empirical χ2∗

new value drops down to
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8 R. Barzaghi et al.

Table 2. List of the GPS-derived velocities with the corresponding standard deviations.

Name Lat. (deg) Long. (deg) VE (mm yr–1) VN (mm yr–1) σE (mm yr–1) σN (mm yr–1)

aqui 42.368 13.35 0.290112 0.251644 0.09 0.04
amur 40.907 16.604 2.0235 3.98492 0.23 0.12
bras 44.122 11.113 1.39264 0.850986 0.11 0.1
bsso 41.546 14.594 2.09774 3.57331 0.11 0.11
came 43.112 13.124 1.79224 2.73032 0.04 0.04
camo 39.34 16.449 2.25506 3.16795 0.25 0.35
canv 46.008 12.435 0.687437 0.466746 0.1 0.14
ccri 39.226 16.776 2.18043 3.20387 0.27 0.23
cdru 40.49 15.305 0.464209 1.84603 0.21 0.18
cetr 39.529 15.955 1.27183 3.01458 0.23 0.46
cucc 39.994 15.816 0.682345 2.89974 0.25 0.19
dubr 42.65 18.11 0.20609 1.5555 0.04 0.06
eiiv 37.514 15.082 2.7508 0.622974 0.17 0.23
enav 40.582 14.335 −0.0515232 0.347382 0.09 0.1
fres 41.974 14.669 1.67253 3.48087 0.14 0.12
grog 43.426 9.892 0.559167 0.151393 0.08 0.14
grot 41.073 15.06 1.42116 2.42071 0.09 0.12
gsr1 46.048 14.544 −0.00663473 0.36827 0.05 0.04
hmdc 36.959 14.783 −1.29794 4.99241 0.16 0.13
igmi 43.796 11.214 0.698232 1.45955 0.14 0.16
ingr 41.828 12.515 −0.975904 0.0740094 0.06 0.07
krot 39.08 17.125 7.09696 3.14278 0.45 0.3
lamp 35.5 12.606 −2.30622 0.882304 0.05 0.03
lasp 44.073 9.84 0.920816 0.147311 0.11 0.09
latt 39.463 16.138 5.12916 0.834202 0.25 0.21
luzz 39.446 16.288 1.30111 6.35042 0.3 0.68
malt 35.838 14.526 −0.447026 5.06646 0.15 0.13
maon 42.428 11.131 0.104004 0.352497 0.11 0.09
mate 40.649 16.704 0.856959 2.69592 0.02 0.02
mdea 45.924 13.436 0.475371 1.45982 0.03 0.03
medi 44.52 11.647 1.785 0.796751 0.05 0.04
milo 38.008 12.584 −0.0537554 1.2803 0.07 0.03
moco 41.371 15.159 1.06368 3.83091 0.17 0.14
mode 44.629 10.949 0.742576 3.6372 0.17 0.1
mpra 46.241 12.988 0.33687 0.317574 0.04 0.04
mrlc 40.756 15.489 2.98469 3.16524 0.14 0.19
msru 38.264 15.508 1.31475 5.16724 0.24 0.2
murb 43.263 12.525 1.43505 0.574921 0.13 0.21
not1 36.876 14.99 −0.944924 3.21352 0.03 0.06
parm 44.765 10.312 0.796091 1.88486 0.14 0.12
rsmn 43.933 12.451 1.19936 1.96818 0.11 0.11
rsto 42.658 14.001 3.83526 3.31443 0.09 0.22
sbpo 45.051 10.92 0.64853 0.834776 0.11 0.09
sers 39.036 16.689 2.56044 3.29426 0.25 0.17
sgip 44.636 11.183 2.39988 1.0569 0.11 0.15
srjv 43.868 18.414 1.80032 0.891178 0.08 0.08
stsv 39.148 16.915 3.14353 2.81931 0.18 0.26
svin 38.803 15.234 1.35717 3.03867 0.22 0.18
teol 45.343 11.677 0.273627 1.59937 0.08 0.08
tolf 42.064 12 −0.632943 1.42775 0.13 0.11
trie 45.71 13.764 0.062538 1.19133 0.05 0.06
tvrn 39.431 16.226 1.90867 3.14372 0.23 0.15
usix 38.708 13.179 1.17989 2.13547 0.25 0.24
zouf 46.557 12.974 0.515747 0.316285 0.04 0.03

37.72, contrary to the empirical χ 2∗
standard value that is almost two

orders of magnitude higher.
As a final remark, we underline that this methodology can be

applied to any physical model for which a set of parameters signifi-
cantly influences the variability of the results. For instance, similar
methodologies are used in meteorological and oceanographic data
assimilation procedures (Lorenc 2011).
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Assessment of modelling uncertainties 9

Figure 7. Scheme of the model covariance matrix Cmodel. Cmodel is a symmetric square matrix, with each cell containing the value of the model auto- (CEE

and CNN) and cross- (CEN and CNE) covariance functions evaluated for the mutual distances between the specific considered couple of stations (staz1 to stazn).
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A P P E N D I X : N U M E R I C A L M O D E L S E T T I N G S

The physics of the crust–mantle system during tectonic convergence is described by the vertically integrated momentum equation
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(A1)

numerically solved within a spherical 2-D domain. uϑ , uϕ and ur are the velocity components along the colatitudes, longitude and the radius,
respectively, ϑ is the colatitude, ϕ is the longitude, S is the crustal thickness, HL is the lithosphere thickness, ρc and ρm are the density of the

Figure A1. 3-D scheme used for the thermomechanical model.
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crust and the mantle, respectively, g is the gravity acceleration and R is the terrestrial radius. The used crustal thickness is obtained by linear
interpolation onto the adopted numerical grid of model EuCRUST-07 (Tesauro et al. 2008).

μ̄ is the vertically averaged viscosity of the lithosphere, based on lithosphere thermal state and rheological parameters assumed for crust
and mantle. It is calculated as

μ̄ = 1

ε̇

HL∫
0

σydy, (A2)

where σy is lithosphere strength, calculated by assuming that rocks behave like a brittle or a ductile material according to their composition
and thermal state.

For the brittle behaviour, a linear failure criterion is assumed in the form (Ranalli & Murphy 1987)

σB = (σH − σV )B = β r ρ g, (A3)

where r is the depth along the terrestrial radius, ρ is the density, g is the acceleration of gravity and β a parameter depending on the type of
faulting and assumed equal to 3 for thrust faulting, 1.2 for strike slip faulting and 0.75 for normal faulting (Ranalli & Murphy 1987).

For the ductile behaviour, the power law is assumed in the form (Weertman & Weertman 1975)

σD = (σH − σV )D =
(

ε̇

ε̇0

) 1
n

· exp

(
Ea

n RT

)
, (A4)

where ε̇ is the strain rate, ranged between 10−19 and 10−16 s−1; R is the universal constant of gas, ε̇0, n and Ea constant characteristics of the
rocks.

T is the 3-D lithosphere temperature and is determined by solving the steady-state energy equation in the form

∇ · (K ∇T ) + ρH = 0 (A5)

on a 3-D grid (Fig. A1), composed by prismatic elements obtained by projecting along the depth the 2-D numerical grid used in the tectonic
model. K is the thermal conductivity, ρ is the density and H the rate of radiogenic heat production per unit mass.
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