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The interface-debonding defects of adhesive bonding structures may cause a

reduction in bonding strength, which in turn affects the bonding quality of

adhesive bonding samples. Hence, defect recognition in adhesive bonding

structures is particularly important. In this study, a terahertz (THz) wave was

used to analyze bonded structure samples, and a multi-feature fusion

convolutional neural network (CNN) was used to identify the defect

waveforms. The pooling method of the squeeze-and-excitation (SE)

attention mechanism was optimized, defect feature weights were adaptively

assigned, and feature fusion was conducted using automatic label net-works to

segment the THz waveforms in the adhesive bonding area with fine granularity

waveforms as an input to the multi-channel CNN. The results revealed that the

speed of the THz waveform labeling with the automatic labeling network was

10 times higher than that with traditional methods, and the defect-recognition

accuracy of the defect-recognition network constructed in this study was up to

99.28%. The F1-score was 99.73%, and the lowest pre-embedded defect

recognition error rate of the generalization experiment samples was 0.27%.

KEYWORDS

terahertz waveform, defect recognition, convolutional neural network, feature fusion,
squeeze-and-excitation attention mechanism

1 Introduction

Adhesive bonding, one of the main connection methods of composite materials, has

significant advantages over traditional mechanical fastening technologies, such as

reducing structure weight, diminishing stress concentration, and ensuring structural

integ-rity [1]. When applying composite adhesive bonding structures [2], the material can

undergo easy aging, resulting in a decline in bonding strength, which inevitably causes

defects such as matrix cracking and interface debonding. The size of defects varies from
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several microns to several centimeters [3, 4]. Because interface

debonding defects are hidden inside the bonded structure

sample, it is difficult to identify them.

The adhesive bonding structure of ceramic matrix

composites (CMCs) [5] (hereinafter referred to as adhesive

bonding structure), which is generally composed of CMC,

adhesive bonding layer I (adhesive layer I), cushion, adhesive

bonding layer II (adhesive layer II), and a metal plate, was used as

an example in this study. Terahertz (THz) waves are usually used

to detect bonding defects in adhesive bonding structures [6–8]

owing to the unique physical features of CMCs. Zhang et al. [9]

successfully established a method for detecting defects using THz

detection data of an adhesive bonding structure by fusion

imaging of multiple feature parameters, and the measurement

error was 4% when the defect thick-ness was 500 μm, the

measurement error is 10.9% when the defect thickness is

200 µm. Wu et al. [10] located the defects by applying the

impulse response de-convolution algorithm to THz defect

recognition of the adhesive bonding structure. Zhang et al.

[11] proposed a defect recognition method for the adhesive

bonding structure based on the statistical characteristics of

variance and kurtosis, Achieve the minimum detection

thickness for layer I is 50 µm and for layer II is 250 μm,

respectively. In the abovementioned studies, the waveform

features of THz detection were all artificially selected to

realize imaging, and subsequently, the defect locations were

determined to recognize defects. However, as the thickness of

the sample changes, the feature peaks and valleys at the interfaces

of different bonding materials change with the location of the

time window. This results in the inability to image through a

specific time domain interval and the need for human

intervention in the location of the feature valleys, which

results in a lower recognition efficiency. With the extensive

use of bonded structure samples, the amount of data

generated by THz non-destructive testing also increases. The

traditional defect identification methods have low identification

efficiency and are greatly affected by subjective factors, which

cannot meet the needs of the rapidly developing THz non-

destructive testing industry, an intelligent defect recognition

method for adhesive bonding structures is required.

Neural networks have been widely studied in the field of

intelligent recognition [12–14]. In the THz domain, an R-pulse

coupled neural network model was used to detect objects hidden

in the human body based on THz images [15]. The water

absorption line in the THz spectra was eliminated through

neural network training of the signals collected under

different air-humidity levels [16]. Neural networks have been

used to analyze and identify the components of transgenic maize

[17]. When the microstructure of the thermal barrier coating is

uneven due to the imperfect TBC spraying conditions, the long

short-term memory (LSTM) network is used to identify the time

of flight difference between waveform features, and then measure

the thickness of the thermal barrier coating to eliminate the

influence of refractive index changes on the thickness

measurement [18]. Cruz et al. [19] and Min et al. [20]

extracted ultrasonic signal features using a convolutional

neural network (CNN) to recognize and classify the bonding

defects in time-domain sequence defect recognition and

classification. Hu et al. [21] achieved a recognition accuracy of

more than 90% for debonding defects in honeycomb materials

using LSTM. Wang et al. [22] and Xu et al. [23] used a CNN to

automatically detect and classify the internal bonding defects of

glass fiber-reinforced plastics, actualizing automatic defect

recognition and location. Liu et al. [24] realized the automatic

recognition of different defects by constructing a deep residual

network to recognize bonding defects in fiber-reinforced plastics.

Ren et al. [25] and [26] achieved a recognition accuracy of more

than 90% for a specific dataset using a back-propagation (BP)

neural network to recognize the artificial pre-embedded defects

of the adhesive bonding structure. The influence of target features

in the input signals on the recognition results was not considered

in the above studies, leading to the acquisition of incomplete

information of defect wave-form features via the network, low

defect recognition accuracy, and slow response speed.

In this study, according to the demand for defect detection in

adhesive bonding structures, samples with different defect types

were produced, and THz non-destructive testing was performed.

The THz waveform dataset of the adhesive bonding structure was

built based on different defect types. The waveform features of

the adhesive bonding area were extracted using different CNNs

after preprocessing the input waveforms using the waveform

labeling network. Feature weights were adjusted via the squeeze-

and-excitation (SE) channel attention mechanism, with an

adaptive fusion of multichannel network features, to achieve

intelligent recognition with high precision.

2 Article types

Application of Terahertz Frequency in Substance Detection

and Recognition.

3 Background

Feature peaks and valleys appear at the interfaces between

different media because of their different refractive indices when

THz waves propagate through different media of the adhesive

bonding structure [9]. After Wiener deconvolution filtering, the

THz waveforms of the adhesive bonding structure are shown in

Figure 1, where A) is a schematic diagram of the bonding defects,

and B) and C) are the defect feature waveforms of adhesive layers

I and II, respectively.

In Figure 1, Since the refractive index of CMC is less than that

of organosilicon gel, a characteristic peak of second occurs at the

interface between CMC and layer I media. The refractive index of
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organosilicon is greater than that of cushion, forming

characteristic Valley fifth at the interface, sixth represents the

feature peak at the interface between the cushion and the

medium of adhesive layer II, and ninth is the feature peak of

the interface reflection between adhesive layer II and the metal

plate. Additionally, the THz waveform between the second and

ninth refers to the adhesive layer waveform containing the

bonding information of the adhesive bonding structure. In

this study, only the waveforms in this area are dis-cussed. The

THz waveform between the second and fifth represents the

waveform in the area of adhesive layer I, and the THz

waveform between the sixth and ninth represents the

waveform in the area of adhesive layer II.

As shown in Figure 1B, in the presence of a debonding defect

in adhesive layer I, the feature peaks third and fourth of the

defect were generated during the propagation of the THz

waveform in adhesive layer I. When a debonding defect

exists in adhesive layer II, the echo valley at the interface

between layer II and the metal plate deepens. In addition,

the defect features eighth and ninth overlapped because of

the existence of side-lobes, scattering, and dispersion. The

debonding defects of adhesive layer II were more difficult to

recognize than those of adhesive layer I, as demonstrated by the

seventh and eighth sections in Figure 1C.

The proportions of THz time-domain sequences of

waveform features for different bonding defects are shown in

Figure 2, where the dash-and-dot line denotes the defect

waveform and the dashed line illustrates the non-defect

waveform, the label values in the diagram represent the

corresponding horizontal coordinates of the corresponding

label points.

As shown in Figure 2, the defect feature of the waveform

of adhesive layer I was 5–6 ps long, and the proportion of the

THz waveform of 160 ps was not larger than 3.75%. In

contrast, the defect feature of the waveform of adhesive

layer II was 3–4 ps long, and the waveform proportion was

not larger than 2.5% (Figure 2B). Defect features occupied

relatively small proportions in adhesive layers I and II, which

is not conducive to defect recognition in the adhesive

bonding structure.

4 Methods

4.1 Waveform labeling network

The THz waveforms of the bonding structures under

different bonding conditions exhibit different waveform

FIGURE 1
Terahertz waveform diagram of the CMC adhesive bonding structure. (A) Schematic diagram of bonding defects, (B)Defect feature waveforms
of adhesive layer I, and (C) Defect fea-ture waveforms of adhesive layer II.
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characteristics. The existing THz waveform labeling method

involves manually selecting the peaks and valleys of the THz

waveform to determine the bonding area. This is time

consuming and is highly dependent on the professional

knowledge of the operator [27]. Bonding terahertz

waveform can predict and label the position of

characteristic peaks and valleys from two directions, but

using only one direction of time series prediction can not

achieve good results. BiLSTM is equivalent to the

introduction of “future” data information in the current

time period, which is stronger than RNN and LSTM

networks in capturing the dependency between time series

characteristics [28]. To quickly and accurately label the THz

waveforms of bonding structures in different bonding areas,

this study constructs a waveform labeling network based on

bidirectional LSTM (BiLSTM) and extracts the THz

waveforms of different adhesive layers. The BiLSTM

network architecture is as shown in Figure 3.

The operation formula of a memory unit in BiLSTM is as

follows:

it � σ Wxi Whi Wci 1[ ] xt ht−1 ct−1 bi[ ]T( )
ft � σ Wxf Whf Wcf 1[ ] xt ht−1 ct−1 bf[ ]T( )
ot � σ Wxo Who Wco 1[ ] xt ht−1 ct−1 bo[ ]T( )
c̃t � tanh Wxc Whc 1[ ] xt ht−1 bc[ ]T
ct � ft ⊙ ct−1 + it ⊙c̃t
ht � ot ⊙ tanh ct( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(1)

where i, f, and o represent the three gates (input gate,

forgetting gate, and output gate) activated using the

Sigmoid function. c is the unit memory converted by

FIGURE 3
BiLSTM network structure.

FIGURE 2
Proportions of time-domain sequences of defect features of different adhesive bonding structures: (A)Waveform comparison of adhesive layer
I, and (B) Waveform comparison of ad-hesive layer II.
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activation. ht is the output of step t of BiLSTM. ⊙ represents

the element multiplication operation, Wjk represents the

weight from unit j to unit k, b is the offset term, t is the

time slot, and x represents the input data. BiLSTM calculates

the forward hidden sequence �h and backward hidden

sequence h
←

in two input directions to obtain the

bidirectional information of the time-domain sequence.

The calculation formula for the output z is as follows:

�ht � f Wx �h W �h �h 1[ ] xt ht−1
��→

b �h[ ]T( )
h
←

t � f Wx �h W �h �h 1[ ] xt ht−1
←��

b
h

←[ ]T( )
zt � Wx �h W

z h
← 1[ ] ht

→
ht
←

bz[ ]T

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(2)

To improve the recognition capability of the BiLSTM

network, the THz waveform of the bonding structure is first

converted into high-level features through a convolution

operation and subsequently input into the BiLSTM network

layer. The waveform marking network architecture is as

shown in Figure 4.

The THz waveform was input into the feature extraction

module to extract waveform features, expand the global receptive

field through the double-hole convolutional layer, and then the

waveform was input into the timing convolutional layer after the

normalization operation and maximum pooling to obtain

advanced waveform features. The feature analysis module was

used to learn the relationship between waveforms in different

bonding areas of advanced features, and THz waveform labeling

and THz waveform segmentation in different bonding areas were

realized through the decision module. The THz data of the same

bonding structure sample aremarked with a waveform. It took 300 s

to manually select the peak and valley of the waveform to determine

the bonding area, with an accuracy rate of 98.2%. The marking

network took 30 s to do the same task, with an accuracy rate of

97.5%. The results show that the marking accuracy of the marking

network and the manual selection method for the THz waveform

are similar, but the efficiency is improved by a factor of 10.

4.2 SE attention mechanism

After the extraction of THz waveform features via the neural

network, different sampling channels were endowed with the

same weight coefficient, which failed to highlight the defect

features. In this study, the SE attention mechanism [29, 30]

FIGURE 4
Automatic labeling network architecture diagram.
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was introduced to accelerate the convergence of the neural

network and increase the accuracy of defect recognition. The

structure of this mechanism is illustrated in Figure 5.

In the traditional SE attention mechanism, the mean value of

the feature waveform is taken as the weight distribution index,

whereas the weight distribution effect is not evident owing to the

randomness of the detection waveforms. Herein, the channel

information of the feature waveform was compressed by global

variance pooling, and the defect features were assigned a higher

weight to improve the feature extraction effect. A comparison of

different types of fine granularity waveforms (with 800 data points

as examples) is shown in Figure 6, where the dashed and dotted

lines represent the defect and non-defect waveforms, respectively.

According to Figure 6A, the defect feature peaks and valleys

of the adhesive layer I waveform occurred between data points

237 and 727, whereas the feature waveform experienced oscillation

around the zero value. The mean values of the normalized non-

defect and defect waveforms were 0.2449 and 0.041, respectively.

After global average pooling, the defect feature of the non-defect

waveform exhibited a higher weight than that of the defect

waveform. Defect features of adhesive layer II were observed

between data points 335 and 608, with the mean values of the

non-defect and defect waveforms being −0.4305 and −0.1428,

respectively (Figure 6B). After the global average pooling of mean

values for endowingweights, the weight value of the defect waveform

was higher than that of the non-defective waveform; in this case, the

output results of the SE module failed to focus completely on the

defect features of the waveforms of adhesive layers I and II.

Next, calculation was performed on the global variance

pooling of the defect and non-defect waveforms of adhesive

layers I and II, with the statistical results shown in Figure 7.

As shown in Figure 7, the defect waveforms of adhesive layers

I and II exhibited higher global variance pooling values than the

non-defect waveforms, with a larger difference between the

defect and non-defective features.

4.3 Multi-feature fusion CNN

The structure of the multi-feature fusion CNN proposed in

this study is shown in Figure 8. The THz waveform in the figure

was input into the A), B), and C) feature extraction networks,

FIGURE 5
Schematic diagram of the SE attention mechanism.

FIGURE 6
Comparison of the defect waveform and non-defect waveform. (A) Fine granularity waveform of adhesive layer I and (B) fine granularity
waveform of adhesive layer II.
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respectively, after the glue layer I waveform, glue layer waveform,

and glue layer II waveformwere expanded to the same length (the

waveform length was unified as 800 data points) after the

subsection preprocessing module. The network framework is

illustrated in Figure 8.

For a more comprehensive extraction of waveform features,

the sampling group was obtained by adding three groups of

convolutional layers and the maximum pooling layer to the first

convolutional layer, which was subsequently used to extract the

waveform features output by the up-sampling layer. During the

feature extraction, the feature weights were adjusted using the SE

attention mechanism. According to the amount of defect feature

in-formation, the waveform features extracted by the last

maximum pooling layer were endowed with different weights

and sequentially connected. The defect feature information was

statistically analyzed based on three fully connected layers.

Finally, the waveform type probability was output using the

softmax function. The network parameters are listed in Table 1.

The learning speed of the traditional rectified linear unit (ReLU)

can decrease or even become zero when the input features have

negative values. Since the input is lesser than zero and the gradient is

equal to zero, the network weights cannot be updated and remain

constant throughout the rest of the time. To avoid the “dead neuron”

phenomenon, the traditional ReLU function was replaced with the

LeakyReLU function [31] in this study. As a variant of the ReLU

function, the latter assigns non-zero outputs to negative input in-

formation, as expressed in Eq. 3:

f x( ) � max αx, x( ) (3)

where α denotes a predefined parameter within (0, 1), and x ∈ R.

Unlike ReLU, which maps negative input information to zero,

LeakyReLU compresses negative input information with a

FIGURE 7
Comparison of different pooling methods.

FIGURE 8
Structure diagram of the multi-feature fusion CNN.
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predefined linear function, maintaining the negative part of

feature information and weighing network scarcity and input

information.

5 Sample design

To build a neural network database and prepare samples with

various bonding defects, polytetrafluoroethylene (PTFE) defect

sample sheets with a diameter of 20 mm and varying thicknesses

were pre-embedded in the upper and lower adhesive layers of the

edge area of the sample [3] (Figure 9A). After complete curing of

the organic glue, the defect sample sheets were withdrawn to

form air gaps between the adhesive layers to simulate debonding

defects of different thicknesses in varying adhesive layers. The

design diagram and number of pre-embedded defects are shown

in Figures 9A, B, respectively.

Adhesive bonding structure samples were prepared in

accordance with the sample design diagram given in Figure 9,

with the types of debonding samples listed in Table 2. One of the

samples with different debonding thicknesses was extracted to

conduct the network generalization test, and the remaining

samples were applied to the construction of the network dataset.

6 Results and discussion

6.1 Data set description

The THz waveforms of different debonding defect types were

obtained from the defect and non-defect areas of the adhesive

bonding structure samples, forming the dataset “Data for

Terahertz” for defect recognition of the adhesive bonding

structure (Table 3).

TABLE 1 Network parameters.

Layer number Type of network layers Number of neurons/A), B), C) Weight kernel size Step length Activation
function

1 Input Layer —— —— —— ——

2 Convolutional Layer 8/4/16 7 × 1 1 LeakyReLU

3 Convolutional Layer 16/8/32 5 × 1 1 LeakyReLU

4 Pooling Layer 16/8/32 2 × 1 2 ——

5 Convolutional Layer 16/16/32 3 × 1 1 LeakyReLU

6 Pooling Layer 16/16/32 2 × 1 2 ——

7 Convolutional Layer 8/8/16 3 × 1 1 LeakyReLU

8 Pooling Layer 8/8/16 2 × 1 2 ——

9 Fully Connected Layer 128 —— —— ——

10 Fully Connected Layer 32 —— —— ——

11 Fully Connected Layer 3 —— —— ——

12 Output Layer —— —— —— ——

FIGURE 9
Sample design.
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6.2 Influence of waveform labeling
preprocessing module on the
performance of the proposed network

Considering the influence of the waveform marking

preprocessing module on the recognition effect of the multi-

feature fusion CNN, and comparing the recognition effect of the

network proposed in this study to determine whether the input

waveform passed through the waveform marking preprocessing

module, Figures 10A, B, respectively, show the recognition

accuracy curve of the network in this study and the iterative

loss curve of defect recognition training when the input

waveform has passed the waveform marking preprocessing.

The dashed line in the figure represents the network

recognition result of the input data without the waveform

marking preprocessing module, and the dotted line is the

network recognition result of the input data after the

waveform marking preprocessing module.

It can be observed from the curve in Figure 10A that when the

dataset is directly used as the network input, the accuracy curve is always

below the identification accuracy curve with the waveform of the

waveform marking preprocessing module as the network input, and

thefinal accuracies are 98.13%and99.28%, respectively.When thedefect

features occupy a small proportion in the input waveform, it is easily

submerged in the process of feature extraction of theCNNnetwork, and

the feature extraction results of different CNN networks on the input

waveform are different. After the channel weights are provided and

connected by the SE attention mechanism, the final defect feature

statistics may change unpredictably, resulting in the incomplete

extraction of defect feature information from the network. This may

affect the accuracy of network identification. As shown in Figure 10B,

after the input waveform passed through the waveform marking

preprocessing module, the loss function of the network decreased

faster, and the final network losses caused by the input waveforms

with different granularities were 0.032 and 0.013, respectively. Hence, the

following conclusions can be drawn from the above: the network has a

greater response to the input of the fine-grained waveform, the

characteristic defects account for a large proportion of the input

waveform, the defect feature information extracted from different

CNNs is more complete, and the model recognition accuracy is higher.

6.3 Performance comparison of different
networks

The performance of the constructed defect-recognition

network and other defect-recognition methods was compared

in terms of accuracy (ACC), sensitivity, precision, and

TABLE 2 Network parameters.

Sample type Defect thickness (μm)

Adhesive layer Ⅰ debonding defect 150

Adhesive layer Ⅱ debonding defect 350

Adhesive layer Ⅱ debonding defect 500

No defect ——

TABLE 3 Composition of the dataset.

Dataset Data type Number

Data Defect waveforms of adhesive layer I 10,000

Defect waveforms of adhesive layer Ⅱ 10,000

Non-defect waveforms 10,000

FIGURE 10
Comparison of the network performance under different inputs: (A) accuracy curve and (B) loss function curve. Schematic diagram of the
interference signal generated by the metal plate.
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comprehensive evaluation index F1. To validate the advantages

of the constructed network, the recognition results of different

classification methods on the dataset “Data for Terahertz” were

compared, as shown in Table 4. The highest recognition result of

different algorithms is shown in bold in the table.

As shown in Table 4, the recognition accuracy of the wavelet

transform, K nearest neighbor, and hiddenMarkov model for the

THz waveforms of the adhesive bonding structure were 80.30%,

82.97%, and 84.3%, respectively, with low precision of target

feature recognition. The recognition accuracy of BP neural

network and PSO-BP neural network is 90.53% and 91.65%

respectively. Because the input of BP and PSO-BP network is

waveform feature, the network lacks the tiny feature information

of waveform, which affects the recognition result of the network;

LSTM recognizes the relationship between waveform features

through long-term and short-term memory units, and the final

recognition accuracy is 94.11%, sensitivity is 96.56%, accuracy is

95.53%, and F1 score is 97.60%. ALexNet and ResNet extract and

transmit waveform features through neurons. After multiple

network layers such as convolution, pooling, and full

connection, the relatively small defect features are easy to be

submerged, resulting in the network’s final recognition accuracy

of 97.33% and 95.29%, sensitivity of 94.74% and 96.82%,

accuracy of 95.12% and 95.26%, and F1 scores of 97.21% and

96.39%; CRNN network extracts waveform features through

convolutional layer and pooling layer, and uses RNN network

layer to analyze the relationship between features. The final

recognition accuracy is 97.61%, sensitivity is 96.80%, accuracy

is 98.33%, and F1 score is 99.62%. In this paper, the network

recognition accuracy rate is 99.28%, sensitivity is 99.56%,

accuracy is 99.10%, F1 score is 99.73%, and the performance

on the data set is the best. The multi feature fusion model built in

literature [32] has a low recognition accuracy in image

classification, mainly because the traditional SE attention

mechanism added after image feature extraction in document

[32] does not suppress useless features during feature extraction,

but the network model built in this paper adds an improved SE

attention mechanism after each sampling layer to suppress

useless features, accelerate network convergence and improve

recognition effect. So the network built in document [32] has less

influence on data feature selection than the network model built

in this paper. The statistics of the iteration losses in defect

recognition training using different networks and partial

network confusion matrices were obtained, as shown in

Figure 11 and Figure 12, respectively.

The loss curves of 1,600 defect-recognition iterations for

different networks are plotted in Figure 11. The loss curve of

the proposed method was below that of all other networks,

yielding a loss value of 0.013, followed by CRNN with a loss

value of 0.02. The loss curves of BP and PSO-BP neural

networks exhibited the lowest decrease speed and became

stable at 1,000 iterations with loss values of 0.34 and 0.30,

respectively. The loss values of ResNet network, LSTM

network and ALexNet network are 0.05, 0.09 and

0.10 respectively.

In Figure 12, x1, x2, and x3 denote the non-defect waveform,

defect waveform of adhesive layer I, and defect waveform of

adhesive layer II, respectively. As can be seen in the figure, the BP

neural network could determine a total of 811 defect waveforms

of adhesive layer II in 10,000 non-defect waveforms and

1,084 non-defective waveforms in 10,000 defect waveforms of

adhesive layer II, indicating that the BP neural network was

prone to defect feature confusion, showing poor defect recognition

accuracy. In contrast, ResNet and CRNN exhibited a recognition

accuracy of over 93% and a better recognition effect in the defect

waveforms of adhesive layer I than those of adhesive layer II. The

defect features of adhesive layer II, which were similar to those of

the non-defect waveforms, were sub-merged in the feature

extraction process, resulting in incomplete statistical defect

features of the fully connected layer. This caused confusion in

TABLE 4 Classification results of different methods.

Recognition method ACC (%) Sensitivity (%) Precision (%) F1-score (%)

Wavelet transform [33] 80.30 87.37 86.65 88.89

K Nearest Neighbor [34] 82.97 83.84 85.29 89.37

Hidden Markov model [35] 84.31 89.26 91.14 90.52

Back propagation (BP) [25] 90.53 90.13 90.89 91.03

Particle swarm optimization-BP (PSO-BP) [26] 91.65 90.37 92.65 92.33

Long short term memory network (LSTM) [36] 94.11 96.56 95.53 97.60

ALexNet [37] 97.33 94.74 95.12 97.21

ResNet [38] 95.29 96.82 95.26 96.39

Convolutional recurrent neural network (CRNN) [39] 97.61 96.80 98.33 99.62

Proposed method 99.28 99.56 99.10 99.73
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the classification results of the non-defect and defect waveforms.

The proposed method achieved accuracies of 99.15%, 99.82%, and

98.87% in recognition of the defect waveforms of adhesive layer I,

adhesive layer II, and non-defect waveforms, respectively,

indicating the best recognition effect on the bonding defects of

different adhesive bonding structures. Thus, the proposed method

could fully recognize the defect waveform features of adhesive layer

II and non-defect waveform features, and reduce the network

recognition error rate.

6.4 Defect recognition results

The key to network performance testing is accurate

recognition of waveforms at the junction between the defect

and normal areas. The defect waveforms in the edge areas were

similar to those in the non-defective areas. The comparison of

feature waveforms between different adhesive bonding areas of

the 150 µm pre-embedded defect samples of adhesive layer I and

those of the 350 µm pre-embedded defect samples of adhesive

layer II are shown in Figure 13A, B, respectively. The dash-dot,

dashed, and dotted lines represent the waveforms in the defect,

edge, and non-defect areas, respectively.

In Figure 13A, more prominent waveform features can be

observed in the defect area of adhesive layer I. In the waveform

area of adhesive layer I, oscillating peaks and valleys were generated

by the reflected echoes at the THz interface between the organic glue

and air gap. Similar waveform features in the edge and non-defect

areas can be observed in the amplitude of the peak-to-valley

oscillation in the red circle area in Figure 13A. Hence, the

waveform features in the edge area were easily submerged in the

waveform feature extraction of the non-defect area, resulting in

network confusion regarding the analysis and statistics of the

waveform information in the defect, edge, and non-defect areas.

FIGURE 11
Iteration loss curves in the defect recognition training by different networks.

FIGURE 12
Partial network confusion matrices. (A) BP, (B) ResNet, (C) CRNN, and (D) Proposed method.
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This eventually influences the waveform recognition accuracy in

different areas. According to the waveforms in the defect area of

adhesive layer II (Figure 13B), the difference between waveforms in

these three areas was only represented by the size of the valley in the

red circle area owing to the superposition of the side lobe

information of THz signals. This makes it difficult for the

network to accurately recognize the waveforms in the defect and

defect edge areas during the extraction of waveform features,

resulting in recognition errors.

The proposed network after training, the BP neural network

in the literature [25], and the CRNNwith the best performance in

the classification results were used to recognize the generalized

samples with different debonding thicknesses, as shown in

Figure 14. The first, second, and third rows denote the

recognition results of the 150 µm pre-embedded defect sample

of adhesive layer I, the 350 µm pre-embedded defect sample of

adhesive layer II, and the 500 µm pre-embedded defect sample of

adhesive layer II, respectively. The bonding defect areas

recognized by the network model and the non-defect areas are

marked in red and blue, respectively. The closer the chromaticity

is to red, the larger is the defect probability. To quantify the

recognition ability of different networks for pre-embedded

defects, the statistical results of networks, i.e., the proportion

Nor-Def of the number of non-defective waveforms, erroneously

determined as defective waveforms in the overall number of non-

defective waveforms, and the proportion Def-Nor of the number

of defective waveforms, erroneously determined as non-defective

waveforms in the overall number of defective waveforms, were

obtained, as listed in Table 5.

The recognition results of the different networks regarding

the pre-embedded defect samples are shown in Figure 14.

According to the recognition results of the BP, CRNN, and

proposed method for 150 μm pre-embedded defect samples of

adhesive layer I shown in Figures 14A–C, the defect location

recognized by the BP neural network was not consistent with the

location of the pre-embedded defect, and the defect area

surrounded the pre-embedded defect. Moreover, the BP

neural network confused part of the non-defect waveform

with the defect waveform of the adhesive layer I. The

determined ratios of the defect areas of defects 1, 2, 3, and

4 to the pre-embedded defect area in the recognition results of

this network were 112.35%, 104.83%, 95.11%, and 121.25%,

respectively, showing large differences between the

recognition results and the theoretical area. In addition, the

network exhibited high Nor-Def and Def-Nor values and a

poor waveform recognition of the defect edge area. The CRNN

accurately recognized the location of the pre-embedded defect,

with no stray defect area surrounding it. However, it recognized

part of the defect waveform of adhesive layer I as a non-

defective waveform, obtained a Def-Nor value of 3.31% and

a Nor-Def value of 5.32%, and displayed a low accuracy in

recognizing the waveform in the defect edge area. The defect

recognition results of the proposed network are given in

Figure 14C, showing the basic consistency between the

location of the recognized defect and the defect area of the

pre-embedded sample. The ratios of the defect recognition

areas of defect 1, 3, and 4 to the theoretical pre-embedded

defect area were all greater than 96%, together with a Nor-Def

value of 0.76% and a Def-Nor value of 1.89%. The proposed

network exhibited a good waveform recognition effect in the

transition area, with the shape of the recognized defect being

consistent with that of the pre-embedded defect. The difference

between the defect recognition area of Defect 2 and the pre-

embedded defect area can be observed in Figure 14C because

problems in the production process can lead to a blurred

interface between the defective and normal areas in some

areas, resulting in an inconsistency between the final

recognition result and the oretical area.

According to the recognition results for the 350 µm pre-

embedded defect sample of adhesive layer II (Figure 14E–G), the

FIGURE 13
Comparison of adhesive layer waveforms in different areas (A) Comparison of feature waveforms of adhesive layer I and (B) adhesive layer II.
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FIGURE 14
Recognition results of different pre-embedded defect samples by different networks: (A) the BP neural network for the 150 μmdefect sample of
adhesive layer I, (B) the CRNN for the 150 μm defect sample of adhesive layer I, (C) the proposed method for the 150 μm defect sample of adhesive
layer I, and (D) the actual 150 μmpre-embedded defect sample of adhesive layer I. (E) Recognition results of the BPNN for the 350 μmdefect sample
of adhesive layer II, (F) the CRNN for the 350 μm defect sample of adhesive layer II, (G) the proposed method for the 350 μm defect sample of
adhesive layer II, (H) and the actual 350 μmpre-embedded defect sample of adhesive layer II. (I) Recognition results of the BP neural network for the
500 μmde-fect sample of adhesive layer II, (J) the CRNN for the 500 μmdefect sample of adhesive layer II, (K) the proposedmethod for the 500 μm
defect sample of adhesive layer II, and (L) the actual 500 μm pre-embedded defect sample of adhesive layer II.

TABLE 5 Statistics of the defect recognition error rates of different networks.

Defect type Network type Nor-def/% Def-nor/%

150 μm debonding sample of adhesive layer I BP 11.61 4.96

CRNN 5.32 3.31

Proposed method 0.76 1.89

350 μm debonding sample of adhesive layer Ⅱ BP 3.93 2.35

CRNN 2.09 2.94

Proposed method 0.36 0.27

500 μm debonding sample of adhesive layer Ⅱ BP 18.61 4.96

CRNN 4.18 0.88

Proposed method 1.07 0.40
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location of the pre-embedded defect was recognized by all three

defect recognition networks. However, the BP neural network

obtained a Def-Nor value of 2.35%, which was concentrated

around defect 2. It also displayed a weak resistance to random

errors in sample production and confused the defect waveforms and

normal area waveforms, eventually generating a stray defect area in

the defect recognition result map. The CRNN accurately recognized

the defect location, but showed low precision in recognizing the

waveform of the defect edge area, obtaining Nor-Def and Def-Nor

values of 2.09% and 2.94%, respectively. In the network recognition

results of the pro-posed network, no stray defect areas existed

around the pre-embedded defect, with Nor-Def and Def-Nor

values of 0.36% and 0.27%, respectively. Moreover, the proposed

network could correctly discrimination between different types of

waveforms and showed a low defect recognition error rate.

The recognition results of the 500 µm pre-embedded defect

sample of adhesive layer II are plotted in Figures 14I–K. It can be

observed from the combination of Figure 14 and Table 5 that the

proposed network has the lowest Nor-Def and Def-Nor values

(1.07% and 0.40%, respectively), high waveform recognition

accuracy, and better recognition results than those of the BP

neural network and CRNN. Moreover, it could differentiate

between the defect waveform and the normal area waveform,

resulting from uncertain factors during sample production. The

ratios of the defect areas of defects 1, 2, 3, and 4 to the pre-embedded

defect area in the recognition results of this network were 93.73%,

98.16%, 93.36%, and 95.55%, respectively. A relatively high

consistency was obtained between the recognized defect location

and area and that of the pre-embedded defect.

According to the recognition results of the three networks in

terms of the pre-embedded defect samples, the existing methods for

defect recognition of adhesive bonding structures only improve the

feature recognition accuracy by means of prepro-cessing detection

waveforms or adjusting algorithm parameters but fail to improve it

from the perspective of the essence of target feature recognition.

Herein, the single detection waveformwas segmented by the adhesive

bonding area, and the waveforms in different adhesive bonding areas

were input as a multichannel CNN after the subtraction operation to

increase the proportion of waveform features. Moreover, the SE

attention mechanism was used to increase the weight of defect

features. The proposed network obtained higher values of all these

indices, including the ratio of the recognized defect area to the pre-

embedded defect area, the waveform recognition accuracy of the

defect edge area, and the Nor-Def and Def-Nor values in the defect

recognition of generalized samples, com-pared to the BP neural

network and the CRNN, demonstrating its advantages in defect

recognition of adhesive bonding structures.

7 Conclusion

In this study, according to the interface characteristics of the

bonding-structure THz-detection waveform, a multi-feature

fusion convolutional neural network was constructed for

bonding quality detection of bonded structures. After the

preprocessing of waveform marking as the network input,

with the segmented waveforms of different bonding areas, the

channel weights were allocated through the SE attention

mechanism. The feature extraction results of multiple neural

networks were integrated and the classified detection waveforms

were identified. The comparison results of different granularity

waveform inputs of the network in this study show that a fine

granularity waveform of the bonding area can better simulate the

feature extraction ability of the network and improve its

recognition and classification effect. The results show that the

efficiency of the labeling network is 10 times higher than that of

manual selection. The accuracy of the defect recognition network

in this study was 99.28%, sensitivity was 99.56%, accuracy was

99.10%, and F1 score was 99.73%, which was the best in the

dataset. Compared with the BP and CRNN networks, the labeling

network performed better in the preset defect detection of

generalized experimental samples; the lowest obtained error

rate of defect recognition was 0.27%. The proposed network

solves the problems of low efficiency of the defect identification

method of adhesive structures and considerable influence of

subjective factors, and promotes the development of THz

non-destructive testing technology. We would like to thank

Editage (www.editage.cn) for English language editing.
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