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LGBMDF: A cascade forest 
framework with LightGBM for 
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interactions
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Prediction of drug-target interactions (DTIs) plays an important role in drug 

development. However, traditional laboratory methods to determine DTIs 

require a lot of time and capital costs. In recent years, many studies have 

shown that using machine learning methods to predict DTIs can speed up 

the drug development process and reduce capital costs. An excellent DTI 

prediction method should have both high prediction accuracy and low 

computational cost. In this study, we noticed that the previous research based 

on deep forests used XGBoost as the estimator in the cascade, we applied 

LightGBM instead of XGBoost to the cascade forest as the estimator, then the 

estimator group was determined experimentally as three LightGBMs and three 

ExtraTrees, this new model is called LGBMDF. We  conducted 5-fold cross-

validation on LGBMDF and other state-of-the-art methods using the same 

dataset, and compared their Sn, Sp, MCC, AUC and AUPR. Finally, we found 

that our method has better performance and faster calculation speed.
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1. Introduction

In recent years, with the rapid development of computer data processing capabilities, 
the continuous enrichment of data content, and the improvement of algorithm models, 
more and more researches on artificial intelligence in the fields of biology and medicine 
have been carried out (Guo et al., 2021; Chen and Yin, 2022; Zhou et al., 2022). Many 
computational methods based on machine learning have been proposed to solve biological 
problems (Lihong et al., 2021; Zhou et al., 2021; Peng et al., 2022; Shen et al., 2022). 
Especially in drug development, the prediction of drug-target interactions (DTIs) played 
an important role in drug development and drug repositioning, so using machine learning 
methods to predict DTIs became a research hotspot.

Over the past decade, a large number of machine learning-based methods were 
proposed for identifying DTI (Zhou et  al., 2019). Among them, binary classification 
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methods account for the majority. Some methods identify drug-
target pairs based on drug and protein information, Li et al. (2020) 
used protein sequences and drug substructure fingerprint 
information to predict DTIs. In addition, there were many models 
(Mousavian et al., 2016; Li et al., 2020; Zhan et al., 2020; Tanoori 
et  al., 2021) that predicted new DTIs based on 
information similarity.

In fact, there are more methods based on network inference, 
Yamanishi et  al. (2010) integrated chemical, genomic and 
pharmacological information in bipartite graph to uncover 
potential DTIs. Mei J. P et al. (Mei et al., 2013) proposed Neighbor-
based Interaction-profile Inferring (NII) based on bipartite local 
model (BLM). Chen et  al. (2012) proposed the method of 
Network-based Random Walk with Restart on the Heterogeneous 
network (NRWRH) which integrates three different networks into 
a heterogeneous network through known DTIs, and achieves 
random wandering on this heterogeneous network. Cao et al. 
(2014) proposed a computational method for DTI prediction by 
combining the information from chemical, biological, and 
network properties. Ding et al. (2017) used molecular substructure 
fingerprints, multivariate mutual information (MMI) of proteins 
and network topology to represent drugs, targets and their 
relationships, and employ SVM and Feature Selection (FS) to 
build predictive models. Thereafter, scholars began to extract 
features from more complex networks. SNF-CVAE (Jarada et al., 
2021) integrates similarity network fusion (SNF) and collective 
variational autoencoder (CVAE) to improve prediction accuracy. 
An and Yu (2021) proposed a Network Embedding framework in 
mulTiPlex networks (NEDTP) to predict DTIs. Jin et al. (2021) 
proposed a machine learning model called HeTDR, the method 
combines drug features in multiple networks and disease features 
in biomedical corpora to predict the degree of association between 
drugs and diseases. In addition, there are some computational 
methods based on matrix factorization (Gönen, 2012; Liu et al., 
2016; Bagherian et al., 2021) and multi-label learning (Yuan et al., 
2016; Pliakos et al., 2019; Chu et al., 2021b).

Moreover, with the rise of deep learning methods, people have 
made a lot of achievements in the field of DTI prediction based on 
deep learning methods. Many scholars consider graph analysis 
(Olayan et al., 2018; Peng et al., 2021; Yang et al., 2022) as an 
important means to predict DTIs. Many models apply deep neural 
networks (DNN) to DTI prediction, LASSO-DNN (You et al., 
2019) combines LASSO with DNN, deepDTnet (Zeng et  al., 
2020b) applies DNN algorithm to network embedding, 
DeepFusionDTA (Pu et  al., 2021) proposes a two-stage deep 
neural network ensemble model, based on DNN, DNN-DTIs 
(Chen et al., 2021) employs layer-by-layer learning method to 
predict DTIs. Besides, DeepACTION (Hasan Mahmud et  al., 
2020), AutoDTI++ (Sajadi et al., 2021), GCNMK (Wang et al., 
2022) and DeepStack-DTIs (Zhang et al., 2022) also use deep 
learning methods.

Specially, inspired by DNN, Zhou and Feng (2017) proposed 
Deep Forest, and some DTI prediction methods based on Deep 
Forest showed good performance. Such as AOPEDF (Zeng et al., 

2020a), DTI-CDF (Chu et  al., 2021a) and EC-DFR (Lin 
et al., 2022).

In this study, we  make some improvements based on the 
AOPEDF model, thus proposing a new method termed 
LGBMDF. We add LightGBM (Ke et al., 2017), which outperforms 
XGBoost and CatBoost in another work (Al Daoud, 2019), to 
Cascade Forest as a new estimator. For the convenience of 
comparison, we  used the same feature extraction method as 
AOPEDF. For the obtained vector features, we input them into a 
modified Cascade Forest for predicting DTIs. Finally, we compared 
our model with other models in terms of performance and speed, 
our model is comparable to and in some way ahead of the state-of-
the-art models. In conclusion, LGBMDF is a very practical method 
for DTI prediction, which can help new drug development and 
some other fields, such as identifying miRNA-disease associations 
or the associations between cancers and microbes.

2. Materials and methods

2.1. Data resource

DTI-related information was collected from DrugBank (v4.2) 
(Wishart et al., 2018), the Therapeutic Target Database (Yang et al., 
2016), and the PharmGKB (Hernandez-Boussard et  al., 2007) 
database. Bioactivity data for drug–target pairs are collected from 
ChEMBL (v20) (Gaulton et al., 2012), BindingDB (Liu et al., 2007), 
and IUPHAR/BPS Guide to PHARMACOLOGY (Pawson et al., 
2014). The chemical structure of each drug with SMILES format is 
extracted from DrugBank (v4.0) (Law et al., 2014). Here, only DTIs 
meeting the following three criteria are used: (i) the human 
target is represented by a unique UniProt (Apweiler et al., 2004) 
accession number; (ii) the target is marked as ‘reviewed’ in the 
UniProt  database; (iii) binding affinities, all  the 
K K IC or EC Mi d, , 50 50 10≤ µ . In short, we constructed a DTI 

network by using 732 FDA-approved drugs and 1915 targets. In 
addition, we used 9 drug-related networks and 6 protein-related 
networks (Cheng et al., 2019a,b; Zeng et al., 2020a). For the feature 
extraction approach, in order to facilitate comparison, we referred 
to the previous studies (Zhang et al., 2018; Zeng et al., 2020a).

2.2. Deep forest

The deep neural network has shown good performance in 
many works. Inspired by DNN, Zhou and Feng (2017) proposed 
an ensemble algorithm with deep structure based on decision tree. 
It has much fewer hyperparameters than DNNs, and the 
complexity of the model can be automatically determined based 
on the input variables.

After obtaining low-dimensional vector representations of 
drugs and proteins (targets), we input them into Cascade Forest to 
predict DTIs. In the cascade structure, the output features vector of 
the previous layer and the original features vector is used as the 
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input features vector of the next layer. Furthermore, when a new 
layer is generated, the performance of the entire cascade is estimated 
on the validation set, and the training process is terminated if there 
is no significant increase in performance. The estimators setting at 
each layer are also important, after experimental testing, we set up 
three ExtraTrees and three LightGBMs (Figure 1).

To prevent overfitting, class vectors for each estimator are 
generated by k-fold cross-validation. Specifically, the average of 
the generated k-1 class vectors is obtained to obtain the final class 
vector as the enhanced feature of the next layer.

2.3. LightGBM classifier

2.3.1. Histogram algorithm
The basic idea: First, the continuous floating-point feature 

values are discretized into k  integers, and a histogram of width 
k  is constructed (Figure 2). When the samples are traversed 
once, the histogram accumulates the required statistics and then 
traverses the histogram to find the optimal partition point based 
on the discrete values of the histogram.

Another improved speedup of LightGBM is to subtract the 
histogram of sibling nodes from the histogram of the parent node 

so that the speed can be  doubled (Figure  3). Usually, when 
constructing a histogram, it is necessary to traverse all the data on 
that leaf, but histogram differencing only requires traversing k 
bins of the histogram. In the actual process of constructing the 
tree, LightGBM can also calculate the smaller leaf nodes of the 
histogram first, and then use histogram difference to obtain the 
larger leaf nodes of the histogram, so that we can get the histogram 
of its sibling leaf at a very small cost.

2.3.2. Leaf-wise algorithm with depth 
restriction

Based on the histogram algorithm, LightGBM is further 
optimized. First, it abandons the level-wise (Figure 4A) tree 
growth strategy used by most GBDT algorithms and applies the 
leaf-wise tree growth (Figure  4B) with depth restriction. 
XGBoost uses level-wise growth strategy, which can split the 
leaves of the same level at the same time by traversing the data 
once, making it easy to perform multi-threaded optimization 
and control the model complexity without overfitting. However, 
level-wise is an inefficient algorithm because it treats the leaves 
of the same layer indiscriminately, and in fact, many leaves have 
low splitting gain, so there is no need to split, thus bringing a 
lot of unnecessary computational overhead. LightGBM uses 

FIGURE 1

The pipeline of LGBMDF. After getting the features of drugs and targets, we process these features with cascade forest, and set 3 LightGBMs and 3 
ExtraTrees for each level as estimators, each estimator outputs a 2-dimensional class vector, and then concatenate the output class vector and the 
original feature vector as the input vector for the next layer.

https://doi.org/10.3389/fmicb.2022.1092467
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Peng et al. 10.3389/fmicb.2022.1092467

Frontiers in Microbiology 04 frontiersin.org

leaf-wise tree growth strategy, which can locate the leaf with the 
largest splitting gain from all the current leaves, and then splits 
it, cycling as this way. Therefore, compared with level-wise, the 
advantage of leaf-wise is that it can reduce more errors and get 
better accuracy with the same number of splits; the disadvantage 
of leaf-wise is that it may grow a deeper decision tree and 
produce overfitting. For this reason, LightGBM adds a 
maximum depth limit to leaf-wise to ensure high efficiency and 
prevent overfitting at the same time.

2.3.3. Gradient-based one-side sampling
The feature vector in Adaboost can represent the importance 

of a sample well, but there is not a weight vector like this one in 
GBDT. Fortunately, we found that the sample gradient of GBDT 
is a good indicator, and samples with small gradients will have 
small training errors and have been well-trained. Generally, the 
simpler idea is to discard samples with small gradients, but this 
will affect the model performance, thus we propose a new method 
named gradient-based one-side sampling (GOSS).

The basic idea of GOSS is to reduce the complexity of the model 
by reducing the sample size. GOSS first sorts the samples by the 
gradient from largest to smallest, uses the top-ranked a×100% , 
and  then randomly samples the rest data with small gradients 

b×100% . Then GOSS amplifiers the data with a small gradient by a 

constant 

1− a
b  when calculating the information gain.

In GBDT, we assume the input space as X s , the gradient space 
as G . Suppose that there are n  i.i.d instances x x xn1 2, , ,{ } , xi  is 
a vector of dimension s  in X s . The negative gradient of the loss 
function is represented as g g gn1 2, , ,{ } . The Decision tree model 
splits nodes where information gain is the largest, and the information 
gain is usually determined by the variance after the split.

Let O  be the training set of a node d  on the decision tree, 
and the variance of the split feature j  at this point is defined as:
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FIGURE 2

The construction of histogram.

FIGURE 3

Subtract the histogram of sibling node from the histogram of the parent node so that the speed can be doubled.
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In GOSS, First, all instances absolute values of gradients are 
sorted in descending order. We select the first a×100%  samples 
as set A , and then randomly sample B of size × cb A∣# from the 
remaining instance set Ac . Finally, we  split the instance via 
estimated variance V dj ( )  on A B∪ .

 

V d
n

g a
b

g

n d

g a
b

j

x A i x B i

l
j

x A i x

i l i l

i r

 ( ) =

+
−








( )
+

+
−

∈ ∈

∈

∑ ∑

∑

1

1

1

2

ii rB i

r
j

g

n d

∈∑







( )



























2  (2)

Where
A x A x d A x A x d
B x B x d B x B x
l i ij r i ij

l i ij r i i

= ∈ ≤{ } = ∈ >{ }
= ∈ ≤{ } = ∈

: , : ,

: , : jj d>{ } . 
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b  

is to normalize the size of B  to the size of Ac .

2.3.4. Exclusive feature bundling
High-dimensional space is always sparse, and in a sparse feature 

space, many features are mutually exclusive, so we can bind mutually 
exclusive features into a single feature (Figure 5). Through the feature 
scanning algorithm, we  can use the designed feature scanning 
algorithm to construct the same histogram from the feature bundles 
as the original single feature. In this way, we  can decrease the 

complexity of histogram building from 
O sample feature# #×( )  to 

O sample bundle# #×( ) , while # #bundle feature , thus we can 
greatly improve the training speed of GBDT.

In general, compare to XGBoost, LightGBM has the 
advantages of faster speed and smaller memory usage. LightGBM 
uses the histogram algorithm to transform the traversal samples 
into traversal histograms, which greatly reduces the time 
complexity; applies the GOSS algorithm to filter out many 
samples with small gradients and adopts leaf-wise growth 
strategy to build the trees, which reduces a lot of unnecessary 
calculations. In addition, LightGBM utilizes EFB algorithm to 
decrease the number of features.

2.4. Evaluation metric

To compare with other methods, we perform a 5-fold cross-
validation and adopt Sn, Sp, MCC, AUC and AUPR as 
evaluation metrics.

Sn, Sp and MCC are commonly used evaluation indicators for 
binary classification problems, and their calculations are based on 
the confusion matrix.

 
S TP

TP FNn =
+  

(3)

A

B

FIGURE 4

Comparison of tree growth patterns between XGBoost and LightGBM. (A) XGBoost uses the level-wise growth strategy, which can split the leaves 
of the same level at the same time by traversing the data once. (B) LightGBM uses the leaf-wise growth strategy, which finds the leaf with the 
largest splitting gain from all the current leaves, and then splits it.
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S TN

TN FPp =
+  

(4)

 

MCC TP TN FP FN
TP FP TP FN TN FP TN FN

=
× − ×

+( ) +( ) +( ) +( )
 

(5)

Receiver operating characteristic (ROC) curve is often used to 
evaluate the model’s prediction performance. It is calculated based 
on the confusion matrix. The higher the curve on the upper left, 
the better the performance of the model. The vertical axis of the 
ROC curve is the “True Positive Rate,” and the horizontal axis is 
the “False Positive Rate,” which are, respectively, defined as:

 
TPR TP

TP FN
=

+  
(6)

 
F R FP

TN FP
P =

+  
(7)

However, the ROC curves of some models will cross, so 
we  generally choose the AUC (Area Under ROC Curve) for 
comparison. We assume that the points of the ROC curve are 
connected in order by the points of x y x y x ym m1 1 2 2, , , , , ,( ) ( ) ( ){ }

, then the AUC can be estimated as:

 
AUC x x y y

i

m
i i i i= −( ) • −( )

=

−

+ +∑1
2

0

1

1 1

 
(8)

The PR curve represents the relationship between Precision 
and Recall. In general, Recall is set to the abscissa and Precision is 

set to the ordinate. Precision and Recall can be  calculated 
according to the confusion matrix.

 
Precision TP

TP FP
=

+  
(9)

 
Recall TP

TP FN
=

+  
(10)

AUPR is the Area Under PR curve. In such a highly 
imbalanced dataset, AUPR can provide better performance 
evaluation because it penalizes false positives more severely.

3. Results

3.1. Parameter optimization

We optimized the parameters of the estimators, considering 
the impact of parameters on model performance. By the means of 
employing GridSearchCV function, we  set the interval of the 
parameter, the “scoring” is set as “accuracy.” The parameter 
optimization results are shown in Table 1.

3.2. Estimators setting for each layer

When reproducing the AOPEDF model, we noticed that the 
XGBoost in cascade is time-consuming, so we chose LightGBM, 
a classifier that performs better than XGBoost in another work (Al 
Daoud, 2019), as estimator to accelerate the calculation speed of 
the model and reduce the computing cost and time cost. We tested 
five combinations and compared their Sn, Sp, MCC, AUC, AUPR 
(Table  2) and running time. The experiments are run in the 
environment of Python3.9, CPU: 2* Intel (R) Xeon (R) Gold 
6320R, RAM: 128G.

The names of each combination in the Figure 6 are explained 
as follows:

 • AOPEDF: 2 ExtraTrees, 2 RFs and 2 XGBoosts
 • 2LGB-2RF-2ET: 2 LightGBMs, 2 RFs and 2 ExtraTrees
 • 3LGB-3RF: 3 LightGBMs and 3 RFs
 • 3LGB-3ET: 3 LightGBMs and 3 ExtraTrees.

After experiments, we found that the MCC, AUC and AUPR 
values of 3LGB-3ET are higher than that of the others. Moreover, 
the calculation speed of 3LGB-3ET is more than twice as fast as 
AOPEDF. Therefore, we choose the combination of 3LGB-3ET to 
set the estimators for each layer finally.

3.3. Model comparison

The following 4 models were adopted as baseline methods.

FIGURE 5

Bind mutually exclusive features into a single feature.
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NEDTP (An and Yu, 2021): A node similarity network is 
constructed based on 15 heterogeneous information networks, 
and then random walks are applied to extract the topology 
information of each node in the network and learn it as a 
low-dimensional vector. Finally, employ LightGBM algorithm to 
complete the classification task.

AOPEDF (Zeng et  al., 2020a): It integrates 15 biological 
networks to construct a heterogeneous network, and then learns 
low-dimensional vector representations of features from this 
heterogeneous network that keep arbitrary-order proximity. Then 
use the deep forest to predict new DTIs.

Random Forest (Breiman, 2001): It is a combination of tree 
predictors such that each tree depends on the value of an 
independently sampled random vector and all trees in the forest 
have the same distribution.

Support Vector Machine, SVM (Vapnik and Chervoneva, 
1964): It is a class of generalized linear classifiers for binary 
classification of data in a supervised learning manner.

We took drug-protein pairs with known interactions as 
positive samples, and pairs with unknown interactions as 
negative samples, and then selected all positive samples and 
randomly sampled negative samples with the same number of 
positive samples for 5-fold cross-validation to evaluate model 
performance (Figure  7, Table  3). For each 5-fold cross-
validation, we select 80% positive pairs and the corresponding 
number of randomly sampled negative pairs as the training set, 
and the remaining 20% positive pairs and the corresponding 
number of randomly sampled negative pairs as the test set. 
We found that the Sp, MCC, AUC, and AUPR of LGBMDF are 
all higher than those of other methods. In addition, in previous 
experiments, we  have found that LGBMDF is faster than 
AOPEDF. An excellent model needs to consider both the 
accuracy and the computing power cost of the model. 
Therefore, our model is better than the current advanced model 
in general.

4. Discussion

This paper investigated the application of machine 
learning methods for DTI prediction. Traditional drug-target 
effect testing methods are time-consuming and labor-
intensive. And Machine learning methods have attracted the 
attention of many researchers due to these methods can 
greatly reduce the related costs. We chose the same feature 
extraction method as AOPEDF, and used this method to 
extract low-dimensional representations of drug and protein 
features from 15 biological networks, and these features 
maintain arbitrary order proximity.

After obtaining low-dimensional feature representations of 
drugs and targets, we  used cascaded deep forests for DTI 
prediction. Specifically, we used LightGBM as the estimator in the 
cascade to reduce the computational cost. And the LightGBM has 
shown better performance and computational speed than 
XGBoost in other experiments. Considering the effect of estimator 
diversity in the cascade, we also chose ExtraTree as the estimator. 

TABLE 1 The result of parameter optimization.

Model Parameter Range Used

RandomForest n_estimators [100, 200, 400, 500, 600] 400

LightGBM n_estimators [100, 200, 400, 500] 400

max_depth [7, 8, 9, 10, 11] 11

num_leaves [100, 200, 300, 400, 500] 200

ExtraTree n_estimators [100, 200, 400, 500, 600] 500

TABLE 2 Performance comparison under each estimator setting.

Estimators Sn Sp MCC AUC AUPR

AOPEDF 0.9463 0.9447 0.8911 0.9842 0.9855

2LGB-2RF-2ET 0.9439 0.9477 0.8918 0.9841 0.9854

3LGB-3RF 0.9443 0.9453 0.8898 0.9839 0.9849

3LGB-3ET 0.9451 0.9471 0.8924 0.9844 0.9857

 The bold values represent the maximum value of each estimator setting under each 
evaluation metric.

A B

FIGURE 6

Model performance comparison under each estimator setting. (A) AUC and AUPR for 4 estimator combinations. (B) Computational time for 4 
estimator combinations.
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By comparing the Sn, Sp, MCC, AUC, AUPR and computation 
time of the 4 estimator combinations, we chose three ExtraTrees 
and three LightGBMs as estimators at each layer, and then utilized 
this cascade forest for DTI prediction. To demonstrate the merits 
of our model, we compared it with other four baseline models on 
the same dataset. After 5-fold cross-validation, we obtained the 
Sn, Sp, MCC, AUC and AUPR of the five models, the Sp (0.9471), 
MCC (0.8924), AUC (0.9844) and AUPR (0.9857) of LGBMDF 
were higher than AOPEDF, NEDTP, RF and SVM. The Sn (0.9451) 
was slightly inferior to AOPEDF, but higher than other three 
methods. Furthermore, the calculation time of LGBMDF was less 
than half of that of AOPEDF.

In summary, the method proposed in this paper shows 
higher prediction accuracy with the current state-of-the-art 
methods, and greatly improves the computational speed. 
We believe this will accelerate the drug development process to 
a certain extent. Certainly, there are still some shortcomings in 
this paper, such as feature extraction method. We believe that if 
there is a better way to extract features, the prediction accuracy 

will also be  improved. Moreover, our method could also 
be  applied in other studies, such as in exploring the link 
between microbes and cancer.
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TABLE 3 Performance of LGBMDF and baseline methods.

Model Sn Sp MCC AUC AUPR

LGBMDF 0.9451 0.9471 0.8924 0.9844 0.9857

AOPEDF 0.9463 0.9447 0.8911 0.9842 0.9855

NEDTP 0.9194 0.9267 0.8462 0.9714 0.9690

SVM 0.8869 0.9286 0.8162 0.9668 0.9664

RF 0.9138 0.9348 0.8488 0.9784 0.9798

 The bold values represent the maximum value of each estimator setting under each 
evaluation metric.

FIGURE 7

Sn, Sp, MCC, AUC and AUPR of LGBMDF, AOPEDF, NEDTP, RF, SVM.
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