
Comptes Rendus

Mathématique

Qingshan Zhou, Yaxiang Li and Yuehui He

Quasihyperbolic mappings in length metric spaces

Volume 359, issue 3 (2021), p. 237-247

Published online: 20 April 2021

https://doi.org/10.5802/crmath.154

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org
e-ISSN : 1778-3569

https://doi.org/10.5802/crmath.154
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org


Comptes Rendus
Mathématique
2021, 359, n 3, p. 237-247
https://doi.org/10.5802/crmath.154

Geometry / Géométrie

Quasihyperbolic mappings in length metric

spaces

Qingshan Zhoua, Yaxiang Lib and Yuehui He ∗, c

a School of Mathematics and Big Data, Foshan university, Foshan, Guangdong
528000, People’s Republic of China
b Department of Mathematics, Hunan First Normal University, Changsha, Hunan
410205, People’s Republic of China

c Department of Mathematics, Shantou University, Shantou, Guangdong 515063,
People’s Republic of China

E-mails: q476308142@qq.com (Q. Zhou), yaxiangli@163.com (Y. Li),
18yhhe1@stu.edu.cn (Y. He)

Abstract. In this paper, we discuss the local properties of quasihyperbolic mappings in metric spaces, which
are related to an open problem raised by Huang et al in 2016. Our result is a partial solution to this problem,
which is also a generalization of the corresponding result obtained by Huang et al in 2016.
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1. Introduction and main result

Roughly speaking, (locally) M-quasihyperbolic (briefly, M-QH) mappings are homeomorphisms
between two domains in metric spaces, which are (locally) M-bilipschitz in the quasihyperbolic
metric. Their precise definitions will be given in Section 2. The quasihyperbolicity of mappings
implies their quasiconformality (cf. [10]). Also, it is known that this class of mappings is useful
for the study of the theory of quasiconformal (briefly, QC) mappings in Rn . For example, Beurling
and Ahlfors constructed a QC extension of a quasisymmetric mapping on the real axis to the
upper half plane, which is actually QH [1]. Tukia and Väisälä proved that two domains of Rn with
n 6= 4 are quasihyperbolically equivalent if and only if they are quasiconformally equivalent [8].
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In his theory of (dimension) free quasiconformal (briefly, FQC) mappings in real Banach spaces,
Väisälä also investigated QH mappings, and proved that every M-QH mapping is fully 4M 2-
QH [9, Theorem 4.7]. In [10], Väisälä asked that whether the converse of [9, Theorem 4.7] is true or
not (see [10, 13.2]). Recently, Huang et al considered this problem in the setting of metric spaces,
and obtained the following.

Theorem A ([4, Theorem 1.10]). Let X be a c1-quasi-convex and dense metric space and let Y be
a c2-quasi-convex, dense and proper metric space. Let G ( X and G ′( Y be two domains. Suppose
that a homeomorphism f : G →G ′ is both semi-locally M-QH and semi-locally η-QS, where M > 1
is a constant and η : [0,∞) → [0,∞), η(0) = 0, is a homeomorphism. Then f is an M1-QH mapping
on G with M1 = M1(M ,η,c1,c2).

In [4], the authors also asked the following Open Problem 1.

Open Problem 1 ([4, 1.12]). Can one strengthen the above Theorem A? That is, can one deduce
that a homeomorphism f : G → G ′ which is locally M-QH is a global M1-QH mapping in some
suitable metric spaces?

The purpose of this paper is to discuss Väisälä’s open problem and Open problem 1 further.
The following is our main result.

Theorem 2. Suppose that (X1,d1) is a length metric space and (X2,d2) is a c-quasi-convex
and complete metric space, and that G ( X1 and G ′ ( X2 are two domains. Suppose that a
homeomorphism f : G → G ′ is both semi-locally M-QH and semi-locally relatively η-QS, where
M > 1 is a constant and η : [0,∞) → [0,∞), η(0) = 0, is a homeomorphism. Then f is an M1-QH
mapping on G with M1 = M1(M ,η,c).

Remark 3. We have the following remarks on Theorem 2.

(1) The assumption “the source space being quasiconvex and dense” in Theorem A is re-
placed by the one “the source space being length” in Theorem 2. In Corollary 11 below, we
prove a relation between dense spaces and length spaces. That is, for a complete space,
it is dense if and only if it is length.

(2) In Theorem A, the target space is assumed to be quasiconvex, dense and proper. But in
Theorem 2, the target space is assumed only to be quasiconvex and complete.

(3) Since every Banach space of infinite dimension is not proper (cf. [5, Theorem 1.22]), we
see that, in the setting of Banach spaces, the assumptions in Theorem A force the spaces
in Theorem A to be of finite dimension. But in Theorem 2, this weak point is overcome.

(4) By [7, Theorem 2.25], we see that under the condition of Theorem 2, a quasisymmet-
ric map on A has a homeomorphism extension to its closure A which is also quasisym-
metric. Thus the semi-local quasisymmetry implies semi-locally relative quasisymmetry.
Therefore, the requirements in Theorem 2 on the mappings are weaker than that of The-
orem A.

The rest of this paper is organized as follows. In Section 2, we introduce the necessary
terminology and prove several auxiliary results, and in Section 3, the proof of Theorem 2 is
presented. Section 4 is an Appendix A that is devoted to show an auxiliary result in [2], i.e.,
Lemma 12.

2. Preliminaries and auxiliary results

In the following, we always use (X ,d) or (Xi ,di ) (i ∈ {1,2}) to denote a connected metric space.
The open (resp. closed) metric ball with center x ∈ X and radius r > 0 is denoted by B(x,r ) = {z ∈
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X : d(z, x) < r } (resp. B(x,r ) = {z ∈ X : d(z, x) ≤ r }), and the metric sphere by S(x,r ) = {z ∈ X :
d(z, x) = r }. For a curve γ⊂ X , we denote its length by `(γ).

The space (X ,d) is called c-quasi-convex if there is a constant c ≥ 1 such that any pair of points
x, y ∈ X can be joined by a curve γ such that `(γ) ≤ cd(x, y). The curve is also called c-quasi-
convex.

Suppose that (X ,d) is non-complete and that 0 <λ≤ 1
2 and c ≥ 1 are constants. (X ,d) is said to

be local l y (λ,c)-quasi-convex if for any x ∈ X and all points y, z ∈ B(x,λd(x)), there is a c-quasi-
convex curve in X joining y and z. Here and hereafter, d(x) = d(x,∂X ) denotes the distance from
x to the boundary ∂X of X .

A domain G ⊂ X is an open and connected nonempty set. We use G to denote the metric
closure of G , and let ∂G stand for the boundary of G . If ∂G 6= ;, then dG (x) denotes the distance
from x to ∂G .

The quasihyperbolic length of a rectifiable curve γ in G is the number:

`kG (γ) =
∫
γ

|d z|
dG (z)

.

For any x, y in G , the quasihyperbolic distance kG (x, y) between x and y is defined by kG (x, y)
= inf{`kG (γ)}, where the infimum is taken over all rectifiable curves γ joining x to y in G .

Definition 4. Suppose that G  X1 and G ′  X2 are domains and M ≥ 1. We say that a homeo-
morphism f : G →G ′ is

(1) M-QH if for all x, y ∈G,

1

M
kG (x, y) ≤ kG ′

(
f (x), f (y)

)≤ MkG (x, y),

i.e., f is M-bilipschitz in the quasihyperbolic metric.
(2) semi-locally M-QH if the restriction f |Bx is M-QH for each x ∈ G. Here and hereafter,

Bx =B(x,dG (x)).
(3) η-QS if there exists a self-homeomorphism η of [0,∞) such that

d1(x, a) ≤ td1(x,b) implies d2
(

f (x), f (a)
)≤ η(t )d2

(
f (x), f (b)

)
for each t > 0 and for each triplet {x, a, b} of points in G.

(4) semi-locally η-QS if for each x ∈G, the restriction f |Bx is η-QS.
(5) relatively η-QS if f has a continuous extension to the boundary ∂G, where the extended

mapping on G is still denoted by f , and there is a self-homeomorphism η of [0,∞) such
that

d1(x, a) ≤ td1(x,b) implies d2
(

f (x), f (a)
)≤ η(t )d2

(
f (x), f (b)

)
for each t > 0 and for each triplet {x, a, b} of points in G with x ∈ ∂G or a,b ∈ ∂G.

(6) semi-locally relatively η-QS if for each x ∈G, the restriction f |Bx is relatively η-QS.

For x, y in X , the length metric d is defined by

d(x, y) = inf
{
`(α) : α⊂ X is a rectifiable curve joining x and y

}
.

If d = d, then (X ,d) is called a length space.
Obviously, for any domain G ( X , the inequality

dist(x, X \G) ≤ dG (x) (1)

holds true for any x ∈ G . It is not difficult to find that, in general, the strict case dist(x, X \ G)
< dG (x) in (1) may occur. But this does not happen in length spaces as indicated in the following
Lemma 5.
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Lemma 5. Suppose that (X ,d) is a length space and that G ( X is a domain. Then for all x ∈ G
and 0 < r ≤ dG (x), the following statements hold:

(1) dist(x, X \G) = dG (x).
(2) B(x,r ) ⊂G.
(3) B(x,r ) is open and rectifiably connected.

Proof. To prove the statement (1), it follows from inequality (1) that we only need to show that

dist(x, X \G) ≥ dG (x).

To this end, let a ∈ X \ G and ε > 0. Since (X ,d) is a length space, there must be a curve γ in
X connecting a and x such that `(γ) ≤ (1+ ε)d(a, x), and thus, dG (x) ≤ (1+ ε)d(a, x). By letting
ε→ 0, we get dG (x) ≤ d(a, x), and so, the arbitrariness of a ensures that dist(x, X \G) ≥ dG (x).

Next, we verify (2). Suppose on the contrary that there is a point y ∈ Bx such that y ∈ X \ G .
Then by the statement (1) of the Lemma 5, one gets dG (x) ≤ d(x, y) < dG (x), which is the needed
contradiction.

The openness of B(x,r ) follows from the statement (2). To prove the rectifiable connectedness
of B(x,r ), let z ∈ B(x,r ). Then there is a curve α ⊂ X connecting z and x such that `(α) ≤
d(x, z)+ (r −d(x, z))/2 < r. By the arbitrariness of z, we see that B(x,r ) is rectifiably connected.
This completes the proof of Lemma 5. �

Remark 6. Lemma 5 ensures that B(x,dG (x)) is a domain contained in G when X is a length
space. Thus the local conditions for the mappings both in Theorem A and Theorem 2 are well-
defined. Note that B(x,dG (x)) may not lie in G even if X is quasi-convex, for more discussions
see [3, 4].

Definition 7. In [4], (X ,d) is said to be dense if for any two points x, y ∈ X and two positive
constants r1,r2 with d(x, y) < r1 + r2, we have B(x,r1)∩B(y,r2) 6= ;.

Lemma 8. Every length space (X ,d) is dense.

Proof. Suppose on the contrary that there are x, y ∈ X and r1, r2 > 0 such that d(x, y) < r1 + r2,
but B(x,r1)∩B(y,r2) =;. Let ε= (r1+r2)/d(x, y)−1. Then ε> 0 and there is a curve γ⊂ X joining
x and y such that `(γ) ≤ (1+ε/2)d(x, y). Let γ1 = γ∩B(x,r1) and γ2 = γ∩B(y,r2). Then γ1∪γ2( γ.
Assume w ∈ γ\ (γ1 ∪γ2). Then we get

(1+ε/2)d(x, y) ≥ `(γ) ≥ d(x, w)+d(y, w) ≥ r1 + r2 = (1+ε)d(x, y),

which is the desired contradiction. �

Definition 9. Suppose ε ≥ 0 is a constant. We say that (X ,d) has the ε-midpoint property if for
any two points x, y ∈ X , there is a point z ∈ X such that max{d(x, z),d(z, y)} ≤ d(x, y)/2+ε. Such a
point z is called an ε-midpoint of x and y. (cf. [6])

Lemma 10. (X ,d) is dense if and only if it has the ε-midpoint property for any ε> 0.

Proof. The necessity part of the Lemma 10 is obvious. To prove this lemma, we only need to show
the sufficiency part. Now, assume that (X ,d) has the ε-midpoint property for any ε> 0. Let x and
y be two points in X , and let r1, r2 be two positive numbers with r1 + r2 > d(x, y). Without loss of
generality, we may assume that

d(x, y) = 1 and 0 < r1,r2 < 1.

Assume further that m > 0 is an integer such that r1+r2 ≥ 1+2−m . Let n = m+1. Then there is an
integer p ∈ (0,2n) such that

p

2n < r1 ≤ p +1

2n ,

C. R. Mathématique — 2021, 359, n 3, 237-247



Qingshan Zhou, Yaxiang Li and Yuehui He 241

and so, we have r2 ≥ 1+2−m − r1 ≥ 1−p · 2−n +2−n .
Let τ= min{r1/p −2−n , r2

2n−p −2−n}. Then τ> 0. By taking ε= τ/2, we see that there is a point
z ∈ X such that max{d(x, z),d(z, y)} ≤ 1/2+τ/2.

Let x1,1 = x, x1,2 = z and x1,3 = y . By taking ε= τ/22, we know that there are two points z1 and
z2 ∈ X such that for i ∈ {1,2}, max{d(x1, i , zi ),d(zi , x1, i+1)} ≤ 1/22 +τ/2.

Let x2,1 = x1,1 = x, x2,2 = z1, x2,3 = x1,2, x2,4 = z2 and x2,5 = x1,3 = y . By taking ε = τ/23, we
know that there are four points wi ∈ X (i ∈ {1, . . . , 4}) such that max{d(x2, i , wi ),d(wi , x2, i+1)} ≤
1/23 +τ/2.

After repeating this procedure n times, we shall get 2n +1 points xn, i (i ∈ {1, . . . , 2n +1}) such
that max{d(xn, i , wi ),d(wi , xn, i+1)} ≤ 1/2n +τ/2, where xn,1 = x and xn,2n+1 = y .

Since d(x, xn, p+1) ≤ p(1/2n +τ/2) < r1 and d(xn, p+1, y) ≤ (2n − p)(1/2n +τ/2) < r2, we know
that xn, p+1 ∈B(x,r1)∩B(y,r2). This completes the proof of Lemma 10. �

Corollary 11. Suppose that (X ,d) is complete. Then X is length ⇔ X is dense ⇔ X has the ε-
midpoint property for any ε> 0.

Proof. This follows from Lemmas 8, 10 and [6, Lemma 2.1]. �

We remark that the assumption “(X ,d) being completeness” in Corollary 11 cannot be re-
moved. For example, let Q ⊂ R denote the set of all rational numbers endowed with Euclidean
metric. Then the metric space (Q, | · |) is dense and has the ε-midpoint property for any ε> 0, but
it is noncomplete and not length either.

3. Local characterization of quasihyperbolic mappings

The aim of this section is to prove Theorem 2. Before proceeding, we need two auxiliary results.

Lemma 12. Let (X1,d1) and (X2,d2) be c-quasi-convex metric spaces. Suppose that G ( X1 and
G ′( X2 are domains, and that f : G →G ′ is a homeomorphism. Then f is L-QH if and only if there
is a constant λ0 ∈ (0, 1

6cL ] such that for all x, y ∈G with d1(x, y) ≤λ0dG (x),

1

C

d1(x, y)

dG (x)
≤ d2(x ′, y ′)

dG ′ (x ′)
≤C

d1(x, y)

dG (x)
. (2)

The constants L and C depend on each other and c. Here and hereafter, x ′ = f (x) for all x ∈G.

Proof. Since (Xi ,di ) are c-quasi-convex metric spaces for i = 1,2, G and G ′ are clearly locally
(λ,c)-quasi-convex with λ = 1/(2c), rectifiably connected and non-complete as metric spaces.
Thus Lemma 12 follows from [2, Lemma 1.1]. (Since the manuscript [2] is not available for the
reader yet, we provide the proof of [2, Lemma 1.1] (see Lemma 19 below) in the Appendix A.) �

Lemma 13. Let (X1,d1) be a length space, and let (X2,d2) be a c-quasi-convex metric space.
Suppose that G ( X1 and G ′ ( X2 are domains, and that f : G →G ′ is a homeomorphism. Then f
is L-QH if and only if there are constants L1 ≥ 1 and L2 ≥ 1 such that for all x ∈ G, the restrictions
f |Bx is L1-QH and dG ′ (x ′) ≤ L2d f (Bx )(x ′), where the constants L, L1 and L2 depend on each other,
and c.

Proof. Since (X1,d1) is a length space, by Lemma 5, we see that for any x ∈G ,

Bx ⊂G and dBx (x) = dG (x). (3)

For the proof of the necessity part, we assume that f is L-QH. Since the assumption that
(X1,d1) is length implies that (X1,d1) is 2-quasi-convex, it follows from [4, Theorem 3.7] that for
each x ∈G , f |Bx is L1-QH with L1 = L1(c,L).
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For x ∈ G , let y ∈ B(x,λ0dG (x)), where λ0 ∈ (0, 1
6cL ] is the constant from Lemma 12. Since f is

L-QH, by Lemma 12, it follows that

dG ′ (x ′) ≤C
dG (x)

d1(x, y)
d2(x ′, y ′), (4)

where C =C (c,L) ≥ 1.
Since f |Bx is L1-QH, again by Lemma 12, together with (3), we have

d2(x ′, y ′) ≤C1
d1(x, y)

dG (x)
d f (Bx )(x ′),

where C1 =C1(c,L1) ≥ 1. By taking L2 =CC1, we get

dG ′ (x ′) ≤ L2d f (Bx )(x ′),

and thus, the necessity part is proved.
Next, we prove the sufficiency part. Since for any x ∈G , f |Bx is L1-QH, once more, Lemma 12

along with (3) guarantees that there exist constants L3 = L3(c,L1) ≥ 1 and λ1 ∈ (0, 1
6cL ] such that

for any y ∈B(x,λ1dG (x)),
1

L3

d1(x, y)

dG (x)
≤ d2(x ′, y ′)

d f (Bx )(x ′)
≤ L3

d1(x, y)

dG (x)
. (5)

Moreover, it follows from [3, Lemma 3.3(1)] that

d f (Bx )(x ′) ≤ cdG ′ (x ′),

because (X2,d2) is c-quasi-convex. Then by the assumption dG ′ (x ′) ≤ L2d f (Bx )(x ′), we get from (5)
that for all y ∈B(x,λ1dG (x)),

1

L2L3

d1(x, y)

dG (x)
≤ d2(x ′, y ′)

dG ′ (x ′)
≤ cL3

d1(x, y)

dG (x)
.

Thus Lemma 12 ensures that f is L-QH with L = L(c,L1,L2). This ends the proof of Lemma 13. �

3.1. Proof of Theorem 2

Proof. By Lemma 13, we see that, to prove this theorem, it is sufficient to show that for any x0 ∈G ,

dG ′
(
x ′

0

)≤ 2η(1)d f (Bx0 )
(
x ′

0

)
. (6)

Fix x0 ∈G , and let ε ∈ (0,1/100) be small enough such that(
1+η(1)

)
η (3ε/2) ≤ 1

2
, (7)

and for i ∈ {0,1,2, . . .}, let εi = ε/2i . Based on the sequence {εi }∞i=0, we determine a (finite or
infinite) sequence of points in G as stated in the following claim.

Claim 14. There is a sequence of points {xi }i=0 ⊂G, which satisfies the following.

(1) For i ≥ 0, if xi+1 6= xi , then xi+1 ∈S(xi ,dG (xi )) and

dG (xi+1) ≤ 3εi+1dG (xi ) ≤ 1

2
dG (xi ). (8)

(2) There is a point a ∈ ∂G such that
(a) if the sequence is infinite, i.e.,

{xi }i=0 =
∞

{xi }
i=0

, then lim
n→∞xn = a.

(b) if the sequence is finite, i.e., there is an integer k0 ≥ 1 such that {xi }i=0 = {xi }k0
i=0, then

xk0 = a. Further, for all 0 ≤ i < k0, xi 6= a and xi 6= xi+1.
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We determine the needed sequence {xi }i=0 of points as follows:
If there exists some point x1 ∈ ∂G such that d1(x0, x1) = dG (x0), let the sequence be {x0, x1}, i.e.,

k0 = 1. Otherwise, we choose a point y1 ∈ ∂G such that d1(x0, y1) ≤ (1+ε1)dG (x0). Since (X1,d1) is
a length space, there is a curve α0 connecting x0 and y1 with

`(α0) ≤ (1+ε1)d1(x0, y1) ≤ (1+ε1)2dG (x0).

Let x1 ∈ α0 ∩S(x0,dG (x0)) with α0[x0, x1) ⊂ B(x0,dG (x0)), where α0[x0, x1) denotes the subcurve
of α0 between x0 and x1 with the point x1 deleted. Then x1 ∈G , and it follows from the fact

dG (x1) ≤ d1(x1, y1) ≤ `(α0)−d1(x0, x1)

that

dG (x1) ≤ 3ε1dG (x0) ≤ dG (x0)/2.

By repeating this procedure, we get a sequence {xi }i=0 of points in G such that if xi+1 6= xi , then
dG (xi+1) ≤ 3εi+1dG (xi ) ≤ dG (xi )/2, and so,

d1(xi+1, xi ) = dG (xi ) ≤ 2−i dG (x0).

We divide the discussions into two cases. For the case when the sequence {xi }i=0 is infinite, we
know that {xi }i=0 ⊂G is a Cauchy sequence. Thus there is a point a ∈ ∂G such that limn→∞ xn = a.

For the remaining case, that is, the sequence {xi }i=0 is finite, i.e., there is an integer k0 ≥ 1 such
that {xi }i=0 = {xi }k0

i=0, by the construction, we see that xk0 ∈ ∂G . Further, for all 0 ≤ i < k0, xi 6= xk0

and xi 6= xi+1.
By letting a = xk0 , we see that Claim 14 is proved.
Assume that the sequence {xi }i=0 of points in G and the sequence {αi }i=0 of curves in G are

constructed in the proof of Claim 14. Then we have the following claim.

Claim 15. Suppose there is an integer r ≥ 0 such that xr+2 6= xr+1. Then

αr [xr , xr+1]∩S (xr+1,dG (xr+1)) 6= ;, (1)

and

d2
(
x ′

r+1, x ′
r+2

)≤ 1

2
d2

(
x ′

r , x ′
r+1

)
. (2)

The first assertion in the claim directly follows from (8). In the following, we prove the second
assertion. It follows from the first assertion of the claim that there is a point zr+1 ∈ G such that
zr+1 ∈αr [xr , xr+1]∩S(xr+1,dG (xr+1)), which implies that zr+1 ∈ Bxr . Since f is relatively η-quasi-
symmetric on Bxr , we get

d2
(
x ′

r+1, z ′
r+1

)
d2

(
x ′

r+1, x ′
r
) ≤ η

(
d1 (xr+1, zr+1)

d1 (xr+1, xr )

)
≤ η (3εr+1) . (10)

If zr+1 = xr+2, then the second assertion in the claim follows from (7) and (10).
For the case when zr+1 6= xr+2, since f is relatively η-quasi-symmetric on Bxr+1 , we have

d2
(
x ′

r+2, x ′
r+1

)
d2

(
z ′

r+1, x ′
r+1

) ≤ η
(

d1 (xr+2, xr+1)

d1 (zr+1, xr+1)

)
= η(1). (11)

It follows from (10) that

d2
(
x ′

r+1, x ′
r+2

)≤ η(1)d2
(
x ′

r+1, z ′
r+1

)≤ η(1)η(3εr+1)d2
(
x ′

r , x ′
r+1

)
,

and so, (7) leads to

d2
(
x ′

r+1, x ′
r+2

)≤ 1

2
d2

(
x ′

r , x ′
r+1

)
.

This proves the assertion (2) in the claim, and so, the proof of the Claim 15 is complete.
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Claim 16. d2(x ′
0, a′) ≤ 2d2(x ′

0, x ′
1), where the point a is from Claim 14.

We divide the proof into two cases. The first case is that the sequence {xi }i=0 is finite. Then
it follows from Claim 14(2) that there is an integer k0 ≥ 1 such that the sequence is {xi }k0

i=0 and
xk0 = a ∈ ∂G .

If k0 = 1, i.e., x1 = a, then the inequality in the claim is obvious. If k0 > 1, then Claim 15(2)
guarantees that

d2
(
x ′

0, a′)≤ k0−1∑
i=0

d2
(
x ′

i , x ′
i+1

)< 2d2
(
x ′

0, x ′
1

)
.

For the remaining case, that is, the sequence {xi }i=0 is infinite, let n ≥ 2 be an integer. Again,
Claim 15(2) gives that

d2
(
x ′

0, x ′
n+1

)≤ n∑
i=0

d2
(
x ′

i , x ′
i+1

)< 2d2
(
x ′

0, x ′
1

)
,

which implies that
d2

(
x ′

0, a′)≤ 2d2
(
x ′

0, x ′
1

)
,

since, by Claim 14(2), lim
n→∞xn = a. Hence the claim is true.

We are ready to finish the proof of the Theorem 2. It follows from Claim 16 that

dG ′
(
x ′

0

)≤ 2d2
(
x ′

0, x ′
1

)
, (12)

since the fact a′ ∈ ∂G ′ implies that dG ′ (x ′
0) ≤ d2(x ′

0, a′).
To continue the discussions, we consider two cases. For the case when G = Bx0 and ∂G = {x1},

(6) follows from (12). For the remaining case, that is, Bx0  G or ∂G \{x1} 6= ;, the assumption that
f is relatively η-quasi-symmetric on Bx0 implies that for any w ∈S(x0,dG (x0)),

d2
(
x ′

0, x ′
1

)
d2

(
w ′, x ′

0

) ≤ η(
d1 (x0, x1)

d1 (w, x0)

)
= η(1),

which gives
d2

(
x ′

0, x ′
1

)≤ η(1)d f
(
Bx0

) (x ′
0

)
.

Hence (12) shows that
dG ′

(
x ′

0

)≤ 2η(1)d f
(
Bx0

) (x ′
0

)
.

Therefore, this proves (6), and thus, the proof of Theorem 2 is complete. �

Appendix A. Metric characterization of quasihyperbolic maps

In this appendix, we establish a metric characterization of quasihyperbolic maps. Our goal is to
show Lemma 19 which is needed in the proof of Lemma 12.

First, we introduce a basic property for quasihyperbolic metric.

Lemma 17 ([2, Lemma 2.2]). Suppose that (X ,d) is locally (λ,c)-quasi-convex, rectifiably con-
nected and non-complete. Let x, y ∈ X . For any τ ∈ (0,λ], if either d(x, y) ≤ τ

3c d(x) or kX (x, y) ≤ τ,
then

1

1+τ
d(x, y)

d(x)
≤ kX (x, y) ≤ 3c

d(x, y)

d(x)
. (13)

Proof. We first consider the case when d(x, y) ≤ τ
3c d(x). Since X is locally (τ,c)-quasi-convex,

there is a curve α in X joining x to y such that

`(α) ≤ cd(x, y) ≤ τ

3
d(x).

For any z ∈α, we have

d(z) ≥ d(x)−d(x, z) ≥ 3−τ
3

d(x),

C. R. Mathématique — 2021, 359, n 3, 237-247



Qingshan Zhou, Yaxiang Li and Yuehui He 245

which implies that

kX (x, y) ≤
∫
α

|d z|
d(z)

≤ 3

3−τ
`(α)

d(x)
≤ 3c

3−τ
d(x, y)

d(x)
.

To prove the left hand side of (13), we only need to show that for any rectifiable curve γ in X
with endpoints x and y ,

`kX (γ) =
∫
γ

|d z|
d(z)

≥ 1

1+τ
d(x, y)

d(x)
.

Indeed, if γ⊂B(x,τd(x)), then for any z ∈ γ, we obtain

d(z) ≤ d(x)+d(x, z) ≤ (1+τ)d(x),

and thus,

`kX (γ) ≥ 1

1+τ
`(γ)

d(x)
≥ 1

1+τ
d(x, y)

d(x)
. (14)

If γ 6⊂B(x,τd(x)), then there must exist a subcurve γ1 of γ such that

γ1 ⊂B(x,τd(x)) and γ1 ∩S(x,τd(x)) 6= ;.

Thus we deduce from (14) that

`kX (γ) ≥ `kX (γ1) ≥ 1

1+τ
`(γ1)

d(x)
≥ 3c

1+τ
d(x, y)

d(x)
,

since `(γ1) ≥ τd(x) ≥ 3cd(x, y).
To prove the Lemma 17, it remains to consider the case when kX (x, y) ≤ τ and d(x, y) ≥ τ

3c d(x).
Under these assumptions, the right hand side of (13) is obvious. By [4, Theorem 2.5(1)], we have

d(x, y) ≤
(
ekX (x, y) −1

)
d(x).

Then the left hand side of (13) follows from the fact

e t ≤ 1+ (1+τ)t

for t ∈ (0,τ). �

Let f : (X1,d1) → (X2,d2) be a homeomorphism, and let x be a non-isolated point of X1. We
write the maximal stretching and the minimal stretching of f at x as follows:

Ld1 (x, f ) = limsup
y →x

d2(x ′, y ′)
d1(x, y)

and ld1 (x, f ) = liminf
y →x

d2(x ′, y ′)
d1(x, y)

.

The following Lemma 18 concerns the stretching.

Lemma 18. Let (Xi ,di ) be locally (λ,c)-quasi-convex, rectifiably connected and non-complete
metric spaces (i ∈ {1,2}), and let f : (X1,d1) → (X2,d2) be a homeomorphism. Then

(1) for all x ∈ X1,

1

6c

d1(x)

d2(x ′)
Ld1 (x, f ) ≤ LkX1

(x, f ) ≤ 6c
d1(x)

d2(x ′)
Ld1 (x, f )

and
1

6c

d1(x)

d2(x ′)
ld1 (x, f ) ≤ lkX1

(x, f ) ≤ 6c
d1(x)

d2(x ′)
ld1 (x, f ).

(2) f : (X1,kX1 ) → (X2,kX2 ) is L-quasi-isometric if and only if there is a constant M ≥ 1 such
that for all x ∈ X1,

1

M
≤ lkX1

(x, f ) ≤ LkX1
(x, f ) ≤ M ,

where the constants L and M depends on each other, together with the given constants λ
and c.
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Proof. By Lemma 17, we have

LkX1
(x, f ) = limsup

y →x

kX2 (x ′, y ′)
kX1 (x, y)

= limsup
y →x

(
kX2 (x ′, y ′)
d2(x ′, y ′)

d2(x ′, y ′)
d1(x, y)

d1(x, y)

kX1 (x, y)

)
≤ 6c

d1(x)

d2(x ′)
Ld1 (x, f )

and

Ld1 (x, f ) = limsup
y →x

d2(x ′, y ′)
d1(x, y)

= limsup
y →x

(
d2(x ′, y ′)

kX2 (x ′, y ′)
kX2 (x ′, y ′)
kX1 (x, y)

kX1 (x, y)

d1(x, y)

)
≤ 6c

d2(x ′)
d1(x)

LkX1
(x, f ).

These show that the first chain of inequalities in the assertion (1) is true.
Similarly, we can show that the second chain of inequalities in the assertion (1) is also true.
The assertion (2) in the Lemma 18 follows from [10, Lemma 5.5] and the obvious fact

lkX1
(x, f )LkX2

(x ′, f −1) = 1 for all x ∈ X1 since for each i ∈ {1,2}, the space (Xi ,kXi ) is µ-quasi-
convex for any µ> 1. �

Lemma 19 ([2, Lemma 1.1]). Suppose that for each i ∈ {1, 2}, (Xi ,di ) is a locally (λ,c)-quasi-
convex, rectifiably connected and non-complete space, and f : (X1,d1) → (X2,d2) is a homeo-
morphism. Then f : (X1,kX1 ) → (X2,kX2 ) is L-quasi-isometric if and only if there is a constant
λ0 ∈ (0, λ

3cL ] such that for all x, y ∈ X1 with d1(x, y) ≤λ0d1(x),

1

C

d1(x, y)

d1(x)
≤ d2(x ′, y ′)

d2(x ′)
≤C

d1(x, y)

d1(x)
. (15)

The constants L and C depend on each other, and the parameters λ and c. Here and hereafter,
di (z) = di (z,∂Xi ) denotes the distance from z to the boundary ∂Xi of Xi , i ∈ {1,2}.

Proof. Necessity: Assume that f : (X1,kX1 ) → (X2,kX2 ) is L-quasi-isometric, and let x, y ∈ X be
such that

d1(x, y) ≤λ0d1(x),

where λ0 ∈ (0, λ
3cL ]. By Lemma 17, we have

kX1 (x, y) ≤ 3c
d1(x, y)

d1(x)
≤ λ

L
,

and thus, by [4, Theorem 2.5(1)], we obtain

log

(
1+ d2(x ′, y ′)

d2(x ′)

)
≤ kX2 (x ′, y ′)

≤ LkX1 (x, y)

≤ min

{
3cL

d1(x, y)

d1(x)
,λ

}
.

(16)

This leads to

d2(x ′, y ′) ≤ (eλ−1)d2(x ′),

which implies
d2(x ′, y ′)

d2(x ′)
≤ eλ log

(
1+ d2(x ′, y ′)

d2(x ′)

)
. (17)
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Then (16) gives
d2(x ′, y ′)

d2(x ′)
≤ 3cLeλ

d1(x, y)

d1(x)
. (18)

On the other hand, we deduce from (16) that kX2 (x ′, y ′) ≤ λ. Then it follows from [4, Theo-
rem 2.5(1)] and Lemma 17 that

log

(
1+ d1(x, y)

d1(x)

)
≤ kX1 (x, y)

≤ LkX2 (x ′, y ′)

≤ min

{
3cL

d2(x ′, y ′)
d2(x ′)

,Lλ

}
,

which implies
d1(x, y) ≤

(
eLλ−1

)
d1(x),

and so, we have
d1(x, y)

d1(x)
≤ eLλ log

(
1+ d1(x, y)

d1(x)

)
≤ 3cLeLλ d2(x ′, y ′)

d2(x ′)
.

This, together with (17), yields (2) with C = 3cLeLλ.

Sufficiency. Assume that there is a constant λ0 ∈ (0, λ
3cL ] such that for all x, y ∈ X1 with d1(x, y)

≤λ0d1(x),
1

C

d1(x, y)

d1(x)
≤ d2(x ′, y ′)

d2 (x ′)
≤C

d1(x, y)

d1(x)
.

This implies that

1

C

d2(x ′)
d1(x)

≤ Ld1 (x, f ) ≤C
d2(x ′)
d1(x)

and
1

C

d2(x ′)
d1(x)

≤ ld1 (x, f ) ≤C
d2(x ′)
d1(x)

,

which, together with Lemma 18(1), gives
1

6cC
≤ lkX1

(x, f ) ≤ LkX1
(x, f ) ≤ 6cC .

By taking M = 6cC , we see from Lemma 18(2) that the sufficiency is true. �
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