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Walnut grading is an important step before the product enters the market.

However, traditional walnut grading primarily relies on manual assessment of

physiological features, which is difficult to implement efficiently. Furthermore,

walnut kernel grading is, at present, relatively unsophisticated. Therefore,

this study proposes a novel deep-learning model based on a spatial

attention mechanism and SE-network structure to grade walnut kernels using

machine vision to ensure accuracy and improve assessment efficiency. In

this experiment, we found through the literature that both the lightness (L∗

value) and malondialdehyde (MDA) contens of walnut kernels were correlated

with the oxidation phenomenon in walnuts. Subsequently, we clustered

four partitionings using the L∗ values. We then used the MDA values to

verify the rationality of these partitionings. Finally, four network models

were used for comparison and training: VGG19, EfficientNetB7, ResNet152V2,

and spatial attention and spatial enhancement network combined with

ResNet152V2 (ResNet152V2-SA-SE). We found that the ResNet152V2-SA-SE

model exhibited the best performance, with a maximum test set accuracy

of 92.2%. The test set accuracy was improved by 6.2, 63.2, and 74.1%

compared with that of ResNet152V2, EfficientNetB7, and VGG19, respectively.

Our testing demonstrated that combining spatial attention and spatial

enhancement methods improved the recognition of target locations and

intrinsic information, while decreasing the attention given to non-target

regions. Experiments have demonstrated that combining spatial attention

mechanisms with SE networks increases focus on recognizing target locations

and intrinsic information, while decreasing focus on non-target regions.

Finally, by comparing different learning rates, regularization methods, and
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batch sizes of the model, we found that the training performance of the

model was optimal with a learning rate of 0.001, a batch size of 128,

and no regularization methods. In conclusion, this study demonstrated that

the ResNet152V2-SA-SE network model was effective in the detection and

evaluation of the walnut kernels.
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1. Introduction

Walnut (Carya cathayensis Sarg.) are one important woody
nut tree species of the genus Carya of Juglandaceae family,
mainly distributed in China (1). A popular agricultural
commodity, walnuts have a high nutritional content and
considerable health advantages (2–5). Walnut processing
depends heavily on the quality of the walnuts. At present,
the quality identification and grading of walnuts is usually
performed manually, which has the following drawbacks:
(1) it relies on subjective (and hence unreliable) sensory
evaluation, primarily through methods such as peeling and
observing the kernel, smelling, and tasting, all of which
require professional skill; (2) accurate quality testing requires
specialized testing tools; (3) the testing process is complicated
and time consuming, making it unfeasible for small-scale
production firms at present, and (4) the existing grading is basic
and only grades kernels as good or bad. Therefore, to increase
the effectiveness and accuracy of grading, an intelligent walnut
grading system is needed.

In recent years, machine learning has been used extensively
in agriculture (6). In traditional feature-selection algorithms,
features are extracted and selected from a feature vector by
principal component analysis (PCA) (7). However, PCA tends
to disregard information about features with a low contribution
ratio. Sometimes, features with lower contribution rates instead
contain crucial information. Furthermore, feature selection
often requires manual determination of the appropriate
features of images, which is subjective and time-consuming.
Therefore, many researchers have employed deep-learning
models for feature extraction in machine learning-based grading
research (8, 9). The researchers used deep-learning models to
automatically extract features from various images and enabled
the models to focus intelligently and selectively on features with
a low contribution ratio (10).

At present, deep-learning models are superior to traditional
machine learning models in grading agricultural products
(11). In the rice classification study, the deep-learning model
enabled quick, accurate, and precise grading, minimizing pre-
processing, and eliminating the need for manual feature
extraction. The EfficientNet-B0 model achieved scores for class

accuracy of 98.33, 96.51, 95.45, 100, 100, 99.26, and 98.72%
for healthy, full chalky, chalky discolored, half chalky, broken,
discolored, and normal damage classes, respectively (12). At
present, pre-training models based on transfer learning are
increasingly being utilized by academics, and can minimize
the training time for models (13). However, deep-learning
models are still deficient, and it is difficult to control
the attention of models in the task of image recognition.
As a result, network architectures with enhanced network
recognition weights are currently emerging (14), and different
models and weight assignments will yield various outcomes in
agricultural grading models.

In the existing grading of agricultural products, the main
criterion of grading is still appearance (15, 16). However, the
biochemical properties of the produce also have an impact on
the grade of the produce (17). Grading based on appearance
alone is not very effective. As a result, genotype research
specifically designed for agricultural products was developed
(18, 19). These type of research involves many biochemical
properties to achieve the grading of agricultural products.
Although this type of research can select the best genotypes of
produce, each genotype experiment requires the measurement
of many biochemical property; therefore this method cannot
easily be applied to the grading of agricultural products.

This study utilized the walnut kernel oxidation
phenomenon to establish a correlation between the lightness
(L∗ values) of the appearance of the walnut kernel and the MDA
content of the kernels. The L∗ values of the appearance of the
walnut kernels was used to define partitionings for grading of
walnuts, and the walnuts’ MDA content was used to validate
the appropriateness of these partitionings. Subsequently, a
deep-learning model was used to train images of walnut kernels,
resulting in the intelligent grading of the walnut kernels. The
following are the research contributions of this study:

(1) Walnut kernel oxidation phenomena were used to link
the L∗ values of the appearances of the kernels to their MDA
content. The L∗ values were used to create partitionings for
clustering the samples, and the MDA content for validation the
rationality of these partitionings. It was demonstrated that the
L∗ values could be one of the features of the walnut kernels
learned by the deep-learning model. Thus, a correlation between
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the walnut kernel images and the quality of the walnuts was
established. Subsequent studies of walnut kernels could use the
level of L∗ value reflects the degree of oxidation of the walnut
kernel, eliminating the need to measure the degree of oxidation
of walnut kernels.

(2) To create a ResNet152V2-SA-SE model for the grading
study of the walnut kernel appearance images, a residual model
based on transfer learning with a spatial attention mechanism
and an SE-network structure was used.

(3) By combining deep-learning with an analysis of
biochemical properties, a new walnut kernel grading method
was defined. It also altered the traditional manual grading
method to make grading easier. By matching the appearance
features with the biochemical property, future research on
agricultural products will only need to measure the appearance
features to obtain sufficiently accurate of biochemical properties.

2. Materials and methods

The walnuts were harvested in September from a
plantation located in Lin’an, Zhejiang, China (30◦17′24.2′′N;
118◦57′1.728′′). The walnuts used were uniform in size
(diameter: 2–2.5 cm), and harvested from mature trees. The
traditional post-harvest processing of walnuts mainly consists
of washing and screening, drying, machine hulling, and manual
grading. As the main objective of this paper is to change the
manual grading method, the walnut kernels after machine
hulling were used as the experimental sample.

2.1. Experimental plan

In previous studies, researchers have shown that the
lightness (L∗ values) of the appearance of the walnut kernels
decreased progressively with prolonged storage durations,
accompanied by an increase in the degree of oxidation (20). In
addition, it is known that the degree of oxidation of a walnut
product correlates with its quality (21). And the MDA is a major
product of lipid peroxidation in unsaturated fatty acids, which
is considered an accurate and sensitive parameter for assessing
oxidative deterioration (22). Therefore, we assume that if we
want to correlate the appearance and quality of walnut kernel,
the oxidation degree can be used as the intermediate value, and
the L∗ value of appearance can be correlated with the MDA
content. To achieve this, we determined to measure the MDA
contents and peroxidation value (POV) of the Lin’an walnut
kernel samples. The research results showed that the pattern
of change in MDA content and POV was similar, as shown
in Figure 1. This proved that the MDA content was positively
correlated with POV because the level of POV directly reflects
the degree of oxidation of walnut kernels, and the higher the
POV the higher the degree of oxidation of walnut kernels, so it

proved that the MDA content was positively correlated with the
degree of oxidation. Because the L∗ value of walnuts is negatively
correlated with the degree of oxidation (20), we conclude that a
decline in the L∗ value of the appearance of the walnut kernels
was accompanied by an increase in the POV and MDA content
in the walnut kernels, which was consistent with the results of
Pei et al. (23).

Finally, this study correlated the L∗ value of the
appearance of walnut kernel with the MDA content through
oxidation phenomena.

Figure 2 depicts the technology roadmap for this study.
The first step was building an association model. The L∗

values of the appearance of the walnut kernels were clustered
to establish four partitionings (24). The MDA content of the
walnut kernel was utilized to validate these partitionings.

Step two involved the creation of a dataset. For this, we
utilized a visual motion platform, using Android and Apple
mobile devices to capture photographs of the walnut kernels
under different lighting conditions and those with different
shapes and textures to exclude fixed features other than L∗

values. The dataset was built based on four partitions of
the L∗ values of the appearance of the walnut kernels. We
consider the four partitions as four categories. Android phones,
Apple phones, and visual motion platforms were applied
to each partition.

In the third step, the models were trained and compared.
Among the EfficientNetB7, VGG19, and ResNet152V2 models,
the ResNet152V2 model exhibited the best performance. The
ResNet152V2-SA-SE model was constructed by adding a spatial
attention mechanism and a squeeze-and-excitation network
(SENet) structure to refine the feature map weight assignment
of the ResNet152V2 model.

2.2. Pre-experimentation

The source of materials for this study was Lin’an District,
Hangzhou City, Zhejiang Province, which is the primary
walnut-producing region in China (2). We used a CANY XP205
quasi-microbalance, a Kaida TG16G table microcentrifuge, 7G
UV-6800A spectrophotometers, and a Konica Minolta CR-
10PLUS color reader.

2.2.1. Intrinsic and extrinsic quality correlation
modeling

The L∗ values of the appearance of the walnut kernels
were used to construct partitionings, and the MDA content
of the walnut kernels was used to validate the rationality of
these partitionings.

2.2.2. Appearance inspection
In this experiment, 200 walnut kernels were chosen; half of

the walnuts were high quality, and the other half were inferior.
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FIGURE 1

MDA and peroxidation value (POV) diagram. The highest values of POV and MDA contents are marked as “a”, the second highest as “b”, the third
highest as “c”, and the lowest as “d”.

FIGURE 2

Project technology roadmap.

The L∗ values of the appearance of the walnut kernels were
measured using a quasi-microbalance. The test showed that the
superior walnut kernels generally had higher L∗ values than
inferior walnut kernels. The trials demonstrated that, as shown
in Figure 3A, there was a correlation between L∗ value and
quality.

2.2.3. Partitioning clustering
To determine if the L∗ values of the appearance of the walnut

kernels can be used as a walnut kernel grading feature, this study
graded the kernels using the L∗ value of the appearance as the
primary index for grading. A total of 636 walnut kernels were
chosen at random. The Davies–Bouldin index (DBI) (25) plot is
shown in Figure 3B.

The number of clusters (K = 4) for the K-means clustering
algorithm was determined by DBI (24, 25) and the L∗ values
were divided into four partitionings. As shown in Figure 3C,
these partitionings of the L∗ values were determined to be as

follows: (0, 30), (30, 36), (36, 41), and (41, 54). Thus, (0, 30) was
the lowest grade, and (41, 54) the highest.

2.2.4. Quality inspection
To evaluate the L∗ values and MDA content levels of the

samples separately, we chose a total of 60 walnuts, with 15 of
each grade. The results are displayed in Figure 4.

The MDA content of the walnut kernels showed an
increasing trend. The MDA content of the kernels increased
with the aging degree. Figure 4 shows significant differences
among grades as the aging degree increased from grade I to
grade IV (P < 0.05), whereas the L∗ values decreased with age,
showing significant differences among grades (P < 0.05). This
indicated that the MDA content and L∗ values represented the
intrinsic quality and extrinsic quality attributes, respectively,
fully characterized the differences among different grades, and
could fully describe the differences between kernels of different
aging degrees. Based on the MDA content and L∗ values, the
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FIGURE 3

Walnut kernel association model construction process. (A) Shows measurements of L* values for superior and inferior walnut kernels. (B) Shows

the result of the DaviesŰBouldin index. (C) Shows the result of clustering algorithm.

FIGURE 4

L* values and malondialdehyde content of walnut samples of different grades. Different lowercase letters indicate significant differences
between different grades of the same index (P < 0.05).

walnut kernels were graded as follows: grade I (41, 54); grade
II (36, 41); grade III (30, 36), and grade IV (0, 30), shown in
Table 1. By experimenting with MDA content, we verified the
rationality of L∗ value partitionings.

2.3. Data acquisition and dataset
construction

This study used various image acquisition methods to
increase the diversity of the dataset. The study also used
deep-learning models for model training so that the models
could autonomously learn features other than the L∗ values of
the appearance of the walnut kernels, such as the shape and
texture of different grades of the kernels.

2.3.1. Materials and equipment
The image acquisition devices used included the iPhone

XR mobile phone, Redmi Note 5 mobile phone, and a visual

motion platform. Both the Apple XR and Redmi Note 5
smartphones were equipped with 12-megapixel rear cameras.
The Apple XR has a larger sensor and an adapted processor that
reduces exposure time, and takes lower International Standards
Organization values than Redmi Note 5 mobile phone in the
same environment, reducing the noise effect. The visual motion
platform comprised an ML-SYT-04 industrial vision lab stand,
an ML-FA-3517 industrial lens, an ML-RL75-A00-W industrial
ring light source, an ML-AS5050-W industrial backlight source,
and an MER-132-30G industrial camera. The brand of the visual

TABLE 1 Ranges for walnut kernel grades.

Walnuts
kernel grade

L* value interval

First grade L* value is greater than 41 and less than or equal to 54

Second grade L* value is greater than 36 and less than or equal to 41

Third grade L* value is greater than 30 and less than or equal to 36

Fourth grade L* value is greater than 0 and less than or equal to 30
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motion platform was DAHENG IMAGING. The arrangement
of the visual motion platform is illustrated in Figure 5.

2.3.2. Data acquisition and data enhancement
Each intact walnut kernel was divided into multiple flaps

to increase the amount of data. To improve the robustness of
the model after training and to eliminate influencing factors
other than the L∗ value, images of walnut kernels were taken
under different lighting conditions and with varied shapes and
textures. Part of the dataset is shown in Figure 6. A total of
4,395 original images of the four grades were obtained for
the experiment, including 947 first-grade walnut kernels, 1,183
second-grade walnut kernels, 1,020 third-grade walnut kernels,
and 1,245 fourth-grade walnut kernels. Considering the uneven
distribution of the grades of the walnut kernels, firstly, the
original dataset was divided into a training set, validation set,
and test set at a ratio of 8:1:1, and subsequently, the dataset was
expanded using random rotation plus random cropping. The
expanded dataset consisted of 1,607 first-grade walnut kernels,
1,548 second-grade walnut kernels, 1,558 third-grade walnut
kernels, and 1,500 fourth-grade walnut kernels.

2.4. Model construction

2.4.1. Model training parameter settings
The images of the training set were dynamically expanded

using the image data generator during image training. After
the application of random rotation plus random cropping, the

training images were then subjected to the following transforms:
random shear transformation, with a parameter value of 0.2;
random zoom, with a parameter value of 0.2; and horizontal and
vertical shift, with a parameter value of 0.1. This was to train
the model thoroughly and increase the generalizability of the
training results.

2.4.2. Residual network structure
Deep residual networks are referred to as ResNets (26).

Before the emergence of residual networks, the deeper the
network layers, the more apparent the gradient disappearance
of the model, which results in less accurate models. Considering
that the walnut kernel images collected in this experiment
were derived from different environments, and noting that
a deeper residual model can identify more features, among
the pre-trained models, the deepest ResNet152V2 model was
chosen in this study.

2.4.3. ResNet152V2-SA-SE network
construction

(1) Transfer learning
Transfer learning is a deep-learning method that aims to

accelerate a model’s training process (13). Therefore, for this
study, we decided to use the ResNet152V2 pre-trained model
from the 2015 ImageNet competition for transfer learning.

(2) Spatial attention mechanism
In this study, the use of the spatial attention mechanism (27)

in the recognition task enabled the model to focus more on key
features such as the shape and texture of the walnut kernels,

FIGURE 5

Visual motor platform.
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FIGURE 6

Example dataset.

and thus ignore non-key features such as the background
of the kernels. We added a convolutional layer with 2,048
convolutions and a convolutional kernel size of 1 × 1 after
the post_relu layer of the ResNet152V2 pre-training model to
enhance the extraction of image features when building the
model. Subsequently, we linked this layer to the spatial attention
mechanism. Finally, a new convolutional layer was formed to
refine the weighting of image features. The formula for the
generated feature information, Ms, was as follows:

MS(C) = σ(f 7 × 7([AvgPool(C);MaxPool(C)])) (1)

where σ denotes the hard sigmoid activation function, f 7 × 7

denotes a convolutional neural network structure with 7 × 7
convolutional kernels, and AvgPool(C) and MaxPool(C) are
the global average pooling and maximum global pooling,
respectively of the input image C. Subsequently, the output
walnut kernel feature map was fed into the Batch Normalization
(BN) layer to speed up the training and convergence of the
network and prevent the gradient disappearance problem.
Finally, the walnut kernel feature map from the BN layer was
output and denoted X after being multiplied by the original map
and passed into the next layer.

(3) SENet
SENet was divided into the squeeze operation and the

excitation operation (28). The squeeze operation extracts each
feature map as scalar data using a global pooling operation. The
key formula is as follows.

kn = Fsq(un) =
1

H × W

H∑
x = 1

W∑
y = 1

un(x, y) (2)

In Eq. 2 the sum of all pixel values of the H × W walnut
kernel feature map is calculated and divided by H×W to obtain
Fsq. The squeeze operation obtains the global description of
each walnut kernel feature map, which opens the connection
between the channels. The excitation operation is used to
obtain the relationship between the channels and is expressed
as follows:

p = Fex(k,W) = σ(g(k,W)) = σ(W2δ(W1k)) (3)

Equation 3 describes the two full-connection operations and
the sigmoid activation function to obtain the corresponding
channel weights. σ is the ReLU function, and W1 is the first
full-connection operation for dimensionality reduction. W2

is the parameter of the second full-connection operation to
restore the correct dimensionality to the input dimension.
After two full joins, the weight normalization operation is
performed on each walnut kernel feature map using the sigmoid
activation function.

After the weight p is obtained, it is multiplied by the original
walnut kernel feature map to obtain the walnut kernel feature
map with weights, as shown in Eq. 4.

∼

Xn = Fscale(un, pn) = pn · un (4)

The spatial attention mechanism enhances the acquisition of
spatial information about the walnut kernel in the image. Then
the SENet applies the weights extracted by the channels to the
feature maps so that the channels are adaptively weighted, thus
allowing the feature maps with a large role to have an increased
impact on the results.

The overall network structure of the ResNet152V2-SA-SE
model is shown in Figure 7.

3. Results and analysis

3.1. Evaluation indicators

In this study, precision, recall, and accuracy were used as
validation metrics to evaluate the model.

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Recall =
TP

TP + FN
(6)

Precision =
TP

TP + FP
(7)

where TP denotes a true positive, TN a true negative, FP a false
positive, and FN a false negative.
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FIGURE 7

ResNet152V2-SA-SE network structure.

3.2. Experimental environment

In this study, experiments were carried out on Windows 10
using the Keras framework under the TensorFlow framework.
The experiments were conducted using an Intel(R) Core(TM)
i9-10920X processor running at 3.50 GHz, 64.0 GB of memory,
and an Nvidia GeForce RTX 3080 graphics card. The software
was Python 3.6.0 and TensorFlow 2.4.1. Every model used
transfer learning to accelerate model training. A convolutional
layer of 1,024 neurons was added to reduce the impact of
feature acquisition on grading results. During model training,

the learning rate was set to 0.001, the batch size to 128, and
the epoch to 100.

3.3. Model training and test results

3.3.1. Performance assessment for VGG19,
EfficientNetB7, and ResNet152V2

(1) Model comparison
The EfficientNetB7 model used in this experiment contained

many parameters and a large model size, as shown in Table 2.
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TABLE 2 Comparison of the three models.

Model name Number of
parameters

Model size
(MB)

Average model
training time (s)

VGG19 20,553,796 78.4 96

EfficientNetB7 66,724,251 256 103

ResNet152V2 60,433,924 231 104

This is because the EfficientNetB7 model is enhanced in
three dimensions (depth, width, and resolution), increasing its
structural complexity. The VGG19 model had the least number
of parameters, the smallest model size, and the quickest training
time, but its structure was simpler, and gradient disappearance
was more likely to be caused by a high number of picture
features. Although the ResNet152V2 model had a deeper model
layer, the number of parameters and model size of ResNet152V2
were still smaller than the EfficientNetB7 model.

(2) Comparison of test results
The test results of the three models are shown in Table 3.
According to the analysis of the models’ precision rates, the

VGG19 model could not distinguish between first- and second-
grade walnut kernels. The third-grade walnut kernel recognition
precision for the VGG19 model was very low, at just 27%. The
average precision rate of the EfficientNetB7 model was only
32.5%. Only a very small proportion of the walnut kernel images
could be accurately identified in the detected walnut kernel
images because the average precision of the two types of models
was extremely low. The ResNet152V2 model, in contrast, had an
average precision of 87.7%, which was significantly greater than
that of the models mentioned above.

The recall rate of the model was analyzed. Although the
recall rate of VGG19 for the third-grade walnut kernel images
reached 60.8%, the recognition precision of VGG19 for the
third-grade walnut kernel images was only 27.0%, indicating
that the VGG19 model had a low efficiency due to the
misrecognition of other grade walnut kernels as third-grade
walnut kernels. The average recall rate of the EfficientNetB7
model was only 29%. The average recall rates of both models
were extremely low; furthermore, the percentage of correctly
identified walnut kernel images was too low to be used in the real
walnut kernel prediction stage. In contrast, the average recall
of the ResNet152V2 model reached 85.9%, and its performance
was much better than that of the models mentioned above.

In conclusion, the VGG19 model and the EfficientNetB7
model both exhibited poor performance. The average precision
rate of the ResNet152V2 model was 87.7%, higher than the
79.3 and 55.2% of the VGG19 and EfficientNetB7 models,
respectively. The average recall rate of the ResNet152V2 model
was 85.9%, higher than the 67.7 and 56.9% of the VGG19 model
and the EfficientNetB7 model, respectively.

(3) Analysis of the reasons for differentiation
To further explore the test set identification error problem

of the VGG19 and EfficientNetB7 models, the confusion matrix
and the heatmap of the above model were drawn. The confusion
matrix is shown in Figures 8A, B, and the heatmaps are shown
in Figures 9A, B.

As seen in the confusion matrix for the test results of the
VGG19 network model, the recognition accuracy of the network
for predicting the four walnut kernel grades was relatively low,
with 0% correct recognition of both first- and second-grade
walnut kernel images and 6.7% correct recognition of fourth-
grade walnut kernel images. This is because, when learning the
image features of walnut kernels, as a result of the deeper layers
of the VGG19 model network, when updating the network
weights by back-propagation of the gradient, the gradient will
propagate exponentially and thus approach 0. Eventually, the
VGG19 model experiences gradient disappearance and cannot
learn which image features are useful for recognition.

For the EfficientNetB7 network model, the confusion matrix
indicated that the rate of recognition of the model was 22.5
and 25.7% for first- and third-grade walnut kernels, respectively,
which was still a low rate of recognition. However, these rates
were slightly better than those of the VGG19 network model.
Observing the heatmap, we found that the EfficientNetB7 model
focused its observations on the edges of the walnut kernel
images, which was the main reason for the poor accuracy.
Because walnut kernels, as smaller recognition targets, have less
obvious physical features such as texture and shape, the model
needed to analyze the walnut kernel images for deeper feature
information during recognition and thus notice these small
differences. For this reason, the depth of the model was a major
influence on the grading recognition of walnut kernel images. As
EfficientNetB7 balances the other two dimensions by reducing
the weights assigned to the depth of the model. The weights
assigned to the depth of the model were reduced weakening the
expressiveness of the model, which meant that the model was
unable to extract subtle features between the images of walnut

TABLE 3 Test results of the three models.

Model name Recognition precision of each level/% Recognition recall of each level/%

First
grade

Second
grade

Third
grade

Fourth
grade

First
grade

Second
grade

Third
grade

Fourth
grade

VGG19 0.0 0.0 27.0 6.7 0.0 0.0 60.8 12.1

EfficientNetB7 22.5 30.2 25.7 51.5 30.2 43.8 19.0 22.8

ResNet152V2 97.4 67.9 86.9 98.5 95.0 86.9 73.9 87.9
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FIGURE 8

(A) Confusion matrix model of VGG19 model; (B) confusion matrix model of EfficientNetB7 model; (C) confusion matrix model of ResNet152V2
model; and (D) confusion matrix model of ResNet152V2-SA-SE model.

kernel and ended up only locating important features of the
image roughly at the edges of the image.

Based on the test results of the ResNet152V2 network
model, the problem of disappearing gradients in the VGG19
network model was mitigated by adding the residual structure.
Compared with the EfficientNetB7 model, the ResNet152V2
model was able to refine the subtle feature information between
the walnut kernel images adequately with a deeper model
depth. Therefore, the ResNet152V2 model outperformed the
VGG19 and EfficientNetB7 models in terms of both model
precision and recall. This study improved and optimized the
ResNet152V2 model.

3.3.2. Performance assessment for
ResNet152V2 model versus
ResNet152V2-SA-SE model

(1) Model comparison
A spatial attention mechanism and an SE-network structure

were introduced to ResNet152V2. The spatial attention
mechanism enhanced the acquisition of spatial information
about the walnut kernel in the image. The SE structure gave
adaptive weights to channels so that feature maps with large
roles had more impact. The new model was referred to as
ResNet152V2-SA-SE. Although the ResNet152V2-SA-SE model
increased the number of parameters and model size compared to
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FIGURE 9

(A) Heat map of the EfficientNetB7 model; (B) heat map of the VGG19 model; (C) heat map of ResNet152V2; and (D) heat map of
ResNet152V2-SA-SE.

ResNet152V2, the new model had a reduced training time. We
compared ResNet152V2-SA-SE to ResNet152V2, and the results
are displayed in Table 4.

(2) Comparison of test results

The test results of the two models are shown in Table 5. The
recognition precision of the ResNet152V2-SA-SE model was
15.2 and 4.3% higher than that of the ResNet152V2 model for
second- and third-grade walnut kernels, respectively. Compared

Frontiers in Nutrition 11 frontiersin.org

https://doi.org/10.3389/fnut.2022.1075781
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1075781 December 23, 2022 Time: 15:42 # 12

Chen et al. 10.3389/fnut.2022.1075781

TABLE 4 Comparison of the two models.

Model name Number of
parameters

Model size
(MB)

Average model
training time (s)

ResNet152V2 60,433,924 231 104

ResNet152V2-SA-
SE

65,165,030 249 102

with the ResNet152V2 model, the ResNet152V2-SA-SE model
recognized more walnut kernel grade images correctly.

The recognition recall of the ResNet152V2-SA-SE model
for first-grade, third-grade, and fourth-grade walnut kernels
were 3.1, 14.3, and 7.4% higher, respectively than those
of the ResNet152V2 model. These results indicated that
the ResNet152V2-SA-SE model correctly identified first-
grade, third-grade, and fourth-grade walnut kernel images
at a higher rate.

In summary, the average precision and recall of the
ResNet152V2-SA-SE model were higher than those of the
ResNet152V2 model by 4.6 and 6.2%, respectively. Thus,
we concluded that the ResNet152V2-SA-SE model performed
better than the ResNet152V2 model in the test set overall.
Compared with the ResNet152V2 model, the ResNet152V2-SA-
SE model had a higher recognition accuracy.

(3) Analysis of the reasons for the performance differences
To further explore the advantages and disadvantages of the

ResNet152V2 model and the ResNet152V2-SA-SE model, the
confusion matrices of the two models were generated, as shown
in Figures 8C, D. The walnut kernel heatmaps obtained for the
ResNet152V2 model and ResNet152V2-SA-SE model are shown
in Figures 9C, D.

The confusion matrices demonstrated that, compared to
ResNet152V2, the ResNet152V2-SA-SE model recognized 3.1,
14.4, and 7.4% more first-, third-, and fourth-grade walnut
kernels, respectively.

According to the heatmap, the ResNet152V2-SA-SE model,
which was based on the ResNet152V2 model, focused on
obtaining the location and intrinsic details of the walnut kernel
while paying less attention to unimportant details. In particular,
it was clear from the images obtained from the visual motion
platform that the ResNet152V2-SA-SE model concentrated on
crucial information that was no longer restricted to the walnut
kernel itself. It also focused on information regarding the walnut
kernel’s location and intrinsic image information. The detection
of incomplete walnut kernel images was made easier, and the
model generalizability was greatly increased by focusing on
location information.

In summary, the spatial attention mechanism enhanced the
acquisition of spatial information about the walnut kernel in
the image, and the SENet applied the weights extracted by
the channels to the feature maps so that the channels were
adaptively weighted, thus allowing the feature maps with a large
role to have an increased impact on the results. This operation
enabled the model to focus more on the recognition subject
common to all image predictions.

3.3.3. Overall comparison of the four types of
models

Two measures, validation set accuracy and test set accuracy,
were introduced in this study to examine the overall differences
between the four models, as shown in Table 6.

Table 6 show that the average accuracy of the validation set
of the ResNet152V2-SA-SE model was 0.2, 66.1, and 3.3% higher
than that of the ResNet152V2, EfficientNetB7, and VGG19
models, respectively. The average precision of the test set was
improved by 4.6, 59.8, and 83.9%, respectively, and the average
recall of the test set was improved by 6.2, 63.1, and 73.9%,
respectively. The accuracy of the test set was improved by 6.2,
63.2, and 74.1%, respectively.

In summary, in the model training phase, the ResNet152V2-
SA-SE and ResNet152V2 models demonstrated advantages over

TABLE 5 Test results of the SA-ResNet152V2 model and ResNet152V2-SA-SE model.

Model name Recognition precision of each level (%) Recognition recall of each level (%)

First
grade

Second
grade

Third
grade

Fourth
grade

First
grade

Second
grade

Third
grade

Fourth
grade

ResNet152V2 97.4 67.9 86.9 98.5 95.0 86.9 73.9 87.9

ResNet152V2-SA-SE 96.9 83.1 91.2 97.9 98.1 86.9 88.2 95.3

TABLE 6 Test results of the four types of models.

Model name Average accuracy of
validation set/%

Average precision of
test set/%

Average recall of
test set/%

Average accuracy of
test set/%

VGG19 88.5 8.4 18.2 18.1

EfficientNetB7 25.7 32.5 29.0 29.0

ResNet152V2 91.6 87.7 85.9 86.0

ResNet152V2-SA-SE 91.8 92.3 92.1 92.2
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the VGG19 and EfficientNetB7 model. In the model testing
phase, the ResNet152V2-SA-SE model exhibited outstanding
performance, by accounting for the global situation, grasping
the key points, and ignoring the non-critical information. Based
on the experiments, the ResNet152V2-SA-SE model exhibited
high accuracy in walnut kernel grading.

4. Influence of each factor on
model training

The ResNet152V2-SA-SE model was used in the
experiments to assess the effects of three elements on the
model during training: learning rate, regularization, and batch
size. Epochs were set to 100 to examine the effects of various
factors on model training.

4.1. Effect of learning rate on model
training

The learning rates were set to 0.1, 0.01, 0.001, and 0.0001 to
test the training results with various learning rates. The training
results are displayed in Figure 10.

By comparing the accuracy of the validation set with the
loss for various learning rates, it can be seen that the size of
the learning rate was a significant influencing factor for the
trained model. The identification accuracy for the validation
set gradually improved as the learning rate gradually decreased.
However, when the model’s learning rate approached 0.001,
the validation set accuracy of the model reached its maximum.
Similar outcomes were obtained with further learning rate
reduction compared to the model learning rate of 0.01. This

finding demonstrated that when the learning rate was too
high, it was difficult for the model to converge, whereas
when the learning rate was too low, it was impossible for
the model to capture the important parts of an image during
training. In conclusion, a learning rate of 0.001 was optimal
for model training.

4.2. Effect of regularization on model
training

Using the control variable approach, the regularization
coefficient was set to 0.01, and the results of several
regularization strategies were checked. The experimental
outcomes are displayed in Figure 11.

The regularization strategy’s main goal was to decrease
the possibility of overfitting the model. Figure 11 displays the
model’s training outcomes with and without regularization.
The model without regularization had greater overall accuracy
than the model with regularization. Regularization lowered
the likelihood of model overfitting by restricting the model’s
capacity to learn; however, these restrictions resulted in the loss
of some image features during learning and an increase in bias.
In conclusion, adding regularization to the model to increase its
accuracy during training was not the best approach in this study.

4.3. Effect of different batch sizes on
model training

To verify the results of different batches using the control
variable method, the batches were set to 32, 64, 128, and 256.
The experimental results are shown in Figure 12.

FIGURE 10

Comparison of accuracy and model loss of the validation set with different learning rates. 0.1, 0.01, 0.001, and 0.0001 are the learning rate
parameters set by the model, respectively. A is the image of the change in accuracy of the validation set and B is the image of the change in loss
value of the validation.
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FIGURE 11

Comparison of validation set accuracy and model loss for different regularization strategies. No regularization is not regularization, L1 is using L1
regularization, L2 is using L2 regularization, L1+L2 is both L1 and L2 regularization being used. A is the image of the change in accuracy of the
validation set and B is the image of the change in loss value of the validation.

FIGURE 12

Comparison of accuracy and model loss of the validation set with different batch sizes. 32 means that the batch size is set to 32; 64 means that
the batch size is set to 64; 128 means that the batch size is set to 128; and 256 means that the batch size is set to 256. (A) Image of the change
in accuracy of the validation set and (B) image of the change in loss value of the validation.

The size of the model batch was a crucial factor in improving
the model performance. The model with a batch size of 128
outperformed other batch sizes in terms of both validation
set accuracy and validation set loss, as shown in Figure 12,
which displays the comparison of the accuracy of validation
set recognition with different batch sizes. On the one hand,
a small batch size generally resulted in too much variation
between neighboring mini-batches, which negatively affected
model convergence. On the other hand, a large batch size
decreased the model’s generalization ability.

In conclusion, 128 was the optimal batch size for
this experiment.

5. Conclusion

(1) This study used oxidation phenomena of walnut kernels
to link L∗ values of the appearance of the walnut kernel and
MDA content of the walnut kernel, and then demonstrated
experimentally that the L∗ values of the appearance of the
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walnut kernel could be used as one of the features for walnut
kernel grading. Based on these findings, subsequent researchers
can conduct more refined grading experiments and studies on
walnut kernel using L∗ values.

(2) This study enriched the image grading research on
walnut kernels by capturing images of walnut kernels using a
visual motion platform as well as cell phones, homogenizing the
images by rotating and cropping, subsequently expanding the
images online using ImageDataGenerator, and using the Keras
framework for deep learning. Using the confusion matrix and
heat map, we compared each of the three models and selected
the optimal ResNet152V2 model for further improvement,
and finally, we constructed the ResNet152V2-SA-SE model
consisting of the spatial attention mechanism, the SENet, and
the ResNet152V2 model. We demonstrated experimentally that
the average accuracy of the validation set of the ResNet152V2-
SA-SE model was 0.2, 66.1, and 3.3% higher than that of the
ResNet152V2, EfficientNetB7, and VGG19 models, respectively;
the average precision of the test set was improved by 4.6, 59.8,
and 83.9%, respectively; the average recall of the test set was
enhanced by 6.2, 63.1, and 73.9%, respectively; and the accuracy
of the test set was improved by 6.2, 63.2, and 74.1%, respectively.

(3) The average accuracy of the validation set of the
ResNet152V2-SA-SE model reached its maximum with a
learning rate of 0.001; after adding various regularization
strategies, we discovered that the overall accuracy of the
validation set of the model declined with the addition of
regularization. As the batch size increased exponentially, the
average accuracy of the validation set of the model gradually
increased. When the sample size was 128 batches, the validation
set accuracy of the model was the highest, the loss lowest, and
the model optimal.

The walnut kernel grade recognition problem was
successfully solved by the ResNet152V2-SA-SE model in
this study, and the challenge of the intelligent grading of
small objects with high similarity was addressed as well. At
the same time, this study proposed a new grading standard
for walnut kernels. The research idea of this study can also
inspire subsequent research on grading of various agricultural
products, for example, by combining a certain feature of the
appearance of the agricultural products with the intrinsic
quality of the agricultural products. The initial grading of
agricultural products would then be based on their most
salient visual features, and eventually, the deep-learning model
would learn other features on its own, thus achieving fast
and accurate grading of agricultural products. By matching
the appearance features with the biochemical property, future
research on agricultural products will only need to measure the
appearance features to the biochemical property, eliminating
the need for repeated measurement. Future research could
refine this concept and achieve a more detailed grading.
In the future, a hyperspectral camera along with an RGB
camera in various artificial and natural light conditions

could be used for more in-depth study on the recognition of
walnut kernel images.
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