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Prohibited item detection in X-ray images is an effective measure to maintain public
safety. Recent prohibited item detection methods based on deep learning has
achieved impressive performance. Some methods improve prohibited item
detection performance by introducing prior knowledge of prohibited items, such
as the edge and size of an object. However, items within baggage are often placed
randomly, resulting in cluttered X-ray images, which can seriously affect the
correctness and effectiveness of prior knowledge. In particular, we find that
different material items in X-ray images have clear distinctions according to their
atomic number Z information, which is vital to suppress the interference of irrelevant
background information by mining material cues. Inspired by this observation, in this
paper, we combined the atomic number Z feature and proposed a novel atomic
number Z Prior Guided Network (ZPGNet) to detect prohibited objects from heavily
cluttered X-ray images. Specifically, we propose a Material Activation (MA) module
that cross-scale flows the atomic number Z information through the network to
mine material clues and reduce irrelevant information interference in detecting
prohibited items. However, collecting atomic number images requires much
labor, increasing costs. Therefore, we propose a method to automatically
generate atomic number Z images by exploring the color information of X-ray
images, which significantly reduces the manual acquisition cost. Extensive
experiments demonstrate that our method can accurately and robustly detect
prohibited items from heavily cluttered X-ray images. Furthermore, we
extensively evaluate our method on HiXray and OPIXray, and the best result is
2.1% mAP50 higher than the state-of-the-art models on HiXray.
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1 Introduction

As society develops, the flow of people on public transport is increasing. X-ray security
machine is widely used in the security inspection of railway stations and airports, which is a
critical facility for maintaining public safety and transportation safety. However, traditional
security checks mostly rely on manual identification methods. After prolonged work hours,
security inspectors easily cause fatigue, significantly increasing the risk of missed and false
detection and laying many hidden dangers for public safety. Therefore, it is increasingly
necessary to identify prohibited items through intelligent algorithms.
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Different from traditional detection tasks, in this scenario, there
are various items in the passenger’s luggage and random permutations
between items, resulting in heavily cluttered X-ray images [1–4].
Therefore, object detection algorithms for general natural images
do not perform well on cluttered X-ray images as in Figure 1.
Fortunately, the tremendous success of deep learning [5–11] has
made the intelligent detection of prohibited items possible by

transforming it into an object detection task in computer vision
[12–14]. Hence, many researchers have applied deep learning
methods to prohibited object detection. Flitton et al. [15] explored
3D feature descriptors with application to threat detection in
Computed Tomography (CT) airport baggage imagery. Bhowmik
et al. [16] investigated the difference in detection performance
achieved using real and synthetic X-ray training imagery for CNN
architecture. Gaus et al; [17] evaluated several leading variants
spanning the Faster R-CNN, Mask R-CNN, and RetinaNet
architectures to explore the transferability of such models between
varying X-ray scanners. Hassan et al; [18] presented a cascaded
structure tensor framework that automatically extracts and
recognizes suspicious items in multi-vendor X-ray scans. Zhao
et al; [19] established the associations between feature channels and
different labels and adjust the features according to the assigned labels
(or pseudo labels) to tackle the overlapping object problem. These
methods all improve detection performance to a certain extent but do
not use the unique imaging characteristics of X-ray images to improve
the algorithm.

Recently, some works have tried adding prior information about
X-ray images to guide network learning, as shown in Figure 2 [20].
Obtained edge images by using the traditional edge detection
algorithm Sobel. Chang et al. [4] found that different classes of
prohibited objects have a clear distinction in physical size and used
Otsu’s threshold segmentation algorithm [21] to segment the original
image into foreground and background, treating the foreground
region as the approximate size of the detected object. Although
these two methods improve the detection accuracy to a certain
extent by introducing such prior information, the obtained prior
information is easily disturbed by other irrelevant information due

FIGURE 1
Various items in passengers’ luggage and random permutations
between articles result in cluttered X-ray images. For general object
detectors, a large amount of irrelevant background information
interference can easily lead to missed detections. With the
assistance of the atomic number prior knowledge, our method can
suppress background interference and detect items correctly.

FIGURE 2
Framework comparisons between existingmethods based on prior knowledge and ourmethod. For each row, the left is the network framework, and the
right is the visualization of prior knowledge. The prohibited objects in each X-ray image are annotated in red bounding boxes. (A) The method to obtain the
boundary information of prohibited items will be seriously interfered with by the boundary information of unrelated items. (B) The way cannot fully believe the
accuracy of treating the binarized foreground as the area of the detected object, especially when other items appear inside the detection box. (C) Unlike
them, our method pays more attention to the atomic number feature, taking advantage of the distinction in atomic numbers to reduce the interference of
useless background information.
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to the messy distribution of prohibited items, which hinders further
performance improvement. Specifically, in the presence of cluttered
items, the former method to obtain the boundary information of
prohibited terms is severely interfered with by the boundary
information of irrelevant items. Furthermore, the latter cannot fully
believe the accuracy of treating the binarized foreground as the area of
the detected items, especially when other items appear inside the
detection region.

In this paper, we propose a novel atomic number Z Prior Guided
Network (ZPGNet) for heavily cluttered X-ray images, which can
remove irrelevant background information by effectively
incorporating the atomic number feature. Unlike optical images,
X-ray images are generated by illuminating objects with X-ray.
X-ray security inspection machine is based on the object difference
in absorbing X-ray to detect the effective atomic number and then
show distinct colors [22]. Specifically, the color information in X-ray
images represents material information, where blue represents
inorganic material, orange represents organic material, and green
represents mixture [23], as shown in Figure 3. Atomic number
images of X-ray image variants can directly reflect the material
type of an item, which is the dominant information in X-ray
images. This characteristic motivates us to explore this critical
information to improve detection accuracy by removing irrelevant
background information. Bhowmik et al; [24] examined the impact of
atomic number images via the use of CNN architectures for the object
detection task posed within X-ray baggage security screening and
obviously illustrated a vital insight into the benefits of using atomic
number images for object detection and segmentation tasks. However,
they only simply connect atomic number images with RGB images and
do not fully use atomic number images. In order to make full use of the
atomic number features of items, we designed a Material Activation
(MA) module. It cross-scale flows atomic number information
through the network to mine deep material clues, which is
beneficial to reduce irrelevant information interference in detecting
prohibited items.

Atomic number images need to be collected manually, which
increases the costs. In particularly, X-ray imaging systems render
different materials in different colors. Blue represents inorganic
material, orange represents organic material, and green represents
mixture, as shown in Figure 3. Therefore, we can obtain the material
classification of each pixel by analyzing the color. Thus, we propose an
atomic number Z Prior Generation (ZPG) module, which

automatically generates the atomic number feature according to the
imaging color of X-ray images, as those shown in Figure 4.

Overall, the contributions of our work can be summarized as
follows:

• We propose a novel atomic number Z Prior Guided Network
(ZPGNet) to improve the detection accuracy of cluttered items
by effectively incorporating the atomic number feature. In
addition, the proposed method is generic and can be easily
embedded into existing detection frameworks as a module.

• We propose an atomic number Z Prior Generation (ZPG)
module, which automatically generates the atomic number
feature according to the imaging color of X-ray images.
Compared with the manual collection, the costs are
significantly reduced.

• We design a Material Activation (MA) module to cross-scale
fuse image features with the atomic number feature and then
flow the fused features from high-level to low-level to enhance
the ability of the model to mine deep material clues.

• We evaluate ZPGNet on the HiXray and OPIXray datasets and
demonstrate that the performance of our ZPGNet is superior to
state-of-the-art methods in identifying prohibited objects from
cluttered X-ray baggage images.

2 Related work

In this section, we first introduce the existing public datasets for
detecting prohibited items in X-ray images and then describe some
generic object detection methods and some strategies to solve the
clutter problem in X-ray images.

2.1 Security inspection image dataset

X-ray security inspection machines show different colors for
different material items by the object distinction in absorption
X-ray [22]. Therefore, it has many applications in many tasks, such
as security inspection [4, 25–27]and medical imaging analysis [8,
28–33]. However, there are very few X-ray image datasets due to the
particularity of security inspection scenes. To our knowledge, four
recently published datasets are GDXray [22], SIXray [26], OPIXray

FIGURE 3
From left to right are inorganic matter, organic matter, and mixture.
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[20], and HiXray [34]. The GDXray dataset has 19,407 images
containing three prohibited items, namely, guns, darts, and razors.
However, the GDXray dataset only contains grayscale images, which
are far from realistic scenarios. The SIXray includes 1,059,231 X-ray
images, which only have 8,929 labeled images. The pictures in the
SIXray dataset are obtained by real security machines from several
subway stations, which is more in line with the data distribution of real
scenes. The OPIXray dataset is the first high-quality security target
detection dataset, which contains five categories of prohibited items,
namely, folding knives, straight knives, scissors, utility knives, and
multitool knives, with a total of 8885 X-ray images. The HiXray
dataset contains 44,364 X-ray images from daily security checks at
international airports, which contain eight categories of prohibited
items such as lithium batteries, liquids, and lighters that are common
in daily life. Each image in the HiXray dataset is annotated by airport
staff, which ensures the accuracy of the data.

2.2 Generic object detection

Object detection is an essential part of computer vision tasks,
which supports many downstream tasks [35–38]. Methods based on
convolutional neural networks can be summarized into two categories:
single-stage [39–43] and multi-stage [44–46]. In recent years,
compared with multi-stage detection methods, single-stage
detection methods have been widely adopted due to their simple
design and powerful performance. YOLOv3 [42] considers both real-
time and accuracy by using the region proposal method. RetinaNet
[41] improves the detection accuracy while maintaining the inference
speed by solving the problem of class balance. It is far higher in real-
time performance and accuracy than general multi-stage detection
methods. FCOS [43] is anchor box free, as well as proposal free, to
solve object detection in a per-pixel prediction fashion. In addition,
YOLOv5 [47] makes several improvements based on YOLOv3, which
significantly improves the detection speed and accuracy. However, so
far, most object detection methods are for natural images. In the
security check scene, various items in the passenger’s luggage and

random permutations between the objects resulted in heavily cluttered
X-ray images, so the detection effect is often unperformed.

2.3 Solutions to heavily cluttered problems

Previous works have mainly focused on solving the problem of
highly cluttered X-ray images. Shao et al. [48] proposed a foreground
and background separation X-ray prohibited item detection
framework that separates prohibited items from other items to
exclude irrelevant background information. Tao et al. [34]
proposed a lateral inhibition module to eliminate the influence of
noisy neighboring regions on the interest object regions and activate
the boundary of items by intensifying it.

3 Proposed method

Atomic number images of X-ray image variants can directly reflect
item material, which is the dominant information in X-ray images.
Inspired by this, we propose a novel atomic number Z Prior Guided
Network (ZPGNet) for cluttered X-ray images, as shown in Figure 5.
The ZPGNet consists of three main components: 1) an atomic number
Z Prior Generation (ZPG) module automatically generates atomic
number images, which reduces the cost of manually collecting atomic
number images, 2) a Material Activation (MA) module fuses the
atomic number feature to remove irrelevant background information,
3) a Bidirectional Enhancement (BE) module enriches feature
expression through bidirectional information flow.

Specifically, we first design the ZPG module, combining the
characteristics that different materials will show different colors, to
map a three-channel (RGB) color image to a single-channel atomic
number image. Then, we repeatedly pass the atomic number feature
generated by the ZPG module into the network to pay more attention to
itemmaterial information. To effectively fuse the extracted image features
and the atomic number feature, MA cross-scale flows the atomic number
feature under the extracted multi-scale features and uses a channel

FIGURE 4
The X-ray image samples are from the OPIXray dataset. The left part of each set of photograph is the original image, and the right part is the atomic
number image generated by our proposed ZPG method. The prohibited objects in each X-ray image are annotated in red bounding boxes.
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attention module to self-adapt the importance of different features.
Finally, we add a layer of low sampling rate features to obtain more
detailed information and mine contextual semantics for enriching feature
expression.

3.1 Z Prior Generation

Unlike optical images, X-ray images are generated by illuminating
objects with X-rays, whose penetration is related to the material’s
density, size, and composition [22]. X-ray security machines detect the
atomic number of objects based on the difference in absorbing X-rays,
which then display a distinct color. Bhowmik et al. [24] proved that the
introduction of atomic number images is an effective method to
improve detection performance via large experiments. Inspired by
this, the designed ZPG module compresses three-channel X-ray
images into a single-channel to generate atomic number images
that can highlight material differences. Compared with manually
collecting atomic number images, it significantly reduced costs.

For each pixel in the RGB image, the maximum of the three
channels will render its corresponding color. We use its subscripts to
classify different materials.

gij � argmax xijk( ) (1)

where xijk denotes the value of the k-channel at position (i, j) the input
image. argmax (•) denotes the index corresponding to finding the
maximum value of an element.

Materials of the same class tend to present different depths of color
due to different thicknesses.We introduce two variables, base-valueB, and

width-valueW. The former is used to distinguish different materials, and
the latter reflects the difference between the same materials.

Bij � gij + α (2)
Wij � ∑xij − xijgij( )p 1 − β( )p 1 − α( )/ 255 + 255( )

+xijgijpβp 1 − α( )/255 (3)

Where α and β are hyperparameters that respectively control basis-
value B and width-value W.

Finally, the basis-value B and width-value W are added and
normalized, and then passed through a series of convolutional
layers to obtain the atomic number feature Z.

Zij � 0, ifxij � 255, 255, 255( )
Bij +Wij( )/3, if others

{ (4)

Z � ϕn Z( ) (5)
where ϕn(•) denotes the n-layer “Conv-BN-ReLU” operation, Since
no items are in the white area, we specially treat for the pixel (255,
255, 255).

3.2 Material activation

In particular, different material items in X-ray images have clear
distinctions according to their atomic number information, which is
vital to suppress the interference of background information by
mining deep material cues.

In cluttered X-ray images, the boundary and color information
of prohibited items are easily interfered with by background

FIGURE 5
Overall framework of the proposed atomic number Z Prior GuidedNetwork (ZPGNet). The network consists of three keymodules, i.e., an atomic number
Z Prior Generation (ZPG) module generating the atomic number feature, a Material Activation (MA) module cross-scale fusing the image features with the
atomic number feature, and a Bidirectional Enhancement (BE) module mining contextual semantics for enhancing feature representation. CBR is composed
of a convolution layer, a batch normalization layer, and a relu activation function. SENet stands for Squeeze-and-Excitation Networks [49].
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information. MA introduces the atomic number feature to mine
material cues, which is beneficial to reduce useless background
information interference in detecting prohibited items, as shown in
Figure 6.

Specifically, the backbone network has n featuremap outputs F= {f0, . . . ,
fn−1}. As shown in Figure 7, the MA structure makes the former k layers of F
as the input. For Z and F feature maps, which are output by ZPG and
Backbone, we pool the atomic number featureZ to increase the receptive field

FIGURE 6
The bottom part shows the edge detection results obtained directly by the Canny algorithm [50], and the top part is obtained by first passing through the
ZPG module and then through the Canny detection. It is intuitive to see that the edges of the items processed by the ZPG module are more evident than the
original. The prohibited objects in each X-ray image are annotated in red bounding boxes.

FIGURE 7
Illustration of the proposed Material Activation (MA) module, where k indicates that the input of the MA module has k different-scale feature maps.
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and then add Z flowing down from the previous layer to get a more robust
featureM. Furthermore, we concatenate them with F for information fusion
and apply channel attention operation (Squeeze-and-Excitation Networks
[49]) SE(•) on the fused features to adapt the importance between the
material feature and other image features (edge, texture, size, etc.).

Zi′ � Di Z( ) (6)
Fei � ϕ1 SE fi‖Mi( )( ) (7)

where ‖ represents the operation of concatenating, Di(•) denotes the
Pooling operation.

Separate Fei into fi′ and Z′′
i along the channel dimension, whose

dimensions are the same as fi and Zi′, respectively, where the fi′ is used
as the input of the next BE module, and the Z′′

i is passed to the next
layer of the MA module as an enhanced atomic number feature to
obtain the more robust feature.

fi′ � F0
ei

Z′′
i � F1

ei

{ (8)

Mi � Zi′ + U Zi−1″( ) (9)
whereF0

ei and F
1
ei denote the two features obtained by separating Fei along

the channel, U(•) denotes the Upsample operation. Especially,M0 � Z0′.

3.3 Bidirectional Enhancement

When the down-sampling rate is high, it is easy to obtain
larger receptive fields and more large-scale item information,
which is beneficial for detecting large-scale prohibited objects.
However, for some minor prohibited items, too large a
downsampling rate tends to lose too much detail feature
information of small-scale objects.

In the HiXray [34] high-quality prohibited items dataset, the
average resolution of images is 1,200*900, with the largest
resolution being 2000*1,024. The resolution of some small lighters
is only 21*57, which is about 1/1,000 the size of the original image.
After excessive downsampling, the feature information of lighters is
seriously missing, resulting in poor detection in SSD [51], LIM [34],
DOAM [20], and other detection models.

BE module adds a low sampling rate feature to obtain more detailed
information about the tiny-size prohibited items. However, the low
sampling rate feature often contains additional noise information. We
remove noisy information by performing multiple pooling operations.

fi+1
3 � ϕ1 U Di f

i
3( )( ) + fi

3( ) (10)

where f3
3 is the finally denoised low-sampling rate feature, and

specifical f0
3 � f3.

Finally, the material activation feature {f0′, . . . , fk−1′ } obtained by
the MA module, Backbone output feature {fk, . . . , f2}, and f3

3 are
streamed bidirectionally, which mines contextual semantics to enrich
feature expression.

4 Experiments

4.1 Datasets and evaluation Metrics

We conduct extensive experiments to evaluate our proposed
model on two prohibited item detection datasets, HiXray [34] and

OPIXray [20]. HiXray dataset consists of 45,364 X-ray images from
routine security checks at international airports, which contains
8 categories of 102,928 everyday prohibited items commonly seen
in daily life, such as lithium batteries, liquids, lighters, etc. Each image
in the HiXray dataset was annotated by an airport employee, which
ensures the accuracy of the data. OPIXray dataset is the first high-
quality object detection dataset for security, which focused on the
widely-occurred prohibited item “cutter”, annotated manually by
professional inspectors from the international airport. The dataset
contains five categories of prohibited objects with a total of 8885 X-ray
images (7,109 for training and 1,776 for testing).

Average Precision (AP) denotes the area under the precision-recall
curve of the detection results for a single category of objects. To fairly
evaluate the performance of all models, we compute the mean average
precision (mAP)with an IOU threshold of .5. In addition, we calculate AP
for all categories for eachmodel to see the improvement for each category.

4.2 Implementation details

All our experiments were done in Pytorch and trained on one
NVIDIA RTX 3090 GPU with the initial learning rate set to 1e-2.
The parameters were optimized through stochastic gradient
descent (SGD). The momentum and weight decay are set to
.937 and .0005, respectively. Besides, two new hyperparameters
were introduced with respect to the module ZPG, i.e., α and β,
which respectively control base-value B and width-value W, and
values are set to .4 and .5.

4.3 Quantitative results

We test the model performance on HiXray [34] and OPIXray [20]
datasets. Specifically, we embedded ZPGNet into YOLOv3 [42] and
YOLOv5s [47] and compared it with the state-of-the-art methods
DOAM [20] and LIM [34]. Table 1 presents the experimental results of
DOAM, LIM, and the proposed ZPGNet on HiXray and OPIXray
datasets. In order to illustrate the effectiveness of our method and
better compare it with the existing state-of-the-art (SOTA) models, we
use YOLOv3 and YOLOv5s as this baseline.

4.3.1 Results on HiXray dataset
The experimental results of different algorithms on the HiXray [34]

dataset are shown in Table 1. For a fair comparison, we adopt the same
baseline YOLOv5s [47] as DOAM [20] and LIM [34], which performs the
best results on both DOMA and LIM. The proposed method ZPGNet
with YOLOv5s baseline improves to 83.9% in mean average prediction,
outperforming DOAM and LIM by 1.7% mAP50 and .7% mAP50,
respectively. In order to further verify the effectiveness of our model,
we also adopted the YOLOv3 [42] baseline, which is still 1.2% mAP50
higher than the SOTA method (YOLOv5s + LIM).

The (YOLOv3+ZPGNet) experiment results show that our
method is lower than some methods in some categories Water,
Laptop, Mobile Phone, and Tablet, but has an 8.0% AP and 4.8%
AP improvement in the cosmetics and lighter categories,
respectively, compared to the SOTA method LIM. Cosmetics
belong to the mixtures category, commonly disturbed by
organic substances (such as plastics), resulting in decreased
detection confidence or even missed detection. The significant
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improvement in cosmetics indicates that our method, introducing
the atomic number feature map, can better reduce the interference
of useless information in Figure 8. This advantage is facilitated by

our method of paying extra attention to the material information
using atomic number features. Lighters in luggage are tiny in size
and prone to profound feature loss after downsampling. Our

TABLE 1 Quantitative evaluation results on the HiXray dataset and OPIXray dataset. Where PO1, PO2, WA, LA, MP, TA, CO, and NL denote “Portable Charger 1 (lithium-
ion prismatic cell)”, “Portable Charger 2 (lithium-ion cylindrical cell)”, “Water,” “Laptop,” “Mobile Phone,” “Tablet,” “Cosmetic” and “Non-metallic Lighter” in the
HiXray dataset. FO, ST, SC, UT, and MU donate “Folding Knife,” “Straight Knife,” “Scissor,” “Utility Knife,” and “Multi-tool Knife” in the OPIXray dataset, respectively.

Method HiXray OPIXray

mAP50 PO1 PO2 WA LA MP TA CO NL mAP50 FO ST SC UT MU

SSD [51] 71.4 87.3 81.0 83.0 97.6 93.5 92.2 36.1 .01 70.9 76.9 35.0 93.4 65.9 83.3

SSD + DOAM [20] 72.1 88.6 82.9 83.6 97.5 94.1 92.1 38.2 .01 74.0 81.4 41.5 95.1 68.2 83.8

SSD + LIM [34] 73.1 89.1 84.3 84.0 97.7 92.4 92.4 42.3 0.1 74.6 81.4 42.4 95.9 71.2 82.1

Xdet [4] — — — — — — — — — 86.7 90.4 76 91.5 84.3 91.3

FCOS [43] 75.7 88.6 86.4 86.8 89.9 88.9 88.9 63.0 13.3 82.0 86.4 68.5 90.2 78.4 86.6

FCOS + DOAM [20] 76.2 88.6 87.5 87.8 89.9 89.7 88.8 63.5 12.7 82.4 86.5 68.6 90.2 78.8 87.7

FCOS + LIM [34] 77.3 88.9 88.2 88.3 90.0 89.8 89.2 69.8 14.4 83.1 86.6 71.9 90.3 79.9 86.8

ATSS [19] — — — — — — — — — 86.6 92.3 72.0 96.6 80.38 91.7

ATSS + DOAM [19] — — — — — — — — — 85.6 90.7 66.8 96.2 81.8 92.5

ATSS + Lacls [19] — — — — — — — — — 88.3 90.0 75.0 97.6 85.7 93.0

YOLOv5s [47] 81.7 95.5 94.5 92.8 97.9 98.0 94.9 63.7 16.3 87.8 93.4 67.9 98.1 85.4 94.1

YOLOv5s + DOAM [20] 82.2 95.9 94.7 93.7 98.1 98.1 95.8 65.0 16.1 88.0 93.3 69.3 97.9 84.4 95.0

YOLOv5s + LIM [34] 83.2 96.1 95.1 93.9 98.2 98.3 96.4 65.8 21.3 90.6 94.8 77.6 98.2 88.9 93.8

YOLOv5s + ZPGNet (Ours) 83.9 95.7 95.2 92.5 96.5 97.7 94.4 66.4 33.0 90.7 95.0 79.3 98.0 86.8 94.2

YOLOv3 [42] 83.0 96.7 94.9 91.9 97.9 97.7 94.0 71.9 18.6 78.2 92.5 36.0 97.3 70.8 94.4

YOLOv3+ZPGNet (Ours) 84.4 96.6 95.2 92.7 97.7 98.0 95.2 73.8 26.1 85.4 88.5 65.1 96.7 83.5 93.3

Bold values represent the best performance in the same evaluation index.

FIGURE 8
Visualizations of the original images, atomic number images, and detection results of the ZPGNet-integrated model. Our proposed ZPGNet uses atomic
images to pay more attention to material information and thus achieve better performance.
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method achieves 11.7% AP improvement over LIM [34] with the
same baseline YOLOv5s in the lighter category, which is due to the
fact that we use a low sampling rate feature map in the BE module
to increase the information of small prohibited items.

4.3.2 Results on OPIXray dataset
Table 1 represents the performance of our method on the

OPIXray [20] dataset. With the same baseline YOLOv5s [47],
ZPGNet outperforms DOAM [20] and LIM [34] by 2.7% mAP50
and .1% mAP50, respectively. In particular, ZPGNet has the highest
score on mAP50 among all the models. It can be clearly seen that the
proposed method ZPGNet achieves significant performance
improvement based on YOLOv3 [42], especially on AP of the

severely occluded prohibited items named “straight knife”
improved by 29.1%. This benefits from the fact that our method
effectively removes the interference of irrelevant background
information.

4.4 Generality verification

To further evaluate the effectiveness of the proposed model
ZPGNet and verify that ZPGNet can be applied to various
detection networks, we choose the classical detection models
YOLOv3 [42], RetinaNet [41], and YOLOv5s [47] to use our
method. Experiments were performed on the OPIXray dataset
[20]. As shown in Table 2, our approach ZPGNet improves
YOLOv3 by 7.2% mAP50, RetinaNet by .7% mAP50, and
YOLOv5s by 2.9% mAP50, respectively. Many objects are
commonly disturbed by useless items, quickly resulting in low
confidence or even miss detection on the general detection
model. As shown in Figure 9, the comparison plot of the
experimental results in the first and second rows shows that
even with high confidence, there is a particular improvement
after introducing the atomic number features. Embedding
ZPGNet makes the network pay more attention to object
material information to reduce the interference of ineffective
information and alleviate the problems of low confidence and
missed detection. This indicates that our model can be embedded
into most detection networks as a plug-and-play component to
minimize the interference of useless background
information and achieve better performance.

TABLE 2 Comparisons between the ZPGNet-integrated network and three object
detection methods.

Method mAP50 FO ST SC UT MU

RetinaNet [41] 87.4 89.4 69.2 98.2 86.3 94.0

RetinaNet + ZPGNet 88.1 91.3 72.1 98.7 85.8 92.6

YOLOv5s [47] 87.8 93.4 67.9 98.1 85.4 94.1

YOLOv5s + ZPGNet 90.7 95.0 79.3 98.0 86.8 94.2

YOLOv3 [42] 78.2 92.5 36.0 97.3 70.8 94.4

YOLOv3+ZPGNet 85.4 88.5 65.1 96.7 83.5 93.3

We embedded our method into three different baseline models respectively and divided the

models embedded with and without our method into a group, where the bold figures represent

the best performance in a group.

FIGURE 9
Visual results of both the baseline YOLOv3 and the ZPGNet-integrated model. There are many missed and low-confidence prohibited items in baseline
YOLOv3. After embedding the proposed ZPGNet, the ability to detect items has been significantly improved, especially for heavily cluttered X-ray images.
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4.5 Ablation study

In this subsection, we conduct a series of ablation experiments to
analyze the influence of involved hyperparameters and the
contribution of critical components of the proposed ZPGNet. In
the ablation study, all experiments were performed on the HiXray
dataset [34].

4.5.1 Effectiveness of ZPG, MA, and BE
ZPG, MA, and BE are essential modules in ZPGNet, and we

embed them one by one into YOLOv5s [47] to evaluate their
performance. The insertion of ZPG requires the support of MA,
so unity emplaces ZPG and MA together into the model. All
experiments here uniformly set the number of MA layers to 2.
As shown in Table 3, the network embedded with ZPG and MA
modules improves its performance by 1.4%mAP50 compared to the
base model, especially in the cosmetics category, where it improves
by 5.3% mAP50. Cosmetics are commonly disturbed by organic
substances (such as plastics), resulting in low confidence and
missed detection. The significant improvement in cosmetics
indicates that our method, introducing the atomic number
features, can better reduce the interference of useless
information, as shown in Figure 10. After applying the
Bidirectional Enhancement (BE) module, the performance is

2.2% mAP50 higher than the basic module and .8% mAP50
higher than that embedded with MA and ZPG, which proves the
effectiveness of the BE module.

4.5.2 Number of layers in MAs
We also show the effects of different layer numbers in the

proposed MA, as shown in Figure 11. The model performs best
when the layer numbers equal 2. The excessive number of layers
can lead to performance degradation of the MAmodule. We believe
that the possible reason is that the over-introduction of the atomic
number feature leads to the suppression of other essential cues,
which leads to a degradation in performance. When MA layers are
equal to 2, it can well balance the importance between the atomic
number feature and other features. So, in other experiments, we set
the layer numbers in each MA to 2.

5 Conclusion

Prohibited item detection in X-ray images is an effective
measure to maintain public safety. The interference of a large
amount of useless background information caused by object
disordered placement is an urgent problem to be addressed in
prohibited item detection. Inspired by the imaging characteristics
of X-ray images, this paper proposes an atomic number Z Prior
Generation (ZPG) method, which can automatically generate
atomic number images and reduce the cost of manual
acquisition. Furthermore, we designed an atomic number Z
Prior Guided Network (ZPGNet) to solve useless background
information interference in prohibited item detection. The

TABLE 3 Ablation results of the proposed ZPG, MA, and BE on the HiXray dataset.

Method mAP50 PO1 PO2 WA LA MP TA CO NL

YOLOV5s [47] 81.7 95.5 94.5 92.8 97.9 98.0 94.9 63.7 16.3

+ZPG + MA 83.1 95.3 95.5 92.4 94.9 97.7 93.6 69.0 26.0

+ZPG + MA + BE 83.9 95.7 95.2 92.5 96.5 97.7 94.4 66.4 33.0

Bold values represent the best performance in the same evaluation index.

FIGURE 10
Performance comparison of different categories. The number on
the gray line indicates the log-average miss rate. Useless background
information interference can easily lead to prohibited item missed
detections. With the proposed ZPG, MA, and BE, the log-average
miss rate of prohibited items (i.e., cosmetic and lighter) is significantly
reduced.

FIGURE 11
Bar graph of AP variation of all categories corresponding to
different layers number MA module.
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proposed ZPGNet method cross-scale flows the atomic number Z
information through the network to mine deep material clues to
reduce irrelevant background information interference. We
comprehensively evaluate ZPGNet on HiXray and OPIXray
datasets, and this result shows that ZPGNet can be embedded
into most detection networks as a plug-and-play module and
achieve higher performance. There is still a severe occlusion
problem in X-ray images, but this paper does not solve the
occlusion problem. In the future, we intend to use features
such as contour and scale to solve the occlusion problem
between items.
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