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Abstract. We investigate the analytic, rational and C 1 first integrals of the Maxwell–Bloch system

Ė =−κE + g P, Ṗ =−γ⊥P + g E4, 4̇ =−γ‖(4−40)−4g PE ,

where κ,γ⊥, g ,γ‖,40 are real parameters. In addition, we prove this system is rationally non-integrable in the
sense of Bogoyavlenskij for almost all parameter values.

Résumé. Nous étudions les premières intégrales analytiques, rationnelles et C 1 du système de Maxwell–
Bloch

Ė =−κE + g P, Ṗ =−γ⊥P + g E4, 4̇ =−γ‖(4−40)−4g PE ,

où κ,γ⊥, g ,γ‖,40 sont des paramètres réels. En outre, nous prouvons que ce système est non intégrable
rationnel dans le sens de Bogoyavlenskij pour presque toutes les valeurs de paramètres.
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1. Introduction and statement of the main results

Consider the Maxwell–Bloch system

Ė =−κE + g P, Ṗ =−γ⊥P + g E4, 4̇ =−γ‖(4−40)−4g PE , (1)

which describes the interaction between the coupling of the fundamental cavity mode E , the
collective atomic polarization P and the population inversion ∆ [1]. Here, κ,γ⊥, g ,γ‖,40 are real
parameters and the dots denote derivatives with respect to the time t . As indicated in [1, 7, 8], it
can be used to model Type I laser (He-Ne), Type II laser (Ruby and CO2) and Type III laser (far
infrared) in the case of γ⊥ ≈ γ‖ À κ, γ⊥ À γ‖ ≈ κ and 40 large enough, respectively. This system
has been analyzed as a dynamical system by many researchers, see for instance [5, 7, 13, 18] and
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the references therein. In this paper, we try to understand its complexity and chaotic properties
from the view of integrability and non-integrability.

The case when g = 0 is trivial, since system (1) with g = 0 is a linear system and is integrable.
In what follows, we assume g 6= 0. For convenience, as reported in [13], we make a time rescaling
t → g t and rewrite (1) into the following form

ẋ =−ax + y, ẏ =−by +xz, ż =−c(z −δ0)−4x y, (2)

where x, y, z simply present E ,P,4 and a = g−1κ, b = g−1γ⊥, c = g−1γ‖ and δ0 =40. Obviously,
system (2) and the Maxwell–Bloch system (1) with g 6= 0 admit the same dynamical behavior and
integrability properties. We turn to study first integrals of system (2) below.

The associated vector field of system (2) is

X := (−ax + y)
∂

∂x
− (by −xz)

∂

∂y
− (

c(z −δ0)+4x y
) ∂
∂z

.

Let U be an open set in C3. A non-constant function Φ(x, y, z) ∈C (U,C) is called a first integral of
system (2) if it stays constant along all solution curves (x(t ), y(t ), z(t )) of (2). IfΦ is differentiable,
then the definition can be written as X (Φ) ≡ 0. When U =C3, the first integral Φ is called a global
first integral. When a first integralΦ is a rational (polynomial or analytic) function, we say thatΦ
is a rational (polynomial or analytic) first integral.

We first consider first integrals and integrability for system (2) in the category of rational
functions. System (2) admits chaotic behaviour for a larger range of its parameters. For example,
the chaotic attractor of (2) and its projections in the coordinate planes (x, y), (x, z) and (y, z) are
shown in Figs. 1 and Figs. 2, see [7] for more details. It should be pointed out that the Maxwell–
Bloch system is quite different from the Lorenz system because it is only for ∆0 = (κ+1)(γ||+1)
that system (1) can be transformed into the Lorenz form. In short, the numerical analysis yields
that the dynamics of (2) are complex and in fact chaotic, which inspire us to prove both systems
are non-integrable.

(a) (b)

Figure 1. (a) chaotic attractor for system (2) with parameter values a = 2.81,b = 0.64,c =
0.65,δ0 = 28; (b) its projections onto the planes (x, y). (Attracteur chaotique du système (2)
avec les valeurs des paramètres a = 2.81,b = 0.64,c = 0.65,δ0 = 28; (b) ses projections sur
les plans (x, y).)
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(a) (b)

Figure 2. Projections of the chaotic attractor into the plane (x, z) (a) and into the plane
(y, z) (b). (Projections de l’attracteur chaotique dans le plan (x, z) (a) et dans le plan (y, z)
(b).)

Recall that an n-dimensional analytic differential system

ẋ = F (x), x ∈M , t ∈C, (3)

is integrable in the sense of Bogoyavlenskij if for some k ∈ {1, . . .n} it admits (n −k) functionally
independent first integralsΦ1, . . . ,Φn−k and k vector fields w1 = F, . . . , wk such that

[wi , w j ] = 0, and w j [Φi ] = 0, for 1 ≤ i ≤ n −k, 1 ≤ j ≤ k.

This notion of integrability was introduced by Bogoyavlenskij, and is a natural generalization of
the Liouvillian integrability from Hamiltonian systems to general dynamical systems [4].

The next result shows that system (2) is rationally non-integrable in the sense of Bogoyavlen-
skij for almost all parameter values.

Theorem 1. Assume c 6= 0 and 2
√

a2 −2ab +b2 +4δ0/c is not an odd number. Then,

(i) System (2) does not possess any rational first integral.
(ii) System (2) is not rationally integrable in the sense of Bogoyavlenskij.

Proof of Theorem 1 is based on an analysis of the differential Galois group of normal vari-
ational equations of (2) along a certain particular solution. Morales–Ruiz, Ramis, Simó, Baider,
Churchill, Rod and Singer have applied the differential Galois theory to the non-integrability of
Hamiltonian systems and developed the Morales–Ramis theory, see [3, 6, 19, 20] and references
therein. In 2010, Ayoul and Zung [2] extended the Morales–Ramis theory to the non-integrability
of general dynamical systems by using the so-called cotangent lift.

Next, we deal with the global analytic first integrals of system (2), and this class of first
integrals includes polynomial first integrals. There are only very few families of differential
equations in which a complete classification of global analytic first integrals is known, see for
instance [14, 15, 16].

Theorem 2. The following statements hold for system (2).

(i) If a = b = c = 0, it has the two functionally independent polynomial first integrals

Φ1 = 2x2 + z, Φ2 = 4y2 + z2.

(ii) If a 6= 0, b = c = 0, the unique global analytic first integrals of (2) are of the formΦ(4y2+z2),
whereΦ is analytic over C.

C. R. Mathématique, 2020, 358, n 1, 3-11
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(iii) If a 6= 0, υ := b = c 6= 0, it has no global analytic first integrals which are analytic in the
parameter υ in a neighborhood of υ= 0.

Theorem 2(i) can be checked easily by direct computations and we omit its proof.
Finally, we prove the absence of C 1 first integrals for (2) under some conditions.

Proposition 3. Let (a,b,c) = (a0 −b1ε+ a2ε
2,−a0 +b1ε+b2ε

2,c1ε+ c2ε
2) and δ = −a2

0 −ω2 with
ω> 0, a0(a2 +b2) > 0, c1 6= 0 and ε a small parameter. Then for |ε| 6= 0 sufficiently small,

(i) System (2) has a periodic solution γε.
(ii) System (2) has no C 1 first integralΦ(x, y, z) in the neighborhood of γε such that ∇Φ(x, y, z)

and (−ax + y,−by +xz,−c(z −δ0)−4x y) are linearly independent on the points of γε.

Statement (i) is proved by Cândido et al. [5], and we use their results in the essential way to
prove statement (ii).

This paper is divided as follows. Section 2 will provide proofs of Theorems 1. The proof of
Theorem 2 and Proposition 3 will be given in Section 3 and Section 4, respectively.

2. Proof of Theorem 1

In this section we first recall two results which are due to the works of Ayoul, Zung [2] and Shi,
Li [11, 12], respectively.

Suppose system (3) has a non-equilibrium solution ψ(t ). The variational equations along its
phase curve Γ have the form

ξ̇= T (F )ξ, ξ ∈ TΓM , (4)

where TΓM is the vector bundle of T M restricted on Γ. Then, by means of the natural projection
π from TΓM to the normal bundle TΓM /Γ, we can reduce (4) to the normal variational equations

η̇=π∗(T (F )(π−1η)), η ∈ TΓM /Γ. (5)

Lemma 4 ([2]). Assume that system (3) is B-integrable in the meromorphic category in a neigh-
bourhood of a phase curve Γ. Then the identity component of the differential Galois group of the
normal variational equations (5) along Γ is Abelian.

Lemma 5 ([11, 12]). Assume that system (3) has m(1 ≤ m < n) functionally independent meromor-
phic first integrals in a neighborhood of Γ. Then the Lie algebra G of the differential Galois group G
of equations (5) has m meromorphic invariants, and the identity component G0 of G has at most
(n −m −1)(n −1) generators, i.e.,

G0 = {(eT1t1 ·eT2t2 . . .eTk tk )s | (t1, . . . , tk ) ∈ Ṽ ⊂Ck , s ∈N},

where {T1, . . . ,Tk } is a basis of G with k ≤ (n −m −1)(n −1), Ṽ is a neighborhood of the origin in
Ck . Especially,

(i) If m = n −1, i.e., system (3) is completely integrable, then G = {0},G0 = {1}, where 1 denote
the identity element of G.

(ii) If m = n −2, then G ,G0 have at most n −1 generators.
(iii) If n = 3 and m = 1, then G ,G0 are solvable.

System (2) admits an invariant manifold

N = {(x, y, z) ∈C3 : x = y = 0}.

Then equations restricted to N is given by

ẋ = 0, ẏ = 0, ż =−c(z −δ0). (6)

C. R. Mathématique, 2020, 358, n 1, 3-11
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Solving (6) yields a particular solution ψ(t ) = (0,0,exp(−ct )+δ0) of system (2). Let Γ be the flow
generated by this solution. The variational equations along Γ read ξ̇η̇

ζ̇

=
 −a 1 0

exp(−ct )+δ0 −b 0
0 0 −c

 ξη
ζ

 . (7)

Since the particular solution ψ(t ) lies in N , the equations for variables (ξ,η) form a closed
subsystem (

ξ̇

η̇

)
=

( −a 1
exp(−ct )+δ0 −b

)(
ξ

η

)
, (8)

which is the so-called normal variational equations along Γ. A straightforward computation
yields a second-order equation

ξ̈+ (a +b)ξ̇+ (
ab −exp(−ct )−δ0

)
ξ= 0, (9)

which is equivalent to (8). In order to transform (9) into an equation with rational coefficients, we
apply a variable change τ=−c exp(−ct ). Using

d

dt
= τ̇ d

dτ
,

d2

dt 2 = τ̈ d

dτ
+ (τ̇)2 d2

dτ2

we can rewrite (9) as

ξ
′′ +p(τ)ξ

′ +q(τ)ξ= 0, (10)

where

p(τ) = c −a −b

cτ
, q(τ) = abc −δ0c +τ

c3τ2 ,

and the prime denotes the derivative with respect to τ.
Further, under the classical change of the dependent variable

ξ(τ) =χ(τ)exp

(
−1

2

∫
p(τ)dτ

)
=χ(τ)|τ|(c−a−b)/2c ,

(10) becomes

χ′′ =
(

p2

4
+ p ′

2
−q

)
χ (11)

=
(

c(a2 −2ab +b2 − c2 +4δ0)−4τ

4c3τ2

)
χ.

Note that (11) has a regular point τ= 0 of order two and an irregular singular point τ=∞ of order
one. Hence, we can transform it into the Bessel equation whose differential Galois group has been
studied widely. Indeed, we first make the time scale

τ−→ω= 2p
c3

p
τ,

and transform (11) into

ω2 d2χ

dω2 −w
dχ

dω
+

(
ω2 − a2 −2ab +b2 − c2 +4δ0

c2

)
χ= 0. (12)

Then using again the classical change of the dependent variable

χ= χ̂pω,

we transform (12) into the Bessel equation in the reduced form:

d2χ̃

dω2 =
(

4n2 −1

4ω2 −1

)
χ̃, (13)

with n =
√

a2 −2ab +b2 +4δ0/c.

C. R. Mathématique, 2020, 358, n 1, 3-11
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For the solvability of the identity component of the differential Galois group associated
with (13), we have the following theorem due to Morales–Ruiz [19].

Lemma 6. The identity component G0 of (13) is solvable if and only if n +1/2 belongs to Z.

Proof of Theorem 1. (i). Let us assume the opposite: assume (2) has a rational first integral,
then by Lemma 5, the identity component of the differential Galois group of normal variational
equation (9) is solvable. Both (9) and (13) admit the same Liouvillian solvability in the category
of rational functions. Hence, the identity component of (13) is also solvable. But by Lemma 6
and assumption of Theorem 1, identity component of (13) is not solvable. This leads to a
contradiction.

(ii). Assume (2) is rational integrable in the sense of Bogoyavlenskij. It follows from Lemma 4
that the identity component of the differential Galois group of normal variational equation (9) is
Abelian. It is well-known that an Abelian group is solvable. Using the same procedure as above,
we get a contradiction. �

3. Proof of Theorem 2

3.1. Proof of Theorem 2(ii)

The following lemma plays an important role in the proof of statement (ii) of Theorem 2.

Lemma 7 ([10]). Assume system (3) has a singularity at x = 0, i.e., F (0) = 0. If system (3) admits
k functionally independent formal first integrals Φ1(x), . . . ,Φk (x) in a neighborhood of the origin
and the Jacobian matrix DF (0) has n −k eigenvalues λ1, . . . ,λn−k satisfying

n−k∑
i=1

kiλi 6= 0, for any k1, . . . ,kn−k ∈Z+with
n−k∑
i=1

ki ≥ 1,

then all formal first integrals for system (3) in a neighborhood of x = 0 are formal series in
Φ1, . . . ,Φk .

Obviously, system (2) with b = c = 0 becomes

ẋ =−ax + y, ẏ = xz, ż =−4x y. (14)

A direct computation shows that Φ1 = 4y2 + z2 is a global analytic first integral of system (14).
Note that system (14) has the curve

S = {(0,0, z) : z ∈C}

of singular points. Set F = (−ax+y, xz,−4x y). At the singularity pz ∈ S, the eigenvalues of DF (pz )
are

λ1 = 0, λ2(pz ) = −a +
p

a2 +4z

2
, λ3(pz ) = −a −

p
a2 +4z

2
.

For z =−1, we have λ2(p−1)λ3(p−1) = 1 > 0. Due to a ∈R/{0}, there are the following three cases:

(i) λ2(p−1),λ3(p−1) are all positive. In this case, we have

k1λ1 +k2λ2 > 0, for any k1,k2 ∈Z+with k1 +k2 > 0.

(ii) λ2(p−1),λ3(p−1) are all negative. In this case, we have

k1λ1 +k2λ2 < 0, for any k1,k2 ∈Z+with k1 +k2 > 0,

(iii) λ2(p−1),λ3(p−1) are a pair of conjugate complex numbers, i.e., λ2(p−1) = A + Bi ,
λ3(p−1) = A −Bi with A = −a/2 6= 0 and B =

p
4−a2 ∈ R. In this case, for any k1,k2 ∈ Z+

with k1 +k2 > 0, it is easy to check

k1λ2 +k2λ3 = A(k1 +k2)+B(k1 −k2)i 6= 0.

C. R. Mathématique, 2020, 358, n 1, 3-11
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Now we translate the singular point p−1 at the origin of coordinates. Then we can apply
Lemma 7 with n = 3,k = 1 and Φ1 = 4y2 + z2. Hence, all global analytic first integrals of (14),
which is also a form first integrals, are formal series in the variable 4y2 + z2. We complete the
proof of statement (ii) of Theorem 2.

3.2. Proof of Theorem 2(iii)

Now we study system (2) with a 6= 0 and b = c = υ 6= 0. Since υ is a parameter, we rewrite this
system as

ẋ =−ax + y, ẏ =−υy +xz, ż =−υ(z −δ0)−4x y, υ̇= 0. (15)

It is worth to mention that if a functionΦ is a first integral of system (2) with a 6= 0 and b = c = υ 6=
0, then it is also a first integral of system (15), not vice versa. For example,Φ=Φ(υ) different from
a constant is a first integral of (15) but is not a first integral of system (2).

To complete the proof of this theorem, we only need to show that if Φ=Φ(x, y, z,υ) is a global
analytic first integral of system (15), thenΦ is a global analytic function in the variable υ.

Assume Φ = Φ(x, y, z,υ) is a global analytic first integral of system (15). Then Φ(x, y, z,0) is a
global analytic first integral of (2) with b = c = 0. It follows from Theorem 2(ii) that Φ(x, y, z,0) =
T (4y2 + z2), where T is a global analytic function in the variable 4y2 + z2. Using the convergent
power series in a neighborhood of (0,0,0,0), we can rewriteΦ= T +υΦ1 with T = T (4y2+z2) and
Φ1 =Φ1(x, y, z,υ). By definition of first integrals, we have

(−ax + y)
∂(T +υΦ1)

∂x
+ (−υy +xz)

∂(T +υΦ1)

∂y
+ (−υ(z −δ0)−4x y)

∂(T +υΦ1)

∂z
= 0

So after dividing by υ, we have

(−ax + y)
∂Φ1

∂x
+xz

∂Φ1

∂y
−4x y

∂Φ1

∂z
+υ

(
−y

∂Φ1

∂y
− (z −δ0)

∂Φ1

∂z

)
= (8y2 +2z2 −2δ0z)

dT

dG
. (16)

Then, setting Φ̂1(x, y, z) :=Φ1(x, y, z,0) and restricting (16) to υ= 0 yields to

(−ax + y)
∂Φ̂1

∂x
+xz

∂Φ̂1

∂y
−4x y

∂Φ̂1

∂z
= (8y2 +2z2 −2δ0z)

dT

dG
. (17)

Evaluating (17) on the points of (x, y, z) = (0,0, z), we see (17) becomes

(2z2 −2δ0z)
dT

dG
= 0, (18)

which implies dT /dG = 0, i.e., T is a constant and is denoted by T = T (0). Therefore, from (17),
we have

(−ax + y)
∂Φ̂1

∂x
+xz

∂Φ̂1

∂y
−4x y

∂Φ̂1

∂z
= 0. (19)

In other words, Φ̂1 is a global analytic first integral of system (14). Again, due to Theorem 2(ii),
we get that Φ̂1 = Φ̂1(4y2 + z2). Consequently, we have Φ1 = Φ̂1(G) + υΦ2(x, y, z,υ). Then, Φ =
T (0)+υΦ̂1(G)+υ2Φ2(x, y, z,υ). By definition of first integrals, we obtain

(−ax + y)
∂Φ2

∂x
+xz

∂Φ2

∂y
−4x y

∂Φ2

∂z
+υ

(
−y

∂Φ2

∂y
− (z −δ0)

∂Φ2

∂z

)
= (8y2 +2z2 −2δ0z)

dΦ̂1

dG
, (20)

where G = 4y2 + z2. Using the same arguments used for T and Φ1, we can show that Φ̂1 = Φ̂1(0)
andΦ2 = Φ̂2(G)+υΦ3(x, y, z,υ). Repeating this procedure inductively, we see thatΦ=Φ(υ).

C. R. Mathématique, 2020, 358, n 1, 3-11
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4. Proof of Proposition 3

In this section, our proof is based on the fact that birth of isolated periodic solutions can be
regarded as an obstacle to integrability. Let φ(t ) be a T -periodic solution of system (3). Then the
variational equations of (3) along φ(t ) is given by the following linear periodic system

ξ̇= A(t )ξ, A(t ) = ∂F

∂x

∣∣∣
x=φ(t )

. (21)

Set M(t ) be the fundamental matrix of (21), i.e., Ṁ = A(t )M and M(0) = I . The matrix M(T )
is called the monodromy matrix of the periodic solution Φ(t ), and the eigenvalues ρ1, . . . ,ρn of
M(T ) are called multipliers of this periodic solution.

The following result is due to Poincaré [21], for the proof see [17].

Lemma 8. Assume system (3) has a periodic orbit γ having only one multiplier equal to 1, then
system (3) has no C 1 first integrals Φ defined in a neighborhood of γ such that the vectors ∇Φ(x)
and F (x) are linearly independent on the points x ∈ γ.

Proof of Proposition 3. It was shown in [5, §6.1 and 6.2] that under the assumptions of Theo-
rem 3 system (2) admits a periodic orbit γε such that the Poincará map at this periodic orbit has
the following two eigenvalues

λ1 = ε2 2π(a2 +b2)

ω
+O (ε3),

λ2 =−ε2c1π

ω
+ε2 2π(a0b1c1 +ω(c2

1π− c2ω))

ω3 +O (ε3),

where O (ε) denotes the terms of order ε. Therefore, for ε sufficiently small we have that λ1 6= 1
and λ2 6= 1. It is well-known that for multipliers of certain periodic solution of an autonomous
differential system, one of the multipliers is always 1, and the remaining multipliers are equal
to the eigenvalues of the Poincaré map at this periodic orbit, see [9] for instance. Therefore, by
Lemma 8, we see that system (2) has no C 1 first integralΦ(x, y, z) in the neighborhood of γε such
that ∇Φ(x, y, z) and (−ax+ y,−by+xz,−c(z−δ0)−4x y) are linearly independent on the points of
γε. The proof of this result is completed. �
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