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Abstract. The rejection of anti-inflammatory drugs by membranes has shown paramount importance
in separation membrane processes such as nanofiltration and reverse osmosis (NF/RO) membranes
for pharmaceutical industries. Therefore, the main objective of this paper is to use support vector
machine (SVM) and artificial neural network (ANN) to model the rejections of anti-inflammatory
drugs by NF/RO membranes using 300 experimental data points gathered from the literature. Both
approaches (ANN and SVM) gave close results with a slight superiority of the neural networks model
demonstrated by its correlation coefficient (R) and root mean square error (RMSE) values of 0.9930
and 1.8094% respectively, in contrast to 0.9900 and 2.2355% for SVM. Sensitivity analysis by the
weight method demonstrates that the most relevant variables that influence the rejection of anti-
inflammatory drugs are: effective diameter of an organic compound in water “dc ”, molecular length,
contact angle, and zeta potential. These input relevant variables have a significant contribution
(relative importance superior to 10%).
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1. Introduction

The dramatic rise in demand for freshwater world-
wide, due to continued population growth has been
posing challenges in the last few decades through in-
creased water stress, both in terms of water scarcity
and quality deterioration [1]. On earth, the main
sources of drinking water are groundwater and sur-
face water. Industrial, domestic, agricultural activi-
ties, and in particular pharmaceutically active com-
pounds (PhACs), increasingly contaminate water in
large amounts every year. The conventional biologi-
cal treatment processes do not tend to reject such or-
ganic molecules [2].

In the last few years, nanofiltration and reverse
osmosis (NF/RO) membranes have been the object
of several studies [3], as an alternative to conven-
tional treatment processes since they are energy-
efficient and environment-friendly. Furthermore,
many research works based on the use of NF/RO
have demonstrated that they are efficient for the re-
jection of a wide variety of organic molecules from
water, such as pesticides [4,5], dyes [6,7], antibi-
otics [8,9], a natural hormone and endocrine disrup-
tor [10,11] and PhACs [2,12].

The literature highlights several points. Firstly,
many transfer models exist (irreversible thermody-
namics, solubilization–diffusion, or pore flow), but
they do not always describe or explain the process
correctly and the results obtained in the case of
the transfer of organic compounds require signifi-
cant modifications. The behavior of the NF/RO pro-
cess for complex solutions is more difficult to de-
scribe and predict, due to the large number of mech-
anisms involved. On the other hand, many interac-
tions can be established between solutes, water, and
the membrane (steric dimensions, electrostatic re-
pulsion, hydrophobic/adsorption, and dielectric ex-
clusion) [13,14].

To overcome these problems, attempts have been
made to propose modeling approaches, making it
possible to decrease the number of experiments to
be carried out to determine the optimal parame-
ters (anti-inflammatory drugs properties, membrane
properties, and operating conditions) for the treat-
ment of industrial effluent. For these reasons, we
must research new methods of calculation and mod-
eling such as artificial neural network (ANN) and
support vector machine (SVM) models. Firstly, the

main advantage of ANNs is their ability to model
processes without having in-depth knowledge of the
phenomenology involved. Secondly, SVMs aim for re-
gression and classification due to their excellent and
robust generalization performance.

However, there have been few models of ANNs
due to the complexity of mechanisms to predict
the rejection of organic compounds by NF/RO [15–
22]. There is no modeling study for the rejection
of organic compounds by NF/RO membranes using
SVMs.

In this work, an attempt will be made to estimate
the rejection of anti-inflammatory drugs by NF/RO
using two artificial intelligence approaches (ANNs
and SVM). A similar set of inputs is considered for
the two approaches that include an effective diam-
eter of the organic compound in water “dc ”, logD,
dipole moment, molecular length, molecular equiva-
lent width, molecular weight cutoff, sodium chloride
salt rejection, zeta potential, contact angle, pH, pres-
sure, temperature, and recovery.

To the best of our knowledge, this will be the
first attempt to model the anti-inflammatory drug re-
jection mechanisms by NF/RO using the SVM and
ANN in order to assess their predictive capacities.
The remainder of this study is structured as follows:
Section 2 includes the machine learning techniques
(ANNs and SVMs). Section 3 describes the modeling
of the rejection of anti-inflammatory drug. Results
and discussion are presented in Section 4. We will
end with a conclusion that brings together the main
results obtained in Section 5.

2. Artificial intelligence approach “ANN and
SVM”

ANN is one of the most appropriate machine learn-
ing methods. It is inspired by natural neurons; ANNs
are a mesh of several formal connected neurons that
relate the inputs to the desired outputs. ANNs consist
of both input and output layers and can have a hid-
den layer (in many cases) that contain units that con-
vert the input into something, which could be used,
by the output layer [23]. The input and output vari-
ables are weighted and shifted by a bias factor spe-
cific to each neuron [24].

In 1990 Vapnik–Chervonenkis developed an ex-
cellent methodology of SVM. This method is based
on statistical learning theory (SLT), it implements
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Figure 1. The sketch map of the support vector machine (SVM) model.

structural risk minimization (SRM) theory. It is used
for nonlinear classification and regression analy-
sis [24]. The sketch map of the SVM model is shown
in Figure 1. The nonlinear relationship between in-
puts and outputs in the SVM model can be employed
by the regression function.

The outputs of the SVM model are obtained by the
following equation [25]:

f (xi ) = wTϕ(xi )+b, i = 1,2, . . . , N (1)

where f (xi ): the predicted value of the SVM model;
ϕ(xi ): the nonlinear function that maps input finite-
dimensional space into a higher-dimensional space
which is implicitly created; w : the weight vector of
the SVM model to be optimized; b: the bias of the
SVM model to be optimized.

The database has a D-dimensional input vector
xi ∈ RD and a scalar output yi ∈ R.

The SVM optimization model is given by the fol-
lowing equations (for the training database):

minR(w,ξ,ξ∗,ε)

= 1

2
‖w‖2 +C

[
vε+ 1

N

∑N
i=1(ξi +ξ∗i )

]
subjective to : yi −wTϕ(xi )−b ≤ ε+ξi

wTϕ(xi )+b − yi ≤ ε+ξi

ξ∗,ε≥ 0

(2)

where C : is the parameter used to balance the
empirical risk and model complexity term ‖w‖2; ξ∗i :
the slack variable to denote the distance of the i th
sample outside of the ε-tube; ε: epsilon = 0.100;
v : vector.

As a standard nonlinear constrained optimization
problem, the above problem can be resolved by con-
structing the dual optimization problem based on
the Lagrange multipliers techniques:

maxR(ai , a∗
i ) =

N∑
i=1

yi (ai , a∗
i )

−1

2

N∑
i=1

N∑
j=1

(ai , a∗
i )(a j , a∗

j )K (xi , x j )

subjective to:
N∑

i=1
yi (ai , a∗

i ) = 0

0 ≤ ai , a∗
i ≤C /N

N∑
i=1

(ai +a∗
i ) ≤C · v.

(3)

K (xi , x j ): the kernel function satisfying the Mer-
cer’s condition; ai and a∗

i : the non-negative Lagrange
multipliers, respectively.

f (xi ) =
N∑

i=1
(ai −a∗

i )K (x −xi )+b, i = 1,2, . . . , N . (4)
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Figure 2. Flow diagram for the artificial neural network (ANN) and support vector machine (SVM)
development.

3. Modeling the rejection of anti-
inflammatory drugs

The data sample with 300 rejections of 7 anti-
inflammatory drugs used in this study is available
in the literature [16,26–38] (Supplementary data A).
The list of anti-inflammatory drugs, molecular for-
mula, molecular weight, and structure is presented
in Supplementary data B (Table B.1).

The choice of input and output variables was
based on the sieving effect, electrostatic interac-
tions, and hydrophobic/adsorption interactions be-
tween solutes and NF/RO membranes. These solute–
membrane interactions are determined by anti-
inflammatory drugs properties, membrane charac-
teristics, and filtration conditions. In this work, we
have chosen the following inputs: anti-inflammatory
drug properties (logD, dipole moment, the effective
diameter of the organic compound in water “dc ”,
molecular length, and molecular equivalent width

“eqwidth”); membrane characteristics (molecular
weight cutoff “MWCO”, sodium chloride salt rejec-
tion “SR (NaCl)”, zeta potential, and contact angle);
and filtration conditions (pH, pressure, temperature,
and recovery).

The statistical analysis of the input and output
data was done in terms of the minimum “min”, the
average “mean”, the maximum “max”. The standard
deviations “STDs” for training data, testing data, and
overall data are mentioned in the Supplementary
data B (Table B.2).

A procedure based on the development and opti-
mization of the architecture of ANNs and SVM is de-
scribed in Figure 2, in the design of three ANNs mod-
els and four SVM models. The ANN model was devel-
oped for the total database. The samples were ran-
domly split into two subsets (training phase and test-
ing phase). The training algorithm used in this work
is the BFGS quasi-Newton (trainbfg). The ANN con-
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Figure 3. Effect of the division of database:
(a) mean squared error “MSE” and (b) coeffi-
cient of correlation “R”.

tains three layers: one input layer with thirteen neu-
rons in the input layer, one hidden layer with several
active neurons optimized during the training phase,
and one output layer with one unit that generated
the estimated value of rejection of anti-inflammatory
drugs. The number of hidden neurons varied from

3 to 25 neurons. The tangent sigmoid (tansig), the
log sigmoid (logsig), sin, and the exponential transfer
functions were used in the hidden layer. The choice
of the optimal number of hidden neuron of hidden
functions, and a division of subsets (optimal archi-
tecture) for ANNs was performed by trial and error.
The pure-linear (purelin) transfer function was used
in the output layer. In order to develop four SVM
models for the rejection of anti-inflammatory drugs
by NF/RO, the SVM learning technique is employed.
As mentioned previously in this article, the choice
of the kernel functions is crucial for model perfor-
mance. STATISTICA SVM supports a number of ker-
nel functions for use in SVM models, these include
linear, polynomial, radial basis function (RBF), and
sigmoid. The function that gave the best results in
terms of the absolute error mean (AEM) and corre-
lation coefficient (R) is the kernel used in our SVM
modeling. The creation of ANNs and SVM models of
the rejection of anti-inflammatory drugs by NF/RO
was performed using STATISTICA software by trial
and error method.

4. Results and discussion

Figure 3 shows the error values (mean squared error
“MSE” and coefficient of correlation “R”) obtained
for the rejection of anti-inflammatory drugs under
the influence of the division of the database for ANNs
model with division 1 (240 points for training (80%),
and 60 for testing phase (20%)), division 2 (210 points
for training (70%), and 90 for testing (30%)), and di-
vision 3 (180 points for training (60%), and 120 for
testing (40%)). This figure demonstrates that divi-
sion 1 has lower MSE than division 2 and 3 (MSE
= 0.0001 and MSE = 0.0002 for training and test-
ing phase respectively). The coefficients of correla-
tion of division 1 are generally considered to be more
satisfactory than the divisions 2 and 3 (R = 0.9942
and R = 0.9853 for training and testing phase respec-
tively). Therefore, it is clear that the first division rep-
resents the best result for modeling the rejection of
anti-inflammatory drugs by NF/RO using the ANN
model.

Hence, the structure of the ANNs for the modeling
of the rejection of anti-inflammatory drugs by NF/RO
is mentioned in Figure 4. Its more detailed architec-
ture is illustrated in Table 1.
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Figure 4. Schematic illustration of the optimized ANN model.

The weight and bias matrixes of the neural net-
works model are depicted in Supplementary data B
(Table B.3).
w I : the input-hidden layer connection weight matrix
(25 rows × 13 columns);
wh : the hidden-output layer connection weight ma-
trix (25 rows × 1 column);
bh : the hidden neurons bias column vector (25 rows);
bo : the output neurons bias column vector (1 row).

From the optimized ANNs models shown in
Figure 4, assimilation of the rejection of anti-
inflammatory drugs by NF/RO can be depicted
by a mathematical model incorporating all inputs Ei ,
it is given by the following equations:

The instance outputs Z j of the hidden layer:

Z j = fH

[
13∑

i=1
w I

jiEi +bH
j

]

=
exp

(∑13
i=1 w I

jiEi +bH
j

)
−exp

(
−∑13

i=1 w I
jiEi +bH

j

)
exp

(∑13
i=1 w I

jiEi +bH
j

)
+exp

(
−∑13

i=1 w I
jiEi +bH

j

)
(5)

where j = 1,2, . . . ,25.

The output “Rejection”

Rejection = f0

[
25∑

j=1
w H

1 j Z j +bo
1

]
=

25∑
j=1

w H
1 j Z j +bo

1 .

(6)
The combination of (5) and (6) leads to the fol-

lowing mathematical formula which describes the
rejection of inflammatory drug by taking into ac-
count all inputs.

Rejection =
25∑

j=1
w H

1 j

×
exp

(∑13
i=1 w I

jiEi +bH
j

)
−exp

(
−∑13

i=1 w I
jiEi +bH

j

)
exp

(∑13
i=1 w I

jiEi +bH
j

)
+exp

(
−∑13

i=1 w I
jiEi +bH

j

)+bo
1 .

(7)

In order to assess the predictive ability of the ANN
model, the training, the testing, and the total phases
are analyzed. The plot of the predicted versus experi-
mental rejection of anti-inflammatory drugs and the
parameters of the linear regression are directly ob-
tained using the Matlab function “postreg”.

Figure 5 shows the predicted vs experimental data
agreement plot: (a) for the training phase, (b) for
the testing phase, and (c) for the total phase. Fig-
ure 5a points to the training agreement plot which

C. R. Chimie — 2021, 24, n 2, 243-254
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(a) (b) (c)

Figure 5. Predicted vs experimental phase agreement plot: (a) for the training phase, (b) for the testing
phase, and (c) a for the total phase.

Table 1. Structures of the optimized ANN model

Training
algorithm

Input layer Hidden layer Output layer

Neurons
number

Neurons
number

Activation
function

Neurons
number

Activation
function

BFGS
quasi-Newton
(trainbfg)

13 25 Hyperbolic tangent
sigmoid transfer
function (tansig)

1 Linear transfer
function (purelin)

shows the predicted output values following exactly
the trend of the experimental data values with an
agreement vector approaching the ideal, [a (slope),
b (intercept), R (correlation coefficient)] = [0.9859,
1.2938, 0.9942], which demonstrates the predictive
ability and accuracy of our model. The testing phase
agreement scheme is mentioned in Figure 5b which
illustrates the ANNs model calculated outputs ver-
sus the experimental data with an agreement vector
[a (slope), b (intercept), R (correlation coefficient)] =
[1.0148, −1.5758, 0.9853]. It shows good robustness
of the established ANN model and the possibility of
predicting the different parameters that characterize
the removal of anti-inflammatory drugs by NF/RO.
The total phase agreement scheme is shown in Fig-
ure 5c which illustrates the ANNs model calculated
outputs versus the experimental data with an agree-
ment vector, [a (slope), b (intercept), R (correlation
coefficient)] = [0.9892, 0.9511, 0.9930]. This reveals
the excellent modeling of the whole data by the op-
timized network.

The errors of the ANNs model for the train-

ing phase, testing phase, and total phase are: the
correlation coefficient (R), the mean absolute er-
ror (MAE), the model predictive error (MPE), the
root mean squared error (RMSE), the standard error
of prediction (SEP), residual predictive deviation
(RPD), and range error ratio (RER). The errors cal-
culated confirm the prediction capacity of the re-
jection of anti-inflammatory drugs by NF/RO mem-
brane. Equations of those parameters are given be-
low [19]:

MAE = 1

n

n∑
i=1

|(yi ,exp − yi ,cal)| (8)

MPE(%) = 100

n

n∑
i=1

∣∣∣∣ (yi ,exp − yi ,cal)

yi ,exp

∣∣∣∣ (9)

RMSE =
√∑n

i=1(Yi ,exp −Yi ,cal)2

n
(10)

SEP(%) = RMSE

Ye
×100 (11)

RPD = SD

RMSE
(12)
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Table 2. Statistical parameters of the ANNs
model

Training
phase

Testing
phase

Total
phase

Correlation
coefficient (R)

0.9942 0.9853 0.9930

Mean absolute
error (MAE) (%)

1.0669 1.3504 1.1236

Model predictive
error (MPE) (%)

1.3905 1.5300 1.4184

Root mean squared
error (RMSE) (%)

1.7133 2.1515 1.8094

Standard error of
prediction (SEP) (%)

1.8957 2.3254 1.9926

Residual predictive
deviation (RPD) (%)

9.3512 5.6898 8.4808

Range error ratio
(RER)(%)

57.6144 30.6188 54.5525

RER = Max−Min

RMSE
(13)

where n is the total number of data points; Yi ,exp

is the experimental value, Yi ,cal represents the cal-
culated value from the ANN model, Ye is the mean
value of experimental data. STD is the standard
deviation of experimental data, Min is the minimum
of experimental data, and Max is the maximum of ex-
perimental data.

The statistical parameters of the ANNs model for
the phases concerning the training, testing, and to-
tal are shown in Table 2. The correlation coefficient
(R) for the training phase is 0.9942, which indicates
excellent agreement. The testing phase correlation
coefficient represents a comparison between the ex-
perimental data and predicted results in order to
show the interpolating ability of the ANNs model.
For the testing phase, the correlation coefficient is
0.9853, which demonstrates the good agreement be-
tween the experimental rejections and the predicted
rejections.

The contribution of the input variables (dc, logD,
length, Eqwidth, MWCO, SR(NaCl), contact angle,
Zeta potential, pH, pressure, recovery, and tempera-
ture) on the output (rejection) was determined by a
sensitivity analysis using the “Weight” method. This

method, proposed initially by Garson [39] and re-
peated by Goh [40] provides a quantification of the
relative importance (RI) of the inputs on the output
of the ANNs model. It is based on the partitioning of
connection weights to:

• Connection weights of input–hidden;
• Connection weights of hidden–output.

The RI of all output weights attributable to the
given input variable is then obtained by the two fol-
lowing equations:

Qji =
|w I

jiw H
1 j |∑ni

i=1 |w I
jiw H

1 j |
(14)

RIi (%) =
∑nj

j=1 Qji∑ni
i=1

∑nj
j=1 Qji

∗100. (15)

The contribution results are shown in Figure 6.
The most important variables that may influence the
rejection of anti-inflammatory drugs by NF/RO are
contact angle, Zeta potential, dc, length, SR(NaCl),
pressure, pH, MWCO, dipole moment, recovery,
logD, eqwidth, Temperature. All input relevant vari-
ables have a significant contribution (RI > 2%). This
sensitivity analysis by the weight method success-
fully identified the true importance of all the vari-
ables used for the modeling of the rejection of anti-
inflammatory drugs by NF/RO, and therefore, proves
the correctness of the choice of variables that were
used in this study.

In this study, the same database employed to build
the ANNs model is used for building the SVM for
modeling the rejection of anti-inflammatory drugs by
NF/RO. The SVM model generates a nonlinear rela-
tionship between the inputs (dc, logD, length molec-
ular, Eqwidth, MWCO, SR(NaCl), contact angle, Zeta
potential, pH, pressure, recovery, and temperature)
and the output (rejection).

Table 3 presents the comparison between the dif-
ferent kernel functions (linear, polynomial, radial ba-
sis function (RBF), and sigmoid). The mean absolute
errors of the SVM model with RBF (MAE = 1.3179%
for training phases, MAE = 2.0162% for the testing
phase, and MAE = 1.4576% for overall phase) are
lower than the mean absolute errors of SVM models
with other kernel functions (linear, polynomial, and
sigmoid) for all phases (training, testing, and over-
all). The correlation coefficients for the SVM model
with RBF function are: 0.9934 for training phases,

C. R. Chimie — 2021, 24, n 2, 243-254
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Table 3. Evaluation of different SVM models using different kernels and optimal values of hyperparame-
ters

Kernel functions N° SV Phase AEM R

Linear

C = 10.0000
107

Training phase 6.6477% 0.7130

nu = 0.5000 Testing phase 5.9999% 0.7715

Overall phase 6.5180% 0.7169

Polynomial

C = 10.0000

54

Training phase 5.5228% 0.9137

nu = 0.5000 Testing phase 5.9648% 0.8525

Degree = 3 Overall phase 5.6112% 0.9036

Gamma = 0.51

RBF

C = 10.0000
96

Training phase 1.3179% 0.9934

nu = 0.5000 Testing phase 2.0162% 0.9711

Gamma = 3.51 Overall phase 1.4576% 0.9899

Sigmoid

C = 13.0000
22

Training phase 8.8734% 0.82

nu = 0.3000 Testing phase 10.7724% 0.6839

Gamma = 0.078 Overall phase 9.2532% 0.7968

N° SV: Number of support vector.

AEM: Absolute error mean.

R: Correlation coefficient.

Figure 6. The plot of the relative importance
(RI) of the ANN model for modeling the re-
jection of anti-inflammatory drugs by NF/RO
membranes.

0.9711 for testing phases, and 0.9899 for the total
phase. These correlation coefficients are approach-
ing the ideal (R = 1) unlike the correlation coeffi-
cients of SVM models with other kernel functions
(linear, polynomial, and sigmoid). It can be seen that
the SVM model with RBF function is more powerful
and effective than the SVM models with (linear, poly-
nomial, and sigmoid). Also, it is clear that the RBF
kernel function is more appropriate to describe the
rejection of anti-inflammatory drugs by NF/RO us-
ing an SVM model. The RBF is by far the most pop-
ular choice of kernel functions (linear, polynomial,
and sigmoid) used in the SVM model.

Figure 7 shows the total agreement plots for the re-
jections of anti-inflammatory drugs by NF/RO with
agreement vectors approaching the ideal [α = 1
(slope), β = 0 (intercept), R = 1 (correlation coef-
ficient)]. The SVM model exhibited acceptable effi-
ciency in correlating the training phase, confirmed by
a correlation coefficient value of 0.9934 and a signifi-

C. R. Chimie — 2021, 24, n 2, 243-254
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Figure 7. Predicted versus experimental data agreement plot: (a) for the training phase, (b) for the testing
phase, and (c) for the total phase.

Table 4. Statistical evaluation of the models’ performance

ANN model SVM model

Training phase Testing phase Total phase Training phase Testing phase Total phase

R 0.9942 0.9853 0.9930 0.9934 0.9711 0.9900

MAE (%) 1.0669 1.3504 1.1236 1.3179 2.0163 1.4576

MPE (%) 1.3905 1.5300 1.4184 2.8955 2.6508 2.8465

RMSE (%) 1.7133 2.1515 1.8094 1.8654 3.3269 2.2355

SEP (%) 1.8957 2.3254 1.9926 2.0557 3.6533 2.4618

RPD (%) 9.3512 5.6898 8.4808 8.5353 3.8769 6.8644

RER (%) 57.6144 30.6188 54.5525 52.9154 20.0713 15.3455

MSE (%) 2.9353 4.6291 3.2741 3.4798 11.0684 4.9975

MRSE (%) 6.1443×10−8 3.8806×10−6 3.6182×10−7 7.9024×10−6 8.2151×10−5 1.6468×10−5

RAE (%) 2.4788×10−4 0.0020 6.0151×10−4 0.0028 0.0091 0.0041

A f 1.0002 1.0033 1.0005 1.0056 1.0183 1.0081

B f 0.9998 1.0033 1.0005 1.0056 1.0183 1.0081

cantly low root mean squared error RMSE of 1.8654%.
The testing phase indicates the excellent generaliza-
tion performance of the SVM model (0.95 < R < 1),
inasmuch as the correlation coefficient “R” and root
mean squared error “RMSE” are 0.9711 and 3.3269%
respectively. Besides, the predictive ability of the SVM
model is demonstrated by the total phase, which fol-
lows closely the trend of the experimental rejections
of anti-inflammatory drugs by NF/RO, except for few
points for which the deviations between experimen-
tal and model-predicted values are noteworthy. The
correlation coefficient “R” and root mean squared er-
ror “RMSE” are 0.9900 and 2.2355% respectively.

5. Comparison of models

The ANNs and the SVM models developed in this
work for the estimation of the rejection of anti-
inflammatory drugs by NF/RO are compared in
terms of certain statistical parameters for the deter-
mination of model performance. The evaluation cri-
teria listed above are the correlation coefficient (R),
the mean absolute error (MAE), the model predictive
error (MPE), the root mean squared error (RMSE),
the standard error of prediction (SEP), residual pre-
dictive deviation (RPD), and Range Error Ratio (RER).
These errors are calculated for the evaluation of the
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accurate predictions of each model. In addition,
other evaluation terms are considered, namely, the
mean square error (MSE), the mean relative squared
error (MRSE), the relative absolute error (RAE), the
accuracy factor (A f ), and bias factor (B f ) all of which
are given by the following equations [24]:

MSE = 1

n

n∑
i=1

(yi ,exp − yi ,cal)
2 (16)

MRSE = 1

n

n∑
i=1

(
yi ,exp − yi ,cal

yi ,exp

)2

(17)

REA =
n∑

i=1

∣∣∣∣ yi ,exp − yi ,cal

yi ,exp

∣∣∣∣ (18)

A f = 10

(∑n
i=1

∣∣∣∣log
yi ,cal
yi ,exp

∣∣∣∣/n

)
(19)

B f = 10

(∑n
i=1 log

yi ,cal
yi ,exp

/
n

)
. (20)

The values of the twelve statistical evaluation in-
dices of the two models discussed in this work for
prediction (training, testing, and total phases) are
shown in Table 4. Firstly, the ANNs model has small
errors compared to the SVM model in the training
phase, the testing phase, and the total phase (R =
0.9930, MAE = 1.1236%, MPE = 1.4184%, RMSE =
1.8094%, SEP = 1.9926%, MSE = 3.2741%, MRSE =
3.6182×10−7%, RAE = 6.0151×10−4%, A f = 1.0005%,
and B f = 1.0005% for the total phase).

On the other hand, we adopted the five-level in-
terpretations of Residual Predictive Deviation “RPD”
and Range Error Ratio “RER” provided by Viscarra
Rossel: excellent predictions (RPD and RER > 2.5);
good (RPD and RER of 2.0 to 2.5); approximate quan-
titative predictions (RPD and RER of 1.8 to 2.0); pos-
sibility to distinguish high and low values (RPD and
RER of 1.4 to 1.8); and unsuccessful (RPD and RER
< 1.40) [22,41]. The RPD and RER of the ANNs and
SVM models are higher than 2.5 (RPD = 8.4808% and
RER = 54.5525% for ANN; RPD = 6.8644% and RER
= 15.3455% for SVM) for the total phase. Based on
RMSE, it can be seen that the ANN based model sur-
passed the SVM model. Moreover, the values of R,
MAE, MPE, SEP, RPD, RER, MSE, MRSE, RAE, A f ,
and B f (for the training phases, for the testing phase,
and for the total phase) in addition to the RMSE im-
ply that the ANNs have more predictive power than
the SVM model proposed in this work. They allow
the representation of the nonlinear relationship be-
tween the rejection of the anti-inflammatory drugs
and NF/RO.

6. Conclusions

In this study, two models (ANN and SVM) were de-
veloped for modeling the 300 rejections by NF/RO of
seven anti-inflammatory drugs. The sensitivity anal-
ysis by weight method identified that the most im-
portant variables that influence the rejection are: dc ,
molecular length, contact angle, and zeta potential.
These input relevant variables have a significant con-
tribution (relative importance RI > 10%). Experimen-
tal data was selected from the literature and closely
analyzed statistically.

Both the artificial intelligence approaches (ANN
and SVM) show good correlative and predictive accu-
racy to describe the rejections of anti-inflammatory
drugs by NF/RO. The statistical comparison between
the two different models reveals the good perfor-
mance of the ANN model for predicting the rejections
of anti-inflammatory drugs. Furthermore, the ANN
model (correlation coefficient R = 0.9930 and RMSE
= 1.8094% for total phase) outperformed the SVM
model with a total, correlation coefficient R of 0.9900,
and a root means squared error RMSE of 2.2355%.
These results demonstrate the superiority of ANN to
describe the rejection of anti-inflammatory drugs by
NF/RO.

Acknowledgments

The work was supported by the laboratory of Bioma-
terials and Transport; the authors gratefully acknowl-
edge the team of University of Medea and the Univer-
sity of Relizane.

Supplementary data

Supporting information for this article is available on
the journal’s website under https://doi.org/10.5802/
crchim.76 or from the author.

References

[1] H. Q. Dang, J. Environ. Treatment Tech., 2020, 8, 900.
[2] D. Gomes, M. Cardoso, R. C. Martins, R. M. Quinta-Ferreira,

L. M. Gando-Ferreira, Water Sci. Technol., 2020, 81, 732.
[3] D. Ralla, A. M. Schweidtmann, B. M. Aumeier, J. Kamp, J. Kar-

wea, K. Ostendorf, A. Mitsos, M. Wessling, J. Membr. Sci., 2020,
600, 1.

[4] T. Fujioka, H. Kodamatani, W. Yujue, K. D. Yu, E. R. Wanjaya,
H. Yuan, M. Fang, S. A. Snyder, J. Membr. Sci., 2020, 595, article
no. 117577.

C. R. Chimie — 2021, 24, n 2, 243-254

https://doi.org/10.5802/crchim.76
https://doi.org/10.5802/crchim.76


254 Yamina Ammi et al.

[5] M. N. Fini, J. Zhu, B. V. d. Bruggen, H. T. Madsen, J. Muff,
J. Membr. Sci., 2020, 612, article no. 118458.

[6] X.-L. Cao, Y.-N. Yan, F.-Y. Zhou, S.-P. Sun, J. Membr. Sci., 2020,
595, article no. 117476.

[7] Y. Song, Y. Sun, M. Chen, P. Huang, T. Li, X. Zhang, K. Jiang,
J. Water Process. Eng., 2020, 34, article no. 101086.

[8] L. Lan, X. Kong, H. Sun, C. Li, D. Liu, J. Environ. Manage., 2019,
231, 439.

[9] D. I. d. Souza, A. Giacobbo, E. d. S. Fernandes, M. A. S. Ro-
drigues, M. N. d. Pinho, A. M. Bernardes, Membranes, 2020,
10, article no. 156.

[10] X. Jin, J. Hu, S. L. Ong, Water Res., 2010, 44, 638.
[11] M. Aziz, T. Ojumu, Membrane, 2020, 10, article no. 37.
[12] C. F. Coutoa, A. V. Santosa, M. C. S. Amarala, L. C. Langea,

L. H. d. Andradeb, A. F. S. Foureauxa, B. S. Fernandes, J. Water
Process. Eng., 2020, 33, article no. 101029.

[13] S. Gur-Reznik, I. Koren-Menashe, L. Heller-Grossman,
O. Rufel, C. G. Dosoretz, Desalination, 2011, 277, 250.

[14] Y. Lanteri, A. Szymczyk, P. Fievet, Langmuir, 2008, 24, 7955.
[15] D. Libotean, J. Giralt, R. Rallo, Y. Cohen, F. Giralt, H. F. Ridgway,

G. Rodriguez, D. Phipps, J. Membr. Sci., 2008, 313, 23.
[16] V. Yangali-Quintanilla, A. Verliefde, T. U. Kim, A. Sadmani,

M. Kennedy, G. Amy, J. Membr. Sci., 2009, 342, 251.
[17] V. Yangali-Quintanilla, A. Sadmani, M. McConville,

M. Kennedy, G. Amy, Water Res., 2010, 44, 373.
[18] S. Arash, B. Christopher, Sep. Purif. Technol., 2013, 118, 627.
[19] Y. Ammi, L. Khaouane, S. Hanini, Korean J. Chem. Eng., 2015,

32, 2300.
[20] L. Khaouane, Y. Ammi, S. Hanini, Arab. J. Sci. Eng., 2017, 42,

1443.
[21] Y. Ammi, L. Khaouane, S. Hanini, Arab. J. Sci. Eng., 2018, 43,

6271.

[22] Y. Ammi, L. Khaouane, S. Hanini, Kemija Industriji, 2020, 69,
111-127.

[23] P. Agrawal, P. Jayaswal, J. Inst. Eng. India Ser. C, 2020, 101, 61.
[24] H. Benimam, C. Si-Moussa, M. Laidi, S. Hanini, Neural Com-

put. Appl., 2020, 32, 8635.
[25] J. García-Alba, J. F. Bárcena, C. Ugarteburu, A. García, Water

Res., 2019, 150, 283.
[26] C. Bellona, J. E. Drewes, J. Membr. Sci., 2005, 249, 227.
[27] S. H. Long, D. Nghiem, Sep. Purif. Technol., 2007, 57, 182.
[28] V. Yangali-Quintanilla, M. Kennedy, G. Amy, T. U. Kim, Drink.

Water Eng. Sci., 2008, 1, 7.
[29] C. Y. Tang, Y.-N. Kwon, J. O. Leckie, Desalination, 2009, 242,

168.
[30] H. Huang, H. Cho, K. Schwab, J. G. Jacangelo, Desalination,

2011, 281, 446.
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